(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltsorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
2. Februar 2006 (02.02.2006)

(51) Internationale Patentklassifikation:
A61K 47/00 (2006.01)

(21) Internationales Aktenzeichen:
PCT/EP2005/005374

(22) Internationales Anmeldedatum:
18. Mai 2005 (18.05.2005)

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:

(72) Erfinder; und

MEIER, Christian [DE/DE]; In der Köhleranne 89 a, 64295 Darmstadt (DE).
BÄR, Hans [DE/DE]; Balsbach 7, 64753 Bronnbachtal (DE).

Veröffentlicht:
ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jedes regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel: MEDICAMENT IN A MULTILAYER FORM

(54) Bezeichnung: MEHRSCHICHTIGE ARZNEIFORM

(57) Abstract: The invention relates to a medicament in a multilayer form, containing a) a core with a pharmaceutical agent, b) an inner coating, 50 to 95 percent by weight of which are composed of a (co)polymer comprising 95 to 100 percent by weight of radically polymerized vinyl monomers with neutral side groups and 0 to 5 percent by weight of monomers with anionic side groups, c) an outer coating made of a copolymer comprising 75 to 95 percent by weight of radically polymerized C1 to C4 alkyl esters of acrylic acid or methacrylic acid and 5 to 25 percent by weight of (meth)acrylate monomers with an anionic group in the alkyl radical. Said medicament further contains 5 to 30 percent by weight of common pharmaceutical auxiliaries, particularly emollients. The inventive medicament is characterized in that the inner coating contains 5 to 50 percent by weight of common pharmaceutical auxiliaries which are no expanding agents while the amount of expanding agents provided is less than 5 percent by weight.

(57) Zusammenfassung: Die Erfindung betrifft Mehrschichtige Arzneiformen, enthaltend a) einen Kern mit einem pharmazeutischen Wirkstoff, b) einen inneren Überzug, der zu 50 bis 95 Gew.-% aus einem (Co)polymeren besteht, das sich zu 95 bis 100 Gew.-% aus radikal polymerisierten vinylen Monomerum mit neutralen Seitengruppen und 0 bis 5 Gew.-% Monomeren mit anionischen Seitengruppen zusammensetzt, c) einen äußeren Überzug aus einem Copolymeren, das sich aus 75 bis 95 Gew.-% radikal polymerisierten C1- bis C4-Alkylesteren der Acryl- oder der Methacrylsäure und 5 bis 25 Gew.-% (Meth)acrylat-Monomeren mit einer anionischen Gruppe im Alkylrest zusammensetzt, wobei 5 bis 30 Gew.-% an pharmazeutisch üblichen Hilfsstoffen, insbesondere Weichmachern, enthalten sind, dadurch gekennzeichnet, daß der innere Überzug 5 bis 50 Gew.-% an pharmazeutisch üblichen Hilfsstoffen enthält, die keine Porenbildner sind und Porenbildner nur in Mengen von weniger als 5 Gew.-% enthalten sind.
Mehrschichtige Arzneiform

Die Erfindung betrifft eine mehrschichtige Arzneiform, aufgebaut aus einem Kern mit einem pharmazeutischen Wirkstoff, einem inneren Polymerüberzug und einem äußeren Polymerüberzug.

Stand der Technik

EP 0 704 207 A2 beschreibt thermoplastische Kunststoffe für darmsaftlösliche Arzneiumhüllungen. Es handelt sich dabei um Mischpolymerisate aus 16 bis 40 Gew.-% Acryl- oder Methacrylsäure, 30 bis 80 Gew.-% Methylacrylat und 0 bis 40 Gew.-% anderen Alkylestern der Acrylsäure und/oder Methacrylsäure.

EP 0 519 870 A1 beschreibt orale Diclofenac-Zubereitungen. Der Wirkstoff ist dabei auf einem Kern aufgetragen, der zweischichtig überzogen ist. Die innere Schicht kann aus einem neutralen (Meth)acrylatcopolymere von Typ

WO 01/68058 beschreibt eine mehrschichtige Arzneiform, die im wesentlichen aufgebaut ist aus a) einem Kern mit einem pharmazeutischen Wirkstoff, b) einem inneren Überzug aus einem Copolymeren oder einer Mischung von Copolymeren, die sich aus 85 bis 98 Gew.-% radikalisch polymerisierten C1-bis C4-Alkylestern der Acryl- oder der Methacrylsäure und 15 bis 2 Gew.-% (Meth)acrylat-Monomeren mit einer quaternären Ammoniumgruppe im Alkylester zusammensetzen und c) einem äußeren Überzug aus einem Copolymeren, das sich aus 75 bis 95 Gew.-% radikalisch polymerisierten C1- bis C4-Alkylestern der Acryl- oder der Methacrylsäure und 5 bis 25 Gew.-% (Meth)acrylat-Monomeren mit einer anionischen Gruppe im Alkylester zusammensetzt.

WO 2004/039357 beschreibt eine mehrschichtige Arzneiform, aufgebaut aus a) einem neutralen Kern, b) einem inneren Überzug aus einem Methacrylat-Copolymeren und c) einem äußeren Überzug aus einem Copolymeren, das sich aus 40 bis 95 Gew.-% radikalisch polymerisierten C1- bis C4-Alkylestern der Acryl- oder der Methacrylsäure und 5 bis 60 Gew.-% (Meth)acrylat-

Aufgabe und Lösung

Arzneiformen gemäß der WO 01/68058 weist hervorragende Eigenschaften für Freisetzung von Wirkstoffen im Colon auf. Im Magen wird nahezu kein Wirkstoff abgegeben und es wird eine gleichmäßige und langanhaltende Wirkstoffabgabe im Darm, insbesondere kurz vor oder erst im Dickdarmbereich erreicht. Die Art der Wirkstoffabgabe ist dergestalt, daß die in-vitro Anforderung erfüllt wird, daß im Freisetzungstest nach USP zwei Stunden bei pH 1,2 und anschließendem Umpuffern auf pH 7,0 der enthaltene Wirkstoff im Zeitraum bis 2,0 Stunden nach Testbeginn zu weniger als 5 % und zum Zeitpunkt acht Stunden nach Testbeginn zu 30 bis 80 % freigesetzt wird.

