Title: 4 - [CYCLOALKYLOXY (HETERO) ARYLAMINO] THIENO [2, 3 - D] PYRIMIDINES HAVING MNKL/ MNK2 INHIBITING ACTIVITY FOR PHARMACEUTICAL COMPOSITIONS

Abstract: The present invention relates to novel thienopyrimidine compounds of general formula (I), pharmaceutical compositions comprising these compounds and their therapeutic use for the prophylaxis and/or treatment of diseases which can be influenced by the inhibition of the kinase activity of Mnkl and/or Mnk2 (Mnk2a or Mnk2b) and/or variants thereof.

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))

Published:

— with international search report (Art. 21(3))
— with sequence listing part of description (Rule 5.2(a))
The present invention relates to thienopyrimidine compounds and to novel pharmaceutical compositions comprising thienopyrimidine compounds.

Moreover, the present invention relates to the use of the thienopyrimidine compounds of the invention for the production of pharmaceutical compositions for the prophylaxis and/or treatment of diseases which can be influenced by the inhibition of the kinase activity of Mnk1 (Mnk1a or MnK1 b) and/or Mnk2 (Mnk2a or Mnk2b) or further variants thereof. Particularly, the present invention relates to the use of the thienopyrimidine compounds of the invention for the production of pharmaceutical compositions for the prophylaxis and/or therapy of metabolic diseases, such as diabetes, hyperlipidemia and obesity, hematopoietic disorders, neurodegenerative diseases, kidney damage, inflammatory disorders, and cancer and their consecutive complications and disorders associated therewith.

Metabolic diseases are diseases caused by an abnormal metabolic process and may either be congenital due to an inherited enzyme abnormality or acquired due to a disease of an endocrine organ or failure of a metabolically important organ such as the liver or the pancreas.

The present invention is more particularly directed to the treatment and/or prophylaxis of in particular metabolic diseases of the lipid and carbohydrate metabolism and the consecutive complications and disorders associated therewith.

Lipid disorders cover a group of conditions which cause abnormalities in the level and metabolism of plasma lipids and lipoproteins. Thus, hyperlipidemias are of particular clinical relevance since they constitute an important risk factor for the development of atherosclerosis and subsequent vascular diseases such as coronary heart disease.

Diabetes mellitus is defined as a chronic hyperglycemia associated with resulting damages to organs and dysfunctions of metabolic processes. Depending on its
etiology, one differentiates between several forms of diabetes, which are either due to an absolute (lacking or decreased insulin secretion) or to a relative lack of insulin. Diabetes mellitus Type I (IDDM, insulin-dependent diabetes mellitus) generally occurs in adolescents under 20 years of age. It is assumed to be of auto-immune etiology, leading to an insulitis with the subsequent destruction of the beta cells of the islets of Langerhans which are responsible for the insulin synthesis. In addition, in latent autoimmune diabetes in adults (LADA; Diabetes Care. 8: 1460-1467, 2001) beta cells are being destroyed due to autoimmune attack. The amount of insulin produced by the remaining pancreatic islet cells is too low, resulting in elevated blood glucose levels (hyperglycemia). Diabetes mellitus Type II generally occurs at an older age. It is above all associated with a resistance to insulin in the liver and the skeletal muscles, but also with a defect of the islets of Langerhans. High blood glucose levels (and also high blood lipid levels) in turn lead to an impairment of beta cell function and to an increase in beta cell apoptosis.

Diabetes is a very disabling disease, because today's common anti-diabetic drugs do not control blood sugar levels well enough to completely prevent the occurrence of high and low blood sugar levels. Out of range blood sugar levels are toxic and cause long-term complications for example retinopathy, Tenopathy, neuropathy and peripheral vascular disease. There is also a host of related conditions, such as obesity, hypertension, heart disease and hyperlipidemia, for which persons with diabetes are substantially at risk.

Obesity is associated with an increased risk of follow-up diseases such as cardiovascular diseases, hypertension, diabetes, hyperlipidemia and an increased mortality. Diabetes (insulin resistance) and obesity are part of the "metabolic syndrome" which is defined as the linkage between several diseases (also referred to as syndrome X, insulin-resistance syndrome, or deadly quartet). These often occur in the same patients and are major risk factors for development of diabetes type II and cardiovascular disease. It has been suggested that the control of lipid levels and glucose levels is required to treat diabetes type II, heart disease, and other
occurrences of metabolic syndrome (see e.g., Diabetes 48: 1836-1841, 1999; JAMA 288: 2209-2716, 2002).

In one embodiment of the present invention the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of metabolic diseases of the carbohydrate metabolism and their consecutive complications and disorders such as impaired glucose tolerance, diabetes (preferably diabetes type II), diabetic complications such as diabetic gangrene, diabetic arthropathy, diabetic osteopenia, diabetic glomerosclerosis, diabetic nephropathy, diabetic dermopathy, diabetic neuropathy, diabetic cataract and diabetic retinopathy, diabetic maculopathy, diabetic feet syndrome, diabetic coma with or without ketoacidosis, diabetic hyperosmolar coma, hypoglycemic coma, hyperglycemic coma, diabetic acidosis, diabetic ketoacidosis, intracapillary glomerulonephrosis, Kimmelstiel-Wilson syndrome, diabetic amyotrophy, diabetic autonomic neuropathy, diabetic mononeuropathy, diabetic polyneuropathy, diabetic angiopathies, diabetic peripheral angiopathy, diabetic ulcer, diabetic arthropathy, or obesity in diabetes.

In a further embodiment the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of metabolic diseases of the lipid metabolism (i.e. lipid disorders) and their consecutive complications and disorders such as hypercholesterolemia, familial hypercholesterolemia, Fredrickson's hyperlipoproteinemia, hyperbetalipoproteinemia, hyperlipidemia, low-density-lipoprotein-type [LDL] hyperlipoproteinemia, pure hyperglyceridemia, endogenous hyperglyceridemia, isolated hypercholesterolemia, isolated hypertroglyceridemia, cardiovascular diseases such as hypertension, ischemia, varicose veins, retinal vein occlusion, atherosclerosis, angina pectoris, myocardial infarction, stenocardia, pulmonary hypertension, congestive heart failure, glomerulopathy, tubulointestinal disorders, renal failure, angiostenosis, or cerebrovascular disorders, such as cerebral apoplexy.

In a further embodiment of the present invention the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of hematopoietic
disorders and their consecutive complications and disorders such as acute myeloid leukemia (AML), Morbus Hodgkin, Non-Hodgkin's lymphoma; hematopoetic disease, acute non-lymphocytic leukemia (ANLL), myeloproliferative disease acute promyelocytic leukemia (APL), acute myelomonocytic leukemia (AMMoL), multiple myeloma, polycythemia vera, lymphoma, acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CCL), Wilm's tumor, or Ewing's Sarcoma.

In a further embodiment of the present invention the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of cancer and consecutive complications and disorders such as cancer of the upper gastrointestinal tract, pancreatic carcinoma, breast cancer, colon cancer, ovarian carcinoma, cervix carcinoma, endometrial cancer, brain tumor, testicular cancer, laryngeal carcinoma, osteosarcoma, prostatic cancer, retinoblastoma, liver carcinoma, lung cancer, neuroblastoma, renal carcinoma, thyroid carcinoma, esophageal cancer, soft tissue sarcoma, skin cancer, osteosarcoma, rhabdomyosarcoma, bladder cancer, metastatic cancer, cachexia, or pain.

Certain anti-cancer drugs such as cisplatin are linked to serious side effects such as nephrotoxicity or ototoxicity, which can be dose limiting. Activation of Mnks has been linked to these side effects. In a further embodiment of the present invention, the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of ear or kidney damage, in particular for the prevention or treatment of ear and kidney drug induced damage.

Furthermore, the present invention relates to the use of thienopyrimidine compounds for the production of pharmaceutical compositions for the prophylaxis and/or therapy of cytokine related diseases.

Such diseases are i.a. inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, neurodegenerative diseases, allergies, or other conditions associated with proinflammatory cytokines.
Allergic and inflammatory diseases such as acute or chronic inflammation, chronic inflammatory arthritis, rheumatoid arthritis, psoriasis, COPD, inflammatory bowel disease, asthma and septic shock and their consecutive complications and disorders associated therewith.

Inflammatory diseases like rheumatoid arthritis, inflammatory lung diseases like COPD, inflammatory bowel disease and psoriasis afflict one in three people in the course of their lives. Not only do those diseases impose immense health care costs, but also they are often crippling and debilitating.

Although inflammation is the unifying pathogenic process of these inflammatory diseases below, the current treatment approach is complex and is generally specific for any one disease. Many of the current therapies available today only treat the symptoms of the disease and not the underlying cause of inflammation.

The compositions of the present invention are useful for the treatment and/or prophylaxis of inflammatory diseases and consecutive complications and disorders such as chronic or acute inflammation, inflammation of the joints such as chronic inflammatory arthritis, rheumatoid arthritis, psoriatic arthritis, osteoarthritis, juvenile rheumatoid arthritis, Reiter's syndrome, rheumatoid traumatic arthritis, rubella arthritis, acute synovitis and gouty arthritis; inflammatory skin diseases such as sunburn, psoriasis, erythrodermic psoriasis, pustular psoriasis, eczema, dermatitis, acute or chronic graft formation, atopic dermatitis, contact dermatitis, urticaria and scleroderma; inflammation of the gastrointestinal tract such as inflammatory bowel disease, Crohn's disease and related conditions, ulcerative colitis, colitis, and diverticulitis; nephritis, urethritis, salpingitis, oophoritis, endomyometritis, spondylitis, systemic lupus erythematosus and related disorders, multiple sclerosis, asthma, meningitis, myelitis, encephalomyelitis, encephalitis, phlebitis, thrombophlebitis, respiratory diseases such as asthma, bronchitis, chronic obstructive pulmonary disease (COPD), inflammatory lung disease and adult respiratory distress syndrome, and allergic rhinitis; endocarditis, osteomyelitis, rheumatic fever, rheumatic pericarditis, rheumatic endocarditis, rheumatic myocarditis, rheumatic mitral valve
disease, rheumatic aortic valve disease, prostatitis, prostatocystitis, spondarthropathies ankylosing spondylitis, synovitis, tenosynovitis, myositis, pharyngitis, polymyalgia rheumatica, shoulder tendonitis or bursitis, gout, pseudo gout, vasculitides, inflammatory diseases of the thyroid selected from granulomatous thyroiditis, lymphocytic thyroiditis, invasive fibrous thyroiditis, acute thyroiditis; Hashimoto’s thyroiditis, Kawasaki’s disease, Raynaud’s phenomenon, Sjogren’s syndrome, neuroinflammatory disease, sepsis, conjunctivitis, keratitis, iridocyclitis, optic neuritis, otitis, lymphoadenitis, nasopaharingitis, sinusitis, pharyngitis, tonsillitis, laryngitis, epiglottitis, bronchitis, pneumonitis, stomatitis, gingivitis. oesophagitis, gastritis, peritonitis, hepatitis, cholelithiasis, cholecystitis, glomerulonephritis, goodpasture’s disease, crescentic glomerulonephritis, pancreatitis, endomyometritis, myometritis, metritis, cervicitis, endocervicitis, exocervicitis, parametritis, tuberculosis, vaginitis, vulvitis, silicosis, sarcoidosis, pneumoconiosis, pyresis, inflammatory polyarthropathies, psoriatic arthropathies, intestinal fibrosis, bronchiectasis and enteropathic arthropathies.

Moreover, cytokines are also believed to be implicated in the production and development of various cardiovascular and cerebrovascular disorders such as congestive heart disease, myocardial infarction, the formation of atherosclerotic plaques, hypertension, platelet aggregation, angina, stroke, Alzheimer’s disease, reperfusion injury, vascular injury including restenosis and peripheral vascular disease, and, for example, various disorders of bone metabolism such as osteoporosis (including senile and postmenopausal osteoporosis), Paget’s disease, bone metastases, hypercalcaemia, hyperparathyroidism, osteosclerosis, osteoporosis and periodontitis, and the abnormal changes in bone metabolism which may accompany rheumatoid arthritis and osteoarthritis.

Excessive cytokine production has also been implicated in mediating certain complications of bacterial, fungal and/or viral infections such as endotoxic shock, septic shock and toxic shock syndrome and in mediating certain complications of CNS surgery or injury such as neurotrauma and ischaemic stroke.
Excessive cytokine production has, moreover, been implicated in mediating or exacerbating the development of diseases involving cartilage or muscle resorption, pulmonary fibrosis, cirrhosis, renal fibrosis, the cachexia found in certain chronic diseases such as malignant disease and acquired immune deficiency syndrome (AIDS), tumour invasiveness and tumour metastasis and multiple sclerosis. The treatment and/or prophylaxis of these diseases are also contemplated by the present invention.

Additionally, the inventive compositions may be used to treat inflammation associated with autoimmune diseases including, but not limited to, systemic lupus erythematosis, Addison's disease, autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome), glomerulonephritis, rheumatoid arthritis scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, glomerulonephritis, rheumatoid arthritis autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, and graft vs. host disease.

In a further embodiment the compositions of the present invention may be used for the treatment and prevention of infectious diseases such as sepsis, septic shock, Shigellosis, and Helicobacter pylori and viral diseases including herpes simplex type 1 (HSV-1), herpes simplex type 2 (HSV-2), cytomegalovirus, Epstein-Barr, human immunodeficiency virus (HIV), acute hepatitis infection (including hepatitis A, hepatitis B, and hepatitis C), HIV infection and CMV retinitis, AIDS or malignancy, malaria, mycobacterial infection and meningitis. These also include viral infections, by influenza virus, varicella-zoster virus (VZV), Epstein-Barr virus, human herpesvirus-6 (HHV-6), human herpesvirus-7 (HHV-7), human herpesvirus-8 (HHV-8), Poxvirus, Vacciniavirus, Monkeypoxvirus, pseudorabies and rhinotracheitis.

The compositions of the present invention may also be used topically in the treatment or prophylaxis of topical disease states mediated by or exacerbated by excessive cytokine production, such as inflamed joints, eczema, psoriasis and other....
inflammatory skin conditions such as sunburn; inflammatory eye conditions including conjunctivitis; pyresis, pain and other conditions associated with inflammation.

Periodontal disease has also been implemented in cytokine production, both topically and systemically. Hence, use of compositions of the present invention to control the inflammation associated with cytokine production in such peroral diseases such as gingivitis and periodontitis is another aspect of the present invention.

Finally, the compositions of the present invention may also be used to treat or prevent neurodegenerative disease selected from Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, frontotemporal lobar dementia, spinocerebellar ataxia, dementia with Lewy bodies, cerebral ischemia or neurodegenerative disease caused by traumatic injury, glutamate neurotoxicity or hypoxia.

In a preferred embodiment the compositions of the present invention may be used to treat or prevent a disease selected from chronic or acute inflammation, chronic inflammatory arthritis, rheumatoid arthritis, psoriasis, COPD, inflammatory bowel disease, septic shock, Crohn’s disease, ulcerative colitis, multiple sclerosis and asthma.

Protein kinases are important enzymes involved in the regulation of many cellular functions. The LK6-serine/threonine-kinase gene of Drosophila melanogaster was described as a short-lived kinase which can associate with microtubules (J. Cell Sci. 1997, 110(2): 209-219). Genetic analysis in the development of the compound eye of Drosophila suggested a role in the modulation of the RAS signal pathway (Genetics 2000 156(3): 1219-1230). The closest human homologues of Drosophila LK6-kinase are the MAP-kinase interacting kinase 2 (Mnk2, e.g. the variants Mnk2a and Mnk2b) and MAP-kinase interacting kinase 1 (Mnk1) and variants thereof. These kinases are mostly localized in the cytoplasm. Mnks are phosphorylated by the p42 MAP kinases Erk1 and Erk2 and the p38-MAP kinases. This phosphorylation is triggered in a response to growth factors, phorbol esters and oncogenes such as Ras and Mos,

There are different hypotheses describing the mode of the stimulation of the protein translation by Mnk proteins. Most publications describe a positive stimulatory effect on the cap-dependent protein translation upon activation of MAP kinase-interacting kinases. Thus, the activation of Mnk proteins can lead to an indirect stimulation or regulation of the protein translation, e.g. by the effect on the cytosolic phospholipase 2 alpha (BBA 1488:1 24-1 38, 2000).

WO 03/03762 discloses a link between human Mnk genes, particularly the variants of the human Mnk2 genes, and diseases which are associated with the regulation of body weight or thermogenesis. It is postulated that human Mnk genes, particularly the Mnk2 variants are involved in diseases such as e.g. metabolic diseases including obesity, eating disorders, cachexia, diabetes mellitus, hypertension, coronary heart disease, hypercholesterolemia, dyslipidemia, osteoarthritis, biliary stones, cancer of the genitals and sleep apnea, and in diseases connected with the ROS defense, such as e.g. diabetes mellitus and cancer. WO 03/03762 moreover discloses the use of nucleic acid sequences of the MAP kinase-interacting kinase (Mnk) gene family and amino acid sequences encoding these and the use of these sequences or of effectors of Mnk nucleic acids or polypeptides, particularly Mnk inhibitors and activators in the diagnosis, prophylaxis or therapy of diseases associated with the regulation of body weight or thermogenesis.

WO 02/1 03361 describes the use of kinases 2a and 2b (Mnk2a and Mnk2b) interacting with the human MAP kinase in assays for the identification of pharmacologically active ingredients, particularly useful for the treatment of diabetes
mellitus type 2. Moreover, WO 02/1 03361 discloses also the prophylaxis and/or therapy of diseases associated with insulin resistance, by modulation of the expression or the activity of Mnk2a or Mnk2b. Apart from peptides, peptidomimetics, amino acids, amino acid analogues, polynucleotides, polynucleotide analogues, nucleotides and nucleotide analogues, 4-hydroxybenzoic acid methyl ester are described as a substance which binds the human Mnk2 protein.

First evidence for a role of Mnks in inflammation was provided by studies demonstrating activation of Mnk1 by proinflammatory stimuli. The cytokines TNFa and IL-1β trigger the activation of Mnk1 in vitro (Fukunaga and Hunter, EMBO J 16(8): 1921-1933, 1997) and induce the phosphorylation of the Mnk-specific substrate elF4E in vivo (Ueda et al., Mol Cell Biol 24(15): 6539-6549, 2004). In addition, administration of lipopolysaccharide (LPS), a potent stimulant of the inflammatory response, induces activation of Mnk1 and Mnk2 in mice, concomitant with a phosphorylation of their substrate elF4E (Ueda et al., Mol Cell Biol 24(15): 6539-6549, 2004).

Furthermore, Mnk1 has been shown to be involved in regulating the production of proinflammatory cytokines. Mnk1 enhances expression of the chemokine RANTES (Nikolcheva et al., J Clin Invest 110, 119-126, 2002). RANTES is a potent chemotactant of monocytes, eosinophils, basophiles and, natural killer cells. It activates and induces proliferation of T lymphocytes, mediates degranulation of basophils and induces the respiratory burst in eosinophils (Conti and DiGioacchino, Allergy Asthma Proc 22(3):1 33-7, 2001).

WO 2005/00385 and Buxade et al., Immunity 23: 177-189, August 2005 both disclose a link between Mnks and the control of TNFa biosynthesis. The proposed mechanism is mediated by a regulatory AU-rich element (ARE) in the TNFa mRNA. Buxade et al. demonstrate proteins binding and controlling ARE function to be phosphorylated by Mnk1 and Mnk2. Specifically Mnk-mediated phosphorylation of the ARE-binding protein hnRNP A1 has been suggested to enhance translation of the TNFa mRNA.
TNFa is not the only cytokine regulated by an ARE. Functional AREs are also found in the transcripts of several interleukins, interferones and chemokines (Khabar, J Interf Cytokine Res 25: 1-10, 2005). The Mnk-mediated phosphorylation of ARE-binding proteins has thus the potential to control biosynthesis of cytokines in addition to that of TNFa.

Current evidence demonstrates Mnk as down stream targets of inflammatory signalling as well as mediators of the inflammatory response. Their involvement in the production of TNFa, RANTES, and potentially additional cytokines suggests inhibition of Mnk as strategy for anti-inflammatory therapeutic intervention.

Mnk1 and Mnk2 (including all splice forms) phosphorylate the translation factor elF4E on Serine 209. Mnk1/2 double knockout mice completely lack phosphorylation on Serine 209, indicating that Mnk kinase are the only kinases able to phosphorylate this site in vivo (Ueda et al., Mol Cell Biol. 2004; 24(15):6539-49). elF4E is overexpressed in a wide range of human malignancies, and high elF4E expression is frequently associated with more aggressive disease and poor prognosis. Furthermore, elF4E can act as an oncogene when assayed in standard assays for oncogenic activity (e.g. Ruggero et al., Nat Med. 2004 May;10(5):484-6). elF4E excerts its oncogenic activity by stimulating the translation of oncogenes such as c-myc and cyclinDI (Culjkovic et al., J Cell Biol. 2006; 175(3):41 5-26), by increasing the expression of pro-survival factors such as MCP-1 (Wendel et al., Genes Dev. 2007; 21(24):3232-7) and by positively regulating pathways of drug resistance (Wendel et al., Nature 2004; 428(6980):332-7; Graff et al., Cancer Res. 2008; 68(3):631 -4; De Benedetti and Graff, Oncogene 2004; 23(18):31 89-99; Barnhart and Simon, J Clin Invest. 2007; 117(9):2385-8). Suppression of elF4E expression by antisense oligonucleotides has shown promise in preclinical experiments with human tumor cells (Graff et al., J Clin Invest. 2007; 117(9):2638-48). It has been shown that phosphorylation on Ser209 is strictly required for the oncogenic activity of elF4E in vitro and in vivo (Topisirovic et al., Cancer Res. 2004; 64(23):8639-42; Wendel et al.,
Thus, inhibition of Mnkl and Mnk2 is expected to have beneficial effects in human malignancies. Inhibitors of Mnk (referred to as CGP57380 and CGP052088) have been described (cf. Mol. Cell. Biol. 21, 5500, 2001; Mol Cell Biol Res Comm 3, 205, 2000; Genomics 69, 63, 2000). CGP052088 is a staurosporine derivative having an IC₅₀ of 70 nM for inhibition of in vitro kinase activity of Mnkl. CGP57380 is a low molecular weight selective, non-cytotoxic inhibitor of Mnk2 (Mnk2a or Mnk2b) or of Mnkl. The addition of CGP57380 to cell culture cells, transfected with Mnk2 (Mnk2a or Mnk2b) or Mnkl showed a strong reduction of phosphorylated eIF4E.

