(12) STANDARD PATENT (11) Application No. AU 2002242282 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

Title

System and method for maintaining large-grained database concurrency with a log
monitor incorporating dynamically redefinable business logic

International Patent Classification(s)
GO6F 12/00 (2006.01) GO6F 17/30 (2006.01)

Application No: 2002242282 (22) Date of Filing: 2002.02.25
WIPO No: WO02/073465

Priority Data

Number (32) Date (33) Country
09/804,672 2001.03.09 us
Publication Date: 2002.09.24

Publication Journal Date: 2003.03.20
Accepted Journal Date: 2007.12.20

Applicant(s)
Oracle Corporation

Inventor(s)
Reed, David

Agent / Attorney
Phillips Ormonde & Fitzpatrick, Level 22 367 Collins Street, Melbourne, VIC, 3000

Related Art
"Data Transformation: Key to Information Sharing”
US 5544359

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 02/073465 A2

19 September 2002 (19.09.2002) PCT
(51) International Patent Classification’: GO6F 17/30 (81)
(21) International Application Number: PCT/US02/05935

(22) International Filing Date: 25 February 2002 (25.02.2002)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
09/804,672

9 March 2001 (09.03.2001)

English

English

us

(71) Applicant: ORACLE CORPORATION [US/US]; 500
Oracle Parkway, M/S 50p7, Redwood Shores, CA 94065

(US).

WA 98607 (US).

Seattle, WA 98104 (US).

(72) Inventor: REED, David; 5115 NE 316th Court,

Camas,

(74) Agent: INOUYE, Patrick; Suite 258, 810 Third Avenue,

84

Designated States (national): AE, AG, AL, AM, Al, AU,
AZ, BA, BB,BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, HI, GB, GD, GE, GII,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
1K, LR, IS, I'T, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, 7M, 7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, 87, 17, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM),
Buropean patent (AT, BE, CII, CY, DE, DK, ES, FI, FR,
GB, GR, IE, I'T, LU, MC, NL, P1, SE, TR), OAPI patent
(BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE. SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letier codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazelle.

source
Datatase

73465 A2

g

Uptatad
Hecords

Catabase

(54) Title: SYSTEM AND METHOD FOR MAINTAINING LARGE-GRAINED DATABASE CONCURRENCY WITH A LOG
MONITOR INCORPORATING DYNAMICALLY REDEFINABLE BUSINESS LOGIC

59

——
f——————] Database
Builder

(57) Abstract: A system (10) and method (150) for maintaining large-grained database concurrency with a log monitor (26) in-
corporating dynamically redefinable business logic (94) are described. Operations expressed in a data manipulation language are
executed against a source database (51). At least one operation constitutes a commit operation that completes each database transac-
tion. A current rule set (55) is defined. Each rule includes business logic (94) specifying a data selection criteria for records stored

~~ in the stored in the source database. A log entry (70) is periodically generated in a log (54) for each transaction committed to the
source database (51). Each log entry (70) identifies an atfected record and includes transactional data. The transaction identified in
each log entry (70) is evaluated against the data selection criteria specified in the current rule set (55). A new record (57) is built in
accordance with metadata (56) describing a destination database (58). The new record (57) contains select transactional data from
the log entry (70) of each transaction meeting the selection criteria. 'I'he new record (57) is stored into the destination database(58).
The data stored in the destination database (58) includes at least a partial subset of the source database (51).

2002242282 23 Dec 2004

10

15

20

25

30

SYSTEM AND METHOD FOR MAINTAINING LARGE-GRAINED DATABASE
CONCURRENCY WITH A LOG MONITOR INCORPORATING DYNAMICALLY
REDEFINABLE BUSINESS LOGIC

TECHNICAL FIELD

The present invention relates in general to database object extraction and, in
particular, to a system and method for maintaining large-grained database concurrency
with a log monitor incorporating dynamically redefinable business logic.

BACKGROUND OF THE INVENTION

Presently, corporate database management systems fall into two categories:

production and informational. Production databases, including operational data stores,
function as repositories for real-time or near-real-time data generated by or used in the
operation of manufacturing, production, and transactional systems. In contrast,
informational databases store data periodically obtained from production databases for
use in decision support and on-line analytical processing systems. Informational
databases include data warehouses, often structured as enterprise databases and
datamarts.

Typically, data warehouses store both informational data and metadata that
describe the database structure. At a minimum, informational databases must maintain
a degree of large-grained data concurrency with the data stored in the production
databases for trend analyses and data derivation.