Es wurde somit als eine Aufgabe gesehen, eine Arzneiform mit zumindest sehr ähnlicher Freisetzungscharakteristik bereitzustellen, die jedoch in den mechanischen Eigenschaften des Filmüberzugs verbessert ist.

Die Aufgabe wird gelöst durch eine mehrschichtige Arzneiform, enthaltend

a) einen Kern mit einem pharmazeutischen Wirkstoff

b) einen inneren Überzug, der zu 50 bis 95 Gew.-% aus einem (Co)polymeren besteht, das sich zu 95 bis 100 Gew.-% aus radikalisch polymerisierten vinylischen Monomeren mit neutralen Seitengruppen und 0 bis 5 Gew.-% Monomeren mit anionischen Seitengruppen zusammensetzt,

c) einen äußeren Überzug aus einem Copolymeren, das sich aus 75 bis 95 Gew.-% radikalisch polymerisierten C_1- bis C_4-Alkylestern der Acryl- oder der Methacrylsäure und 5 bis 25 Gew.-% (Meth)acrylat-Monomeren mit einer anionischen Gruppe im Alkylrest zusammensetzt, wobei 5 bis 30 Gew.-% an pharmazeutisch üblichen Hilfsstoffen, insbesondere Weichmacher, enthalten sind,

dadurch gekennzeichnet, daß

der innere Überzug 5 bis 50 Gew.-% an pharmazeutisch üblichen Hilfsstoffen enthält, die keine Porenbildner sind und Porenbildner nur in Mengen von weniger als 5 Gew.-% enthalten sind.

Die Kombination des inneren und der äußeren Überzugsfilms führen offenbar in zu einer gesteigerten Zugfestigkeit der doppelten Filmschicht als Ganzes im Vergleich zu WO 01/68058. Dadurch werden die mechanischen Eigenschaften

Ausführung der Erfindung

Die Erfindung betrifft eine mehrschichtige Arzneiform, enthaltend

Kern a)

Träger bzw. Kerne für die Überzüge sind Tabletten, Granulate, Pellets, Kristalle von regelmäßiger oder unregelmäßiger Form. Die Größe von Granulaten, Pellets oder Kristallen liegt in der Regel zwischen 0,01 und 2,5 mm, die von Tabletten zwischen 2,5 und 30,0 mm. Die Träger enthalten üblicherweise zu 1 bis 95 % Wirkstoff sowie gegebenenfalls bzw. in der Regel weitere pharmazeutische Hilfsstoffe.

Neben dem Wirkstoff können die Kerne weitere pharmazeutische Hilfsstoffe enthalten: Bindemittel, wie Lactose, Cellulose und deren Derivate,
Polyvinylpyrrolidon (PVP), Feuchthaltemittel, Zerfallsförderer, Gleitmittel, Sprengmittel, Stärke und deren Derivate, Zucker Solubilsatoren oder andere.

Innerer Überzug b)

Der innere Überzug b) besteht zu 50 bis 95, bevorzugt zu 60 bis 90 Gew.-% aus einem (Co)polymeren, das sich zu 95 bis 100, bevorzugt zu 98 bis 100 Gew.-% aus radikalisch polymerisierten vinylischen Monomeren mit neutralen Seitengruppen und 0 bis 5, bevorzugt 0 bis 2 Gew.-% vinylischen Monomeren mit anionischen Seitengruppen zusammensetzt. Das überwiegend oder völlig neutrale Copolymer hat bevorzugt die Eigenschaft, oberhalb von pH 5,0 in Wasser bzw. im Darmsaftmilieu zu quellen und den Wirkstoff kontrolliert bzw. retardiert freizusetzen.

Die Wirkstofffreisetzungscharakteristik entspricht nicht exakt derjenigen, wie sie in der WO 01/68058 beschrieben ist, die Abweichungen sind jedoch überraschend gering. Die Modifikation zugunsten der besseren mechanischen Eigenschaften erscheint deshalb durchgängig tolerierbar. Durch Variation der Schichtdicke des inneren Überzuges kann das Freigabeprofil gegebenenfalls angeglichen werden.
Der innere Überzug kann ein (Co)polymer enthalten, das sich aus 95 bis 100, bevorzugt 98 bis 100 Gew.-% radikalisch polymerisierten C₁⁻ bis C₄⁻Alkylen der Acryl- oder der Methacrylsäure und gegebenenfalls 0 bis 5, bevorzugt 0 bis 2 Gew.-% vinylischen Monomeren mit anionischen Seitengruppen, insbesondere Acryl- und/or Methacrylsäure, zusammensetzt.

C₁⁻ bis C₄⁻Alkylen der Acryl- oder Methacrylsäure sind insbesondere Methylmethacrylat, Ethylmethacrylat, Butylmethacrylat, Methylacrylat, Ethylacrylat und Butylacrylat.

Ein (Meth)acrylat-Monomer mit einer anionischen Gruppe im Alkylrest kann z. B. Acrylsäure, bevorzugt jedoch Methacrylsäure sein.