Further inhibitors of Mnk have been described. See for example Applicants patent applications WO 06/066937, describing pyrazolopyrimidine compounds, WO 06/136402 describing certain thienopyrimidine compounds, WO 07/1 15822 describing further thienopyrimidine compounds with modified core ring, and WO 08/006547 describing pyrrolopyrimidines as inhibitors of Mnk kinases.

The problem underlying the present invention is to provide potent and selective Mnk1 and/or Mnk2 inhibitors which may effectively and safely be used for the treatment of metabolic diseases, inflammatory diseases, cancer, neurodegenerative diseases and their consecutive complication and disorders.

It has now been surprisingly found that certain thienopyrimidine compounds are potent inhibitors of the kinase enzymes Mnk1 and/or Mnk2 and/or variants thereof and as such may be useful in the prophylaxis and/or therapy of diseases which can be influenced by the inhibition of the kinase activity of Mnk1 and/or Mnk2 (Mnk2a or Mnk2b) and/or variants thereof.

In contrast to the thienopyrimidine compounds known in the art, for example, the compounds disclosed in the Applicants patent applications WO 06/136402 and WO 2007/1 15822, the thienopyrimidine compounds of the present invention provide several advantages, namely, enhanced solubility, the possibility to form stable salts,
improved metabolic stability, enhanced or retained activity in biochemical or cellular Mnk activity assays and enhanced or retained selectivity against other kinases.

The thienopyrimidine compounds disclosed in WO 06/136402 and WO 07/115822 exhibit high activity in Mnk enzyme assays and extremely high selectivity, however they show a very low solubility and are in most cases metabolic unstable resulting in undesired pharmacokinetic properties.

It has been surprisingly found that by the introduction of a polar group at the R^4- position in the compounds of general formula (I) below leads to surprising substantial metabolic stabilization, rendering the thienopyrimidines of the present invention useful for in vivo pharmacological applications.

Moreover, compounds described in this application also show improved solubility, have strong inhibitory potency in biochemical and cellular assays and are highly selective, resulting in overall greatly improved pharmacological properties.

If not specified otherwise, any alkyl moiety mentioned in this application may be straight-chained or branched.

Thienopyrimidine compounds of the present invention are compounds of the general formula (I):

![Chemical structure](image)

wherein

X is CH or N,
R1 is a hydrogen or halogen atom,

R2 is C\textsubscript{3-7} cycloalkyl group that is substituted with one or two substituents selected from oxo, halogen, C\textsubscript{1-3} alkyl, hydroxy, Ci-3 alkoxy, Ci\textsubscript{-4} alkoxy-carbonyl, amino and morpholinyl,

wherein the hydrogen atoms of the amino group may optionally be independently replaced by a C\textsubscript{1-3} alkyl, Ci-3 alkoxy-(CH\textsubscript{2})\textsubscript{m}, Ci\textsubscript{-4} alkoxy-carbonyl, Ci-3 alkylsulfonyl, Ci-3 alkyl-carbonyl, C3-6-cycloalkyl-carbonyl or piperidinyl group, wherein m is 2 or 3 and wherein the piperidinyl group may optionally be substituted by a methyl group,

wherein two substituents, which are attached to the same carbon atom, together may form a -O-(CH\textsubscript{2})\textsubscript{2}-O- group, and

wherein two substituents, which are attached to two adjacent carbon atoms, together may form a -O-CH\textsubscript{2}-O- or -O-C(CH\textsubscript{3})\textsubscript{2}-O- group,

R3 is a Ci-2 alkyl group and

R4 is a carboxy, Ci-3 alkoxy-carbonyl, aminocarbonyl, N-(Ci\textsubscript{-4} alkyl)-aminocarbonyl or N,N-[di-(Ci\textsubscript{-4} alkyl)]-aminocarbonyl group,

wherein the aminocarbonyl group may be substituted with a Ci-3 alkylsulfonyl, CN, OH, Ci-3 alkoxy, C\textsubscript{3-6} cycloalkyl, -CH\textsubscript{2}-C≡C-CH\textsubscript{2}-NH\textsubscript{2}, -CH\textsubscript{2}-C≡C-CH\textsubscript{2}-NH(Ci-3 alkyl) or -CH\textsubscript{2}-C≡C-CH\textsubscript{2}-N(Ci-3 alkyl)\textsubscript{2} group or with a piperidinyl or pyrrolidinyl group bound via a carbon atom,
wherein the alkyl moieties of the above-mentioned N-(Ci-4 alkyl)-amino-carbonyl and N,N-[di-(Ci-4 alkyl)]-aminocarbonyl groups may optionally be substituted with an aminocarbonyl, N-(Ci-3 alkyl)-aminocarbonyl or N,N-[di-(Ci-3 alkyl)]-aminocarbonyl group or with a pyrrolidinyl, oxazolyl, imidazolyl, piperidinyl or morpholinyl group, each bound via a carbon atom, or, from position 2 of an ethyl, propyl or butyl moiety onwards, with a OH, CN, Ci-3 alkoxy, amino, N-(Ci-3 alkyl)-amino, N,N-[di-(Ci-3 alkyl)]-amino, Ci-5 alkoxy-carbonyl-amino, morpholino, piperidino, piperazino or imidazolyl group, wherein each of the above-mentioned cycloalkyl, pyrrolidinyl, oxazolyl, piperidinyl, morpholinyl, piperazinyl and imidazolyl groups may be substituted with a methyl, amino, hydroxy group or Ci-3 alkoxy, or a tautomer, enantiomer, diastereomer or salt thereof.

Preferred compounds of formula (I) are those, wherein

X, R1, R2 and R4 are as defined above and

R3 is methyl,

or a tautomer, enantiomer, diastereomer or salt thereof.

One aspect of the invention concerns those compounds of formula (I), wherein

R2 to R4 are as defined above and

X is CH and

R1 is a fluorine atom,
or a tautomer, enantiomer, diastereomer or salt thereof.

Another aspect of the invention concerns those compounds of formula (I), wherein

5 R^2 to R^4 are as defined above and

X is N and

R^1 is a hydrogen atom,

10 or a tautomer, enantiomer, diastereomer or salt thereof.

More preferred compounds of formula (I) are those, wherein

15 X and R^1 to R^3 are as defined above, and

R^4 is carboxy, C_1-3alkoxy-carbonyl, aminocarbonyl or N-(C_1-3alkyl)-aminocarbonyl group,

20 wherein the methyl moiety of the above-mentioned N-(methyl)-aminocarbonyl group may optionally be substituted with a piperidinyl, N-methyl-piperidinyl or morpholinyl group, each bound via a carbon atom, and wherein the ethyl resp. propyl moiety of the above-mentioned N-(C_2-3alkyl)-aminocarbonyl group may optionally be terminally substituted with hydroxy, methoxy, amino, N-methyl-amino, N,N-dimethyl-amino, morpholino, imidazolyl, 4-methyl-piperazinyl, 1-methyl-pyrrolidinyl, piperidinyl, pyrrolidinyl or 4-hydroxy-piperidino group,

25 or a tautomer, enantiomer, diastereomer or salt thereof.

30 Even more preferred compounds of formula (I) are those, wherein

X and R^1 to R^3 are as defined as above, and
R4 is aminocarbonyl or N-(C\textsubscript{1-3}alkyl)-aminocarbonyl group,

wherein the methyl moiety of the above-mentioned N-(methyl)-aminocarbonyl group may optionally be substituted with a piperidinyl, N-methyl-piperidinyl or morpholinyl group, each bound via a carbon atom, and wherein the ethyl resp. propyl moiety of the above-mentioned N-(C\textsubscript{2-3}alkyl)-aminocarbonyl group may optionally be terminally substituted with hydroxy, methoxy, amino, N-methyl-amino, N,N-dimethyl-amino, morpholino, imidazolyl, 4-methyl-piperazinyl, 1-methyl-pyrrolidinyl, piperidinyl, pyrrolidinyl or 4-hydroxy-piperidino group, or a tautomer, enantiomer, diastereomer or salt thereof.

Another set of more preferred compounds of formula (I) are those, wherein

X, R1, R3 and R4 are as defined above, and

R2 is cyclopentyl substituted with one or two hydroxy or methoxy groups or with an amino, methylcarbonyl-amino, N-methyl-N-methylcarbonyl-amino group or wherein two adjacent carbon atoms are linked to each other via a -O-CH\textsubscript{2}O- or -O-C(CH\textsubscript{3})\textsubscript{2}-O- group, or

cyclohexyl substituted with one or two fluorine atoms or one or two hydroxy or methoxy groups or an oxo, C\textsubscript{i-3} alkoxy-carbonyl, morpholino, methyl-piperidinyl or an amino group, wherein the hydrogen atoms of the amino group may optionally independently be replaced with a methyl, methylcarbonyl, 2-methoxy-ethyl or methylsulfonyl group, or wherein two adjacent carbon atoms are linked to each other via-O -C(CH\textsubscript{3})\textsubscript{2}-O- group or wherein two hydrogen atoms attached to the same carbon atom are replaced by a -O-(CH\textsubscript{2})\textsubscript{2}-O- group,

or a tautomer, enantiomer, diastereomer or salt thereof,
particularly those compounds of formula (I), wherein

X, R\(^1\), R\(^3\) and R\(^4\) are as defined as above, and

5

R\(^2\) is cyclohexyl substituted with one hydroxy or methoxy group,

cyclopentyl substituted with one hydroxy, methoxy, methylcarbonyl-amino or N-methyl-N-methylcarbonyl-amino group or

10

cyclopentyl, wherein two adjacent carbon atoms are linked to each other via a -O-CH\(_2\)-O- group, or

cyclobutyl substituted with a methylcarbonyl-amino or methylcarbonyl-N(methyl)-amino group,

15

or a tautomer, enantiomer, diastereomer or salt thereof.

Particularly preferred are the following compounds of formula (I)
or a salt thereof.
Typical methods of preparing the compounds of the invention are described below in the experimental section.

The potent inhibitory effect of the compounds of the invention may be determined by in vitro enzyme assays as described below in more detail.

The compounds of the present invention can be synthesized according to the following synthesis schemes:

Compounds of the general formula C can be synthesized by reaction of a compound A with the deprotonated alcohol B in appropriate solvents such as THF or DMF at a temperature between 0 °C and 150 °C. The deprotonated form of B can be obtained by deprotonation with a base such as sodium hydride or lithium hexamethyldisilazane at a preferred temperature of 0 °C. Hydrogenation of compound C in order to obtain a compound of the general formula D can be achieved by reacting C in the presence of hydrogen and a catalyst such as palladium or Raney nickel. The hydrogen can be introduced as a gas or stem from a hydrogen source such as ammonium formate.
Compounds of the general formula C can be also obtained by Mitsunobu reaction of a compound with the general formula E with an alcohol B in the presence of triphenylphosphine and a dialkylazodicarboxylate such as diethylazodicarboxylate, diisopropylazodicarboxylate or di-tert.butylazodicarboxylate in a solvent such as THF at temperatures between -10 °C and 80 °C, preferably between 0 °C and 30 °C.

A compound of the formula G can be synthesized by reaction of compound D with F preferably in the presence of an acid such as p-toluene sulfonic acid or hydrochloric acid in solvents such as dioxan at temperatures between 10 °C and 150 °C. Synthesis of a compound with the general formula H can be achieved by reaction of compound G with a base such as sodium hydroxide or lithium hydroxide in solvents such as methanol, ethanol, THF and water or mixtures thereof, preferably in ethanol/THF or THF/water at temperatures between 10 °C and 100 °C. A compound
of the general formula \(J \) can be obtained by reaction of compound \(H \) with amines of the general formula \(J \) using amide coupling procedures employing reagents such as TBTU, HATU or EDC/ N-Hydroxysuccinimide in the presence or absence of bases such as diisopropylethylamine in solvents such as DMF or THF at temperatures between 0 °C and 120 °C preferably between 0 °C and 30 °C.

Pharmaceutically acceptable salts of the compounds of the invention of formula (1) can be formed with numerous organic and inorganic acids and bases. Exemplary acid addition salts including acetate, adipate, alginate, ascorbate, aspartate, benzoate, benzenesulfonate, bisulfate, borate, butyrate, citrate, camphorate, camphersulfonate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethane sulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethane sulfonate, lactate, maleate, methane sulfonate, 2-naphthalene sulfonate, nicotinate, nitrate, oxalate, pamoate, pectinate, persulfate, 3-phenyl sulfonate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, sulfonate, tartrate, thiocyanate, toluene sulfonate such as tosylate, undecanoate, or the like.

Basic nitrogen-containing moieties can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromide and iodide; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long-chain alkyl halides such as decyl, lauryl, myristyl and stearyl chloride, bromide and iodide, or aralkyl halides like benzyl and phenethyl bromides, or others. Water soluble or dispersible products are thereby obtained.

Pharmaceutically acceptable basic addition salts include but are not limited to cations based on the alkaline and alkaline earth metals such as sodium, lithium, potassium, calcium, magnesium, aluminum salts and the like, as well as non toxic ammonium quaternary ammonium, and amine cations, including but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine and the like. Other representative amines useful for the formation of base addition salts include benzazethine, dicyclohexyl amine, hydrabine, N-methyl-D-glucamine, N-methyl-D-glucamide, t-butyl amine,
diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like
and salts with amino acids such as arginine, lysine, or the like.

Unless specifically indicated, throughout the specification and the appended claims,
a given chemical formula or name shall encompass tautomers and all stereo, optical
and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc ..) and
racemates thereof as well as mixtures in different proportions of the separate
enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms
where such isomers and enantiomers exist, as well as salts, including
pharmaceutically acceptable salts thereof and solvates thereof such as for instance
hydrates including solvates of the free compounds or solvates of a salt of the
compound.

As used herein the term "metabolite" refers to (i) a product of metabolism, including
intermediate and products, (ii) any substance involved in metabolism (either as a
product of metabolism or as necessary for metabolism), or (iii) any substance
produced or used during metabolism. In particular it refers to the end product that
remains after metabolism.

As used herein the term "prodrug" refers to (i) an inactive form of a drug that exerts
its effects after metabolic processes within the body convert it to a usable or active
form, or (ii) a substance that gives rise to a pharmacologically active metabolite,
although not itself active (i.e. an inactive precursor).

The terms "prodrug" or "prodrug derivative" mean a covalently-bonded derivative or
carrier of the parent compound or active drug substance which undergoes at least
some biotransformation prior to exhibiting its pharmacological effect(s). In general,
such prodrugs have metabolically cleavable groups and are rapidly transformed in
vivo to yield the parent compound, for example, by hydrolysis in blood, and generally
include esters and amide analogs of the parent compounds. The prodrug is
formulated with the objectives of improved chemical stability, improved patient
acceptance and compliance, improved bioavailability, prolonged duration of action,

The term "pharmaceutically acceptable prodrug" as used herein means a prodrug of a compound of the invention which is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible.

As used herein the term "C₃-<i>n</i> cycloalkyl" or "C₃-<i>n</i> cycloalkyl" refers to mono- or polycyclic carbocyclic alkyl substituent or group having 3 to 10 or 3 to 8 ring atoms respectively, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, cycloheptatrienyl perhydrated naphthalene or indene, adamantyl or norbonanyl and the like.

The term "Ci_s alkyl" as used herein alone or in combination with other terms such as in alkoxy refers to a Ci_s, preferably Ci_4 straight or branched alkyl/alkoxy group such
as methyl, ethyl, propyl (iso-, n-), butyl (iso-, n-, sec-, tert-), pentyl, hexyl, methoxy, ethoxy, propoxy (iso-, n-), butoxy (iso-, n-, sec-, tert-), pentoxy, hexoxy; moreover, the term "C\textsubscript{1-8} alkyl" also includes an alkyl group which may contain oxygen in the chain and may be substituted with halogen to form an ether or halogenated ether group.

Any hydrogen atom, particularly in an alkyl, alkoxy or alkenyl group may be replaced by a fluorine atom.

The term "C\textsubscript{2-8} alkenyl" by itself or as part of another group refers to a straight or branched alkenyl group of 2 to 8 carbons, preferably 2 to 6 carbons, in the normal chain, which include one or more double bonds in the normal chain, such as vinyl, 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl.

The term "heterocyclyl" refers to monocyclic saturated or unsaturated heterocyclyl groups with 1 to 4 hetero atoms selected from N, S and O, with the remainder of the ring atoms being carbon atoms and having preferably a total number of ring atoms of 3 to 10, such as morpholino, piperazinyl, piperidinyl, pyridyl, pyrimidinyl, thiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thiophenyl or furanyl.

The term "heteroaryl" refers to a mono- or bicyclic aromatic group with 1 to 4 hetero atoms selected from N, S and O, with the remainder of the ring atoms being carbon atoms and having preferably a total number of ring atoms of 5 to 10. Examples without limitation of heteroaryl groups are such as benzofuranyl, furyl, thiienyl, benzothienyl, thiazolyl, imidazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, pyrrolyl, pyranyl, tetrahydropyranyl, pyrazolyl, pyridyl, quinoliny1, isoquinoliny1, purinyl, carbazolyl, benzoxazolyl, benzamidazolyl, indolyl, isoindolyl, pyrazinyl, diaziny1, pyrazine, triaziny1triazine, tetraziny1, tetrazolyl, benzothiophenyl, benzopyridyl and benzimidazolyl.
In a further aspect the present invention provides pharmaceutical compositions comprising a thienopyrimidine compound of the present invention and optionally a pharmaceutically acceptable carrier.

The pharmaceutical composition according to the present invention may further comprise an additional therapeutic agent. Particularly preferred are compositions, wherein the additional therapeutic agent is selected from antidiabetics like insulin, long and short acting insulin analogues, sulfonylureas, biguanides, DPP-IV inhibitors, SGLT2 inhibitors, 11β-HSD inhibitors, glucokinase activators, AMPK activators, Glp-1 receptor agonists, GIP receptor agonists, DGAT inhibitors, PPARgamma agonists, PPARdelta agonists, and other antidiabetics derived from thiazolidinediones, lipid lowering agents such as statines, fibrates, ion exchange resins nicotinic acid derivatives, or HMG-CoA reductase inhibitors, cardiovascular therapeutics such as nitrates, antihypertensiva such as β-blockers, ACE inhibitors, Ca-channel blockers, angiotensin II receptor antagonists, diuretics, thrombocyte aggregation inhibitors, or antineoplastic agents such as alkaloids, alkylating agents, antibiotics, or antimetabolites, or anti-obesity agents. Further preferred compositions are compositions wherein the additional therapeutic agent is selected from a histamine antagonist, a bradikinin antagonist, serotonin antagonist, leukotriene, an anti-asthmatic, an NSAID, an antipyretic, a corticosteroid, an antibiotic, an analgetic, an uricosuric agent, chemotherapeutic agent, an anti gout agent, a bronchodilator, a cyclooxygenase-2 inhibitor, a steroid, a 5-lipoxygenase inhibitor, an immunosuppressive agent, a leukotriene antagonist, a cytostatic agent, an antineoplastic agent, a mTor inhibitor, a Tyrosine kinase inhibitor, antibodies or fragments thereof against cytokines and soluble parts (fragments) of cytokine receptors.

More particularly preferred are compounds such as human NPH insulin, human lente or ultralente insulin, insulin Lispro, insulin Aspart, insulin Glulisine, insulin detemir or insulin Glargine, metformin, phenformin, acarbose, miglitol, voglibose, pioglitazone, rosiglitazone, rivoglitazone, aleglitazar, alogliptin, saxagliptin, sitagliptin, vildagliptin, exenatide, liraglutide, albiglutide, pramlintide, carbutamide, chlorpropamide,
glibenclamide (glyburide), gliclazide, glimepiride, glipizide, gliquidone, tolazamide, tolbutamide, atenolol, bisoprolol, metoprolol, esmolol, celiprolol, talinolol, oxprenolol, pindolol, propanolol, bupropanolol, penbutolol, mepindolol, sotalol, certeolol, nadolol, carvedilol, nifedipin, nitrendipin, amlodipin, nicardipin, nisoldipin, diltiazem, enalapril, verapamil, gallopamil, quinapril, captopril, lisinopril, benazepril, ramipril, peridopril, fosinopril, trandolapril, irbesatan, losartan, valsartan, telmisartan, eprosartan, olmesartan, hydrochlorothiazide, piretanid, chlorotalidone, mefruside, furosemide, bendroflumethiazid, triamterene, dehydralazine, acetylsalicylic acid, tirofiban-HCl, dipyramido, triclopindin, iloprost-trometanol, eptifibatide, clopidogrel, piratecam, abciximab, trapidil, simvastatine, bezafibrate, fenofibrate, gemfibrozil, etofyllin, clofibrate, etofibrate, fluvastatine, lovastatine, pravastatin, colestyramide, colestipol-HCl, xantinol nicotinat, inositol nicotinat, acipimox, nebivolol, glycerolnitrate, isosorbide mononitrate, isosorbide dinitrate, pentaerythrityl tetranitrate, indapamide, cilazepiril, urapidil, eprosartan, nilvadipin, metoprolol, doxazosin, molsidomin, moxaverin, acetobutolol, prazosine, trapidil, clonidine, vinca alkaloids and analogues such as vinblastin, vincristin, vindesin, vinorelin, podophyllotoxine derivatives, etoposid, teniposid, alkylating agents, nitroso ureas, N-lost analogues, cycloplonphamid, estamustin, melphalan, ifosfamide, mitoxantron, idarubicin, doxorubicin, bleomycin, mitomycin, dactinomycin, daptomycins, docetaxel, paclitaxel, carboplatin, cisplatin, oxaliplatin, BBR3464, satraplatin, busulfan, treosulfan, procarbazine, dacarbazine, temozolomide, chlorambucil, chlormethine, cyclophosphamide, ifosfamide, melphalan, bendamustine, uramustine, ThioTEPA, camptothecin, topotecan, irinotecan, rubitecan, etoposide, teniposide, cetuximab, panitumumab, trastuzumab, rituximab, tositumomab, alemtuzumab, bevacizumab, gemtuzumab, aminolevulinic acid, methyl aminolevulinate, porfimer sodium, verteporfin, axitinib, bosutinib, cediranib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, lestaturtinib, nilotinib, semaxanib, sorafenib, sunitinib, vandetanib, retinoids (alitretinoin, tretinoin), altretamine, amsacrine, anagrelide, arsenic trioxide, asparaginase (pegaspargase), bexarotene, bortezomib, denileukin difitox, estramustine, ixabepilone, masoprocol, mitotane, testolactone, tipifarnib, abetimus, deforolimus, everolimus, gusperimus, pimecrolimus, sirolimus, tacrolimus, temsirolimus, antimetabolites such as cytarabin, fluorouracil, fluoroarabin,
gemcitabin, tioguanin, capecitabin, combinations such as adhamycin/daunorubicin, cytosine arabinosid/cytarabine, 4-HC, or other phosphamides.