On-line transaction processing systems are major producers of production data.
On-line transaction processing systems require a minimum guaranteed response time
with uninterrupted availability, particularly in electronic commerce (e-commerce)
systems. The high data volume and the need for high availability require the use of
transaction servers rather than slower database servers.

Production data provide the raw grist for decision support and on-line analytical
processing systems. These systems analyze data and generate reports for use in the
planning and strategic operations of a corporation. The raw production data is
transformed into informational data by data mining, replication, and cleansing tools.
Decision support and on-line analytical processing systems can tolerate slower response
times. Nevertheless, the data needs of these systems must balance against the autonomy

required by production systems.

WiASASKIAPatent Spec\2002242282.doc

2002242282 23 Dec 2004

10

15

20

25

30

Frequently updating the informational databases can adversely impact the
operation of the production systems. On-line transaction processing systems operate
near or at total hardware capacity. For instance, a typical e-commerce site can receive
over 500 transactions or "hits" per second. Interrupting production system operation to
update the informational databases can exacerbate the problem of maintaining the
requisite level of availability and responsiveness.

Periodically, production data must be transformed into informational data
through the application of business logic during the data retrieval process. Often, the
business logic required to retrieve and transform production data is complex and
computationally intensive. As well, the business logic is relatively inflexible and static.
These factors can further affect system responsiveness.

In the prior art, two solutions for updating informational databases have been
proposed. One solution presents a data replication manager that periodically copies
production data while transforming the data. Unfortunately, this solution causes
extensive data duplication and can be time consuming.

Another prior art solution introduces a multi-tiered database architecture with
periodic updating. Business logic is implemented in queries executed against the
production database. Second tiered business logic can utilize the retrieved information
to populate and update datamarts using department-specific queries. In a rapidly
changing environment, excessive updates can drastically disrupt production system
operation.

Therefore, there is a need for a data manager capable of updating an
informational database with high-frequency and low overhead. This approach would
minimize resource expenditures by substantially avoiding data duplication and
inefficient data retrieval.

There is a further need for an approach to retrieving informational data with
dynamically redefinable parameters. This approach would allow flexible redefinition of
business logic for selecting data in an ad hoc fashion.

There is a further need for an approach to non-intrusively updating an
informational database. This approach would have minimal effect on a production

system operation and respect autonomous operation.

WISASKIAPatent Spec\2002242282.doc

2002242282 23 Dec 2004

10

15

20

25

The discussion of the background to the invention is included herein to explain
the context of the invention. It is not to be taken as an admission or a suggestion that
any of the material referred to was published, known or part of the common general
knowledge as at the priority date of any of the claims.

DISCLOSURE OF INVENTION

According to an aspect of the present invention, there is provided a method for

using a log associated with a first database to update a second database, the method
including the computer-implemented steps of:
based on said log that is associated with said first database, identifying first data;
generating second data based on said first data; and

sending said second data to said second database.

According to another aspect of the present invention, there is provided a
computer-readable medium carrying one or more sequences of instructions for using a
log associated with a first database to update a second database, wherein execution of
the one or more sequences of instructions by one or more processors causes the one or
more processors to perform the steps of:

based on said log that is associated with said first database, identifying first data;

generating second data based on said first data; and

sending said second data to said second database.

The present invention provides a system and method for updating a destination
database with data indirectly retrieved from a source database through log-based
monitoring. A transaction log file is generated as a by-product of transactions

committed to a source database

W:ISASKIAWPatent Spec\2002242282.doc

2a

10

15

20

25

30

35

WO 02/073465 PCT/US02/05935
by a transaction server. The log file is monitored and evaluated against a dynamic rule set

specifying selection criteria implementing business logic. Those log entries satisfying the
selection criteria are converted into updated records using metadata describing the schema of a
destination database. The rule set and metadata can be dynamically redefined using a database
builder tool. The log monitor automatically modifies the selection criteria and record-generation
operations. During the data retrieval, the log monitor utilizes information stored in each log
entry to indirectly derive informational data with minimal effect on the transaction server
operations.

An embodiment of the present invention is a system and method for refreshing an
informational database through log-based transaction monitoring. A production database is
maintained and includes one or more tables. Each table stores records of production data
generated by a transaction processing system. Log entries are periodically stored into a log file.
At least one log entry is generated for each transaction committed to the production database. An
informational database including one or more tables is maintained. Each table stores records of
informational data for use by a decision support system. The log entries stored into the log file
are dynamically analyzed using a rule set that specifies a data selection criteria. The updated
records generated from production data satisfying the data selection criteria are stored into the
informational database.