Geeignet sind z. B. neutrale (Meth)acrylat Copolymere aus 20 bis 40 Gew.-% Ethylacrylat und 60 bis 80 Gew.-% Methylmethacrylat (Typ EUDRAGIT® NE).

EUDRAGIT® NE ist ein Copolymer aus 30 Gew.-% Ethylacrylat und 70 Gew.-% Methylmethacrylat.

Der innere Überzug enthält 5 bis 50 Gew.-% an pharmazeutisch üblichen Hilfsstoffen, die keine Porenbildner sind.

Die pharmazeutisch üblichen Hilfsstoffe, die im inneren Überzug enthalten sein können, werden aus den Stoffklassen der Weichmacher, Stabilisatoren, Farbstoffe, Antioxidantien, Netzmittel, Pigmente, Glanzmittel, Trennmittel, Trockenstellmittel ausgewählt, wobei Porenbilder, insbesondere wasserunlösliche Porenbilder wie Kaolin, Calciumcarbonat, Calciumhydrogenphosphat, Magnesiumoxid, mikrokristalline Cellulose, Titandioxid oder Eisenoxid, und insbesondere wasserlösliche Porenbilder wie Povidone K30, Polyvinylalkohol, Cellulosederviate, wie Hydroxypropylcellulose, Hydroxypropylmethylcellulose (HPMC), Methylcellulose oder Natriumcarboxymethylcellulose, Saccharose, Xylit, Sorbit, Mannit, Maltose, Xylose, Glucose, Kaliumchlorid, Natriumchlorid, Polysorbat 80, Poylthlyenglykol oder Natriumcitrat nicht oder nur in Mengen von weniger als 5, bevorzugt weniger als 2 oder 1 Gew.-% enthalten sind.

Es wurde weiterhin festgestellt, daß ein in der inneren Überzugsschicht gebundener Wirkstoff, wie in der WO 2004/039357 angeregt, die
mechanischen Eigenschaften der doppelten Überzugsfilmschicht ebenfalls
nachteilig beeinflusst. Der in der Arzneiform enthaltene Wirkstoff wird
zweckmäßigerweise in der Kernschicht untergebracht. Die innere
Überzugsschicht kann, auch wenn dies nicht zweckmäßig erscheint, in geringer
Menge etwas Wirkstoff enthalten, ohne, daß die mechanischen Eigenschaften
des Überzugs zwangsläufig zu sehr beeinträchtigt werden. Der Wirkstoffgehalt
sollte im inneren Überzug jedoch bei weniger als 2, bevorzugt weniger als 1
liegen. Derartig geringe Mengen bewirken in der Regel keinen technischen
Effekt mehr. Besonders bevorzugt ist deshalb kein Wirkstoff in der inneren
Überzugsschicht enthalten.

Die Schichtdicke des inneren Überzugs kann z. B. im Bereich von 10 – 100,
bevorzugt 20 bis 40 µm liegen.

Äußerer Überzug c)

Der äußere Überzug c) enthält ein Copolymer, das sich aus 75 bis 95 Gew.-%
radikalisch polymerisierten C₁- bis C₄-Alkylestern der Acryl- oder der
Methacrylsäure und 5 bis 25 Gew.-% (Meth)acrylat-Monomeren mit einer
anionischen Gruppe im Alkylrest zusammensetzt, wobei 5 bis 30, bevorzugt 8
bis 20 Gew.-% an pharmazeutisch üblichen Hilfsstoffen, insbesondere
Weichmacher, enthalten sind. Porenbildner sollen im äußeren Überzug
bevorzugt nicht oder nur in Mengen von weniger als 5, bevorzugt weniger als 2
oder 1 Gew.-% verwendet werden. Derartig geringe Mengen bewirken in der
Regel keinen technischen Effekt mehr. Besonders bevorzugt sind deshalb
keine Porenbildner in der äußeren Überzugsschicht enthalten.
C₁- bis C₄-Alkylestern der Acryl- oder Methacrylsäure sind insbesondere Methylmethacrylat, Ethylmethacrylat, Butylmethacrylat, Methylacrylat, Ethylacrylat und Butylacrylat.

Ein (Meth)acrylat-Monomer mit einer anionischen Gruppe im Alkylrest kann z. B. Acrylsäure, bevorzugt jedoch Methacrylsäure sein.

Besonders gut geeignet sind (Meth)acrylat Copolymere aus 10 bis 30 Gew.-%, Methylmethacrylat, 50 bis 70 Gew.-% Methylacrylat und 5 bis 15 Gew.-% Methacrylsäure (Typ EUDRAGIT[®] FS).

Bevorzugt ist die Emulsionspolymerisation in wäßriger Phase in Gegenwart wasserlöslicher Initiatoren und (vorzugsweise anionischer) Emulgatoren (Siehe z. B. DE-C 2 135 073).

Das Emulsionspolymerisat wird vorzugsweise in Form einer 10- bis 50-gew.-prozentigen, insbesondere 30 bis 40-prozentigen wässrigen Dispersion erzeugt und angewendet. Für die Verarbeitung ist eine teilweise Neutralisation der Methacrylsäure-Einheiten entbehrlich; sie ist jedoch, beispielsweise in einem Umfang bis zu 5 oder 10 Mol-% möglich, wenn eine Verdickung der Überzugsmittel dispersion erwünscht sein sollte. Der Gewichtsmittelwert der Latex-Teilchengröße beträgt in der Regel 40 bis 100 nm, vorzugsweise 50 bis
70 nm, was eine verarbeitungstechnisch günstige Viskosität unter 1000 mPa · s gewährleistet.