Other particularly preferred compounds are compounds such as clemastine, diphenhydramine, dimenhydrinate, promethazine, cetirizine, astemizole, levocabastine, loratidine, terfenadine, acetylsalicylic acid, sodium salicylate, salsalate, diflunisal, salicylsalicylic acid, mesalazine, sulfasalazine, osalazine, acetaminophen, indomethacin, sulindac, etodolac, tolmetin, ketorolac, bethamethason, budesonide, chromoglycinic acid, dimeticone, simeticone, domperidone, metoclopramid, acemetacine, oxaceprol, ibuprofen, naproxen, ketoprofen, flubiprofen, fenoprofen, oxaprozin, mefenamic acid, meclofenamic acid, pheylbutazone, oxyphenbutazone, azapropazone, nimesulide, metamizole, leflunamide, eficoxicib,lonazolac, misoprostol, paracetamol, aceclofenac, valdecoxib, parecoxib, celecoxib, propyphenazon, codein, oxapozin, dapson, prednisone, prednisolon, triamcinolone, dexibuprofen, dexamethasone, flunisolide, albuterol, salmeterol, terbutalin, theophylline, caffeine, naproxen, glucosamine sulfate, etanercept, ketoprofen, adalimumab, hyaluronic acid, indometacine, proglumetacine dimaleate, hydroxychloroquine, chloroquine, infliximab, etofenamate, auranofin, gold, [224R,a]_diunn chloride, tiaprofenic acid, dexketoprofen(trometamol), cloprednol, sodium aurothiomalate aurothioglucose, colchicine, allopurinol, probenecid, sulfipyrazone, benz bromarone, carbamazepine, lornoxicam, fluorocortolon, diclofenac, efalizumab, idarubicin, doxorubicin, bleomycin, mitomycin, dactinomycin, daptomycin, cytarabin, fluorouracil, fluoroarabin, gemcitabin, tioguanin, capecitabin, adriamydin/daunorubicin, cytosine arabinosid/cytarabine, 4-HC, or other phosphamides, penicillamine, a hyaluronic acid preparation, arteparon, glucosamine, MTX, soluble fragments of the TNF-receptor (such as etanercept (Enbrel)) and antibodies against TNF (such as infliximab (Remicade), natalizumab (Tysabri) and adalimumab (Humira)).

It will be appreciated by the person of ordinary skill in the art that the compounds of the invention and the additional therapeutic agent may be formulated in one single
dosage form, or may be present in separate dosage forms and may be either administered concomitantly (i.e. at the same time) or sequentially.

The pharmaceutical compositions of the present invention may be in any form suitable for the intended method of administration.

The compounds of the present invention may be administered orally, parenterally, such as bronchopulmonary, subcutaneously, intravenously, intramuscularly, intraperitoneally, intrathecally, transdermally, transmucosally, subdurally, locally or topically via iontophoresis, sublingually, by inhalation spray, aerosol or rectally and the like in dosage unit formulations optionally comprising conventional pharmaceutically acceptable excipients.

Excipients that may be used in the formulation of the pharmaceutical compositions of the present invention comprise carriers, vehicles, diluents, solvents such as monohydric alcohols such as ethanol, isopropanol and polyhydric alcohols such as glycols and edible oils such as soybean oil, coconut oil, olive oil, safflower oil cottonseed oil, oily esters such as ethyl oleate, isopropyl myristate; binders, adjuvants, solubilizers, thickening agents, stabilizers, disintergrants, glidants, lubricating agents, buffering agents, emulsifiers, wetting agents, suspending agents, sweetening agents, colorants, flavors, coating agents, preservatives, antioxidants, processing agents, drug delivery modifiers and enhancers such as calcium phosphate, magnesium state, talc, monosaccharides, disaccharides, starch, gelatine, cellulose, methylcellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl-β-cyclodextrin, polyvinylpyrrolidone, low melting waxes, ion exchange resins.

Dosage forms for oral administration include tablets, capsules, lozenges, pills, wafers, granules, oral liquids such as syrups, suspensions, solutions, emulsions, powder for reconstitution.
Dosage forms for parenteral administration include aqueous or oleaginous solutions or emulsions for infusion, aqueous or oleaginous solutions, suspensions or emulsions for injection pre-filled syringes, and/or powders for reconstitution.

Dosage forms for local/topical administration comprise insufflations, aerosols, metered aerosols, transdermal therapeutic systems, medicated patches, rectal suppositories, and/or ovula.

The amount of the compound of the present invention that may be combined with the excipients to formulate a single dosage form will vary upon the host treated and the particular mode of administration.

The pharmaceutical compositions of the invention can be produced in a manner known per se to the skilled person as described, for example, in Remington's Pharmaceutical Sciences, 15th Ed., Mack Publishing Co., New Jersey (1991).

In a further aspect of the invention the use of a thienopyrimidine compound of the present invention for the production of a pharmaceutical composition for inhibiting the activity of the kinase activity of Mnk1 or Mnk2 (Mnk2a, Mnk2b) or further variants thereof is provided, in particular for the prophylaxis or therapy of metabolic diseases, hematopoietic disorders, cancer and their consecutive complications and disorders. Whereby the prophylaxis and therapy of metabolic diseases of the carbohydrate and/or lipid metabolism is preferred.

Diseases of the invention that are influenced by the inhibition of the kinase activity of Mnk1 and/or Mnk2 (Mnk2a or Mnk2b) and/or further variants thereof include diseases related to the regulation of metabolic diseases, such as obesity, eating disorders, cachexia, diabetes mellitus, metabolic syndrome, hypertension, coronary heart diseases, hypercholesterolemia, dyslipidemia, osteoarthritis, biliary stones and/or sleep apnea and diseases related to reactive oxygen compounds (ROS defense) such as diabetes mellitus, neurodegenerative diseases and cancer.
The pharmaceutical compositions of the invention are particularly useful for prophylaxis and treatment of obesity, diabetes mellitus and other metabolic diseases of the carbohydrate and lipid metabolism as stated above, in particular diabetes mellitus and obesity.

Thus in a more preferred embodiment of this invention the use of a thienopyrimidine compound for the production of a pharmaceutical composition for the prophylaxis or therapy of metabolic diseases is provided.

In yet a further aspect of the invention the use of a thienopyrimidine compound of the invention for the production of a pharmaceutical composition for treating or preventing a cytokine mediated disorder such as an inflammatory disease is provided.

The pharmaceutical compositions of the invention are thus useful for the prophylaxis or therapy of inflammatory diseases, in particular chronic or acute inflammation, chronic inflammatory arthritis, rheumatoid arthritis, psoriatic arthritis, osteoarthritis, juvenile rheumatoid arthritis, gouty arthritis; psoriasis, erythrodermic psoriasis, pustular psoriasis, inflammatory bowel disease, Crohn’s disease and related conditions, ulcerative colitis, colitis, diverticulitis, nephritis, urethritis, salpingitis, oophoritis, endomyometritis, spondylitis, systemic lupus erythematosus and related disorders, multiple sclerosis, asthma, meningitis, myelitis, encephalomyelitis, encephalitis, phlebitis, thrombophlebitis, chronic obstructive disease (COPD), inflammatory lung disease, allergic rhinitis, endocarditis, osteomyelitis, rheumatic fever, rheumatic pericarditis, rheumatic endocarditis, rheumatic myocarditis, rheumatic mitral valve disease, rheumatic aortic valve disease, prostatitis, prostatocystitis, spondarthropathies ankylosing spondylitis, synovitis, tenosynovitis, myositis, pharyngitis, polymyalgia rheumatica, shoulder tendonitis or bursitis, gout, pseudo gout, vasculitides, inflammatory diseases of the thyroid selected from granulomatous thyroiditis, lymphocytic thyroiditis, invasive fibrous thyroiditis, acute thyroiditis; Hashimoto’s thyroiditis, Kawasaki’s disease, Raynaud’s phenomenon,
Sjogren’s syndrome, neuroinflammatory disease, sepsis, conjunctivitis, keratitis, iridocyclitis, optic neuritis, otitis, lymphoadenitis, nasopaharingitis, sinusitis, pharyngitis, tonsillitis, laryngitis, epiglottitis, bronchitis, pneumonitis, stomatitis, gingivitis, oesophagitis, gastritis, peritonitis, hepatitis, cholelithiasis, cholecystitis, glomerulonephritis, goodpasture’s disease, crescentic glomerulonephritis, pancreatitis, dermatitis, endomyometritis, myometritis, cervicitis, endocervicitis, exocervicitis, parametritis, tuberculosis, vaginitis, vulvitis, silicosis, sarcoidosis, pneumoconiosis, inflammatory polyarthropathies, psoriatic arthropathies, intestinal fibrosis, bronchiectasis and enteropathic arthropathies.

As already stated above, the compositions of the present invention are particularly useful for treating or preventing a disease selected from chronic or acute inflammation, chronic inflammatory arthritis, rheumatoid arthritis, psoriasis, COPD, inflammatory bowel disease, septic shock, Crohn’s disease, ulcerative colitis, multiple sclerosis and asthma.

Thus, in a more preferred embodiment of this invention the use of a thienopyrimidine compound for the production of a pharmaceutical composition for the prophylaxis or therapy of inflammatory diseases selected from chronic or acute inflammation, chronic inflammatory arthritis, rheumatoid arthritis, psoriasis, COPD, inflammatory bowel disease, septic shock Crohn’s disease, ulcerative colitis, multiple sclerosis and asthma is provided.

In yet a further aspect of the invention the use of a thienopyrimidine compound of the invention for the production of a pharmaceutical composition for treating or preventing cancer, viral diseases or neurodegenerative diseases is provided.

For the purpose of the present invention, a therapeutically effective dosage will generally be from about 1 to 2000 mg/day, preferably from about 10 to about 1000 mg/day, and most preferably from about 10 to about 500 mg/day, which may be administered in one or multiple doses.
It will be appreciated, however, that specific dose level of the compounds of the invention for any particular patient will depend on a variety of factors such as age, sex, body weight, general health condition, diet, individual response of the patient to be treated time of administration, severity of the disease to be treated, the activity of particular compound applied, dosage form, mode of application and concomitant medication. The therapeutically effective amount for a given situation will readily be determined by routine experimentation and is within the skills and judgment of the ordinary clinician or physician.

Kinase Fluorescence Polarization Assays

Assay principle: Inhibitory potency of compounds against Mnk1, Mnk2a and other kinases was assessed with assays based on a format known to those skilled in the art as the indirect (competitive) fluorescence polarization. The assay detection system comprises a small fluorophore-labeled phospho-peptide (termed ligand) bound to a phospho-specific antibody. The product generated by the kinase reaction competes with the ligand for antibody binding. Based on the larger molecular volume of the bound ligand, which results in a lower rotation rate in solution, its emitted light has a higher degree of polarization than the one from the free ligand.

Description of the specific homogenous kinase assay

Example 2a. Mnk1 and Mnk2a in vitro kinase assay

As a source of enzyme, human Mnk1 and human Mnk2a were expressed as GST fusion proteins in E. coli, purified to >80% homogeneity by glutathione affinity chromatography and activated in vitro with pre-activated ERK2. In brief, the open reading frames of human Mnk1 and Mnk2a were amplified from cDNA using the forward/reverse primer pairs

```plaintext
SEQ ID NO: 1 5TTTA GGATCC GTATCTTCTCAAAAGTTGG /
SEQ ID NO: 2 5' CTGG GTCGAC TCAGAGTGCTGTGGGCGG and
SEQ ID NO: 3 5'ACAGGGATCCGTGCAGAAGAAACCAGCC /
```
SEQ ID NO: 4 5'GATGGTGACTCAGGCGTGGTCTCCCACC

(utilized restriction sites underlined), respectively, and cloned into the BamHI and Sail sites of the vector pGEX-4T1 (Amersham, Sweden, cat. no. 27-4580-01). These constructs allow prokaryotic expression of Mnk1 or Mnk2a as fusion protein with a N-terminal glutathione S-transferase (GST) tag, referred to as GST-Mnk1 or GST-Mnk2a. The following expression and purification procedure was identical for GST-Mnk1 and GST-Mnk2a, refering in general to GST-Mnk, when not distinguishing between the two isoforms. Expression of GST-Mnk was in E. coli BL21 (Merck Biosciences, Germany, cat. no. 69449). Cells were grown in LB-Bouillon (Merck, Germany, cat. no. 1.10285) supplemented with 100 μg/ml ampicillin (Sigma, Germany, cat. no. A951 8) at 37°C. When the culture had reached a density corresponding to an A₆₀₀ of 0.8, an equal volume of ice cold LB/ampicillin was added, the culture transferred to 25°C and induced for 4 h with 1 mM isopropyl thiogalactoside (IPTG, Roth, Germany, cat. no. 231 6.4). Cells harvested by centrifugation were resuspended in 10 ml lysis buffer (50 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris/HCl, Sigma, Germany, cat. no. T5941) pH 7.5, 300 mM sodium chloride (NaCl, Sigma, Germany, cat. no. S7653), 5% (w/v) glycerol (Sigma, Germany, cat. no. G551 6), 3 mM DTT dithiotreitol (DTT, Sigma, Germany, cat. no. D9779)) per gram wet weight cell pellet. Lysates were prepared by disruption of cells with a sonifier and subsequent clearing by centrifugation at 38000 g for 45 min at 4°C.

The lysate was applied to a GSTPrep FF 16/10 column (Amersham, Sweden, cat. no. 17-5234-01) equilibrated with lysis buffer. Removal of unbound material was with 3 column volumes (CV) lysis buffer. Elution was with 2 CV of elution buffer (50 mM Tris/HCl pH 7.5, 300 mM NaCl, 5% (w/v) glycerol, 20 mM glutathione (Sigma, Germany, cat. no. G4251)). Peak fractions were pooled and the protein transferred into storage buffer (50 mM Tris/HCl pH 7.5, 200 mM NaCl, 0.1 mM ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Aldrich, Germany, cat. no. 23,453-2), 1 mM DTT, 10% (w/v) glycerol, 0.5 M sucrose (Sigma, Germany, cat. no. 34.
by gel filtration on a PD10 desalting column (Amersham, Sweden, cat. no. 17-0851-01). Aliquots were shock frozen in liquid nitrogen and stored at -80°C.

Activation of Mnk1 and Mnk2a was at a concentration of 2.5 µM of either purified GST-Mnk1 or GST-Mnk2a by incubation with 150 nM pre-activated NHis-ERK2 (see ERK2 assay for preparation) and 50 µM adenosine triphosphate (ATP, Sigma, cat. no. A2699) in a buffer comprising 20 mM N-(2-hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid) (HEPES, Fluka, Germany, cat. no 54459)/potassium hydroxide (KOH, Roth, Germany, cat. no 6751.1) pH 7.4, 10 mM magnesium chloride (MgCl₂, Sigma, Germany, cat. no. M2670), 0.25 mM DTT, 0.05% (w/v) polyoxyethylene 20 stearylether (Brij 78, Sigma, Germany, cat. no. P4019) (HMDB buffer) for 45 min at 30°C. After the incubation, the preparation was aliquoted into single-use samples, shock frozen in liquid nitrogen, stored at -80°C and utilized for Mnk1 or Mnk2a kinase assays as detailed below. The presence of activating kinase has been tested to not interfere with the Mnk activity assay.

SUBSTRATE: A carboxy-terminal amidated 12mer peptide with the sequence
SEQ ID NO: 5 TATKSGSTTKNR,
derived from the amino acid sequence around serine 209 of the eukaryotic translation initiation factor 4E (elF4E) has been synthesized and purified by high performance liquid chromatography (HPLC) to >95% (Thermo, Germany). The serine residue phosphorylated by Mnk kinases is underlined.

LIGAND: The peptide TATKSG-pS-TTKNR, containing an amidated carboxy-terminus and conjugated at the amino-terminus with the oxazine derived fluorophore depicted below was synthesized and used as ligand.
SPF New Zealand White Rabbits have been immunized according to standard protocols with the peptide NH2-CTATKSG-pS-TTKNR-CONH2, coupled to keyhole limpet hemocyanin (KLH). The immune globulin G (IgG) fraction was purified from serum of boosted animals by techniques known in the art. In brief, serum was subjected to protein A affinity chromatography. Eluted material was precipitated at 50% cold saturated ammonium sulfate, pellets dissolved and desalted. The resulting material was appropriate for use in below described assay without further antigen-specific purification.

ASSAY SETUP: Inhibition of kinase activity of Mnk1 and Mnk2a was assessed with the same assay system, using pre-activated GST-Mnk1 or GST-Mnk2a, respectively. The kinase reaction contains 30 µM substrate peptide, 20 µM ATP, 60 nM ligand and one of either 25 nM pre-activated Mnk1 or 2.5 nM pre-activated Mnk2a. The reaction buffer conditions are 16 mM HEPES/KOH pH 7.4, 8 mM MgCl2, 0.4 mM DTT, 0.08% (w/v) bovine serum albumin (BSA, Sigma, Germany, cat. no. A3059), 0.008% (w/v) Pluronic F127 (Sigma, Germany, cat. no. P2443), 3% (v/v) DMSO (Applichem, Germany, cat. no. A3006). The kinase reaction is at 30°C for 40 min. The kinase reaction is terminated by addition of 0.67 reaction volumes of 1 µM antibody in 20 mM HEPES/KOH pH 7.4, 50 mM ethylenediaminetetraacetic acid, disodium salt (EDTA, Sigma, Germany, cat. no. E5134), 0.5 mM DTT, 0.05% (w/v) polyoxyethylene-sorbitan monolaureate (Tween 20, Sigma, Germany, cat. no. P7949). After 1 h equilibration time at room temperature, samples are subjected to fluorescence polarization measurement. The fluorescence polarization readout was generated on an Analyst AD multimode reader (Molecular Devices, Sunnyvale, CA, USA) equipped with a DLRP650 dichroic mirror (Omega Opticals, Brattleboro, VT,
USA, cat. no. XF2035), a 630AF50 band pass filter (Omega Opticals, Brattleboro, VT, USA, cat. no. XF1069) on the excitation and a 695AF55 band pass filter on the emission side (Omega Opticals, Brattleboro, VT, USA, cat. no. XF3076).

The activity of Mnk proteins can be assayed also by other in vitro kinase assay formats. For example, suitable kinase assays have been described in the literature in Knauf et al., Mol Cell Biol. 2001 Aug;21 (16):5500-11 or in Scheper et al., Mol Cell Biol. 2001 Feb;21 (3):743-54. In general, Mnk kinase assays can be performed such that a Mnk substrate such as a protein or a peptide, which may or may not include modifications as further described below, or others are phosphorylated by Mnk proteins having enzymatic activity in vitro. The activity of a candidate agent can then be determined via its ability to decrease the enzymatic activity of the Mnk protein. The kinase activity may be detected by change of the chemical, physical or immunological properties of the substrate due to phosphorylation.

In one example, the kinase substrate may have features, designed or endogenous, to facilitate its binding or detection in order to generate a signal that is suitable for the analysis of the substrates phosphorylation status. These features may be, but are not limited to, a biotin molecule or derivative thereof, a glutathione-S-transferase moiety, a moiety of six or more consecutive histidine residues, an amino acid sequence or hapten to function as an epitope tag, a fluorochrome, an enzyme or enzyme fragment. The kinase substrate may be linked to these or other features with a molecular spacer arm to avoid steric hindrance.

In another example, the kinase substrate may be labelled with a fluorophore. The binding of the reagent to the labelled substrate in solution may be followed by the technique of fluorescence polarization as it is described in the literature. In a variation of this example, a fluorescent tracer molecule may compete with the substrate for the analyte to detect kinase activity by a technique which is known to those skilled in the art as indirect fluorescence polarization.

In yet another example, radioactive gamma-ATP is used in the kinase reaction, and the effect of the test agent on the incorporation of radioactive phosphate in the test
substrate is determined relative to control conditions.

It has been shown that the compounds of the invention exhibit low IC50 values in *in vitr*o biological screening assays as described in example 2a for inhibition of Mnk 1 and/or Mnk 2 kinase activity. The following table contains the test results for exemplary compounds.

