Abstract:
The invention relates to a process for producing a polyester resin, said process comprises the steps of (i) providing a mixture of terephthalic acid, monoethylene glycol, a polycondensation catalyst which contains antimony, a phosphorous containing stabilizer comprising a compound of the formula (I) and optionally a colour correction additive containing cobalt ions; (ii) heating said mixture to a temperature of 220 to 270 °C to provide bis-hydroxyethylerethphalic acid ester; and (iii) performing polycondensation of said bis-hydroxyethylerethphalic acid ester at a temperature of between 280 and 310 °C at reduced pressure.
Process for manufacturing polyethylene terephthalate

This invention relates to an improvement in making polyethylene terephthalate (hereinafter "PET").

PET may be prepared, as is well known, by the ester interchange of dimethyl terephthalate with ethylene glycol or by the direct esterification of ethylene glycol and terephthalic acid, followed by condensation polymerization (hereinafter "polycondensation") in the presence of a catalyst such as antimony trioxide. The PET product may then be extruded and pelletized to produce polymer chip.

The PET chip is then subjected to solid state polymerization in order to increase the polymer's intrinsic viscosity and to remove acetaldehyde produced in the pellets during manufacture. It is widely known in the art that the intrinsic viscosity of PET may be increased by solid state polymerization conducted in either air or an inert gas.

It is also widely known in the art that solid state polymerization may be used to eliminate acetaldehyde contained in the polyester chip as disclosed in US 5,874,517.

The ester interchange of dimethylterephthalate and ethylene glycol is a disadvantageous method from the standpoint of conducting the process because of the necessity to recycle methanol set free by the transesterification reaction.

It is an object of the present invention to provide a process for manufacturing polyethylene terephthalate, which more specifically is useful for making beverage bottles, in a simple and economic way which in particular reduces the polycondensation time (hereinafter "PC time") to arrive at the desired bottle-grade PET.

It was found that this object is fulfilled by a process comprising a direct esterification of terephthalic acid (hereinafter "PTA") and monoethylene glycol (hereinafter "MEG") and an addition of selected additives at a specific time of the process.
According to the present invention, there is provided a process for producing a polyester resin, said process comprises the steps of

(i) providing a mixture of terephthalic acid, monoethylene glycol, a polycondensation catalyst which contains antimony, a phosphorous containing stabilizer comprising a compound of the formula (I)

![Chemical Structure](image)

(I)

and optionally a colour correction additive containing cobalt ions;

(ii) heating said mixture to a temperature of 220 to 270 °C to provide bis-hydroxyethylterephthalic acid ester (hereinafter "BHET");

(iii) performing polycondensation of said bis-hydroxyethylterephthalic acid ester at a temperature of between 280 and 310°C at reduced pressure.

As to step (i):
The terms "polyethylene terephthalate" and "PET" as used herein are used generally to include high-molecular weight polymers made by condensing ethylene glycol with dimethyl terephthalate or terephthalic acid no matter how prepared. Furthermore, these terms are meant to include well-known polyethylene terephthalate polymers which are modified by the inclusion of minor amounts, e.g., less than about 20 percent by weight of the polymer, of comonomers or modifying agents, as is otherwise well known. Such comonomers or modifying agents include aromatic and aliphatic diols and polyols; aromatic and aliphatic carboxylic acids; or single molecules containing both carboxylic and alcohol functionality. Examples of diols include 1,4-butanediol, cyclohexanediol, diethylene
glycol and/or 1,3-propanediol. Examples of carboxylic diacids include isophthalic acid, adipic acid, 2,6-naphthalene dicarboxylic acid and p-hydroxy benzoic acid. Minor amounts of chain branching agents and/or chain terminating agents may also be used. Such chain branching agents include, for example, polyfunctional acids and/or polyfunctional alcohols such as trimethylol propane and pentaerythritol. Chain terminating agents include monofunctional alcohols and/or monofunctional carboxylic acids such as stearic acid and benzoic acid. Mixtures of the chain branching and chain terminating agents may also be used. Although the terms polyethylene terephthalate and PET are meant to include polyethylene terephthalate polymers containing minor amounts of modifying agents or chain branching agents, for purposes of illustration only, the remainder of this specification is generally directed to PET which does not contain such added modifying agents or chain branching agents.

The molar ratio of PTA and MEG is such that a polycondensation can occur, i.e. preferably in about equimolar amounts, preferably in an amount of between 1:1 and 1:1.4, more preferably between 1:1.1 and 1:1.3, most preferably between 1:1.1 and 1:1.25, PTA : MEG.

The amount polycondensation catalyst which contains antimony is expediently between 150 and 450 ppm, preferably between 200 and 400 ppm, more preferably between 200 and 300 ppm, most preferably between 225 and 275 ppm, by weight, calculated on Sb, of the reaction mixture. The polycondensation catalyst which contains antimony is preferably selected from the group consisting of antimony trioxide, antimony oxalate, antimony glucoxide, antimony butoxide, antimony dibutoxide, most preferred is antimony trioxide.