Die Schichtdicke des äußeren Überzugs kann z. B. im Bereich von 20 – 150, bevorzugt 40 bis 80 μm liegen.

Mengenverhältnisse innerer/äußerer Überzug

Das Gesamtgewicht des inneren Überzugs kann bevorzugt 2 bis 50, besonders bevorzugt 10 bis 40 Gew.-% bezogen auf das Gesamtgewicht des Kerns ausmachen.

Das Gesamtgewicht des Kerns setzt sich aus dem Wirkstoff, den gegebenenfalls zur Formulierung verwendete Hilfsstoffen einschließlich gegebenenfalls verwendeter neutraler Kerne (Non-Pareilles) zusammen, entspricht also dem Trockengewicht der Formulierung.

Das Gesamtgewicht des inneren Überzugs setzt sich aus dem Copolymeren und den enthaltenen Hilfsstoffen zusammen, entspricht also dem Trockengewicht der verwendeten Formulierung.

Das Gesamtgewicht des äußeren Überzugs setzt sich aus dem Copolymeren und den gegebenenfalls enthaltenen Hilfsstoffen, z. B. Weichmacher, zusammen, entspricht also dem Trockengewicht der verwendeten Formulierung.

Das Gesamtgewicht des äußeren Überzugs kann bevorzugt 5 bis 50, besonders bevorzugt 10 bis 30 Gew.-% bezogen auf das Gesamtgewicht des Kerns und des inneren Überzugs ausmachen.
Im Übrigen zeigen rasterelektronenmikroskopische Aufnahmen von Querschnitten isolierter Doppelfilme mit erfindungsgemäßer Aufbau homogene, gleichmäßige Schichten mit guter Haftung an der Grenzfläche.

Verfahren

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Arzneiform, gekennzeichnet durch die Schritte

a) Erzeugen eines Kerns mit einem pharmazeutischen mittels Sprühauflage auf einen Neutral-Kern (Non-Pareilles) oder durch Rotagglomeration, Ausfällen, Sprühverfahren oder Extrusion und Spherisation ohne einen Neutral-Kern herstellt und anschließend

b) Auftragen des inneren Überzugs, mittels Sprühauflage, so daß wirkstoffhaltige, umhüllte Pellets erhalten werden,

c) Auftragen des äußeren Überzugs, mittels Sprühauflage, so daß wirkstoffhaltige, zweifach umhüllte Pellets erhalten werden,

d) optional eine abschließende Curing-Behandlung zur Stabilisierung des Freigabeprofils, z. B. durch trockenes Lagern für 2 Stunden bei 40 °C.

Die erhaltenen Pellets können mittels pharmazeutisch üblicher Hilfsstoffe und in an sich bekannter Weise zu einer multipartikulären Arzneiform, insbesondere zu pellethaltigen Tabletten, Minitabletten, Kapseln, Sachets oder Trockensäften weiterverarbeitet werden, die so formuliert sind, daß die enthaltenen Pellets im pH-Bereich des Magens freigesetzt werden.
Multipartikuläre Arzneiform

Freisetzungscharakteristik

Die Wirkstofffreisetzungscharakteristik entspricht zwar nicht exakt derjenigen, er WO 01/68058 ist jedoch ähnlich. Die Abweichungen sind überraschend gering. Die Arzneiform eignet sich daher besonders gut für die Freisetzung von Wirkstoffen im Colon.

Im Freisetzungstest nach USP für zwei Stunden bei pH 1,2 und anschließendem Umpuffern auf pH 7,0 den enthaltenen Wirkstoff im Zeitraum bis 2,0 Stunden nach Testbeginn zu weniger als 5 % und zum Zeitpunkt acht
Stunden nach Testbeginn zu 30 bis 80 %, insbesondere zu 40 bis 70 % freisetzt.

Der Freisetzungstest z. B. nach USP (nach USP XXIV, Methode B, modifizierter Test für „enteric coated products“) ist dem Fachmann bekannt. Die Versuchsbedingungen sind insbesondere: Paddle-Methode, 100 Umdrehungen pro Minute, 37 °C; pH 1,2 mit 0,1 N HCl, pH 7,0 durch Zugabe von 0,2 M Phosphatpuffer und Einstellen mit 2 N NaOH. Siehe auch USP 27-NF22 Supplement 1, Methode „Delayed Release“ Monographie <724> Drug Release.

Die zu verwendende mehrschichtige Arzneiform besteht im wesentlichen aus einem Kern mit einem Wirkstoff, einem inneren und einem äußeren Überzug. In üblicher Weise können pharmazeutisch gebräuchliche Hilfsstoffe enthalten sein, die aber für die Erfindung nicht kritisch sind.
Pharmazeutische Wirkstoffe

Die im Sinne der Erfindung einzusetzbaren pharmazeutischen Wirkstoffe sind dazu bestimmt, am oder im menschlichen oder tierischen Körper Anwendung zu finden, um

1. Krankheiten, Leiden, Körperschäden oder krankhafte Beschwerden zu heilen, zu lindern, zu verhüten oder zu erkennen.
2. die Beschaffenheit, den Zustand oder die Funktionen des Körpers oder seelische Zustände erkennen lassen.
3. vom menschlichen oder tierischen Körper erzeugte Wirkstoffe oder Körperflüssigkeiten zu ersetzen.
4. Krankheitserreger, Parasiten oder körperfremde Stoffe abzuwehren, zu beseitigen oder unschädlich zu machen oder
5. die Beschaffenheit, den Zustand oder die Funktionen des Körpers oder seelische Zustände zu beeinflussen.