<table>
<thead>
<tr>
<th>Example</th>
<th>MNK2 IC50 [nM]</th>
<th>Example</th>
<th>MNK2 IC50 [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>31.1</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>35.2</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>35.3</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>36</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>5900</td>
<td>38</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>2500</td>
<td>39</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>41</td>
<td>152</td>
</tr>
<tr>
<td>13</td>
<td>440</td>
<td>42</td>
<td>140</td>
</tr>
<tr>
<td>14</td>
<td>1600</td>
<td>43</td>
<td>360</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>44</td>
<td>440</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>45</td>
<td>480</td>
</tr>
<tr>
<td>17</td>
<td>28</td>
<td>46</td>
<td>460</td>
</tr>
<tr>
<td>18</td>
<td>36</td>
<td>47</td>
<td>260</td>
</tr>
<tr>
<td>19</td>
<td>31</td>
<td>48</td>
<td>410</td>
</tr>
<tr>
<td>20</td>
<td>360</td>
<td>49</td>
<td>380</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>65</td>
<td>51</td>
<td>13</td>
</tr>
<tr>
<td>23</td>
<td>920</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>25</td>
<td>300</td>
<td>54</td>
<td>62</td>
</tr>
<tr>
<td>26</td>
<td>82</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>27</td>
<td>9700</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>28.1</td>
<td>158</td>
<td>57</td>
<td>7</td>
</tr>
<tr>
<td>29</td>
<td>90</td>
<td>58</td>
<td>6</td>
</tr>
<tr>
<td>30.1</td>
<td>9</td>
<td>59</td>
<td>34</td>
</tr>
<tr>
<td>Example</td>
<td>MNK2 IC<sub>50</sub> [nM]</td>
<td>Example</td>
<td>MNK2 IC<sub>50</sub> [nM]</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>60</td>
<td>14</td>
<td>104</td>
<td>43</td>
</tr>
<tr>
<td>61</td>
<td>26</td>
<td>105</td>
<td>24</td>
</tr>
<tr>
<td>62</td>
<td>17</td>
<td>106</td>
<td>22</td>
</tr>
<tr>
<td>63</td>
<td>14</td>
<td>107</td>
<td>18</td>
</tr>
<tr>
<td>64</td>
<td>21</td>
<td>108</td>
<td>19</td>
</tr>
<tr>
<td>65</td>
<td>16</td>
<td>109</td>
<td>24</td>
</tr>
<tr>
<td>66</td>
<td>26</td>
<td>110.1</td>
<td>9</td>
</tr>
<tr>
<td>67</td>
<td>18</td>
<td>111</td>
<td>36</td>
</tr>
<tr>
<td>68</td>
<td>31</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>69</td>
<td>34</td>
<td>113</td>
<td>23</td>
</tr>
<tr>
<td>70</td>
<td>17</td>
<td>114</td>
<td>19</td>
</tr>
<tr>
<td>71</td>
<td>28</td>
<td>115</td>
<td>19</td>
</tr>
<tr>
<td>72</td>
<td>23</td>
<td>116</td>
<td>33</td>
</tr>
<tr>
<td>73</td>
<td>43</td>
<td>117</td>
<td>12</td>
</tr>
<tr>
<td>74</td>
<td>22</td>
<td>118</td>
<td>22</td>
</tr>
<tr>
<td>75</td>
<td>18</td>
<td>119</td>
<td>11</td>
</tr>
<tr>
<td>76</td>
<td>13</td>
<td>120</td>
<td>33</td>
</tr>
<tr>
<td>77</td>
<td>18</td>
<td>121</td>
<td>41</td>
</tr>
<tr>
<td>78</td>
<td>25</td>
<td>122</td>
<td>18</td>
</tr>
<tr>
<td>79</td>
<td>15</td>
<td>123</td>
<td>26</td>
</tr>
<tr>
<td>80</td>
<td>31</td>
<td>124</td>
<td>36</td>
</tr>
<tr>
<td>81</td>
<td>98</td>
<td>125</td>
<td>44</td>
</tr>
<tr>
<td>82</td>
<td>44</td>
<td>126</td>
<td>23</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>127</td>
<td>16</td>
</tr>
<tr>
<td>84</td>
<td>91</td>
<td>128</td>
<td>19</td>
</tr>
<tr>
<td>85</td>
<td>46</td>
<td>129</td>
<td>17</td>
</tr>
<tr>
<td>86</td>
<td>93</td>
<td>130</td>
<td>24</td>
</tr>
<tr>
<td>87</td>
<td>38</td>
<td>131</td>
<td>18</td>
</tr>
<tr>
<td>88</td>
<td>61</td>
<td>132</td>
<td>96</td>
</tr>
<tr>
<td>89</td>
<td>8</td>
<td>133</td>
<td>53</td>
</tr>
<tr>
<td>90</td>
<td>34</td>
<td>134</td>
<td>86</td>
</tr>
<tr>
<td>91</td>
<td>16</td>
<td>135</td>
<td>65</td>
</tr>
<tr>
<td>92</td>
<td>36</td>
<td>136</td>
<td>44</td>
</tr>
<tr>
<td>93</td>
<td>16</td>
<td>137</td>
<td>105</td>
</tr>
<tr>
<td>94</td>
<td>21</td>
<td>138</td>
<td>48</td>
</tr>
<tr>
<td>95</td>
<td>28</td>
<td>139</td>
<td>84</td>
</tr>
<tr>
<td>96</td>
<td>14</td>
<td>140</td>
<td>49</td>
</tr>
<tr>
<td>97</td>
<td>24</td>
<td>141</td>
<td>89</td>
</tr>
<tr>
<td>98</td>
<td>17</td>
<td>142</td>
<td>125</td>
</tr>
<tr>
<td>99</td>
<td>36</td>
<td>143</td>
<td>77</td>
</tr>
<tr>
<td>100</td>
<td>34</td>
<td>144</td>
<td>89</td>
</tr>
<tr>
<td>101</td>
<td>21</td>
<td>145</td>
<td>68</td>
</tr>
<tr>
<td>102</td>
<td>34</td>
<td>146</td>
<td>105</td>
</tr>
<tr>
<td>103</td>
<td>50</td>
<td>147</td>
<td>83</td>
</tr>
<tr>
<td>Example</td>
<td>MNK2 IC<sub>50</sub> [nM]</td>
<td>Example</td>
<td>MNK2 IC<sub>50</sub> [nM]</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>148</td>
<td>49</td>
<td>192</td>
<td>21</td>
</tr>
<tr>
<td>149</td>
<td>65</td>
<td>193</td>
<td>43</td>
</tr>
<tr>
<td>150</td>
<td>11</td>
<td>194</td>
<td>14</td>
</tr>
<tr>
<td>151</td>
<td>36</td>
<td>195</td>
<td>19</td>
</tr>
<tr>
<td>152</td>
<td>11</td>
<td>196</td>
<td>17</td>
</tr>
<tr>
<td>153</td>
<td>9</td>
<td>197</td>
<td>1</td>
</tr>
<tr>
<td>154</td>
<td>12</td>
<td>198</td>
<td>10</td>
</tr>
<tr>
<td>155</td>
<td>9</td>
<td>199</td>
<td>15</td>
</tr>
<tr>
<td>156</td>
<td>13</td>
<td>200</td>
<td>17</td>
</tr>
<tr>
<td>157</td>
<td>9</td>
<td>201</td>
<td>16</td>
</tr>
<tr>
<td>158</td>
<td>4</td>
<td>202</td>
<td>46</td>
</tr>
<tr>
<td>159</td>
<td>16</td>
<td>203</td>
<td>62</td>
</tr>
<tr>
<td>160</td>
<td>6</td>
<td>204</td>
<td>5</td>
</tr>
<tr>
<td>161</td>
<td>17</td>
<td>205</td>
<td>10</td>
</tr>
<tr>
<td>162</td>
<td>10</td>
<td>206</td>
<td>13</td>
</tr>
<tr>
<td>163</td>
<td>9</td>
<td>207</td>
<td>9</td>
</tr>
<tr>
<td>164</td>
<td>16</td>
<td>208</td>
<td>14</td>
</tr>
<tr>
<td>165</td>
<td>8</td>
<td>209</td>
<td>20</td>
</tr>
<tr>
<td>166</td>
<td>11</td>
<td>210</td>
<td>22</td>
</tr>
<tr>
<td>167</td>
<td>21</td>
<td>211</td>
<td>8</td>
</tr>
<tr>
<td>168</td>
<td>20</td>
<td>212</td>
<td>8</td>
</tr>
<tr>
<td>169</td>
<td>17</td>
<td>213</td>
<td>74</td>
</tr>
<tr>
<td>170</td>
<td>19</td>
<td>214</td>
<td>9</td>
</tr>
<tr>
<td>171</td>
<td>43</td>
<td>215</td>
<td>49</td>
</tr>
<tr>
<td>172</td>
<td>16</td>
<td>216</td>
<td>53</td>
</tr>
<tr>
<td>173</td>
<td>14</td>
<td>217</td>
<td>130</td>
</tr>
<tr>
<td>174</td>
<td>10</td>
<td>218</td>
<td>38</td>
</tr>
<tr>
<td>175</td>
<td>9</td>
<td>219</td>
<td>12</td>
</tr>
<tr>
<td>176</td>
<td>21</td>
<td>220</td>
<td>390</td>
</tr>
<tr>
<td>177</td>
<td>18</td>
<td>221</td>
<td>10</td>
</tr>
<tr>
<td>178</td>
<td>16</td>
<td>222</td>
<td>41</td>
</tr>
<tr>
<td>179</td>
<td>30</td>
<td>223</td>
<td>18</td>
</tr>
<tr>
<td>180</td>
<td>16</td>
<td>224</td>
<td>8</td>
</tr>
<tr>
<td>181</td>
<td>21</td>
<td>225</td>
<td>6</td>
</tr>
<tr>
<td>182</td>
<td>15</td>
<td>226</td>
<td>10</td>
</tr>
<tr>
<td>183</td>
<td>23</td>
<td>227</td>
<td>12</td>
</tr>
<tr>
<td>184</td>
<td>38</td>
<td>228</td>
<td>1139</td>
</tr>
<tr>
<td>185</td>
<td>17</td>
<td>229</td>
<td>7</td>
</tr>
<tr>
<td>186</td>
<td>20</td>
<td>230</td>
<td>4</td>
</tr>
<tr>
<td>187</td>
<td>21</td>
<td>231</td>
<td>14</td>
</tr>
<tr>
<td>188</td>
<td>20</td>
<td>232</td>
<td>6</td>
</tr>
<tr>
<td>189</td>
<td>28</td>
<td>233</td>
<td>19</td>
</tr>
<tr>
<td>190</td>
<td>30</td>
<td>234</td>
<td>32</td>
</tr>
<tr>
<td>191</td>
<td>25</td>
<td>235</td>
<td>6</td>
</tr>
<tr>
<td>Example</td>
<td>MNK2 IC$_{50}$ [nM]</td>
<td>Example</td>
<td>MNK2 IC$_{50}$ [nM]</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>236</td>
<td>16</td>
<td>279</td>
<td>11</td>
</tr>
<tr>
<td>237</td>
<td>25</td>
<td>280</td>
<td>9</td>
</tr>
<tr>
<td>238</td>
<td>31</td>
<td>281</td>
<td>66</td>
</tr>
<tr>
<td>239</td>
<td>15</td>
<td>282</td>
<td>11</td>
</tr>
<tr>
<td>240</td>
<td>13</td>
<td>283</td>
<td>6</td>
</tr>
<tr>
<td>241</td>
<td>49</td>
<td>284</td>
<td>10</td>
</tr>
<tr>
<td>242</td>
<td>5</td>
<td>285</td>
<td>9</td>
</tr>
<tr>
<td>242</td>
<td>4</td>
<td>286</td>
<td>4</td>
</tr>
<tr>
<td>243</td>
<td>9</td>
<td>287</td>
<td>5</td>
</tr>
<tr>
<td>244</td>
<td>2</td>
<td>288</td>
<td>19</td>
</tr>
<tr>
<td>245</td>
<td>39</td>
<td>289</td>
<td>2</td>
</tr>
<tr>
<td>246</td>
<td>65</td>
<td>290</td>
<td>8</td>
</tr>
<tr>
<td>247</td>
<td>139</td>
<td>291</td>
<td>19</td>
</tr>
<tr>
<td>248</td>
<td>10</td>
<td>292</td>
<td>46</td>
</tr>
<tr>
<td>249</td>
<td>6</td>
<td>293</td>
<td>377</td>
</tr>
<tr>
<td>250</td>
<td>19</td>
<td>294</td>
<td>183</td>
</tr>
<tr>
<td>251</td>
<td>20</td>
<td>295</td>
<td>95</td>
</tr>
<tr>
<td>252</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>1286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The HPLC data provided in the examples described below were obtained as follows:

Method A:
Waters ZQ2000; Waters 1515 Pumpe, Waters PDA 996 Detektor, Waters 2747 Injektor
Mobile Phase: A Wasser + 0,1 % formic acid
 B Acetonitrile + 0,1 % formic acid

<table>
<thead>
<tr>
<th>time in min</th>
<th>%A</th>
<th>%B</th>
<th>Flow rate in mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95.0</td>
<td>5.0</td>
<td>1.00</td>
</tr>
<tr>
<td>0.10</td>
<td>95.0</td>
<td>5.0</td>
<td>1.00</td>
</tr>
<tr>
<td>3.10</td>
<td>2.00</td>
<td>98.0</td>
<td>1.00</td>
</tr>
<tr>
<td>4.50</td>
<td>2.00</td>
<td>98.0</td>
<td>1.00</td>
</tr>
<tr>
<td>5.00</td>
<td>95.0</td>
<td>5.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Stationary phase: X-terra™ MS C18 2,5 µm 4,6 mm x 30 mm
Column temperature approximately 25°C
Diode array detection wavelength: 210 - 420 nm

Method B
Waters ZQ2000; Waters 1515 Pumpe, Waters PDA 996 Detektor, Waters 2747 Injektor
Mobile Phase: A Wasser + 0,1 % formic acid
 B Acetonitrile + 0,1 % formic acid

Gradient:
<table>
<thead>
<tr>
<th>time in min</th>
<th>%A</th>
<th>%B</th>
<th>Flow rate in mL/min</th>
</tr>
</thead>
</table>

Example
stationary phase: X-terra™ MS C18 2.5 µm 4.6 mm x 30 mm
column temperature approximately 25°C
Diode array detection wavelength: 210 - 420 nm
Mass: m/z 80 bis 800
Mode of ionisation: ESI positiv und negativ im Switchmodus

Method C
Merck Cromolith Speed ROD; RP1 8e; 4.6x50mm

Flow Rate: 1.5 mL/min
Solvent A: H₂O 0.1 % HCOOH; Solvent B: Acetonitrile 0.1 % HCOOH
Gradient:
<table>
<thead>
<tr>
<th>time</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Method D:
Column: Merck Cromolith Speed ROD, RP1 8e, 4.6x50mm
Flow Rate: 1.5 ml/min
Solvents: water with 0.1 % formic acid (A) and acetonitrile with 0.1 % formic acid (B)
Gradient:
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>4.50</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>5.00</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>5.50</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>
Agilent 1100, MS G1956, quaternary pump, DAD 190-400 nm
Fragmentor 70, Gain EMV 1.0, mass range 100 - 1000

Method E

Column: Waters Sunfire C18, 4.6x50mm, 3.5μm
Flow rate: 2 ml/min
Solvents: A = H₂O, 0.1 % TFA; B = methanol
Gradient: Time:
0,00: 80%A;
1,70: 0%A;
2,50: 0%A;
2,60: 80%A
column temperature 60°C

Method F

Column: Waters Sunfire C18, 4.6x50mm, 3.5μm
Flow rate: 1.5 ml/min
Solvents: A = H₂O, 0.1 % TFA; B = methanol
Gradient: Time:
0,00: 95%A;
1,30: 0%A;
2,50: 0%A;
2,60: 95%A
column temperature 40°C

Method G

Column: XBridge C18
Flow rate: 1 ml/min
Solvents: A = H₂O, 0.032% NH₄OH; B = methanol
Gradient:
Method H
Column: Waters XBridge C18; 3.0x30mm 2.5 µm
Flow Rate: 1.50
Solvent: H₂O 0.1 % NH₃
Gradient:
0.00: 10%B;
2.20: 100%B;
2.40: 100%B; 2.60: 0%B; 2.80: 0%B;
column temperature 40°C

Method I
Column: Waters Sunfire C18; 4.6x50mm, 3.5 µm
Flow rate: 2 ml/min
Solvent: A: H₂O, 0.1 % TFA; B: methanol
Gradient:
0.00: 80%A;
1.70:0%A;
2.50: 0%A;
2.60: 80%A
column temperature 60°C

Method J
Column: Waters XBridge C18; 4.6x30mm 2.5 µm
Flow Rate: 3.1
Solvent: H₂O 0.1 % trifluoroacetic acid
Gradient:
0.00: 10%B;
1.50: 100%B;
1.70: 100%B; 1.85: 10%B; 2.00: 10%B;
column temperature approximately 50°C

Method K
Column: Waters ZQ2000; Waters 1515 Pumpe, Waters PDA 996 Detektor, Waters 2747 Injektor
Mobile phase: A Water + 0.1 % formic acid
B acetonitrile + 0.1 % formic acid
Gradient:

<table>
<thead>
<tr>
<th>Time in min</th>
<th>%A</th>
<th>%B</th>
<th>Flow rate in mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95.0</td>
<td>5.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>2.50</td>
<td>0.0</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>2.60</td>
<td>95.0</td>
<td>5.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Stationary Phase: X-terra™ MS C18 2.5 µm 4.6 mm x 30 mm
column temperature approximately 25°C
Diode array detection wavelength: 200 - 420 nm
Mass: m/z 80 bis 800
Mode of ionisation: ESI positiv

Method L
Waters ZQ2000; Waters 1515 Pumpe, Waters PDA 996 Detektor, Waters 2747 Injektor
Column: X-terra™ MS C18 2.5 µm 4.6 mm x 30 mm
Mobile Phase: A Water + 0.1 % formic acid
B Acetonitril + 0.1 % formic acid
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%A</th>
<th>%B</th>
<th>Flow Rate (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95.0</td>
<td>5.0</td>
<td>1.5</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>2.50</td>
<td>0.0</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>2.60</td>
<td>95.0</td>
<td>5.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Column temperature approximately 25°C
Diode array detection wavelength: 200 - 420 nm
Mass: m/z 80 bis 800
Mode of ionisation: ESI positiv/negativ

Method M

Column: XBridge C18, 3 x 30mm, 2.5 µm
Flow Rate: 2.2 ml/min

Solvent: A: HDO, 0.1 % TFA B: methanol, 0.1 % TFA
Gradient:
0.0: 95 % A
0.30: 95% A
1.50: 0 % A
1.55: 0 % A
1.65: 0 % A

Column temperature 60°C

Method N

Column: XBridge C18, 4.6 x 30mm, 2.5 µm
Flow Rate: 4-3 ml/min
Solvent: A: HDO, 0.1 % TFA B: methanol, 0.1 % TFA
Gradient:
0.0: 95 % A Flow: 4 ml/min
0.05: 95% A Flow: 3 ml/min
2.05: 0 % A Flow: 3 ml/min
2.10: 0 % A Flow: 4 ml/min
2.35: 0%A Flow: 4 ml/min
columnn temperature 60°C

Method X:
Columnn: Ascentis Express, C18, 2.1x50 mm, 2.7 μm
Solvents: A% H₂O containing 0.1% TFA; B% acetonitrile containing 0.1% TFA

Gradient:
Time A% B% Flow in ml/min
0.00 95.0 5.0 1.050
1.00 5.0 95.0 1.050
1.25 5.0 95.0 1.050
1.30 95.0 5.0 1.050

Column Temperature (°C) 65.0

Abbreviations:
HATU: (2-(7-aza-1 H-benzotriazole-1-yl)-1,3,3-tetramethyluronium hexafluorophosphate)
TBTU: 2-(1 H-Benzotriazol-1-y1)-1,3,3-tetramethyluroniumtetrafluoroborat
THF: tetrahydrofuran
EtOH: ethanol
MeOH: methanol
DCM: methylene chloride
DMF: N,N-dimethylformamide
EtOAc: ethyl acetate
HCl: hydrochloric acid
t-BuOH: tert.butanol
DTAD: Di-ter-butyl azodicarboxylate
DEAD: diethyl azodicarboxylate
DIAD: disopropyl azodicarboxylate
LiHMDS: lithium hexymethyldisilazane
DIPEA: diisopropylethyl amine
EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimid
TFA: trifluoro acetic acid
TEA: triethylamine
brine: saturated sodium chloride solution in water
rt: room temperature
min: minute

Intermediate I

racemic

1.1.2-(Cyclohex-2-enyloxy)-4-fluoro-1-nitro-benzene

1.89 ml DEAD were added to an ice-cooled solution of the 1.57 g 5-Fluoro-2-nitrophenol, 1.18 ml 2-cyclohexenol and 3.15 g triphenylphosphin in methylene chloride.

The reaction mixture was stirred and allowed to warm to rt overnight. The solvent was removed in vacuo. Purification is achieved by silica gel column chromatography with iso-hexane/ EtOAc (gradient: 100% i-hexane --> 10:1 i-hexane/EtOAc).

Yield: 1.9 g

1.2. relative stereochemistry
A solution of 1.85 g 2-(Cyclohex-2-enyloxy)-4-fluoro-1-nitro-benzene in 5 ml t-butanol was added to an ice-cooled, pre-mixed solution of 10.9 g AD-mix-alpha in 80 ml t-BuOH/water (1:1). The reaction mixture was stirred at this temperature for 1 hour and at rt overnight. The reaction mixture was cooled in ice-water and sodium metabisulfite (1.7 g) was added. After 10 minutes the coolant was removed and the mixture stirred at rt for 1 hour. After that the mixture was extracted with EtOAc. The organic phase was washed with brine and evaporated.