The amount of the phosphorous containing stabilizer comprising a compound of the formula (I) is such that the amount of P is expediently between 1 and 20 ppm, preferably between 2 and 15 ppm, more preferably between 3 and 10 ppm, most preferably between 4 and 7.5 ppm, by weight of the reaction mixture.
Said phosphorous containing stabilizer comprising a compound of the formula (I) is expediently a reaction product of phosphorous trichloride with 1,1'-biphenyl and 2,4-bis(1,1-dimethylethyl)phenol, commercially available from Clariant under the name of ©Hostanox P-EPQ, CAS 38613-77-3.

The amount of the colour correction additive containing cobalt ions is expediently between 0 and 100 ppm, preferably 0 and 50 ppm, more preferably 5 to 50 ppm, most preferably 10 to 30 ppm, by weight of the reaction mixture. Said color correction additive containing cobalt ions is preferably a cobalt(II) acetate or a hydrate thereof.

As to step (ii):
The condensation reaction to provide BHET as an intermediary product is preferably carried out at a temperature of between 240 and 270 °C, more preferably between 250 and 265°C. The condensation reaction is expediently carried out at elevated pressure, preferably at 1.2 to 10 bar, more preferably at 2 to 5 bar. The water formed during the condensation is preferably removed from the reaction mixture.

As to step (iii):
The polycondensation reaction is preferably carried out at a temperature of between 280 and 300°C, more preferably between 285 and 295 °C, at a reduced pressure of below 100 mbar, preferably below 20 mbar, more preferably below 10 mbar, expediently while removing polycondensation water. As a lower limit, 0.5 to 1 mbar is sufficient.

The polycondensation reaction is performed for a time until a polyester of the desired intrinsic viscosity is obtained. The intrinsic viscosity of the PET is generally from about 0.40 to about 1.0, preferably from about 0.50 to 0.85, more preferably from about 0.55 to about 0.80, most preferably from about 0.55 to about 0.70, deciliters per gram, based on calculations made from measurements in o-chlorophenol at 25 °C. The specific preferred range of intrinsic viscosity depends
on end use. The measurement of the intrinsic viscosity is carried out according to DIN 53728.

The PET reaction product may then be extruded at an elevated temperature into water and allowed to solidify therein. The solid PET may then be pelletized by means known to those skilled in this art. For example, the PET may be pelletized using an underwater pelletizer.

The PET useful in the present invention may be in any form such as pellets, chips, or granules, preferably of relatively uniform size and shape. For ease of reference, the PET will hereinafter be referred to as PET chip but it is understood that the present invention is applicable to PET in any form and the term PET chip is meant to include PET in any form.

In an alternative embodiment, PET may be produced using a continuous process in which the PET reaction product is directly extruded into final form, rather than chip. Such direct extrusion is known in the art for use in producing film, fiber, and other articles.

The presence of all ingredients specified in step (i) before starting step (ii) is critical to obtain the desired shorter polycondensation times. Shorter PC times allows for increased polymer throughput, thereby producing a PET resin which is significantly more economically attractive.

Example 1:

The polymerization is carried out in a standard semi-technical production unit for two stage polymerization of terephthalic acid (PTA) and monotheylene glycol (MEG), capable of producing about 5 kg of PET chip.

PTA and MEG are charged in a molar ration of 1:1.2 PTA:MEG. All other starting materials are added prior to the process, which are the catalyst (Sb2O3: dosed to have 250 ppm Sb in the reaction mixture), the color correction additive (Co(II)acetate: dosed to have 25 ppm Co in the reaction mixture) and the phosphorous containing stabilizer Hostanox P-EPQ: dosed to have 5 ppm P in the reaction mixture.
In the first reaction step (ii) the direct esterification is carried out at 260 °C at a pressure of 3,76 bar to form the intermediate bis-hydroxyethylterephthalic acid ester (BHET). In the second reaction step (iii) the polycondensation of the BHET is done at 290 °C under removal of water at a pressure of 2 mbar to come to a PET polyester with an intrinsic viscosity of 0,6 dl/g. The measurement of the intrinsic viscosity is carried out according to DIN 53728.

Example 2 (Comparative):

The polymerisation is carried out as described in Example 1, except that Hostanox P-EPQ dosed to have 5 ppm P in the reaction mixture is replaced by CEPA (= 2-carboxyethyl phosphonic acid) dosed to have 5 ppm P in the reaction mixture.

Example 3 (Comparative):

The polymerisation is carried out as described in Example 1, except that the antimony trioxide polycondensation catalyst is absent in the starting reaction mixture and is added after finalizing step (ii).