Wichtige Beispiele (Gruppen und Einzelsubstanzen) ohne Anspruch auf Vollständigkeit sind folgende:
Analgetika, Antibiotika, Antidiabetika, Antikörper
Chemotherapeutika, Corticoide/Corticosteroide
Entzündungshemmende Mittel, Enzympräparate
Hormone und deren Hemmstoffe, Nebenschildrüsenhormone
Verdauungsfördernde Mittel, Vitamine, Zytostatika

Als Wirkstoffe sind insbesondere solche zu nennen, die im Darm, insbesondere kurz vor oder erst im Dickdarmbereich möglichst konstant freigesetzt werden sollen. Somit kann der pharmazeutische Wirkstoff ein Aminosalicylat, ein Sulfonamid oder ein Glucocorticoid sein, insbesondere 5-Aminosalicylsäure, Olsalazin, Sulfalazin, Prednison oder Budesonid.

Beispiele für Wirkstoffe
Mesalazin
Sulfasalazin
Bethamethason-21-dihydrogenophosphat
Hydrocortison-21-acetat
Cromoglicinsäure
Dexamethason
Olsalazin-Na
Budesonid, Prednison
Bismunitrat, Karaya Gummi
Methylprednisolon-21-hydrgensuccinat
Myhrre, Kaffeeohle, Kamillenblütenextrakt
10% Suspension von Humanplacenta
Neuere Wirkstoffe, bzw. Wirkstoffe in der Entwicklung und Prüfung
(Literatur aus einschlägigen, dem Fachmann bekannten pharmazeutischen Datenbanken)

Balsalazid
Oral verabreichte Peptide (z.B. RDP 58)
Interleukin 6
Interleukin 12
Ilodecakin (Interleukin 10)
Nicotintartrat
5-ASA Konjugate (CPR 2015)
Monoclonaler Antikörper gegen Interleukin 12
Diethylhydroxyhomospermin (DEHOHO)
Diethylhomospermin (DEHOP)
Cholecystokin (CCK) Antagonist (CR 1795)
15 Aminosäure-Fragment eines 40 kd Peptids aus Magensaft (BPC 15)
Glucocorticoidanalogon (CBP 1011)
Natalizumab
Infliximab (REMICADE)
N-de-Acetyliertes Lysoglycosphingolipid (WILD 20)
Azelaïne
Tranilast
Sudismase
Phosphorothioat Antisensoligonucleotid (ISIS 2302)
Tazofelone
Ropivacaine
5 Lipoxygenaseinhibitor (A 69412)
Sucralfat
Die Arzneiform kann einen pharmazeutischen Wirkstoff enthalten, der ein Enzym, ein Peptidhormon, ein immunmodulatorisches Protein, ein Antigen oder Antikörper ist.

Die Arzneiform kann als pharmazeutischen Wirkstoff ein Pankreatin, ein Insulin, ein Human Growth Hormon (hGH), Corbaplatin, Intron A, Calcitonin, Cromalyn, ein Interferon, ein Calcitonin, Granulocyte Colony Stimulating factor (G-CSF), ein Interleukin, Parathyroidhormone, Glucagon, Pro-Somatostatin, ein Somatostatin, Detirelix, Cetrorelix, Vasopressin, 1-Deaminocysteine-8-D-arginine-Vasopressin, Leuprolidacetat oder ein Antigen, das aus Gräsern oder anderen Pflanzen, wie z. B. Roggen, Weizen, Gerste, Hafer, Bermuda Gras, Zinnkraut, Ahorn, Ulme, Eiche, Platane, Pappel, Zeder, Zinnkraut, Disteln gewonnen wurde, enthalten.

Pharmazeutisch übliche Hilfsstoffe

Von den pharmazeutisch üblichen Hilfsstoffen im Sinne der Erfindung sind Porenbildner in Mengenanteilen ab 5 Gew.-%, bezogen auf den inneren Überzug ausgenommen.

Bei der Herstellung der mehrschichtigen Arzneiform können pharmazeutisch übliche Hilfsstoffe in üblicher Weise eingesetzt werden.

Trockenstellmittel (Antihaltmittel): Trockenstellmittel haben folgende Eigenschaften: sie verfügen über große spezifische Oberflächen, sind chemisch inert, sind gut rießelfähig und feinteilig. Aufgrund dieser
Eigenschaften erniedrigen sie die Klebrigkeit von Polymeren, die als funktionelle Gruppen polare Comonomere enthalten.

Beispiele für Trockenstellmittel sind:
Aluminiumoxid, Magnesiumoxid, Kaolin, Talkum, Glycerolmonostearat,
Magnesiumstearat, Kieselsäure (Aerosil), Syloid, Bariumsulfat.

Trennmittel
Beispiele für Trennmittel sind:
Ester von Fettsäuren oder Fettsäureamide, aliphatische, langkettige
Carbonsäuren, Fettalkohole sowie deren Ester, Montan- oder Paraffinwachse
und Metallseifen, insbesondere zu nennen sind Glycerolmonostearat,
Stearylalkohol, Glycerolbehensäureester, Cetylalkohol, Palmitinsäure,
Kanaubawachs, Bienenwachs etc.. Übliche Mengenanteile liegen im Bereich
von 0,05 Gew.-% bis 5, bevorzugt 0,1 bis 3 Gew.-% bezogen auf das
Copolymer.