A further embodiment is a system and method for maintaining large-grained database
concurrency with a log monitor incorporating dynamically redefinable business logic.
Operations expressed in a data manipulation language are executed against a source database. At
least one operation constitutes a commit operation that completes each database transaction. A
current rule set is defined. Each rule includes business logic specifying a data selection criteria
for records stored in the source database. A log entry is periodically generated in a log for each
transaction committed to the source database. Each log entry identifies an affected record and
includes transactional data. The transaction identified in each log entry is evaluated against the
data selection criteria specified in the current rule set. A new record is built in accordance with
metadata describing a destination database. The new record contains select transactional data
from the log entry of each transaction meeting the selection criteria. The new record is stored
into the destination database. The data stored in the destination database includes at least a
partial subset of the source database.

One benefit of the present invention is the ability to dynamically redefine business logic -
implemented as rules interpreted by a transaction log monitor. A further benefit is harnessing the
metadata intrinsic to a data warehouse Lo intelligently populate a database and to allow an

additional level of responsiveness to changes in the structure of the database.

10

15

20

25

35

WO 02/073465 PCT/US02/05935
Still other embodiments of the present invention will become readily apparent to those

skilled in the art from the following detailed description, wherein is described embodiments of
the invention by way of illustrating the best mode contemplated for carrying out the invention.
As will be realized, the invention is capable of other and different embodiments and its several
details are capable of modifications in various obvious respects, all without departing from the
spirit and the scope of the present invention. Accordingly, the drawings and detailed description
are to be regarded as illustrative in nature and not as restrictive.

DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram showing a distributed computer environment, including a
system for maintaining large-grained database concurrency with a log monitor incorporating
dynamically redefinable business logic, in accordance with the present invention.

FIGURE 2 is a functional block diagram showing a prior art multi-tiered database
architecture.

FIGURE 3 is a block diagram showing the system for maintaining large-grained database
concurrency of FIGURE 1.

FIGURE 4 is a data structure diagram showing a log entry used in the system of FIGURE

FIGURE 5 is a process flow diagram showing informational database updating through
log-based transaction monitoring.

FIGURE 6 is a functional block diagram showing the software modules of the system of
FIGURE 3.

FIGURE 7 is a data structure diagram showing a rule entry.

FIGURE 8 is a flow chart showing a method for maintaining large-grained database
concurrency with a log monitor incorporating dynamically redefinable business logic in
accordance with the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

FIGURE 1 is a block diagram showing a distributed computing environment 10,
including a system for maintaining large-grained database concurrency with a log monitor
incorporating dynamically redefinable business logic, in accordance with the present invention.
An operational data store (ODS) 11 stores production data generated by a production system 12.
The production system 12 can constitute an on-line transaction processing system for transacting
electronic commerce (e-commerce), reservations, point of sale transactions, inventory control,
factory and manufacturing operations, and similar types of activities. For efficiency, the
production system 12 maintains a local production database 13 within which production data is

maintained.

10

15

20

25

30

35

WO 02/073465 PCT/US02/05935
To maintain a high level of responsiveness and availability, the operational data store 11

is coupled to a dedicated transaction server 14 that provides a high throughput interface to the
operational data store 11. The production system 12 and transaction server 14 are interconnected
via a network 15, such as an internetwork or an intranetwork, as are known in the art.

The production data stored in the operational data store 11 is periodically replicated into
an enterprise data warehouse 16. Unlike the operational data store 11, which only contains
production data, the enterprise data warehouse 16 contains both direct and derivative data values,
known as informational data, for use by decision support and on-line analytical processing
systems. A database server 17 is coupled to the enterprise data warehouse 16 for executing data
manipulation language (DML) queries against the enterprise data warchouse 16. The databasc
server 17 is also interconnected to the other systems via the network 15.

The enterprise data warehouse 16 can be hierarchically structured with secondary
databases, such as a workgroup datamart 18. While the enterprise data warehouse 16 contains
informational data pertaining to all aspects of the corporate activities, each work group datamart
18 is a subset presenting a specialized view of the informational data for a specific subject area,
such as employee records, sales revenue figures, and the like. The work group datamart 18 could
be structured in a local network environment with a dedicated local database server 19
interconnected with a plurality of clients 20 over a local network 21. In turn, the local network
21 can be interconnected with the corporate network 135, via a series of hubs 22.

Finally, the enterprise data warehouse 16 and the work group datamart 18 can both be
remotely accessed by a remote client 23, for instance via an internetwork 24, such as the Internet,
coupled to the corporate network 15 through a gateway 25.