Yield: 2.15 g

1.3. relative stereochemistry

Prepared analogously to example III.2 from 2.11 g compound 1.2.

Yield: 1.59 g

15 Intermediate II

racemic trans-3-(2-Amino-5-fluoro-phenoxy)-cyclohexanol

20 II.1. (3-Benzyloxy-phenoxy)-terf-butyl-dimethyl-silane

43.459 ml terf-butyl-chloro-dimethyl-silane were added at rt to a solution of 17 g imidazole and 25 g 3-benzyloxy-phenol in 400 ml THF. After 3 hours water was added to the reaction mixture and the mixture was then extracted with methylene chloride. The organic phase was extracted three times with water, dried over sodium
sulfate and concentrated in vacuo. The residue was solved in methylene chloride and filtered over Alox (neutral) and concentrated.

Yield: 37 g
retention time (HPLC): 4.1 5 min (method A)

ESI mass spectrum: m/z = 315 (M+H) +

II.2. 3-(fe/f-Butyl-dimethyl-silanyloxy)-cyclohexanol

A mixture of 37.6 g (3-benzyloxy-phenoxy)-fe/t-butyl-dimethyl-silane and 3.8 g of Nishimura's catalyst in 200 ml of ethanol was hydrogenated at rt under 50 psi for 6 hours. The reaction mixture was filtered and the filtrate concentrated.

Yield: 26.48 g
ESI mass spectrum: m/z = 231 (M+H) +

11.3. racemic fe/t-Butyl-[cis-3-(5-fluoro-2-nitro-phenoxy)-cyclohexyloxy]-dimethyl-silane and racemic fe/f-Butyl-[trans-3-(5-fluoro-2-nitro-phenoxy)-cyclohexyloxy]-dimethyl-silane

15.21 1 ml DIAD were added to a solution of 20.1 18 g triphenylphosphine in 300 ml THF and stirred for 30 min at rt. 9.272 g 5-fluoro-2-nitropheno1 were added portionwise and the resulting reaction mixture was stirred for 30 minutes. After that time 17 g 3-(terf-butyl-dimethyl-silanyloxy)-cyclohexanol were added and the mixture was stirred for 18 hours. An additional solution from triphenylphosphine and DIAD in THF was added to the mixture and the mixture was stirred for 2 hours. The reaction mixture was poured in water and then extracted with methylene chloride. The organic
phase was extracted three times with water, dried over sodium sulfate and concentrated in vacuo. Petrolether was added the residue and the mixture was filtered. The filtrate was concentrated. Purification is achieved by silica gel column chromatography with cyclohexane/ methylene chloride (gradient: 90:10 to 75:25).

racemic fe/t-Butyl-[cis-3-(5-fluoro-2-nitro-phenoxy)-cyclohexyloxy]-dimethyl-silane

Yield: 2.6 g
retention time (HPLC): 4.1 0 min (method B)
ESI mass spectrum: m/z = 370 (M+H) +

racemic fe/t-Butyl-[trans-3-(5-fluoro-2-nitro-phenoxy)-cyclohexyloxy]-dimethyl-silane

Yield: 5.7 g
retention time (HPLC): 4.1 7 min (method B)
ESI mass spectrum: m/z = 370 (M+H) +

II.4. 2-[trans-3-(fe/t-Butyl-dimethyl-silanyloxy)-cyclohexyloxy]-4-fluoro-phenylamine

A mixture of 9.2 g racemic terf-Butyl-[trans-3-(5-fluoro-2-nitro-phenoxy)-cyclohexyloxy]-dimethyl-silane and 0.92 g of Raney Nickel in 200 ml of methanol was hydrogenated at rt unter 50 psi for 6 hours. The reaction mixture was filtered and the filtrate concentrated.

Yield: 8.1 g
ESI mass spectrum: m/z = 340 (M+H) +

II.5. racemic trans-3-(2-Amino-5-fluoro-phenoxy)-cyclohexanol
A solution of 8.1 g 2-[trans-3-(t-butyl-dimethyl-silanyloxy)cyclohexyloxy]-4-fluoro-phenylamine in 50 ml of HCl in ethanol (1.25 M) was stirred for 1 hour at rt. Sodium hydroxide solution (1 N) was then added to the reaction mixture resulting in a basic pH. This mixture was extracted with methylene chloride. The organic phase was dried over sodium sulfate, filtered and concentrated. Yield: 5.2 g

ESI mass spectrum: m/z = 226 (M+H)+
Yield: 14.47g

III. 2. 2-(1,4-Dioxa-spiro[4.5]dec-8-yloxy)-4-fluoro-phenylannine

0.446 g Pd/C (5%) were added to a mixture of 4.46 g (8-(5-fluoro-2-nitro-phenoxy)-1,4-dioxa-spiro[4.5]decane and 4.03 g ammonium formate in 50 ml anhydrous methanol at rt. The reaction was initiated by gentle warming. The reaction was allowed to cool and stirred for a further 0.5 hours. The suspension was filtered through celite and washed with methanol. The combined organics were concentrated in vacuo and the residue triturated from diethylether. The solids were filtered and the filtrate collected and concentrated in vacuo to yield a solid.

Yield: 3.95 g

Intermediate IV
Trans-/V-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methanesulfonamide

IV. 1. 4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl1-carbamic acid tert-butyl ester

1.2 g sodium hydride were added to an ice cooled solution of 2.15 g trans-(4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester in 50 ml DMF. After 1 hour 1.64 ml 2,4-difluoronitrobenzene were added and the mixture was stirred at this temperature for 1 hour. The coolant was removed and the reaction mixture was stirred for 4 hours.
The mixture was diluted with EtOAc and washed with water and brine two times. The mixture was dried over magnesium sulfate, filtered and the filtrate was evaporated. Purification is achieved by silica gel column chromatography with iso-hexane/ EtOAc (gradient: 100% iso-hexane -> 5:1 iso-hexane : EtOAc -> 3:1 iso-hexane : EtOAc).

The residue was triturated with diethylether.

Yield: 1.19 g

IV.2. trans-4-(5-Fluoro-2-nitro-phenoxy)-cyclohexylamine hydrochloride

10 mL of a solution of HCl in dioxane (4 M) were added to 1.19 g trans-[4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-carbamic acid tert-butyl ester in methylene chloride. The mixture is stirred for 3 hours and 2 mL of HCl in dioxane (4 M) were added. The reaction mixture was stirred for 1 hour and concentrated in vacuo.

Yield: 1.09 g

IV.3. trans-A/-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl1-methanesulfonamide

120 µl methansulfonyl chloride were added to an ice cooled suspension of 300 mg trans-4-(5-fluoro-2-nitro-phenoxy)-cyclohexylamine hydrochloride and 431 µl triethylamine in 5 mL methylene chloride. The reaction mixture was allowed to warm up slowly to rt over night. Then the mixture was diluted with methylene chloride and washed with 10% potassium hydrogen sulfate. The mixture was filtered through a hydrophobic frit and evaporated. The residue was triturated with ether.
Yield: 0.227 g

IV.4. trans-Ay-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methanesulfonamide

Prepared analogously to example III.2 from 0.218 g trans-A-[4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methanesulfonamide.

Yield: 0.170 g

Intermediate V

trans-Ay-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-A/methyl-methanesulfonamide

V.1. trans-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-carbamic acid tert-butyl ester

Prepared analogously to example III.1 from 1.11 ml 2,4-difluoronitrobenzene and 1.56 g trans-(4-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester.

Yield: 2.25 g

V.2. trans-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-amine hydrochloride
Prepared analogously to example IV.2 from 2.2 g trans-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-carbamic acid to \(\text{rt}-\text{butyl ester} \).

Yield: 1.41 g

V.3. trans-A/-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-/V-methyl-methanesulfonamide

Prepared analogously to example IV.3 from 0.305 g trans- [4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-amine hydrochloride and methanesulfonyl chloride.

Yield: 0.331 g

V.4. trans-A/-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-/V-methyl-methanesulfonamide

Prepared analogously to example III.2 from 0.329 g trans- A/-[4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-/V-methyl-methanesulfonamide.

Yield: 0.083 g

Intermediate VI

trans-/V-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-acetamide

VI.1. trans-A/-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-acetamide
166 µΙ acetic anhydride were added to a mixture of 0.341 g trans-4-(5-fluoro-2-nitro-phenoxy)-cyclohexylamine hydrochloride and 327 µΙ triethylamine in 5 ml methylene chloride. The reaction mixture was stirred at rt overnight. The mixture was diluted with methylene chloride and 10% aq. potassium hydrogensulfate and 10% aq. potassium carbonate. Then the mixture was passed through a hydrophobic frit and the solvent was evaporated.

Yield: 0.325 g

VI. 1. trans-A/-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-acetamide

Prepared analogously to example III.2 from 0.15 g trans-/V-[4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-acetamide.

Yield: 0.14 g

Intermediate VII

trans-/V-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-/V-methyl-acetamide

VII. 1. trans- A/-[4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl]-/V-methyl-acetamide

Prepared analogously to example VI.1 from 0.305 g trans- [4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-amine hydrochloride and acetic acid anhydride.
Yield: 0.329 g

VII.2. trans-\([4-(2\text{-Amino-5-fluoro-phenoxy})\text{-cyclohexyl}]\)-\(\text{V}\)-methyl-acetamide

Prepared analogously to example III.2 from 0.305 g trans-\([4-(5\text{-fluoro-2-nitro-phenoxy})\text{-cyclohexyl}]\)-\(\text{V}\)-methyl-acetamide.

Yield: 0.14 g

Intermediate VIII

Cis-\([4-(2\text{-Amino-5-fluoro-phenoxy})\text{-cyclohexyl}]\)-\(\text{V}\)-methyl-methanesulfonamide

VIII.1. Benzoic acid 4-cis-(fe/t-butoxycarbonyl-methyl-amino)-cyclohexyl ester

1.74 ml DEAD were added dropwise to a cooled (cold water) solution of 1.69 g trans-(4-hydroxy-cyclohexyl)-methyl-carbamic acid \(\text{t}\)-butyl ester, 1.35 g benzoic acid and 2.9 g Triphenylphosphine in 20 ml THF. After 10 mins the coolant was removed and the reaction mixture was stirred for 2 hours. Then the mixture was diluted with methylene chloride and washed with 10% aq. potassium carbonate solution. The organic was passed through a hydrophobic frit and evaporated. Purification is achieved by silica gel column chromatography with iso-hexane/ EtOAc (gradient: 100% iso-hexane -> 5:1 iso-hexane).

Yield: 1.32 g
V I 11.2. cis-(4-Hydroxy-cyclohexyl)-n-nethyl-carbamic acid tert-butyl ester

0.807 g potassium carbonate were added to a solution of 1.3 g cis-benzoic acid 4-(tert-butoxycarbonyl-methyl-amino)-cyclohexyl ester in 10 ml methanol. The reaction mixture was stirred at rt overnight. 2 ml sodium hydroxide solution (2M) were added and the mixture was stirred for 4 hours. After that time the mixture was diluted with EtOAc and washed with water and brine. The organic phase was passed through a hydrophobic frit and the solvent was evaporated. Purification was achieved by silica gel column chromatography (gradient: 100% i-hex. --> 100% methylene chloride --> 20:1 methylene chloride/methanol).
Yield: 0.876 g

V I 11.3. cis-4-5-Fluoro-2-nitro-phenoxy)-cyclohexyl-methyl-carbamic acid tert-butyl ester

Prepared analogously to example 111.1 from 500 µl 2,4-difluoronitrobenzene and 0.876 g cis-(4-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester.
Yield: 0.709 g

V I 11.4. cis-4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl-methyl-amine hydrochloride

Prepared analogously to example IV.2 from 0.698 g [cis-4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-carbamic acid tert-butyl ester.
Yield: 0.51 g

VIII.5. A/-[cis-4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl1-A/-nnethyl-
methanesulfonamide

Prepared analogously to example IV.3 from 0.252 g [cis-4-(5-fluoro-2-nitro-phenoxy)-
cyclohexyl]-methyl-amine hydrochloride and methanesulfonyl chloride.
Yield: 0.296 g

V.4. cis-A/-[4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl1-A/-methyl-
methanesulfonamide

Prepared analogously to example III.2 from 0.259 g A/-[cis-4-(5-fluoro-2-nitro-
phenoxy)-cyclohexyl]-A/-methyl-methanesulfonamide.
Yield: 0.226 g

Intermediate IX
A/-[cis-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl1-A/-methyl-acetamide

IX.1. A/-[cis-4-(5-Fluoro-2-nitro-phenoxy)-cyclohexyl1-A/-methyl-acetamide
Prepared analogously to example VI.1 from 0.252 g [cis-4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-amine hydrochloride and acetic acid anhydride.

Yield: 0.259 g

IX.2. \(\text{A'/[cis-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-V-methyl-acetamide}\)

Prepared analogously to example III.2 from 0.259 g A'/[cis-4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-V-methyl-acetamide.

Yield: 0.226 g

Intermediate X

[trans-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methyl-carbamic acid methyl ester

X.1. \(\text{[trans-4-(2-Nitro-5-fluoro-phenoxy)-cyclohexyl]-methyl-carbamic acid methyl ester}\)

129 \(\mu\)l methyl chloroformate were added to an ice-cooled mixture of 0.305 g [trans-4-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-amine hydrochloride and 4.17 \(\mu\)l triethylamine in 5 ml methylene chloride. After 10 minutes the coolant was removed and the mixture was stirred at rt overnight. Then the reaction mixture was diluted with methylene chloride and washed with 10% aq. potassiumhydrogen sulfate solution and 10% aq. potassium carbonate solution. The organic phase was passed through a hydrophobic frit.

Yield: 0.295 g

X.2. \(\text{[trans-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methyl-carbamic acid methyl ester}\)
Prepared analogously to example III.2 from 0.292 g trans-4-(2-Nitro-5-fluorophenoxy)-cyclohexyl]-methyl-carbamic acid methyl ester
Yield: 0.248 g

Intermediate XI

XI.1. trans-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methyl-carbamic acid tert-butyl ester

Prepared analogously to example III.2 from 1.42 g trans-4-(5-fluoro-2-nitrophenoxy)-cyclohexyl]-methyl-carbamic acid tert-butyl ester
Yield: 1.4 g

Intermediate XII

Racemic A/ trans-2-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-A/-methyl-methanesulfonamide

relative stereochemistry

XII.1. racemic (trans-2-Hydroxy-cyclohexyl)-carbamic acid tert-butyl ester
A solution of 3.64 g di-tert-butyl dicarbonate in 5 ml methylene chloride was added to a solution of 3.02 g racemic trans-2-aminocyclohexanol and 4.2 ml triethylamine in 40 ml methylene chloride. After completion of the reaction methylene chloride was added and the mixture was washed with 10% aqueous potassium hydrogensulfate solution. The organic phase was passed through a hydrophobic frit and concentrated.

Yield: 3.62 g

XII.2. racemic trans-2-Methylamino-cyclohexanol

3.51 g racemic trans-(2-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester were added to a suspension of 3.09 g lithium aluminium hydride in THF. The reaction mixture was heated at reflux over night. After that time subsequently 3.1 ml water, 3.1 ml sodium hydroxide solution (2M) and 3.1 ml water were added. The mixture was then stirred for 45 minutes and then filtered through celite. The celite was washed with EtOAc. The solvent was evaporated.

Yield: 1.9 g

XII.3. racemic trans- (2-Hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester

Prepared analogously to XII.1 from 1.9 g racemic trans-2-Methylamino-cyclohexanol.

Yield: 3.49 g
XII.4. racemic [trans-2-(5-Fluoro-2-nitro-phenoxo)-cyclohexyl]-methyl-carbamic acid / -b u t y l ester

relative stereochemistry

Prepared analogously to 111.1 from 0.33 mL 2,4-difluoro-nitrobenzene and 0.687 g racemic trans-(2-hydroxy-cyclohexyl)-methyl-carbamic acid / -b u t y l ester.

Yield: 0.844 g

XII.5. racemic [(trans-2-(5-Fluoro-2-nitro-phenoxo)-cyclohexyl]-methyl-amine hydrochloride

relative stereochemistry

Prepared analogously to IV.2 from 0.84 g racemic [trans-2-(5-fluoro-2-nitro-phenoxo)-cyclohexyl]-methyl-carbamic acid / -b u t y l ester.

Yield: 0.621 g

XII.6. racemic A/-[trans-2-(5-Fluoro-2-nitro-phenoxo)-cyclohexyl]-A/-methanesulfonamide

relative stereochemistry
Prepared analogously to IV.3 from 0.29 g racemic trans-[[trans-2-(5-fluoro-2-nitrophenoxy)-cyclohexyl]-methyl-amine hydrochloride.

Yield: 0.283 g

XII.7. racemic A/-[trans-2-(5-fluoro-2-amino-phenoxy)-cyclohexyl]-/V-methyl-methanesulfonamide

\[
\text{relative stereochemistry}
\]

Prepared analogously to III.2 from 0.274 g racemic A/-[trans-2-(5-fluoro-2-nitrophenoxy)-cyclohexyl]-/V-methyl-methanesulfonamide.

Yield: 0.265 g

Intermediate XIII

Racemic A/-[trans-2-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-/V-methyl-acetamide

\[
\text{relative stereochemistry}
\]

XIII.1 racemic A/-[trans-2-(2-nitro-5-fluoro-phenoxy)-cyclohexyl]-/V-methyl-acetamide

\[
\text{relative stereochemistry}
\]

Prepared analogously to VI.1 from 0.29 g racemic [[trans-2-(5-fluoro-2-nitrophenoxy)-cyclohexyl]-methyl-amine hydrochloride and acetic acid anhydride.
XIII.2. racemic Trans-/V-[2-(2-Amino-5-fluoro-phenoxy)-cyclohexyl1-/V-methyl-acetamide

Relative stereochemistry

Prepared analogously to III.2 from 0.285 g racemic A/-[trans-2-(2-nitro-5-fluoro-phenoxy)-cyclohexyl]-/V-methyl-acetamide

Yield: 0.25 g

Intermediate XIV

A/-[trans-4-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-2,2,2-trifluoro-acetamide

XIV.1 A/-trans-4-(2-Nitro-5-fluoro-phenoxy)-cyclohexyl1-2,2,2-trifluoro-acetamide

A reaction mixture of 0.071 g trans-4-(5-fluoro-2-nitro-phenoxy)-cyclohexylamine hydrochloride, 0.05 g ethyltrifluoroacetate and 0.075 g triethylamine in 2 ml methanol was stirred overnight. The mixture was concentrated and partitioned between 5 ml EtOAc and 5 ml water. The organic phase was washed with water, HCl solution (2M) and water. The organic phase was dried and the solvent evaporated.

Yield: 0.079 g
XIV.2 A/-rtrans-4-(2-Nitro-5-fluoro-phenoxy)-cyclohexyl1-2,2,2-trifluoro-acetamide

Prepared analogously to III.2 from 0.075 g A/-[trans-4-(2-nitro-5-fluoro-phenoxy)-cyclohexyl]-2,2,2-trifluoro-acetamide.
Yield: 0.05 g

Intermediate XV

[3-(2-Amino-5-fluoro-phenoxy)-cyclohexyl]-methyl-carbamic acid t-buty l ester

XV.1 (3-Hydroxy-cyclohexyl)-carbamic acid t-buty l ester

Prepared analogously to XI.1 from 1.357 g 3-amino-cyclohexanol.
Yield: 0.933 g

XV.2 3-Methylamino-cyclohexanol

Prepared analogously to XII.2 from 0.933 g (3-hydroxy-cyclohexyl)-carbamic acid t-buty l ester.
Yield: 0.203 g

XV.3 (3-Hydroxy-cyclohexyl)-methyl-carbamic acid t-buty l ester.
Prepared analogously to XI.1 from 0.268 g 3-methylamino-cyclohexanol.
Yield: 0.277 g

\[\text{XV.4} \quad [3-(5-\text{Fluoro}-2-\text{nitro-phenoxy})-\text{cyclohexyl}]\text{-methyl-carbamic acid tert-butyl ester} \]

Prepared analogously to III.1 from 8.1 µl 2,4-difluoronitrobenzene and 0.17 g (3-hydroxy-cyclohexyl)methyl-carbamic acid tert-butyl ester.
Yield: 0.14 g

\[\text{XV.5} \quad [3-(2-\text{Amino}-5-\text{fluoro-phenoxy})-\text{cyclohexyl}]\text{-methyl-carbamic acid tert-butyl ester} \]

Prepared analogously to III.2 from 0.175 g [3-(5-fluoro-2-nitro-phenoxy)-cyclohexyl]-methyl-carbamic acid tert-butyl ester
Yield: 0.14 g

Intermediate XVI.

Racemic cis-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-phenylamine
Relative stereochemistry

XVI.1 cis-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-1-nitro-benzene

Top spot: 186mg, racemic trans-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-1-nitro-benzene

1H-NMR: 7.89-7.85 (1H, m); 6.94-6.91 (1H,m); 6.71-6.66 (1H, m); 4.24-4.19 (1H,m); 3.40-3.34 (4H,m); 2.14-1.31 (8H, m)

Mixed spot: 380mg

1,7:1 mixture of isomers

Bottom spot: 474mg: racemic cis-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-1-nitro-benzene

1H-NMR: 7.92-7.88 (1H, m); 6.91-6.87 (1H, m); 6.69-6.66 (1H, m); 4.66-4.65 (1H, m); 3.44-3.38 (4H, m); 2.10-1.31 (8H, m)

XVI.2 racemic cis-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-phenylamine
Prepared analogously to III.2 from 0.47 g cis-4-fluoro-2-(2-methoxy-cyclohexyloxy)-1-nitro-benzene.
Yield: 0.373 g

Intermediate XVII.