Weitere pharmazeutisch übliche Hilfsstoffe: Hier sind z. B, Stabilisatoren,
Farbstoffe, Antioxidantien, Netzmittel, Pigmente, Glanzmittel etc. zu nennen.
Sie dienen vor allem als Verarbeitungshilfsmittel und sollen ein sicheres und
reproduzierbares Herstellungsverfahren sowie gute Langzeitlagerstabilität
gewährleisten werden kann. Weitere pharmazeutisch übliche Hilfsstoffe können
in Mengen von 0,001 Gew.-% bis 30 Gew.-%, bevorzugt 0,1 bis 10 Gew.-%
bezogen auf das Copolymer vorliegen.

Weichmacher: Als Weichmacher geeignete Stoffe haben in der Regel ein
Molekulargewicht zwischen 100 und 20 000 und enthalten eine oder mehrere
hydrophile Gruppen im Molekül, z. B. Hydroxyl-, Ester- oder Aminogruppen.
Geeignet sind Citrate, Phthlate, Sebacate, Rizinusöl. Beispiele geeigneter

Applikationsformen

Die beschriebene Arzneiform kann als überzogene Tablette, in Form einer Tablette aus verpressten Pellets oder in Form von Pellets vorliegen, die in eine Kapsel, z. B. aus Gelatine, Stärke oder Cellulosedervativen, eingefüllt sind.
BEISPIELE

Prüfung mechanischer Eigenschaften von 1- und 2-schichtigen Filmüberzügen, die durch Ausgießen hergestellt wurden

EUDRAGIT® RS: Copolymer aus 65 Gew.-% Methylmethacrylat, 30 Gew.-% Ethylacrylat und 5 Gew.-% 2-Trimethylammoniummethylmethacrylat-Chlorid.

EUDRAGIT® NE: Copolymer aus 30 Gew.-% Ethylacrylat und 70 Gew.-% Methylmethacrylat.

EUDRAGIT® FS: Copolymer aus 65 Gew.-% Methylacrylat, 25 Gew.-% Methylmethacrylat und 10 Gew.-% Methacrylsäure

1. Schicht = entspricht dem inneren Überzugsfilm in einer erfindungsgemäßen Arzneiform
2. Schicht = entspricht dem äußeren Überzugsfilm in einer erfindungsgemäße Arzneiform

Herstellung der filmbildenden Formulierungen:

EUDRAGIT® FS 30 D Formulierung, 10 %-ig wässrig,
hergestellt aus einer 30 % igen EUDRAGIT FS 30 D Dispersion und 5 % (bezogen aufs Polymere) Triethylcitrat (TEC), mit deionisiertem Wasser wird die Dispersion auf 10 % verdünnt:
Im einem 400 ml Becherglas wurden TEC und Wasser eingewogen und bei 400 UpM auf dem Magnetrührer bis zur Auflösung des TEC gerührt bis zur klaren Lösung.
In einer 500 ml PE-Schraubflasche wird die über ein ca. 0,1 bis 0,2 mm Metallsieb filtrierte Menge von EUDRAGIT® FS 30 D vorgelegt und unter Rühren mit dem Magnetrührer bei ca. 400 ± 100 UpM die wässrige TEC-Lösung dazugegeben.
Die Formulierung wird verschlossen bei Raumtemperatur mindestens 1 – 2 Stunden bei dieser Drehzahl gerührt.
Die 10 %-ige Dispersion wurde über Nacht im Kühlschrank bei 4 - 8°C gelagert werden und am nächsten Tag kurz vorm Ausgießen auf die Platte aufgerührt.

EUDRAGIT® RS 30 D / RL 30 D (1:1)Formulierung, 10 % ig wässrig,
hergestellt aus einer Mischung von jeweils 30 %-igen
EUDRAGIT® RS 30 D / RL 30D (1:1) Dispersion und 20 % (bezogen aufs Polymere) Triethylcitrat, mit deionisiertem Wasser wird die Dispersion auf 10 % verdünnt:

Im einem 400 ml Becherglas wurden TEC und Wasser eingewogen und bei 500 Upm auf dem Magnetrührer bis zur Auflösung des TEC gerührt bis zur klaren Lösung.
In einer 500 ml PE-Schraubflasche wird die über ein ca. 0,1 bis 0,2 mm Metallsieb filtrierte Menge von EUDRAGIT® RS 30 D / RL 30D (1:1) Dispersion vorgelegt und unter Rühren mit dem Magnetrührer bei ca. 400 ± 100 Upm die wässrige TEC-Lösung dazugegeben.
Die Formulierung wird verschlossen bei Raumtemperatur über Nacht bei dieser Drehzahl gerührt.
EUDRAGIT® NE 30D Formulierung, 10 % ig wässrig,
hergestellt aus einer 30 % igen EUDRAGIT® NE 30 D Dispersion und verdünnt mit deionisiertem Wasser auf 10 % verdünnt:

In einer 500 ml PE-Schraubflasche wird die über ein ca. 0,1 bis 0,2 mm Metallsieb filtrierte Menge von EUDRAGIT® NE 30 D vorgelegt und unter Rührung mit dem Magnetrührer bei ca. 400 ± 100 UpM das Wasser dazugegeben.

Die Formulierung wird verschlossen bei Raumtemperatur über Nacht bei dieser Drehzahl gerührt.

Polyvinylacetat (Kollicoat® SR 30 D) Formulierung, 10 % ig wässrig,
hergestellt aus einer 30 %-igen Polyvinylacetat Dispersion, 10 % (bezogen aufs Polymere) Propylen glykol und 3 % (bezogen aufs Polymere) Kolliodon® 25, mit deionisiertem Wasser wird die Dispersion auf 10 % verdünnt:

Im einem 400 ml Becher glas wurden Propylen glykol und Wasser eingewogen und bei 500 Upm auf dem Magnetrührer bis zur Auflösung des Propylen glykols gerührt.