The operational data store 11 is characterized by a high degree of volatility and change
with 100% availability and guaranteed response times. Conversely, the enterprise data
warehouse 16 performs flexible operations responsive to ad hoc queries posed by the various
clients 20 and remote clients 23,

The informational data stored in the enterprise data warehouse 16 must be periodically
refreshed with production data retrieved from the operational data store 11. Depending upon the
system load on the operational data store 11, the retrieval of production data may be impractical
during peak operational times and at best tolerated during off-peak periods. Consequently, a log
monitor 26 can provide large-grained database concurrency between the operational data store 11
and enterprise data warechouse 16 by indirectly updating the informational data.

The log monitor 26 reads log entries generated by the transaction server 14 as a by-
product of transaction processing. Individual log entries are retrieved and analyzed by applying

selection criteria implementing business logic into a dynamically redefinable rule set, as further

10

15

20

25

30

35

WO 02/073465 PCT/US02/05935
described below with reference to FIGURE 3. Updated records are generated from those log

entries satisfying the selection criteria for updating the informational data in the enterprise data
warehouse 16.

While the specific forms of databases, including operational data store 11, enterprise data
warehouse 16, and workgroup datamart 18, are referenced in relation to the described
embodiment, one skilled in the art would recognize that other forms of structured databases could
also be used within the general parameters and characteristics outlined herein. In addition, other
networked topologies and system configurations can also be used.

The individual computer systems, including production system 12, transaction server 14,
database server 17, local database server 19, clients 20 and remote client 23, are general purpose,
programmed digital computing devices consisting of a central processing unit (CPU), random
access memory (RAM), non-volatile secondary storage, such as a hard drive or CD-ROM drive,
network interfaces, and peripheral devices, including user-interfacing means, such as a keyboard
and display. Program code, including software programs, and data are loaded into the RAM for
execution and processing by the CPU and results are generated for display, output, transmittal, or
storage.

FIGURE 2 is a functional block diagram showing a prior art multi-tiered database
architecture 30. Production and informational databases are structured into several tiers to
distribute the database updating and retrieval workload, such as described in R. Orfali,
“Client/Server Survival Guide,” Chs. 12-13, John Wiley & Sons, Inc. (3d ed.1999), the
disclosure of which is incorporated by reference. A plurality of production databases 13 are
served by a transaction server 14, Production data is stored and retrieved using the transaction
server 14 into and from an operational data store 11 at high volume with maximum availability
(step 31).

Periodically, a database server 17 “taps” informational data from the operational data
store 11 (step 32). The raw production data copied, purified and cleansed into informational data
maintained in an enterprise data warehouse 16. The retrieval of production data from the
operational data store 11 is performed by a scheduled recurring process, such as a cron job, that
periodically awakens to refresh the production data from the operational data store 11 into the
enterprise data warehouse 16.

The process of downloading the production data into the enterprise data warehouse 16 is
nontrivial and taxes computational, storage and network interfacing resources. The informational
data retrieval and transformation executes business logic for selecting the appropriate data values
from the operational data store 11. Each update can potentially implicate a massive volume of

replicated information.

10

15

20

25

30

35

WO 02/073465 PCT/US02/05935
To mitigate the load on the operational data store 11, a series of specialized datamarts,

such as, by way of example, a promotional datamart 34, an affinity datamart 35, and a market
basket datamart 36, are created as a subset of the enterprise data warehouse 16 (step 33). Like
the enterprise data warehouse 16, the datamarts 34-36 must also be periodically refreshed with
informational data by a local data server 19. The use of the local database server 19 offloads a
part of the specialized business logic nccéssary to further refine the informational data into
formats usable by decision support and on-line transaction processing system (not shown).

This prior art approach attempts to balance the needs of the decision support and on-line
analytical processing systems against the autonomous operation of the production systems by
distributing and offloading the data replication and processing operations. However, the multi-
tiered architecture 30 replicates the information needed in each of the specialized databases. In
addition, multiple layers of business logic implementations are required to refresh and update the
informational data. These layers can potentially include duplicated queries. A less duplicative
solution is needed.

FIGURE 3 is a block diagram showing the system 50 for maintaining large-grained
database concurrency of FIGURE 1. The core functionality of the system is performed by log
monitor 26. A source database 51, typically an operational datastore 11 (shown in FIGURE 2),
or alternatively an enterprise data warehouse 16 or work group datamart 18, stares production (or
informational) data. The stored data values change as transactions are committed to the source
database 51. Upon commitment, a log writer 53 generates a log entry into a transaction log 54 to
journal the transacted event. Each log entry includes transactional data, as further described
below with reference to FIGURE 4, that identifies the table, record and operations performed.
The log writer 53 “flushes” a running series of transaction logs 52 (TL), generated on a
continuous basis.