Racemic trans-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-phenylamine
Prepared analogously to 11.2 from 1.25 g trans-4-fluoro-2-(2-methoxy-cyclohexyloxy)-
1-nitro-benzene.
Yield: 1.09 g

Intermediate XVIII
(Rf?)-4-Fluoro-2-(2-Methoxycyclohexyloxy)-anilin

Chiral
(Rf?)-4-Fluoro-2-(2-Methoxycyclohexyloxy)-nitrobenzene

XVIII.1 (Rf?)-4-Fluoro-2-(2-Methoxycyclohexyloxy)-nitrobenzene
To (R,R)-4-fluoro-2-(2-hydroxycyclohexyloxy)-nitrobenzene (0.200 g) dissolved in methylene chloride (10.0 ml) was added trimethyloxonium tetrafluoroborate (0.348 g). The mixture was stirred overnight at rt. Water was added; the organic phase was separated and evaporated to dryness to yield a brownish oil.

Yield: 207 mg
ESI mass spectrum: m/z = 270 (M+H)+

XVIII.2 (Rf?)-4-Fluoro-2-(2-Methoxycyclohexyloxy)-anilin

(R,R)-4-fluoro-2-(2-methoxycyclohexyloxy)-nitrobenzene (0.18 g) in methanol (20.0 ml) was hydrogenated under 50 psi hydrogen for 20 h at rt using palladium on charcoal (5%) (40 mg) as catalyst. The catalyst was filtered off; the resulting solution was evaporated to dryness to yield an oil.

Yield: 300 mg
ESI mass spectrum: m/z = 240 (M+H)+

Intermediate XIX
(S,S)-4-Fluoro-2-(2-Methoxycyclohexyloxy)-anilin
The compound can be prepared analogously to XVIII, starting from (S,S)-4-fluoro-2-(2-Hydroxycyclohexyloxy)-anilin.

Intermediate XX

(Rf?)-4-Fluoro-2-(2-Hydroxycyclohexyloxy)-anilin

XX.1 (Rf?)-4-Fluoro-2-(2-Hydroxycyclohexyloxy)-nitrobenzene

2,4-Difluoronitrobenzene (1.89 ml), (1R 2R)-1,2-cycloexanediol (2.00 g), and lithium bis(trimethylsilyl)amide (1 mol/l solution in THF; 17.2 ml) in THF (20.0 ml) were stirred overnight at rt. The solvent was removed in vacuo; the residue was taken up in ethyl acetate. The solution was extracted once with hydrochloric acid (1 mol/l) and twice with NaOH solution (1 mol/l), dried with magnesium sulphate, filtered and evaporated to dryness. The residue was purified by column chromatography (silica; methylene chloride / methanol 100:0 => 97:3) to yield yellowish oil which crystallized upon storage.
Yield: 2.00 g
ESI mass spectrum: m/z = 256 (M+H)⁺

XX.2 (Rf?)-4-Fluoro-2-(2-Hydroxy cyclohexyloxy)-anilin

(R,R)-4-Fluoro-2-(2-hydroxy cyclohexyloxy)-nitrobenzene (1.99 g) in methanol (20.0 ml) was hydrogenated under 50 psi hydrogen for 5 h at rt using palladium on charcoal (5%) (200 mg) as catalyst. The catalyst was filtered off; the resulting solution was evaporated to dryness to yield an oil.

Yield: 1.70 g
ESI mass spectrum: m/z = 226 (M+H)⁺

Intermediate XXI

(S,S)-4-Fluoro-2-(2-Hydroxy cyclohexyloxy)-anilin

The compound was prepared analogously to XX, starting from (S,S)-1,2-Cyclohexanediol.

ESI mass spectrum: m/z = 226 (M+H)⁺

Intermediates XXII

Pure enantiomers of cis-4-Fluoro-2-(2-Hydroxy cyclohexyloxy)-nitrobenzene

XXII.1 racemic cis-4-Fluoro-2-(2-Hydroxycyclohexyloxy)-nitrobenzene
To 2,4-Difluoronitrobenzene (0.549 ml) and cis-1,2-cyclohexanediol (0.581 g) in THF (10.0 ml), cooled with an ice-bath, was added lithium bis(trimethylsilyl)amide (1 mol/l solution in THF; 5.00 ml). The mixture was stirred overnight at rt, and then evaporated to dryness. The residue was taken up in ethyl acetate, extracted once with hydrochloric acid (1 mol/l) and twice with NaOH solution (1 mol/l), dried with magnesium sulphate, filtered and evaporated to dryness. The residue was purified by column chromatography (silica; methylene chloride / methanol 100:0 => 97:3) to yield a yellowish oil.

Yield: 455 mg
ESI mass spectrum: m/z = 256 (M+H)⁺

XXII.2 Pure enantiomers of cis-4-Fluoro-2-(2-Hydroxycyclohexyloxy)-
nitrobenzene

The racemic mixture of XXII.1 was separated into the enantiomers by chiral SFC chromatography:
Column: Daicel ADH; 250 mm x 4.6 mm
Mobile phase: CO₂ / 2-Propanol 75:25 (with addition of 0.2% Diethyl amine)
XXII-A:
ESI mass spectrum: m/z = 522 (M+H)⁺
XXII-II. Absolute stereochemistry of the isomers was not determined and therefore cannot be assigned.

XXII.3 Pure enantiomere of cis-4-fluoro-2-(2-hydroxycyclohexyloxy)-anilin from the XXII-A intermediate (2 min retention time).

XXII.4 Pure enantiomere of cis-4-fluoro-2-(2-hydroxycyclohexyloxy)-anilin from the XXII-B intermediate (3.04 min retention time).

Intermediate XXIV
trans-4-(3-Amino-pyridin-2-yl)oxy)-cyclohexanol
XXIV. 1 trans-4-(3-nitro-pyridin-2-yloxy)-cyclohexanol

![Chemical Structure]

Prepared analogously to 111.1 from 4.054 g 2-fluoro-3-nitropyridine and 2.26 g trans-1,4-cyclohexanediol.

Yield: 0.29 g

XXIV2 trans-4-(3-Amino-pyridin-2-yloxy)-cyclohexanol

![Chemical Structure]

A mixture of 0.29 g trans-4-(3-nitro-pyridin-2-yloxy)-cyclohexanol and 0.05 g Raney nickel in 50 ml methanol was hydrogenated at 5 bar and rt for 4.5 hours. The reaction mixture was filtered and the filtrate concentrated.

Yield: 0.203 g

ESI mass spectrum: m/z = 209 (M+H) +

Intermediates XXV

4-Fluoro-2-(trans-4-methoxycyclohexyloxy)-anilin and 4-Fluoro-2-(cis-4-methoxycyclohexyloxy)-anilin

XXV. 1. 4-Methoxycyclohexanol (mixture of cis and trans isomers)
4-Methoxyphenol (100 g) in ethanol (759 ml) was hydrogenated under 50 psi hydrogen using Nishimura catalyst (10.0 g) at rt for 4.5 h. The catalyst was filtered off; the solvent was removed in vacuo to yield the desired product as 95% pure yellowish liquid.

Yield: 114 g

EXI mass spectrum: m/z = 131 (M+H)^+

XXV.2 4-Fluoro-2-(trans-4-methoxycyclohexyloxy)-anilin

and 4-Fluoro-2-(cis-4-methoxycyclohexyloxy)-anilin

To a cooled (water bath, approx. 10 °C) solution of 5-fluoro-2-nitrophenol (18.9 g) and 4-methoxy-cyclohexanol (19.0 g) in THF (250 ml) were simultaneously added under magnetic stirring di-tert-butyl azodicarboxylate (41.0 g) and triphenylphosphine (47.0 g). The mixture was stirred for further 2 h at rt and palladium on charcoal 10% (1.90 g) was added. The mixture was hydrogenated at rt under 50 psi hydrogen for 20 h. The catalyst was filtered off. The resulting solution was diluted with DCM and extracted twice with hydrochloric acid (1 mol/l). The combined aqueous phases were alkaliﬁed with NaOH solution (4 mol/l) and extracted twice with methylene chloride. The combined organic layers were dried with sodium sulphate, ﬁltered and concentrated in vacuo. The resulting mixture was subjected to column chromatography (silica; methylene chloride/ ethyl acetate 9:1) yielding both isomers as separate fractions.

Yield: 3.10 g
ESI mass spectrum: \(m/z = 240 \) (M+H)

4-Fluoro-2-(cis-4-methoxycyclohexyloxy)-anilin

Yield: 2.00 g

ESI mass spectrum: \(m/z = 240 \) (M+H)

Intermediates XXVI

4-Fluoro-2-(cis-4-Hydroxycyclohexyloxy)-anilin and trans-4-Fluoro-2-(trans-4-Hydroxycyclohexyloxy)-anilin

\[
\text{To a solution of 1,4-cyclohexanediol (100 g) in THF (1000 ml) was added NaH (60\% in mineral oil; 38.5 g). The mixture was refluxed for 1 h. 2,4-difluoronitrobenzene (48.0 ml) was added drop wise during 1 h. The mixture was refluxed for further 2 d, concentrated in vacuo, taken up in water and extracted several times with methylene chloride. The combined organic layers were washed with brine, dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was subject to column chromatography (silica; methylene chloride/ methanol 100:0 -> 98:2; UV detection at 220 nm) furnishing the mixture of isomers as a brownish oil.}
\]

Yield: 49.2 g

ESI mass spectrum: \(m/z = 273 \) (M+NH\(_4\))

Separation into 4-fluoro-2-(cis-4-Hydroxycyclohexyloxy)-nitrobenzene
and 4-Fluoro-2-(trans-4-Hydroxycyclohexyloxy)-nitrobenzene

The cis/trans mixture from XXVI.1 was separated into the isomers by SFC chromatography:

Column: Daicel OJH 250 mm x 4.6 mm
Mobile phase: CO\textsubscript{2}/Methanol 85:15 (with addition of 0.2% Diethyl amine)
Eluting first: cis isomer; eluting second: trans isomer

XXVI.2 4-Fluoro-2-(cis-4-Hydroxycyclohexyloxy)-anilin

4-Fluoro-2-(cis-4-hydroxycyclohexyloxy)-nitrobenzene (2.00 g) in methanol (15.0 ml) was hydrogenated under 50 psi hydrogen using palladium on charcoal (5%) as catalyst (300 mg) at RT for 2 h. The catalyst was filtered off; the solvent was removed in vacuo to yield the desired product as 95% pure oil.

Yield: 1.96 g
ESI mass spectrum: m/z = 226 (M+H)+

Intermediate XXVII 4-Fluoro-2-(trans-4-hydroxycyclohexyloxy)-anilin

Prepared analogously to XXVI.3 from 2.26 g 4-Fluoro-2-(trans-4-hydroxycyclohexyloxy)-nitrobenzene.
Yield: 2 g
ESI mass spectrum: \(m/z = 226 \) (M+H) +

Intermediate XXVIII

All cis-5-(2-Amino-5-fluoro-phenoxy)-cyclohexane-1,3-diol

XXVIII.1

Prepared analogously to 111.1 from 1 mL 2,4-difluoro-nitrobenzene and 3.965 g cyclohexane-1,3,5-triol

Isomer XXVI 11A: 0.6 g

ESI mass spectrum: \(m/z = 272 \) (M+H) +

Rf (silica gel): methylene chloride/methanol = 9:1 : 0.41

Isomer XXVI 11B: 0.43 g

ESI mass spectrum: \(m/z = 272 \) (M+H) +

Rf (silica gel), (methylene chloride/methanol = 9:1) : 0.42

XXVIII.2 All cis-5-(2-Amino-5-fluoro-phenoxy)-cyclohexane-1,3-diol

Prepared analogously to XXIV.2 from 0.6 g Isomer XXVIII A.

Yield: 0.58 g
Intermediate XXIX

Prepared analogously to XXIV.2 from 0.43 g Isomer XXVIII B.

Yield: 0.4 g

Intermediate XXX

All cis-2-(3,5-Dimethoxy-cyclohexyloxy)-4-fluoro-phenylamine

Prepared analogously to 111.1 from 2.193 ml 2,4-difluoro-nitrobenzene and 3.2 g all cis-1,3,5-trimethoxy-cyclohexane.

Yield: 2.8 g

ESI mass spectrum: m/z = 300 (M+H) +

XXX.2 All cis-2-(3,5-Dimethoxy-cyclohexyloxy)-4-fluoro-phenylamine

Prepared analogously to XXIV.2 from 2 g all cis-2-(3,5-Dimethoxy-cyclohexyloxy)-4-fluoro-1-nitro-benzene.
Yield: 1.8 g

Intermediate XXXI

2-(4,4-Dimethyl-cyclohexyloxy)-4-fluoro-phenylamine

Prepared analogously to 111.1 from 2.01 2,4-difluoro-nitrobenzene and 2.339 g 4,4-dimethyl-cyclohexanol.

Yield: 4.1 g
ESI mass spectrum: m/z = 285 (M+NH₄)⁺

XXXI.1 2-(4,4-Dimethyl-cyclohexyloxy)-4-fluoro-1-nitro-benzene

Yield: 3.2 g
ESI mass spectrum: m/z = 238 (M+H)⁺
Rf (silica gel), (methylene chloride/methanol= 30:1) : 0.42

Intermediate XXXII

2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamine
2.78 g HATU were added to a solution of 1 g 4,4-difluoro-cyclohexanecarboxylic acid and 1.3 ml diisopropylethlyamine in 10 ml anhydrous DMF at 0°C. The reaction was stirred at 0°C for 0.5 hours when 0.891 g O,/V-Dimethyl-hydroxylamine hydrochloride were added. The reaction was allowed to warm to rt overnight. The solution was concentrated in vacuo by co-evaporation with toluene (3x) and filtered. The filtrate was concentrated in vacuo. Purification was achieved by silica gel column chromatography (solvent: 5:1 ->3:1 petroleum ether/ EtOAc).

Yield: 0.582 g

2 ml methyl lithium (1 M in diethylether) were added into a solution of 0.593 g 4,4-difluoro-cyclohexanecarboxylic acid methoxy-methyl-amide in anhydrous 5 ml THF at 0°C. The reaction was allowed to warm to rt overnight. The reaction was quenched with sat. ammonium chloride solution (~50ml) and diluted with sat. sodium hydrogen carbonate solution (25ml). The aqueous layer was extracted with diethylether (3x50ml) and the combined organic phases were dried over sodium sulfate, filtered and concentrated in vacuo. Purification was achieved by silica gel column chromatography (solvent: 5:1 -> 1:1 petroleum/ether (40-60).

Yield: 0.262 g
0.361 g meta-chloro-perbenzoic acid were added into a solution of 0.262 g 1-(4,4-difluoro-cyclohexyl)-ethanone in 5 ml chloroform. The reaction was stirred at rt for 2 hours when TLC indicated consumption of the 1-(4,4-difluoro-cyclohexyl)-ethanone.

The solution was poured into saturated sodium hydrogen carbonate solution and extracted with chloroform (3x 50ml). The combined organic phases were passed through a phase separator concentrated in vacuo. The crude product was resuspended in methanol (5ml) and 10% aq. potassium carbonate solution (5ml) and stirred at rt over a weekend. The solution was diluted with chloroform (25ml) and sat. sodium hydrogen carbonate solution. The organic phases were separated and the aqueous phase was extracted with methylene chloride (3x 25ml). The combined organic phases were passed through a phase-separator, concentrated in vacuo. Purification was achieved by silica gel column chromatography (solvent: 100%-> 1:1 petroleum ether/ diethylether).

Yield: 0.105 g

XXXI 14 2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-1-nitro-benzene

0.213 g DTAD was added into a solution of 5-fluoro-2-nitro-phenol, 0.105 g 4,4-difluorocyclohexanol, 0.25 g triphenylphosphine in 2 ml of anhydrous methylene chloride at rt. The reaction mixture was stirred at rt overnight when TLC analysis indicated the consumption of the 5-Fluoro-2-nitro-phenol. The reaction mixture was diluted with methylene chloride (50ml) and washed with 10% potassium carbonate solution. The aqueous layer was extracted with methylene chloride (2x 25ml) and the combined organics washed with sodium hydrogen carbonate solution (25ml). The organic layer was passed through a phase separator and concentrated in vacuo.
Purification was achieved by silica gel column chromatography (solvent: 100%-> 1:1 iso-hexane/ EtOAc).

Yield: 0.141 g

5 XXXI 15 2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamine

Prepared analogously to III.2 from 0.141 g 2-(4,4-difluoro-cyclohexyloxy)-4-fluoro-1-nitro-benzene.

Yield: 0.08 g

10 Intermediate XXXIII

Racemic 2-(trans-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamine

15 XXXIII.1 3-Methoxycyclohexanol

Prepared analogously to 1.2 from 25 g 3-methoxyphenol.

Yield: 25.5 g

ESI mass spectrum: m/z = 131 (M+H) +

XXXI 112 racemic 2-(cis-3-Methoxy-cyclohexyloxy)-3-nitro-pyridine and racemic 2-(trans-3-Methoxy-cyclohexyloxy)-3-nitro-pyridine
Prepared analogously to 111.1 from 5.1 g 2-fluoro-3-nitropyridine and 5 g 3-methoxycyclohexanol. Purification was achieved by silica gel column chromatography (solvent: petrolether/EtOAc=70:30 for 20 minutes and within 20 minutes to 50:50).

Racemic 2-(trans-3-Methoxy-cyclohexyloxy)-3-nitro-pyridine eluting first:

Yield: 1.6 g

retention time (HPLC): 3.77 min (method C)

ESI mass spectrum: m/z = 253 (M+H)^+

Racemic 2-(cis-3-Methoxy-cyclohexyloxy)-3-nitro-pyridine eluting second:

Yield: 5.82 g

retention time (HPLC): 3.65 min (method C)

ESI mass spectrum: m/z = 253 (M+H)^+

XXXIII.3 Racemic 2-(trans-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamine

Prepared analogously to III.2 from 1.59 g racemic 2-(trans-3-methoxy-cyclohexyloxy)-3-nitro-pyridine

Yield: 1.11 g

Intermediate XXXIV

Racemic 2-(cis-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamine
Prepared analogously to III.2 from 5.8 g racemic 2-(cis-3-Methoxy-cyclohexyloxy)-3-nitro-pyridine
Yield: 4.32 g

Intermediate XXXV
A/ [trans-3-(2-Amino-5-fluoro-phenoxy)-cyclobutyl]-acetamide

XXXV. 1. [trans-3-(5-fluoro-2-nitro-phenoxy)-cyclobutyl]-carbamic acid tert-butyl ester

Prepared analogously to XVI.1 from 2.3 g trans-(3-Hydroxy-cyclobutyl)-carbamic acid tert-butyl ester, 1.6 g 5-fluoro-2-nitrophenol and 2.423 mlDIA.D.
Yield: 2.8 g
ESI mass spectrum: m/z = 327 (M+H)^+

XXXV.2 trans-3-(5-Fluoro-2-nitro-phenoxy)-cyclobutylamine trifluoroacetate
14 mL trifluoroacetic acid were added to a mixture of 2.8 g [trans-3-(5-fluoro-2-nitrophenoxy)-cyclobutyl]-carbamic acid \(\text{t-bu} \) butyl ester in 100 mL methylene chloride at 0 °C. The mixture was stirred then for 2 hours at rt and afterwards concentrated. The residue was stirred with diisopropylether and filtered.

5 Yield: 2.85 g

ESI mass spectrum: \(m/z = 227 \text{ (M+H)}^+ \)

XXXV.3 A/-[trans-3-(5-Fluoro-2-nitro-phenoxy)-cyclobutyl1-acetamide trifluoroacetate

450 \(\mu \)L Acetylchloride were added to a mixture of 1.8 g trans-3-(5-fluoro-2-nitrophenoxy)-cyclobutylamine trifluoroacetate and 3.7 mL triethylamine in 30 mL methylene chloride and stirred for 2 hours at rt. The mixture was extracted two times with water. The organic phase was dried and concentrated. The residue was stirred with diethylether and filtrated. The residue was dried in a drying cabinet.

15 Yield: 1.4 g

ESI mass spectrum: \(m/z = 269 \text{ (M+H)}^+ \)

XXXV.4 A/-[trans-3-(2-Amino-5-fluoro-phenoxy)-cyclobutyl1-acetamide

Prepared analogously to XXIV.2 from 1.4 g A/-[trans-3-(5-Fluoro-2-nitro-phenoxy)-cyclobutyl]-acetamide

Yield: 1.55 g

ESI mass spectrum: \(m/z = 239 \text{ (M+H)}^+ \)

Intermediate XXXVI
XXXVI. 1. 2-(Cyclopent-3-enyloxy)-4-fluoro-1-nitro-benzene

Prepared analogously to XVI. 1 from 1 g cyclopentenol, 1.57 g 5-fluoro-2-nitrophenol and 1.89 ml DEAD.
Yield: 2.11 g

XXXVI. 2. 3-(5-Fluoro-2-nitro-phenoxy)-6-oxa-bicyclo[3.1.0]hexane

2.95 g meta chloroperbenzoic acid were added to an ice-cooled solution of 2.05 g 2-(cyclopent-3-enyloxy)-4-fluoro-1-nitro-benzene in 45 ml methylene chloride. The reaction mixture was allowed to warm to rt overnight. Then the reaction mixture was diluted with methylene chloride and washed with 10% aq. potassium carbonate solution (2x). The organic phases were passed through a hydrophobic frit and the solvent was evaporated.
Yield: 2.31 g
2.2 g 3-(5-Fluoro-2-nitro-phenoxy)-6-oxa-bicyclo[3.1.0]hexane were heated at reflux in 0.2M H$_2$SO$_4$/THF for 5 hours and then stirred overnight. The solvent was then removed in vacuo and the residue extracted with methylene chloride (2x). The combined organic phases were washed with 10% aq. potassium carbonate solution and evaporated. Purification was achieved by silica gel column chromatography (solvent: 100% iso-hexane -> 100% methylene chloride-> 25:1 methylene chloride/MeOH).