<table>
<thead>
<tr>
<th>Example</th>
<th>Hostanox P-EPQ [ppm phosphorous]</th>
<th>CEPA [ppm phosphorous]</th>
<th>Sb₂O₃ added</th>
<th>PC time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 ppm</td>
<td>0</td>
<td>in step (i)</td>
<td>87</td>
</tr>
<tr>
<td>2 (Comp.)</td>
<td>0</td>
<td>5 ppm</td>
<td>in step (i)</td>
<td>100</td>
</tr>
<tr>
<td>3 (Comp.)</td>
<td>5 ppm</td>
<td>0</td>
<td>after step (ii)</td>
<td>110</td>
</tr>
</tbody>
</table>
Patent claims

1. A process for producing a polyester resin, said process comprises the steps of

 (i) providing a mixture of terephthalic acid, monoethylene glycol, a polycondensation catalyst which contains antimony, a phosphorous containing stabilizer comprising a compound of the formula (I)

 \[
 \text{(I)}
 \]

 and optionally a colour correction additive containing cobalt ions;

 (ii) heating said mixture to a temperature of 220 to 270°C to provide bis-hydroxyethylterephthalic acid ester; and

 (iii) performing polycondensation of said bis-hydroxyethylterephthalic acid ester at a temperature of between 280 and 310°C at reduced pressure.

2. The process as claimed in claim 1, wherein the molar ratio of terephthalic acid and monoethylene glycol is between 1 : 1 and 1 : 1.4 terephthalic acid : monoethylene glycol.

3. The process as claimed in claim 1 or 2, wherein the molar ratio of terephthalic acid and monoethylene glycol is between 1 : 1.1 and 1 : 1.25 terephthalic acid : monoethylene glycol.
4. The process as claimed in any of claims 1 to 3, wherein the amount of the polycondensation catalyst which contains antimony is between 150 and 450 ppm by weight, calculated on Sb, of the mixture of step (i).

5. The process as claimed in any of claims 1 to 4, wherein the amount of the polycondensation catalyst which contains antimony is between 225 and 275 ppm by weight, calculated on Sb, of the mixture of step (i).

6. The process as claimed in any of claims 1 to 5, wherein the polycondensation catalyst which contains antimony is selected from the group consisting of antimony trioxide, antimony oxalate, antimony glucoxide, antimony butoxide and antimony dibutoxide.

7. The process as claimed in any of claims 1 to 6, wherein the polycondensation catalyst which contains antimony is antimony trioxide.

8. The process as claimed in any of claims 1 to 7, wherein the amount of the phosphorous containing stabilizer comprising a compound of the formula (I) is such that the amount of P is between 1 and 20 ppm by weight of the mixture of step (i).

9. The process as claimed in any of claims 1 to 8, wherein the amount of the phosphorous containing stabilizer comprising a compound of the formula (I) is such that the amount of P is between 4 and 7.5 ppm by weight of the mixture of step (i).

10. The process as claimed in any of claims 1 to 9, wherein the amount of the colour correction additive containing cobalt ions is between 0 and 100 ppm by weight of the mixture of step (i).

11. The process as claimed in any of claims 1 to 10, wherein the color correction additive containing cobalt ions is cobalt(II) acetate or a hydrate thereof.
12. The process as claimed in any of claims 1 to 11, wherein step (ii) is carried out at a temperature between 250 and 265 °C.

13. The process as claimed in any of claims 1 to 12, wherein step (ii) is carried out at a pressure of between 1.2 to 10 bar.

14. The process as claimed in any of claims 1 to 13, wherein step (iii) is carried out at a temperature between 285 and 295°C.

15. The process as claimed in any of claims 1 to 14, wherein step (iii) is carried out at a pressure of below 100 mbar.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C08G63/00 C08G63/78 C08K5/49 B01J23/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G C08K B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y DATABASE WPI 1-15

Week 199803
Thomson Sci enti fic, London, GB;
AN 1998-028083
XP002709657
& JP H09 286847 A (NI PPON ESTER CO LTD)
4 November 1997 (1997-11-04)
abstract

Y DATABASE WPI 1-15

Week 197825
Thomson Sci enti fic, London, GB;
AN 1978-44663A
XP002709658,
abstract

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document on which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"A" document member of the same patent family

Date of the actual completion of the international search

30 April 2014

Date of mailing of the international search report

08/05/2014

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Lauteschlaeger, S

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 2010/102795 AI (SAUDI BASIC IND CORP [SA] ; RAO MUMMANENI VENKATESWARA [SA] ; AL-MUNI F M) 16 September 2010 (2010-09-16) page 4, paragraph 4; claim 1 page 10, lines 14-16 page 11, lines 16-20</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>JP H09286847</td>
<td>04-11-1997</td>
<td>NONE</td>
</tr>
<tr>
<td>JP S5351295</td>
<td>10-05-1978</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2010102795</td>
<td>16-09-2010</td>
<td>CN 102348739 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2436443 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012520357 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110138368 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2406299 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201041932 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012071625 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010102795 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S5751815 A</td>
</tr>
</tbody>
</table>