As log entries are written by the log writer 53 into the log 54, the log monitor 26 applies
selection criteria incorporating business logic to the journaled log entries.

For each log entry that satisfies the selection criteria, the log monitor 26 retrieves the
associated production (or informational) data from the source database 51 to generate updated
records 57 for a destination database 58. The selection criteria utilized by the log monitor 26 is
implemented as a rule set 58. The rule set incorporates business logic for selecting the
transactions affecting production (or informational) data of interest to a decision support or on-
line analytical processing system. In addition, the log monitor 26 utilizes metadata 56 describing
the schema employed by the destination database 58.

The rule set 55 and metadata 56 can be dynamically redefined through a database builder

tool 539. An example of a database builder tool 59 suitable for use in the present invention is the

15

20

25

30

WO 02/073465 PCT/US02/05935
Oracle Warehouse Builder product, licensed by Oracle Corporation, Redwood Shores, California.

A user can redefine the business logic and metadata using the database builder tool 59.
Redefinitions are regularly forwarded to the log monitor 26. Individual rules in the rule set 58
implement the business logic as data manipulation language (DML) operations. The metadata 56
is used by the log monitor 26 to structure the updated records 57 into a format used by tables
stored in the destination database 58. A structure of the rule set 55 is further described below
with reference to FIGURE 7.

Preferably, the metadata 56 includes four components, as follows. First, the metadata 56
describes the architectures of the source database 51 and destination database 58. The metadata
56 also includes network information describing the database links and aliases to other networks.
The log 54 can also chronicle transactions performed on logically joined databases, such as in a
distributed database environment. In addition, the metadata 56 includes job control and
scheduling information specifying a frequency of execution for the implemented business logic
against the journaled transaction entries. In the described embodiment, the job control
information is specified in a higher order database manipulation language known as PL/SQL.
Finally, the metadata 56 includes the actual source code for executing a selection criteria
analysis. Other forms of metadata could also be used, for both production (or informational) data
retrieval or recovery.

As an optimization to performance, the fog monitor 26 can also include a cache 60 for
staging information, including log entries and updated records 57. In the described
embodiment, the log monitor 26 is implemented as a process separate from the transaction server
14 and database servers 17, 19 (shown in FIGURE 1). The log monitor 26 operates in
accordance with a sequence of process steps, further described below with reference to FIGURE
8.

FIGURE 4 is a data structurc diagram showing a log entry 70 used in the system 50 of
FIGURE 3. Each log entry 70 includes, by way of example, five ficlds of information. A time
stamp 71 chronicles the date and time that the associated transaction was committed to the source
database 51. The table identifier 72 and record identifier 73 specify the source table and record
entry or entries against which the transaction was committed. The operation type 74 identifies
the committed transactions. Finally, the undo information 75 optionally describes the actual
changes applied to the data in a format that allows the committed transaction to be unrolled. In
the described embodiment, the undo information 75 identifies the table space contents and
storage locations for the associated record. Using the undo information 75, the commitied

transaction can be unrolled and the original record entry recovered. The undo information 75 can

10

15

20

25

30

35

WO 02/073465 PCT/US02/05935
also be used by the log monitor 26 (shown in FIGURE 3) to determine whether the selection

criteria of the rule set 55 has been satisfied for the current log entry 70.

FIGURE 5 is a process flow diagram showing informational database updating through
log-based transaction monitoring. Data is updated as updated records 57 from the source
database 51 into the destination database 58. A committed transaction 91 is stored by the
transaction server 92 into the source database 51. A log entry 93 is generated upon the
commitment of each transaction 91 and is stored into the log 54 by a log writer 53 (shown in
FIGURE 3). The log monitor 26 applies business logic 94, as implemented in a rules set 55.
Each log entry 93 satisfying the selection criteria is used to generate an updated record 95 that is
stored into the destination database 58 by the database server 96.

Unlike the informational data update approach used in the prior art multi-tiered database
architecture 30 (shown in FIGURE 2), the present approach generates updated records 95 by
indirectly deriving the informational data through the log entries 93. The log entries 93 are
generaled as a by-product of the transaction server 92. Consequently, the updated records 95 are
generated at minimal cost to the transaction server 92 and avoids the data replication and
potential duplicity of data and business logic inherent in the prior art multi-tiered database
hierarchy.