Yield: 1.61 g

XXXVI.4

Prepared analogously to XXXVI.2 from 1.6 g XXXVI.3. Yield: 1.04 g

Intermediate XXXVII

[(1S,3S)-3-(2-Amino-5-fluoro-phenoxy)-cyclopentyl]carbamic acid tert-butyl ester

XXXVII.1 (1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]carbamic acid tert-butyl ester
2.57 g sodium hydride (55%) were added to mixture of 9.862 g ((1S,3S)-3-hydroxy-cyclopentyl)-carbamic acid tert-butyl ester in 100 ml THF at 0 °C and stirred at rt for 30 minutes. 5.372 ml 2,4-difluoro-nitrobenzene were added and the reaction mixture was refluxed for 6 hours. After cooling to rt the reaction mixture was extracted with water and methylene chloride. The organic phase was dried and concentrated. Purification was achieved by silica gel column chromatography (solvent: methylene chloride).

Yield: 6.79 g

ESI mass spectrum: m/z = 341 (M+H)⁺

XXXVI 12 [(1S,3S)-3-(2-Amino-5-fluoro-phenoxy)-cyclopentyl]-carbamic acid tert-butyl ester

Prepared analogously to XXIV.2 from 1.64 g [(1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]-carbamic acid tert-butyl ester.

Yield: 1.49 g

ESI mass spectrum: m/z = 311 (M+H)⁺

Intermediate XXXVIII

A/-[(1S,3S)-3-(2-Amino-5-fluoro-phenoxy)-cyclopentyl]-/\-methyl-acetamide
7.1 mL (1M in THF) LiHMDS were added at 0 °C to a mixture of 2 g (1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl-methyl-carbamic acid tert-butyl ester in 60 mL THF. The reaction mixture was stirred for 30 minutes at rt. Then 398 μl methyl iodide were added and the reaction mixture was stirred at rt overnight. Then the mixture was concentrated and extracted with water/methylene chloride. The organic phase was dried and concentrated. Purification was achieved by silica gel column chromatography (solvent: methylene chloride/methanol/aq. ammonia solution=90:1 0:1).

Yield: 1.34 g

ESI mass spectrum: m/z = 355 (M+H)^+

[(1S,3S)-3-(5-Fluoro-2-nitro-phenoxy)-cyclopentyl-methyl-amine

Prepared analogously to XXXV.2 from 1.34 g [(1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]-methyl-carbamic acid tert-butyl ester.
Yield: 1.203 g
ESI mass spectrum: m/z = 255 (M+H)⁺

XXXVI 1.3 \[N\-(1S,3S)-3-(5-Fluoro-2-nitro-phenoxy)-cyclopentyl-1-A/-methyl-\]

acetamide

Prepared analogously to XXXV.3 from 0.703 g [(1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]-methyl-amine trifluoroacetae and acetyl chloride.

Yield: 0.588 g
ESI mass spectrum: m/z = 297 (M+H)⁺

XXXVI 1.4 \[N\-(1S,3S)-3-(2-Amino-5-fluoro-phenoxy)-cyclopentyl1-A/-methyl-\]

acetamide

Prepared analogously to XXIV.2 from 0.58 g [(1S,3S)-3-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]-methyl-carbamic acid \(\text{rt-butyl ester}\).

Yield: 0.52 g
ESI mass spectrum: m/z = 267 (M+H)⁺

Intermediate XXXIX
Cis/trans-4-(3-Amino-pyridin-2-yloxy)-cyclohexanol
XXXIX. 1 Cis/trans-4-(3-nitro-pyridin-2-yloxy)-cyclohexanol

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

Prepared analogously to 111.1 from 3.6 g 2-fluoro-3-nitropyridine and 2.9 g 1,4-cyclohexanediol.

Yield: 1.6 g

XXXIX.2 Cis/trans-4-(3-Amino-pyridin-2-yloxy)-cyclohexanol

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

Prepared analogously to III.2 from 1.6 g cis/trans-4-(3-nitro-pyridin-2-yloxy)-cyclohexanol.

Yield: 1.53 g

Intermediate XXXX

15 cis-4-Fluoro-2-(3-methoxy-cyclohexyloxy)-phenylamine

A mixture of cis- and trans-4-methoxy-cyclohexanol (7:3) was prepared by hydrogenation of 3-methoxy-phenol in methanol at room temperature in the presence of Nishimuras catalyst.

XXXX.2 4-Fluoro-2-(cis-3-methoxy-cyclohexyloxy)-1-nitro-benzene
LiHMDS (1 M solution in THF; 5.0 ml) was added slowly to an ice/ethanol-cooled solution of 3-methoxy-cyclohexanol (7:3 mixture of cis- and trans-isomers; 601 mg) in THF (8 ml). Cooling was suspended after 5 minutes and the mixture was stirred for 15 minutes at room temperature before addition of 2,4-difluoro-1-nitro-benzene (482 µl). After 4 h another 1.5 ml of LiHMDS (1 M solution in THF) was added and the reaction mixture was stirred over night at room temperature. The reaction mixture was quenched by addition of hydrochloric acid (0.1 M), diluted with ethyl acetate, and filtered through celite. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was submitted to column chromatography (silica gel, cyclohexane/ethyl acetate 85:15) to give the cis-isomer (650 mg) and the trans-isomer (230 mg).

Yield: 650 mg (55 %)

MS (ESI⁺): 270 (M+H⁺)

HPLC (Method D): Rt 3.89 min

XXX.3.4-Fluoro-2-(cis-3-methoxy-cyclohexyloxy)-phenylamine

Ammonium formate (738 mg) was added to a suspension of 4-fluoro-2-(cis-3-methoxy-cyclohexyloxy)-1-nitro-benzene (630 mg) and 10 % palladium on charcoal (70 mg) in methanol (10 ml) at room temperature and the mixture was heated to reflux for 30 min until LCMS indicated complete conversion of the starting material. The mixture was diluted with dichloromethane (50 ml) and water (20 ml), filtered through celite, and the filtercake was washed with dichloromethane (20 ml). The
organic layer was dried over MgSO$_4$ and concentrated in vacuo. The residue was submitted to column chromatography (silica gel, cyclohexane/ethyl acetate 70:30) to give the desired product.

Yield: 440 mg (79 %)

MS (ESI$^+$): 240 (M+H$^+$)

HPLC (Method D): Rt 2.21 min

Intermediate XXXXI

trans-4-Fluoro-2-(3-methoxy-cyclohexyloxy)-phenylamine

![Chemical structure of trans-4-Fluoro-2-(3-methoxy-cyclohexyloxy)-phenylamine](image)

XXXI.1. 4-Fluoro-2-(trans-3-methoxy-cyclohexyloxy)-1-nitro-benzene

![Chemical structure of 4-Fluoro-2-(trans-3-methoxy-cyclohexyloxy)-1-nitro-benzene](image)

The compound was prepared as described under XXXX.2.

Yield: 230 mg (19 %)

MS (ESI$^+$): 270 (M+H$^+$)

HPLC (Method D): Rt 3.99 min

XXXI.2. 4-Fluoro-2-(trans-3-methoxy-cyclohexyloxy)-phenylamine

![Chemical structure of 4-Fluoro-2-(trans-3-methoxy-cyclohexyloxy)-phenylamine](image)

The compound was prepared from 4-fluoro-2-(trans-3-methoxy-cyclohexyloxy)-1-nitro-benzene (2.07 g) as described for the cis-isomer under XXXX.3.
Yield: 1.94 g (96 %)
MS (ESI⁺): 240 (M+H⁺)
HPLC (Method D): Rt 2.24 min

Intermediate XXXII

\[
\text{cis-2-(3-methoxy-cyclohexyloxy)-pyridin-3-ylamine}
\]

XXXII.1 2-(cis-3-methoxy-cyclohexyloxy)-3-nitro-pyridine

LiHMDS (1 M solution in THF; 40.0 ml) was added slowly to an ice/ethanol-cooled solution of cis/trans-4-methoxy-cyclohexanol (5.00 g) in THF (10 ml). Cooling was suspended after the addition was complete and the mixture was stirred for 15 minutes at room temperature. A solution of 2-fluoro-3-nitro-pyridine (5.10 g) in THF (10 ml) was added slowly while the temperature was maintained below 24 °C. The reaction mixture was stirred for 2 h at room temperature, neutralized by addition of hydrochloric acid (1 M), and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was submitted to column chromatography (silica gel, petrol ether/ethyl acetate 70:30 – 50:50) to give the cis-isomer (5.82 g) and the trans-isomer (1.60 g).

Yield: 5.82 g (64 %)
MS (ESI⁺): 253 (M+H⁺)
HPLC (Method D): Rt 3.65 min
XXXII.2. 2-(cis-3-methoxy-cyclohexyloxy)-pyridin-3-ylamine

Ammonium formate (7.25 g) was added to a suspension of 2-(cis-3-methoxy-cyclohexyloxy)-3-nitro-pyridine (5.80 g) and 10% palladium on charcoal (400 mg) in methanol (40 ml) at room temperature and the mixture was heated to reflux for 30 min until LCMS indicated complete conversion of the starting material. The mixture was diluted with dichloromethane (100 ml) and water (40 ml), filtered through celite, and the filtercake was washed with dichloromethane (30 ml). The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was submitted to column chromatography (silica gel, petrol ether/ethyl acetate 70:30) to give the desired product.

Yield: 4.32 g (85%)

MS (ESI⁺): 223 (M+H⁺)

HPLC (Method D): Rt 2.36 min

Intermediate XXXIII

2-(trans-3-methoxy-cyclohexyloxy)-pyridin-3-ylamine

XXXIII.1. 2-(trans-3-methoxy-cyclohexyloxy)-3-nitro-pyridine
The compound was prepared as described under 111.1.
Yield: 1.60 g (18 %)
MS (ESI +): 253 (M+H +)
HPLC (Method D): Rt 3.77 min

XXXIII.2. trans-2-(3-methoxy-cyclohexyloxy)-pyridin-3-ylamine

The compound was prepared from 2-(trans-3-methoxy-cyclohexyloxy)-3-nitro-pyridine (1.59 g) as described for the cis-isomer under III.2.
Yield: 1.11 g (79 %)
MS (ESI +): 223 (M+H +)
HPLC (Method D): Rt 2.36 min

Intermediate XXXXIV

4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamine

XXXIV.1 4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-1-nitro-benzene
Prepared analogously to III.1 from 926 µL 2,4-difluoro-nitrobenzene and 1 g (1S,2S)-2-methoxycyclohexanol.

Yield: 1.34 g

XXXXIV.2. 4-Fluoro-2-((1S,2S)-2-methoxycyclohexyloxy)phenylamine

Prepared analogously to III.2 from 0.142 g trans-4-Fluoro-2-(2-methoxy-cyclohexyloxy)-1-nitro-benzene.

Yield: 0.115 g

Intermediate XXXXV

Relative stereochemistry

XXXXV. 1.

Relative stereochemistry
AD-mix-alpha (19.60 g) was added to t-butanol (70.0 ml) and water (70.0 ml). The mixture was cooled to 0°C and 2-(cyclopent-3-enyloxy)-4-fluoro-1-nitrobenzene (3.14 g) was added. After 2 h the mixture was allowed to warm to room temperature overnight then recooled at 0°C and sodium metabisulfite (22 g) was added. After 15 min the reaction mixture was stirred at room temperature for 1 h and extracted with EtOAc. The combined organic extracts were concentrated. To the residue was added 2,2-dimethoxypropane (25.0 ml) and p-toluene sulfonic acid (270 mg) and the mixture was heated at reflux for 1 h. The reaction mixture was diluted with EtOAc and washed with 10% aq. K₂CO₃ and brine. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was purified by chromatography to give the desired product.
Yield: 1.77 g

\[\text{XXXXV.2.} \]

\[\text{relative stereochemistry} \]

Prepared analogously to III.2 from 0.458 g compound XXXXV.1
Yield: 382 mg

Intermediate XXXXVI

\[\text{XXXXVI .1} \]

\[\text{relative stereochemistry} \]
To compound XXXXV:1 (521 mg) in THF (5.0 ml) was added 2 M aq. HCl. The reaction mixture was heated to reflux for 1.5 h, then concentrated in vacuo to give the desired product.

Yield: 438 mg

XXXXVI.2.

Compound XXXXVI.1 (438 mg) and tetra-n-butlammonium bromide (55 mg) in 46/48% aq. sodium hydroxide (7.0 ml) and dibromomethane (7.0 ml) were stirred at 60°C for 2 h. The reaction mixture was diluted with methylene chloride and water. The layers were separated and the aqueous layer was extracted with methylene chloride. The combined organics were passed through a hydrophobic frit and concentrated in vacuo. The residue was purified by chromatography to yield the desired product.

Yield: 100 mg

XXXXVI.3.
Compound XXXXVI.2 (100 mg), ammonium formate (117 mg) and Pd/C (20 mg) in methanol (2.0 ml) were heated at reflux for 40 min. The reaction mixture was allowed to cool, filtered through a pad of celite and the filtercake was washed with methylene chloride. The filtrate was concentrated. The residue was suspended in methylene chloride, passed through a hydrophobic frit and concentrated in vacuo to give the desired product.

Yield: 124 mg

Intermediate XXXXVII

AD-mix-alpha (19.60 g) was added to t-butanol (70.0 ml) and water (70.0 ml). The mixture was cooled to 0°C and 2-(cyclopent-3-enyloxy)-4-fluoro-1-nitrobenzene (3.14 g) was added. After 2 h the mixture was allowed to warm to room temperature overnight then recooled at 0°C and sodium metabisulfite (22 g) was added. After 15 min the reaction mixture was stirred at room temperature for 1 h and extracted with EtOAc. The combined organic extracts were concentrated. To the residue was added 2,2-dimethoxypropane (25.0 ml) and p-toluenesulfonic acid (270 mg) and the mixture
was heated at reflux for 1 h. The reaction mixture was diluted with EtOAc and washed with 10% aq. K2CO3 and brine. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was purified by chromatography to give the desired product.

Yield: 2.04 g

XXXXVII.2.

[Chemical structure image]

relative stereochemistry

2 M aq. HCl (7.0 ml) was added to compound XXXXVII.1 (695 mg) in THF (7.0 ml) and the mixture was heated at reflux. After 1.5 h the reaction mixture was concentrated in vacuo. The residue was partitioned between EtOAc and water. The organic layer was passed through a hydrophobic frit and concentrated in vacuo to yield the desired product.

Yield: 521 mg

XXXXVII.3.

[Chemical structure image]

relative stereochemistry

Sodium hydride (240 mg, 60%) was added at 0°C to a mixture of compound XXXXVII.2 (514 mg) and iodomethane (380 µl) in DMF (10.0 ml). The reaction mixture was allowed to warm to room temperature overnight, diluted with EtOAc and washed with water and brine. The organic layer was passed through a hydrophobic
frit and concentrated in vacuo. The crude was triturated with hexane to yield the desired product.
Yield: 430 mg

Prepared analogously to III.2 from compound XXXVII.3 (430 mg).
Yield: 365 mg

Compound XXXVII.2 (500 mg) and tetra-n-butylammonium bromide (63 mg) in 46% aq. sodium hydroxide (7.0 ml) and dibromomethane (7.0 ml) were stirred at 60°C for 2 h. The reaction mixture was allowed to cool and filtered. The filtrate was separated. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The crude was purified by chromatography to yield the desired product.
Yield: 178 mg
X.2. Prepared analogously to III.2 from compound XXXVIII.1 (166 mg).

Yield: 141 mg

Intermediate XXXIX

Prepared analogously to III.2 from compound XXXVII.1 (458 mg).

Yield: 391 mg

Intermediate XXXX

XXXX.1. 2-(Cyclopent-2-enyloxy)-4-fluoro-1-nitrobenzene
To a mixture of 5-fluoro-2-nitrophenol (1.48 g), 2-cyclopenten-1-ol (662 mg) and triphenylphosphine (2.47 g) in THF (25.0 ml) diethylazodicarboxylate (1.48 ml) was added at 0°C. After stirring at room temperature overnight, the reaction mixture was diluted with methylene chloride and washed with 10% aq. KHSO₄. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was purified by chromatography to give the desired product.

Yield: 1.25 g

AD-mix-alpha (7.57 g) was added to t-butanol (20.0 ml) and water (25.0 ml) and stirred for 10 min. The mixture was cooled to 0°C and 2-(cyclopent-2-enyloxy)-4-fluoro-1-nitrobenzene (1.21 g) was added. After stirring at room temperature overnight, the mixture was recooled at 0°C and sodium metabisulfite (8.13 g) was added. After 10 min, the reaction mixture was stirred at room temperature for 1 h and extracted with EtOAc. The combined organic extracts were washed with brine passed through a hydrophobic frit and concentrated in vacuo to yield the desired product.
To 3-(5-fluoro-2-nitrophenoxy)cyclopentane-1,2-diol (1.40 g) in 2,2-dimethoxypropane (5.0 ml) was added p-toluenesulfonic acid (103 mg) and the mixture was heated at reflux for 1 h. The reaction mixture was diluted with DCM and 10% aq. K2CO3, passed through a hydrophobic frit and concentrated in vacuo. The residue was purified by chromatography (silica gel; solvent: 100% iso-hexane → iso-hexane/EtOAc (5:1)), the compound XXXXX.3.1 eluding first.

Yield: 1.31 g

XXXXX.4.

Prepared analogously to III.2 from compound XXXXX.3.1 (595 mg).

Yield: 515 mg

Intermediate XXXXXI

Prepared analogously to III.2 from compound XXXXX.3.2 (106 mg).

Yield: 91 mg
Intermediate XXXXII

racemic cis-2-(2-amino-5-fluorophenoxy)cyclopentanol

\[
\begin{align*}
\text{HO} & \\
\text{F} & \\
\text{O} & \\
\text{NH}_2 & \\
\end{align*}
\]

XXXXXII.1 racemic cis-2-(5-fluoro-2-nitrophenoxy)cyclopentanol

\[
\begin{align*}
\text{HO} & \\
\text{F} & \\
\text{O} & \\
\text{NO}_2 & \\
\end{align*}
\]

Prepared analogously to III.1 from cis-1,2-cyclopentandiol (1.0 g) and 1.28 mL 2,4-difluoronitrobenzene.
Yield: 1.34 g

XXXXXII.2 racemic cis-2-(2-amino-5-fluorophenoxy)cyclopentanol

\[
\begin{align*}
\text{HO} & \\
\text{F} & \\
\text{O} & \\
\text{Chiral} & \\
\text{NH}_2 & \\
\end{align*}
\]

Prepared analogously to III.2 from racemic cis-2-(5-fluoro-2-nitrophenoxy)cyclopentanol (2.36 g).
Yield: 388 mg

Intermediate XXXXIII

3-(2-amino-5-fluorophenoxy)cyclopentanol

XXXXXIII.1 3-(5-fluoro-2-nitrophenoxy)cyclopentanol
Di-tert-butyl azodicarboxylate was added at 0°C to a mixture of 1,3-cyclopentandiol (1.02 g), 5-fluoro-2-nitrophenol (0.79 g) and triphenylphosphine (1.97 g) in THF (15.0 ml). After stirring at room temperature over weekend the mixture was treated with 2 M aq. HCl (20.0 ml) and refluxed for 30 min. The reaction mixture was diluted with methylene chloride. The layers were separated. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The crude was purified by chromatography to yield the desired product.

Yield: 1.10 g

Prepared analogously to III.2 from 3-(5-fluoro-2-nitrophenoxy)cyclopentanol (1.09 g).

Yield: 868 mg

Intermediate XXXXIV

racemic cis- 2-(2-Amino-5-fluoro-phenoxy)-cyclohexanol

relative stereochemistry

XXXIV.1 racemic cis- 2-(5-Fluoro-2-nitro-phenoxy)-cyclohexanol
Prepared analogously to III. 1 from cis-1,2-cyclohexandiol (1.0 g) and 0.94 ml 2,4-difluoronitrobenzene.

Yield: 1.34 g

XXXXXIV.2 racemic cis-2-(2-Amino-5-fluoro-phenoxy)-cyclohexanol

Prepared analogously to III. 2 from racemic cis-2-(5-fluoro-2-nitro-phenoxy) cyclohexanol cyclopentanol (2.198 g).

Yield: 627 mg

Intermediate XXXXVI 3-(2-Amino-5-fluoro-phenoxy)-cyclohexanol

XXXXXVI.1 3-(5-Fluoro-2-nitro-phenoxy)-cyclohexanol

Prepared analogously to XVI. 1 from -1,3-cyclohexandiol (2.32.0 g) and 1.57 5-fluoro-2-nitrophenol.
Yield: 0.952 g

XXXXXIV.2 3-(2-Amino-5-fluoro-phenoxy)-cyclohexanol

Prepared analogously to III.2 from 3-(5-fluoro-2-nitro-phenoxy)-cyclohexanol (0.945 g).

Yield: 487 mg

Intermediate XXXXVII 4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamine

0.6 g sodium hydride (60%) were added to a cooled solution (−7°C) of 2.55 g 4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-1-nitro-benzene and iodomethane in 30 mL DMF. The mixture was allowed to warm to rt overnight, diluted with EtOAc and washed with water and brine (3x). The organic phase was dried (MgSO₄), passed through a hydrophobic frit and evaporated. The residue was purified by flash column chromatography (silica gel, 100% i-hexane → 7:1 i-hexane:EtOAc).