Kollidon® 25 wird dann bei Rührgeschwindigkeit von anfangs 300 bis später 990 Upm eingetragen und solange gerührt bis Kollidon 25 benetz ist. Verklumpungen werden anschließend mit Hilfe eines Ultraturrax-Rührers ca. 15 min lang bei ca. 900 Upm Rührung aufgelöst. Die klare Lösung wird anschließend zur Luftblasenentweichung 5 min bei Raumtemperatur stehen gelassen.

In einer 500 ml PE-Schraubflasche wird die über ein ca. 0,1 bis 0,2 mm Metallsieb filtrierte Menge der Polyvinylacetat Dispersion vorgelegt und unter Rührung mit dem Magnetrührer bei ca. 400 ± 100 UpM die wässr. Propylen glykol – Kolliodon® 25 - Lösung dazugegeben.
Die Formulierung wird verschlossen bei Raumtemperatur über Nacht bei dieser Drehzahl gerührt.

Filmeausgießen

Vorbereitung der Ausgussplatten:

20 cm x 20 cm große Glasplatten werden mit einem 2 cm Gewebeklebeband am Rand 3lagig abgeklebt, so dass man eine Umrandung von ca. 1mm Höhe erhält und eine Ausguss-Innenfläche von ca. 256 cm².

Die ca. 256 cm² Ausguss-Innenfläche der Glasplatte wird dann mit einem Haftkleber einmal bepinselt und mit einem Warmluftfön angetrocknet.

Auf diese klebrige Fläche wird nun eine 20 cm x 20 cm große Aluminiumfolie von Fa. TSCHELLIN mit der Mattseite nach oben beklebt, d.h. darauf glatt gewalzt oder mit einem Kuchenschaber bis in die Eckkanten glatt ausgestrichen. (Aluminiumfolie = 0,012 mm Dickenstärke, Seiten = glänzend/mattweich, Mattseite= lackkaschierte auf gefärbte biaxial gereckte Polypropylenfolie 0,03 mm).

Die über den Rand nichtklebende Aluminiumfolie wird nach oben gebogen, so dass man nun einen erhöhten Umrandungsfläche hat, die ein Überlaufen der Flüssigkeit verhindern kann.

Die so préparierten Ausguss-Glasplatten werden nun im Umlufttrockenschrank mit einer Libelle waagegerecht austräriert ausgelegt.
Herstellung 2-schichtiger Filme:

Alle hergestellten Formulierungen werden vor dem Ausgießen zur Filmherstellung jeweils über ein ca. 0,1 bis 0,2 mm Metallsieb filtriert.

Auf die préparierten und im Umlufttrockenschränk austarierten Ausguss-Glasplatten werden als 1. Grundschicht pro Platte jeweils 64 g einer über ein Metallsieb filtrierten 10 % igen EUDRAGIT® FS 30 D Formulierung bei Raumtemperatur ausgegossen. Erst dann wird der Umlufttrockenschränk auf 50 °C geheizt und die Filme bei dieser Temperatur mit minimaler Ventilatorumdrehung und einer 30% geöffneten Luftklappe mindestens 3 Tage getrocknet.

Die nun klar aussehenden teilweise glatten FS 30 D – Filme werden nun im geöffneten Umlufttrockenschränk auf Raumtemperatur abgekühlt, bevor die 2. Filmschicht ausgegossen wird.

Auch hier wird erst dann nach dem Ausgießen der Formulierungen der Umlufttrockenschränk auf 50 °C geheizt und die Filme bei dieser Temperatur mit minimaler Ventilatorumdrehung und einer 30% geöffneten Luftklappe mindestens 3 bis 5 Tage getrocknet bis die Filme ein klares Aussehen erhalten, Ausnahme: 2-schichtiger Film mit Polyvinylacetat (Kollocoat® SR 30 D) zeigt eine leicht gelblich milchige Trübung (5 Tage-Trocknung) und mit Ethylcellulose (Aquacoat® ECD-30) eine leicht rissige Trübung mit Haftungsproblemen zum Unterfilm (3 Tage-Trocknung).
Die nun erhaltenen 2-schichtigen Filme werden auf Raumtemperatur abgekühlt, vorsichtig von der Aluminiumfolie gelöst und jeder für sich in Filterpapier geformte Taschen aufbewahrt, die wiederum in einem PE-Beutel eingeschweißt werden.

Herstellung 1-schichtiger Filme:

Alle hergestellten Formulierungen werden vor dem Ausgießen zur Filmherstellung jeweils über ein ca. 0,1 bis 0,2 mm Metallsieb filtriert.

geformte Taschen aufbewahrt, die wiederum in einen PE-Beutel eingeschweißt werden.

Zugversuch:

<table>
<thead>
<tr>
<th>Vorschrift</th>
<th>ISO 527-2 / 1BA / 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfklima:</td>
<td>23°C / 50 % rel. F.</td>
</tr>
<tr>
<td>Spannzeug:</td>
<td>Luft</td>
</tr>
<tr>
<td>Maschine:</td>
<td>Genauigkeitsklasse 1%</td>
</tr>
<tr>
<td>Wegaufnehmer:</td>
<td>Traverse</td>
</tr>
<tr>
<td>Einspannlänge:</td>
<td>57,5 mm</td>
</tr>
<tr>
<td>Konditionierung:</td>
<td>16 Std. Normklima (23°C / 50 % rel. F.)</td>
</tr>
<tr>
<td>Messlänge:</td>
<td>57,5 mm</td>
</tr>
<tr>
<td>Vorlast:</td>
<td>0,05 MPa</td>
</tr>
</tbody>
</table>
Beispiel 1 - 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht erfindungsgemäß 1 Schicht EUDRAGIT® FS</td>
<td>10,1</td>
<td>187</td>
</tr>
<tr>
<td>2</td>
<td>nicht erfindungsgemäß 1 Schicht EUDRAGIT® RL/RS (1:1)</td>
<td>1,5</td>
<td>257</td>
</tr>
<tr>
<td>4</td>
<td>nicht erfindungsgemäß 1 Schicht EUDRAGIT® NE</td>
<td>4,1</td>
<td>819</td>
</tr>
<tr>
<td>5</td>
<td>nicht erfindungsgemäß 1 Schicht Polyvinylacetat</td>
<td>10,0</td>
<td>450</td>
</tr>
<tr>
<td>6</td>
<td>nicht erfindungsgemäß (gemäß WO 01/68058) 1. Schicht: EUDRAGIT® RL/RS (1:1) 2. Schicht: EUDRAGIT® FS</td>
<td>5,4</td>
<td>174</td>
</tr>
<tr>
<td>9</td>
<td>erfindungsgemäß 1. Schicht EUDRAGIT® NE 2. Schicht EUDRAGIT® FS</td>
<td>7,0</td>
<td>174</td>
</tr>
<tr>
<td>10</td>
<td>erfindungsgemäß 1. Schicht Polyvinylacetat 2. Schicht EUDRAGIT® FS</td>
<td>8,0</td>
<td>288</td>
</tr>
</tbody>
</table>

Rasterelektronenmikroskopische Aufnahmen von Querschnitten der Filme zeigen für alle erfindungsgemäßen, doppelschichtigen Filme homogene, gleichmäßige Schichten mit guter Haftung an der Grenzfläche.
PATENTANSPRÜCHE

1. Mehrschichtige Arzneiform, enthaltend

a) einen Kern mit einem pharmazeutischen Wirkstoff

b) einen inneren Überzug, der zu 50 bis 95 Gew.-% aus einem (Co)polymeren besteht, das sich zu 95 bis 100 Gew.-% aus radikalisch polymerisierten vinylischen Monomeren mit neutralen Seitengruppen und 0 bis 5 Gew.-% Monomeren mit anionischen Seitengruppen zusammensetzt,

c) einen äußeren Überzug aus einem Copolymeren, das sich aus 75 bis 95 Gew.-% radikalisch polymerisierten C₁⁻ bis C₄⁻Alkylestern der Acryl- oder der Methacrylsäure und 5 bis 25 Gew.-% (Meth)acrylat-Monomeren mit einer anionischen Gruppe im Alkylrest zusammensetzt, wobei 5 bis 30 Gew.-% an pharmazeutisch üblichen Hilfsstoffen enthalten sind,

dadurch gekennzeichnet, daß

der innere Überzug 5 bis 50 Gew.-% an pharmazeutisch üblichen Hilfsstoffen enthält, die keine Porenbildner sind und Porenbildner nur in Mengen von weniger als 5 Gew.-% enthalten sind.

2. Arzneiform nach Anspruch 1, dadurch gekennzeichnet, daß der innere Überzug ein (Co)polymer enthält, das sich zu 95 bis 100 Gew.-% aus radikalisch polymerisierten C₁⁻ bis C₄⁻Alkylestern der Acryl- oder der Methacrylsäure und gegebenenfalls 0 bis 5 Gew.-% Acryl- oder Methacrylsäure zusammensetzt.
3. Arzneiform nach Anspruch 1, dadurch gekennzeichnet, daß der innere Überzug ein (Co)polymer enthält, das ein Polyvinylacetat ist.

5. Arzneiform nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Gesamtgewicht des inneren Überzugs 2 bis 50 Gew.-% bezogen auf das Gesamtgewicht des Kerns ausmacht.

7. Arzneiform nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der enthaltene pharmazeutische Wirkstoff ein Aminosalicylat, ein Sulfonamid oder ein Glucocorticoid ist.

9. Arzneiform nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der pharmazeutische Wirkstoff ein Enzym, ein Peptidhormon, ein immunmodulatorisches Protein, ein Antigen oder Antikörper ist.

11. Verfahren zur Herstellung von einer Arzneiform nach einem oder mehreren der Ansprüche 1 bis 10, gekennzeichnet durch die Schritte

a) Erzeugen eines Kerns mit einem pharmazeutischen mittels Sprühaufttrag auf einen Neutral-Kern (Non-Pareilles) oder durch Rotagglomeration, Ausfällen, Sprühverfahren oder Extrusion und Spheronisation ohne einen Neutral-Kern herstellt und anschließend

b) Auftragen des inneren Überzugs, mittels Sprühaufttrag, so daß wichtstoffhaltige, umhüllte Pellets erhalten werden,

c) Auftragen des äußeren Überzugs, mittels Sprühaufttrag, so daß wichtstoffhaltige, zweifach umhüllte Pellets erhalten werden,

d) optional eine abschließende Curing-Behandlung zur Stabilisierung des Freigabeprofils, z. B. durch trockenes Lagern für 2 Stunden bei 40 °C.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man die erhaltenen Pellets mittels pharmazeutisch üblicher Hilfsstoffe und in an sich bekannter Weise zu einer multipartikulären Arzneiform, insbesondere zu pellehaltigen Tabletten, Minitabletten, Kapseln, Sachets oder Trockensäften verarbeitet, die so formuliert sind, daß die enthaltenen Pellets im pH-Bereich des Magens freigesetzt werden.