FIGURE 6 is a functional block diagram showing the software modules 110 of the system
50 of FIGURE 3. The log monitor 26 includes two primary modules: an evaluation module 111
and a record-generation module 112. The evaluation module 111 receives the log entries in the
log 53 as input. The transaction data included in each log entry 70 (shown in FIGURE 4) is
evaluated against the selection criteria presented by the rules set 55. Those log entries 113 that
satisfy the selection criteria are forwarded to the record generation module 112. Using the
schema description of the destination database 58, stored in the metadata 56, the record
generation module 112 creates updated records 57 for updating the destination database 58.

In the described embodiment, the updated records 57 are sent via a file transfer process,
such as in accordance with the File Transfer Protocol (FTP) or similar network transport
protocol. Each module of the log monitor is a computer program, procedure or module written as
source code in a conventional programming language, such as the C++ programming language,
and is presented for execution by the CPU as object or byte code, as is known in the art. The
various implementations of the source code and object and byte codes can be held on a computer-
readable storage medium or embodied on a transmission medium in a carrier wave.

FIGURE 7 is a data structure diagram showing a rule entry 130. By way of example, and
at a minimum, each rule 130 identifies the table 131 within the source database 51 to which the

selection criteria is to be applied. A set of data manipulation language (DML) statements 132

10

15

20

WO 02/073465 PCT/US02/05935
implements the business logic through which the selection criteria are expressed. As well, a

threshold 133 can be included to allow the log monitor 26 (shown in FIGURE 3) to quickly and
efficiently filter the log entries based on a predefined boundary condition. Other rule formats are
feasible.

FIGURE 8 is a flow diagram of a method 150 for maintaining large-grained database
concurrency with a log monitor 26 incorporating dynamically redefinable business logic in
accordance with the present invention. Preliminarily, the log file 54 is opened by the log monitor
26 (block 151) preparatory to the application of the business logic. Each log entry (shown in
FIGURE 4) is then iteratively processed as follows.

During each iteration, each log entry 70 is first read by the log monitor 26 (block 152).
The log entry 70 is cvaluated to determine whether the entry describes a committed transaction
91 (shown in FIGURE 5) affecting a table 131 (shown in FIGURE 7) to which the selection
criteria applies (block 153). If the log entry 70 does apply to a listed table 131 (block 153), the
rule, as implemented in the data manipulation language procedure 132, is evaluated (block 154).
If the selection criteria of the rule is satisfied (block 155), an updated record 57 is generated by
the log monitor 26 using the metadata 56 (block 156) and the updated record is sent to the
destination database 58 (block 157). Iterative processing continues (blocks 152-158) while there
are more log entries 70 (block 158). Upon the processing of the last log entry 70 (block 158), the
log file 54 is closed (block 159) and the routine terminates.

While the invention has been particularly shown and described as referenced to the
embodiments thereof, those skilled in the art will understand that the foregoing and other changes
in form and detail may be made therein without departing from the spirit and scope of the

invention.

10

2002242282 23 Dec 2004

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for using a log associated with a first database to update a second
database, the method including the computer-implemented steps of:
based on said log that is associated with said first database, identifying first data;
generating second data based on said first data; and

sending said second data to said second database.

2. The method of Claim 1, further including the computer-implemented step of:
monitoring said log that is associated with said first database;
identifying a change to said log; and
in response to identifying said change to said log, identifying said first data.

3. The method of Claim 1 or 2, further including the computer-implemented steps
of:
based on said first data, determining that one or more selection criteria are

satisfied prior to performing said steps of generating and sending.

4. The method of Claim 3, further including the computer-implemented step of:
modifying said one or more selection criteria based on a change to third data that

includes at least one of (a) a rule set and (b) metadata.

5. The method of Claim 4, wherein the step of modifying said one or more selection
criteria includes the computer-implemented step of:
in response to receiving notification of a ghange to said third data, modifying said

one or more selection criteria based on said change to said third data.

6. The method of Claim 5, wherein said change is performed by a database builder

in response to input from a user.

WASASKIA\Patent Speci20022422682.doc

11

2002242282 23 Dec 2004

7. The method of any one of Claims 1 to 6, wherein the step of generating said
second data based on said first data includes the computer-implemented step of:

generating said second data based on both said first data and third data.

8. The method of Claim 7, wherein said third data is a rule set that includes one or

more criteria for identifying said first data based on said log.

9. The method of Claim 7, wherein said third data is metadata that includes at least
one particular type of data selected from the group consisting of first database
architecture data, second database architecture data, network topology data, job control

data, scheduling data, and source code data.

10. The method of any one of Claims 1 to 9, wherein:

said second database is a particular database selected from the group consisting of
a data warehouse and a datamart;

said first database includes production data; and

said second database includes informational data that is derived based on said

production data.

11. The method of any one of Claims 1 to 10, further including the computer-
implemented steps of:
after generating said second data, storing said second data in a cache;

prior to sending said second data, retrieving said second data from said cache.

12. The method of any one of Claims 1 to 11, further including the computer-
implemented steps of’
prior to identifying said first data,
storing in a cache one or more log entries from said log, and
retrieving from said cache at least one log entry of said one or more log

entries; and

WASASKIAPatent Speci2002242282.doc

12

2002242282 23 Dec 2004

wherein the step of identifying said first data further includes the computer-
implemented step of:

based on said at least one log entry, identifying said first data.

13. The method of any one of Claims 1 to 12, wherein:

said first database is a production database;

said second database is an informational database;

said first data is a log entry in said log;

said log entry is associated with a change to a first record stored in said first
database;

said log entry includes undo information;

said first record includes production data;

said second data is a second record that is to be stored in said second database;

said second record includes at least one of a portion of said production data and
informational data that is based on said production data;

said steps of generating and sending are performed when one or more selection
criteria are satisfied based on said undo information; and

said one or more selection criteria are based on a rule set comprising dynamically

redefinable business logic.

14. The method of any one of Claims 1 to 13, wherein:
the step of identifying first data further includes the computer-implemented steps
of:
opening said log that is associated with said first database; and
based on a rule set that specifies said one or more data selection criteria,
dynamically analyzing one or more log entries in said log to identify said first data; and
a log monitor performs said steps of dynamically analyzing, generating, and
sending on a substantially continuous bases, thereby indirectly retrieving information
from said first database for use in updating said second database to maintain large-

grained concurrency between said first database and said second database.

WASASKIAWPatent Speci2002242282.doc

13

2002242282 23 Dec 2004

15. A computer-readable medium carrying one or more sequences of instructions for
using a log associated with a first database to update a second database, wherein
execution of the one or more sequences of instructions by one or more processors causes
the one or more processors to perform the steps of:
based on said log that is associated with said first database, identifying first data;
generating second data based on said first data; and

sending said second data to said second database.

16. The computer-readable medium of Claim 15, further including instructions which,
when executed by the one or more processors, cause the one or more processors to carry
out the steps of:

monitoring said log that is associated with said first database;

identifying a change to said log; and

in response to identifying said change to said log, identifying said first data.

17. The computer-readable medium of Claim 15, further including instructions which,
when executed by the one or more processors, cause the one or more processors to carry
out the step of:

based on said first data, determining that one or more selection criteria are

satisfied prior to performing said steps of generating and sending.

18. The computer-readable medium of Claim 17, further including instructions which,
when executed by the one or more processors, cause the one or more processors to carry
out the step of: '

modifying said one or more selection criteria based on a change to third data that

includes at least one of (a) a rule set and (b) metadata.

19. The computer-readable medium of Claim 18, wherein the instructions for
modifying said one or more selection criteria further include instructions which, when
executed by the one or more processors, cause the one or more processors to carry out the

step of:

WASASKIA\Patent Spec\2002242282.doc

14

2002242282 23 Dec 2004

in response to receiving notification of a change to said third data, modifying said

one or more selection criteria based on said change to said third data.

20. The computer-readable medium of Claim 19, wherein said change is performed

by a database builder in response to input from a user.

21. The computer-readable medium of any one of Claims 15 to 20, wherein the
instructions for generating said second data based on said first data further include
instructions which, when executed by the one or more processors, cause the one or more
processors to carry out the step of:

generating said second data based on both said first data and third data.

22. The computer-readable medium of Claim 21, wherein said third data is a rule set

that includes one or more criteria for identifying said first data based on said log.

23. The computer-readable medium of Claim 21, wherein said third data is metadata
that includes at least one particular type of data selected from the group consisting of first
database architecture data, second database architecture data, network topology data, job

control data, scheduling data, and source code data.

24, The computer-readable medium of any one of Claims 15 to 23, wherein:

said second database is a particular database selected from the group consisting of
a data warehouse and a datamart;

said first database includes production data; and

said second database includes informational data that is derived based on said

production data.

25. The computer-readable medium of any one of Claims 15 to 24, further including
instructions which, when executed by the one or more processors, cause the one or more
processors to carry out the steps of:

after generating said second data, storing said second data in a cache;

WASASKIAWPatent Speci2002242282.doc

15

2002242282 23 Dec 2004

prior to sending said second data, retrieving said second data from said cache.

26. The computer-readable medium of any one of Claims 1 to 25, further including
instructions which, when executed by the one or more processors, cause the one or more
processors to carry out the steps of:
prior to identifying said first data,
storing in a cache one or more log entries from said log, and
retrieving from said cache at least one log entry of said one or more log
entries; and
wherein the instructions for identifying said first data further comprise
instructions which, when executed by the one or more processors, cause the one or more
processors to carry out the step of:

based on said at least one log entry, identifying said first data.

27. The computer-readable medium of any one of Claims 15 to 26, wherein:

said first database is a production database;

said second database is an informational database;

said first data is a log entry in said log;

said log entry is associated with a change to a first record stored in said first
database;

said log entry includes undo information;

said first record includes production data;

said second data is a second record that is to be stored in said second database;

said second record includes at least one of a portion of said production data and
informational data that is based on said production data;

said instructions for generating and sending are executed by the one or more
processors when one or more selection criteria are satisfied based on said undo
information; and

said one or more selection criteria are based on a rule set comprising dynamically

redefinable business logic.

WASASKIAPatent Spec\2002242282.doc

16

2002242282 23 Dec 2004

28. The computer-readable medium of any one of Claims 15 to 27, wherein:
the instructions for identifying first data further include instructions which, when

executed by the one or more processors, cause the one or more processors to carry out the
steps of:

opening said log that is associated with said first database; and

based on a rule set that specifies said one or more data selection criteria,
dynamically analyzing one or more log entries in said log to identify said first data; and

a log monitor directs the one or more processors to execute the
instructions for dynamically analyzing, generating, and sending on a substantially
continuous bases, thereby indirectly retrieving information from said first database for
use in updating said second database to maintain large-grained concurrency between said

first database and said second database.

29. A method for using a log associated with a first database to update a second
database substantially as hereinbefore described with reference to any one of the

embodiments shown in Fig. 1 or Figs. 3 to 8.

30. A computer readable medium substantially as hereinbefore described with

reference to any one of the embodiments shown in Fig. 1 or Figs 3 to 8.
DATED : 22 December, 2004

PHILLIPS ORMONDE & FITZPATRICK
Attorneys For: >

ORACLE INTERNATIONAL CO

WASASKIAWPatent Spec\2002242282.doc

17

WO 02/073465 PCT/US02/05935
1/6
Figure 1.
Remdte
231 Client
10
Production OoDS
13 DB " o4
Production Transaction
1271 system 147 server 25 Gateway
15
22 <~ Hub 26 Y Log Monitor | 17 A Database
Server

22~ Hub Enterprise
21 16 Data
2 Warehouse

Local)]
19~ Database Client Client
Server 8 8
20 20

Workgroup

18 Datamart

WO 02/073465

Figure 2
(Prior Art).

13

DB

Production

PCT/US02/05935

2/6

Production

13 DB

14 ~

31
Transaction Server

11

17 ™~

Database Server 30

16

Enterprise
Data
Warehouse

19

Local Database

34

Server
| [

Promaotional
Datamart

35

Market Basket
Datamart

Affinity
Datamart

36

33

Figure 3. 51 52

r_/H 54
50 53
Source _ Log
Database TL Log Writer
1R
60 Cache |/ Log
Monitor

Updated
Records

Destination
Database

Rule
—
set N— Database
L/\ Builder

Metadata

L{\

56

o/

SIPELO/TO OM

$£650/20S0/LDd

Figure 4.

70
71 72 73 74 75
Timestamp Table ID Record ID Operation Type Undo Info
Figure 5.
90
91 92 93 94 95
Commitied L\ Transaction N Log Entry — N Business Updated
Transaction |___, Server —— —/ Logic Record
\/\
130
131 132 133
Table DML Threshold

96

¢

Database
Server

oy

SIPELO/TO OM

€€650/20S1/1LDd

WO 02/073465

Figure 6.

110

56

Metadata

54

5/6

53

Log

N

Log
Monitor

g

Evaluation

-

PCT/US02/05935

Rule Set

L 112

~_

Record
Generation

f‘;

Updated
Records

Log Entries

Highl!

113

WO 02/073465 PCT/US02/05935

6/6

151 ~ Open log file

Figure 8.

152 ~ Read log entry
Listed N ~
153 table? g
Evaluate log entry against L~ 154
rule set
155 Satisfies >
rule?
156 ~U Generate updated record
using metadata
IA
Send updated record to
157 ™1 estination database
More? 158

N
159 ~ Close log file

End

	Abstract
	Description
	Claims
	Drawings