XXXXXVII.1 4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-1-nitro-benzene

XXXXXVII.2 4-Fluoro-2-(trans-4-methoxycyclohexyloxy)-phenylamine

Prepared analogously to III.2 from 1.81 g 4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-1-nitro-benzene.
Yield: 1.48 g

XXXXXVIII

\[
\begin{align*}
\text{XXX XVIII.1 4- Methoxycyclohexanol} \\
\text{XXX XVIII.2 4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamine and 4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamine}
\end{align*}
\]

A mixture of 100 g 4-methoxyphenol and Nishimura's catalyst in 750 ml ethanol were hydrogenated (50 psi hydrogen) at room temperature for 4.5 hours. The mixture was filtered and the filtrate was concentrated.

XX X XVIII 1 4- Methoxycyclohexanol

A mixture of 18.9 g 2-nitro-5-fluorophenol and 19 g 4-methoxycyclohexanol in 250 ml THF were placed in a water bath with cold water. 41 g DTAD and 47 g triphenylphosphine were added simultaneously. The reaction mixture was stirred for 2 hours at room temperature. 1.9 g Pd/C (10%) were added and the reaction mixture hydrogenated (50 psi hydrogen) at room temperature for 20 hours. The mixture was filtered and concentrated. Methylene chloride was added to the residue and the mixture was extracted two times with HCl (2M). The water phase were adjusted to basic pH by addition of aq. sodium hydroxide solution (4M) and extracted two times with methylene chloride. The combined organic phases were dried over sodium sulfate, filtered and concentrated. Purification was achieved by column chromatography on silica (eluent: methylene chloride/EtOAc= 9:1).

4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamine

Yield: 2 g
ESI mass spectrum: \(m/z = 240 \) (M+H) *

4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamine

Yield: 3.8 g

ESI mass spectrum: \(m/z = 240 \) (M+H) *

Intermediate XXXXIX

4-(3-Amino-pyridin-2-yloxy)-cyclohexanol

Prepared analogously to 111.1 from 3.6 g 2-fluoro-3-nitropyridine and 2.9 g 1,4-cyclohexanediol

Yield: 3 g

Intermediate XXXXX trans-4-(3-Amino-pyridin-2-yloxy)-cyclohexanol

Prepared analogously to III.2 from 1.6 g 4-(3-Nitro-pyridin-2-yloxy)-cyclohexanol

Yield: 1.53 g
Prepared analogously to 111.1 from 4.054 g 2-fluoro-3-nitropyridine and 2.266 g trans-1,4-cyclohexanediol
Yield: 0.298 g

trans-4-(3-Amino-pyridin-2-yloxy)-cyclohexanol

Prepared analogously to XXIV.2 from 0.29 g trans-4-(3-Nitro-pyridin-2-yloxy)-cyclohexanol
Yield: 0.203 g
ESI mass spectrum: m/z = 209 (M+H) +

Intermediate XXXXXXI.1

To a mixture of 5-fluoro-2-nitrophenol (1.57 g), 2-cyclopentenol (1.00 g) and triphenylphosphine (3.15 g) in methylene chloride (30.0 ml) was added at 0°C diethylazodicarboxylate (1.89 ml). After stirring at room temperature overnight the reaction mixture was concentrated in vacuo. The residue was purified by chromatography to give the desired product.
XXXI.2. 3-(5-fluoro-2-nitrophenoxy)-6-oxabicyclo[3.1.0]hexane

To 2-(cyclopent-3-enyloxy)-4-fluoro-1-nitrobenzene (2.05 g) in methylene chloride (45.0 ml) at 0°C was added 3-chloroperoxybenzoic acid (2.95 g) and the mixture was allowed to warm to room temperature overnight. The reaction mixture was diluted with methylene chloride and washed with 10% aq. K2CO3. The organic layer was passed through a hydrophobic frit and solvent evaporated to give the desired product.

Yield: 2.31 g

XXXI.3.

relative stereochemistry

3-(5-fluoro-2-nitrophenoxy)-6-oxabicyclo[3.1.0]hexane (2.20 g) was heated in 0.2 M sulphuric acid (50.0 ml) and THF (50.0 ml) for 5 h. After stirring at room temperature overnight the reaction mixture was concentrated in vacuo. The residue was extracted with methylene chloride. The combined organic extracts were washed with 10% aq. K2CO3 and concentrated in vacuo. The residue was purified by chromatography to give the desired product.

Yield: 1.61 g
relative stereochemistry

Compound XXXXI.3 (1.60 g), ammonium formate (1.96 g) and Pd/C (0.30 g) in methanol (30.0 ml) were heated at reflux for 1 h. The reaction mixture was filtered through a pad of celite and the filtercake was washed with DCM. The filtrate was concentrated in vacuo and the residue was purified by chromatography to give the desired product.

Yield: 1.04 g

Intermediate XXXXII

A/-[(1S,3S)-3-(2-Amino-5-fluoro-phenoxy)cyclopentyl]-acetamide

To [(1S,3S)-3-(5-fluoro-2-nitro-phenoxy)cyclopentyl]-carbamic acid tert-butyl ester, cpd. XXXVII. 1 (2.13 g) in DCM (150 ml) was added at 0°C TFA (10 ml) and stirred at rt overnight. The reaction mixture was concentrated at rt and triturated with diisopropyl ether to give the desired compound.

Yield: 1.80 g

ESI mass spectrum: m/z = 241 (M+H)+
XXIX.2 A-\(r(1S,3S)-3-(5\text{-Fluoro-2-nitro-phenoxy})\)-cyclopentyl1-acetamide

![Chemical Structure](image)

Acetyl chloride (360 µl) was added at 0°C to a mixture of \((1S,3S)-3-(5\text{-fluoro-2-nitro-phenoxy})\)-cyclopentylamine trifluoroacetate (1.80 g) and DIPEA (4.4 ml) in methylene chloride (150 ml) and stirred at rt for 1 hour. The reaction mixture was diluted with water and the organic layer was dried and concentrated. The crude was triturated with diisopropyl ether to give the desired product.

Yield: 1.40 g
ESI mass spectrum: m/z = 283 (M+H)⁺

XXIX.3 A-\(r(1S,3S)-3-(2\text{-Amino-5-fluoro-phenoxy})\)-cyclopentyl1-acetamide

A mixture of A-\(\{1S,3S\}-3-(5\text{-fluoro-2-nitro-phenoxy})\)-cyclopentyl]-acetamide (1.45 g) and Raney Ni (200 mg) in MeOH (150 ml) was stirred at rt overnight under hydrogen atmosphere (5 bar). The catalyst was removed by filtration and the filtrate was concentrated to give the desired product.

Yield: 1.89 g (65% pure)
ESI mass spectrum: m/z = 253 (M+H)⁺

Intermediate XXXXXXIII

[4-(3-Amino-pyridin-2-yloxy)cyclohexyl1-carbamic acid tert-butyl ester]
A mixture of 7.8 g [4-(3-nitro-pyridin-2-yloxy)cyclohexyl]-carbamic acid tert-butyl ester and 0.8 g raney nickel in 100 ml methanol was hydrogenated at rt under 50 psi overnight. The reaction mixture was filtered and the filtrate concentrated.

Yield: 6.9 g
ESI mass spectrum: m/z = 308 (M+H)D

Intermediate XXXXXXIV
(1S,2S) [2-(2-Amino-5-fluoro-phenoxy)-cyclopentyl1-carbamic acid tert-butyl ester

XXXXXXIV.1 (1S,2S)trans-N-boc-2-aminocyclopentanol was dissolved in 50 ml THF and cooled to 10°C. To the reaction mixture were added 32.2 ml LiHMDS 1M in THF. After 1 hour 2.72 ml 2,4-difluoronitrobenzol were added and the mixture was stirred at rt
overnight. Then the mixture was poured in water and extracted with ethylacetate. The organic layer was washed with water, dried and concentrated in vacuo.

Yield: 9.0 g

ESI mass spectrum: m/z = 341 (M+H) □

XXXXXXIV.2 \((1S,2S)\) \(r2\)-(2-Amino-5-fluoro-phenoxy)-cyclopentyl carbamic acid tert-butyl ester

Prepared analogously to example III.2 from 9.0 g \((1S,2S)\)\(2\)-(5-fluoro-2-nitro-phenoxy)-cyclopentyl]-carbamic acid tert-butyl ester (compound XXXXXXIV.1)

Yield: 8.0 g

ESI mass spectrum: m/z = 311 (M+H) □

XXXXXXIV.3 \((1S,2S)\) 4-\((2\)-tert-Butoxycarbonylamino-cyclopentoxy\)-4-fluoro-phenylaminol-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

A reaction mixture of 2.0 g 4-chloro-5-methyl-thieno[2,3-d] pyrimidine-6-carboxylic acid methyl ester, 2.5 g intermediate XXXXXXIV.2 and 0.283 g p-toluenesulfonic acid in 20 mL Dioxan was heated at 110°C in the microwave for 1 hour. The reaction mixture was diluted with MeOH and filtered. The filtrate was washed with dioxane/MeOH. The residue was triturated with diisopropylether.
XXXIV.4 (1S,2S) 4-[2-(2-tert-Butoxycarbonylamino-cyclopentyl)-4-fluoro-phenylamino]-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic acid

A mixture of 2.4 g (1S,2S) 4-[2-(2-tert-butoxycarbonylamino-cyclopentyl)-4-fluoro-phenylamino]-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 20 ml 1 M sodium hydroxide solution in 50 ml MeOH was stirred at rt overnight. To the reaction mixture was added 20 ml 1 M hydrochloric acid until a pH range of 2-3 was reached. The mixture was diluted with water and filtrated. The solid was dried in vacuo at 50°C.

Yield: 2.2 g
ESI mass spectrum: m/z = 503 (M+H)D

XXXIV.5 (1S,2S) (2-(6-Carbamoyl-5-methyl-thieno2,3-dpyrimidin-4-ylamino)-5-fluoro-phenoxy1-cyclopentyl)-carbamic acid tert-butyl ester

Prepared analogously to example 1.4 from 2.20 g (1S,2S) 4-[2-(2-tert-butoxycarbonylamino-cyclopentyl)-4-fluoro-phenylamino]-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic acid (compound XXXIV.4) and ammonia.

Yield: 2.1 g
ESI mass spectrum: \(m/z = 502 \) (M+H)

XXXXXXX.IV.6 (1S,2S) 4-r2-(2-Amino-cyclopentyloxy)-4-fluoro-phenylamino1-5-methyl
thieno[2,3-d]pyrimidine-6-carboxylic acid amide

A reaction mixture of 2.1 g 1S,2S) {2-(2- (6-carbamoyl-5-methyl-thieno[2,3-
d]pyrimidin-4-ylamino)-5-fluoro-phenox]-cyclopentyl}-carbamic acid tert-butyl ester,
and 1.24 ml trifluoroacetic acid in 50 ml DCM was stirred for 3 days at 46°C.
The mixture was concentrated, diluted with toluene and concentrated. The residue
was extracted with DCM and water, whereby the water layer had the pH range of 10.
The organic layer was dried and concentrated in vacuo. The residue was purified by
chromatography.
Yield: 0.5 g
ESI mass spectrum: \(m/z = 402 \) (M+H)

End compounds

Example 1
A reaction mixture of 0.265 g 4-chloro-5-methyl-thieno[2,3-c']pyrimidine-6-carboxylic acid methyl ester, 0.265 g intermediate I and 0.02 g p-toluenesulfonic acid in 3 ml dioxane were heated at 110°C for 8 hours.

Then aq. ammonium hydroxide solution (3M) was added. The mixture was filtered and the solid washed with water and diethyl ether. The solid was dried in vacuo at 50°C for 3 h and at rt over weekend.

Yield: 0.385 g

0.385 g compound 1.1, 0.016 g p-toluenesulfonic acid and 1 ml 2,2-dimethoxypropane in 1 ml DMF were heated at 80°C for 45 minutes. Then the reaction mixture was diluted with EtOAc and washed with 10% aq. potassium carbonate solution and brine (2x). The organic phase was passed through a hydrophobic frit and evaporated. The residue triturated with diethylether.

Yield: 0.306 g
1.6 mL sodium hydroxide solution (2M) were added to a mixture of 0.306 g compound 1.2. in 6 mL EtOH/THF (1:1). The reaction mixture was stirred at rt for 45 minutes and at reflux for 40 minutes. Then the solvent was removed in vacuo and the residue suspended in water, aqu. hydrochloric acid solution (2M) was added. The mixture was filtered and the solid washed with water. The solid was suspended in ethanol and the mixture then concentrated. This was repeated twice. Yield: 0.274 g

0.256 g HATU were added to an ice-cooled solution of 0.265 g compound 1.3 and 117 µL DIPEA in 3 mL DMF. After 30 minutes at this temperature 1.5 mL of a solution of ammonia in methanol (7 mol/l) were added. The mixture was allowed to warm to rt overnight. DMF was evaporated in vacuo and the residue was evaporated from toluene (3x). The residue was suspended in methanol and heated to reflux. The reaction mixture was filtered, the solid washed with diethylether and dried. Yield: 0.185 g

ESI mass spectrum: m/z = 473 (M+H)+
Example 2

A mixture of 0.155 g compound 1.4 and 2 ml aq. hydrochloric acid solution (2M) in 2 ml THF were heated at reflux for 20 minutes. The reaction mixture was filtered at rt. The solid was washed with water and diethylether and dried in vacuo over phosphorous pentoxide.

Yield: 0.110 g

ESI mass spectrum: m/z = 433 (M+H)⁺

Rt (HPLC): 1.23 min (method X)

Example 3

4-[4-Fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

3.1. 4-[4-Fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester
Prepared analogously to 1.1 from intermediate IV (0.16 g) and 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.129 g).

Yield: 0.223 g

3.2. 4-[4-Fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyridine-6-carboxylic acid

Prepared analogously to 1.3 from 0.22 g 4-[4-fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyridine-6-carboxylic acid methyl ester (cpd.3.1).

Yield: 0.118 g

3.3. 4-[4-Fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyridine-6-carboxylic acid amide
Prepared analogously to 1.4 from 0.11 g 4-[4-fluoro-2-(trans-4-methanesulfonylamino-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (cpd.3.2).

Yield: 0.080 g
ESI mass spectrum: m/z = 494 (M+H)+
Rt (HPLC): 1.31 min (method X)

Example 4
4-(4-Fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

4.1 Methyl 4-(4-fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate V (0.242 g) and 4-chloro-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester (0.155 g).
Yield: 0.272 g

4.2 4-(4-Fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.272 g methyl 4-(4-fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.4.1).

Yield: 0.118 g

4.3 4-(4-Fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 1.4 from 0.137 g 4-(4-fluoro-2-(trans-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.4.2).

Yield: 0.099 g

ESI mass spectrum: \(m/z = 508 \) (M+H)^+

Rt (HPLC): 1.37 min (method X)

Example 5
4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

5.1 Methyl 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate VI (0.422 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.243 g).

Yield: 0.301 g

5.2 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.301 g methyl 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.5.1).

Yield: 0.283 g

5.3 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
Prepared analogously to 1.4 from 0.100 g 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.5.2).

Yield: 0.073 g

ESI mass spectrum: m/z = 458 (M+H)^+
Rt (HPLC): 1.29 min (method X)

Example 6

4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-N-(3-(dimethylamino)propyl)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 1.4 from 0.092 g 4-(2-(trans-4-acetamidocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.5.2) and 3-(dimethylamino)propylamine (126 µl).

Yield: 0.050 g

ESI mass spectrum: m/z = 543 (M+H)^+
Rt (HPLC): 1.24 min (method X)

Example 7

4-(4-fluoro-2-(trans-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
7.1 Methyl 4-(4-fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[3,2-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate VII (0.255 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.184 g).
Yield: 0.225 g

7.2 4-(4-Fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.225 g methyl 4-(4-fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.7.1).
Yield: 0.221 g
Prepared analogously to 1.4 from 0.1 18 g 4-(4-fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.7.2).

Example 8

N-(3-(dimethylamino)propyl)-4-(4-fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 1.4 from 0.094 g 4-(4-fluoro-2-(trans-4-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.7.2) and 3-(dimethylamino)propylamine (126 µl).

Yield: 0.060 g
ESI mass spectrum: m/z = 557 (M+H)+
Rt (HPLC): 1.27 min (method X)

Example 9

4-(4-Fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Yield: 0.062 g
ESI mass spectrum: m/z = 472 (M+H)+
Rt (HPLC): 1.34 min (method X)
9.1 Methyl 4-(4-fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate VIII (0.229 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.146 g).
Yield: 0.213 g

9.2 4-(4-Fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.213 g methyl 4-(4-fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.9.1).
Yield: 0.205 g

9.3 4-(4-Fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
Prepared analogously to 1.4 from 0.193 g 4-(4-fluoro-2-(cis-4-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.9.2).

Yield: 0.096 g

ESI mass spectrum: m/z = 508 (M+H)⁺

Rt (HPLC): 1.28 min (method X)

Example 10

4-(4-fluoro-2-(cis-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 1.1 from intermediate IX (0.217 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.155 g).

Yield: 0.157 g
10.2 4-(4-Fluoro-2-(cis-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.157 g methyl 4-(4-fluoro-2-(cis-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.1 0.1).
Yield: 0.118 g

10.3 Methyl 4-(4-fluoro-2-(cis-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.4 from 0.13 g 4-(4-fluoro-2-(cis-4-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.10.2).
Yield: 0.084 g
ESI mass spectrum: m/z = 472 (M+H)+
Rt (HPLC): 1.24 min (method X)

Example 11
Methyl trans-4-(2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl (methyl)carbamate
11.1 Methyl 4-(4-fluoro-2-(trans-4-(methoxycarbonyl(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidinidine-6-carboxylate

Prepared analogously to 1.1 from intermediate X (0.236 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.166 g). Yield: 0.311 g

11.2 4-(4-Fluoro-2-(trans-4-(methoxycarbonyl(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.311 g methyl 4-(4-fluoro-2-(trans-4-(methoxycarbonyl(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.1.1.1). Yield: 0.249 g
11.3 Methyl trans-4-(2-(6-carbamoyl-5-methylthiophen-2-yl)oxy)cyclohexyl (methyl carbamate) Prepared analogously to 1.4 from 0.098 g 4-(4-fluoro-2-(trans-4-(methoxycarbonyl(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.1 1.2).
Yield: 0.021 g
ESI mass spectrum: m/z = 488 (M+H)+
Rt (HPLC): 1.42 min (method X)

Example 12
4-(4-Fluoro-2-(trans-4-(methylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

12.1 Methyl 4-(2-(trans-4-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate XI (1.29 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.728 g). Purification by chromatography.
Yield: 0.439 g

12.2 4-(2-(trans-4-(tert-Butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.747 g methyl 4-(2-(trans-4-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.12.1).

Yield: 0.747 g

12.3 tert-Butyl-trans-4-(2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl(methyl)carbamate

Prepared analogously to 1.4 from 0.747 g 4-(2-(trans-4-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.12.2).

Yield: 0.684 g

12.4 4-(4-Fluoro-2-(trans-4-(methylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Yield: 0.439 g

12.2 4-(2-(trans-4-(tert-Butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.747 g methyl 4-(2-(trans-4-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.12.1).

Yield: 0.747 g

12.3 tert-Butyl-trans-4-(2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl(methyl)carbamate

Prepared analogously to 1.4 from 0.747 g 4-(2-(trans-4-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.12.2).

Yield: 0.684 g

12.4 4-(4-Fluoro-2-(trans-4-(methylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Yield: 0.439 g
A mixture of 0.684 g tert-butyl-trans-4-(-2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl(methyl)carbamate in 5 ml 4 M HCl/dioxane and 5 ml MeOH was stirred at rt for 1.5 h. The reaction mixture was concentrated in vacuo. The crude was purified by chromatography to give the desired product.

Yield: 0.387 g

Example 13

Racemic 4-(4-fluoro-2-(trans-2-(N-methyl methylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

13.1 racemic Methyl 4-(4-fluoro-2-(trans-2-(N-methyl methylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 1.1 from intermediate XII (0.231 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.147 g).

Yield: 0.279 g
13.2 racemic 4-(4-Fluoro-2-(trans-2-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.279 g racemic methyl 4-(4-fluoro-2-(trans-2-(N-methylmethylsulfonamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd. 1.3.1).

Yield: 0.242 g

Example 14
Racemic 4-(4-Fluoro-2-(trans-2-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
14.1 racemic Methyl 4-(4-fluoro-2-(trans-2-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

relative stereochemistry

Prepared analogously to 1.1 from intermediate XIII (0.225 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.162 g).
Yield: 0.180 g

14.2 racemic 4-(4-Fluoro-2-(trans-2-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

relative stereochemistry

Prepared analogously to 1.3 from 0.180 g racemic methyl 4-(4-fluoro-2-(trans-2-(N-methylacetamidocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.14.1).
Yield: 0.170 g
14.3 Methyl 4-(4-fluoro-2-(trans-2-(N-nmethylacetamido)cyclohexyloxy)phenylamino)-5-nmethylthieno[2,3-d]pyrimidine-6-carboxylate

Relative stereochemistry

Prepared analogously to 1.4 from 0.095 g 4-(4-fluoro-2-(trans-2-(N-methylacetamido)cyclohexyloxy)phenylamino)-5-nmethylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.14.2). Purification by chromatography. Yield: 0.040 g

ESI mass spectrum: m/z = 472 (M+H)⁺

Rt (HPLC): 1.34 min (method X)

Example 15

4-(2-(trans-4-aminocyclohexyloxy)4-fluorophenylamino)-5-nmethylthieno[2,3-d]pyrimidine-6-carboxamide

15.1 Methyl 4-(4-fluoro-2-(trans-4-(2,2,2-trifluoroacetamido)cyclohexyloxy)phenylamino)-5-nmethylthieno[2,3-d]pyrimidine-6-carboxylate
Prepared analogously to 1.1 from intermediate XIV (0.050 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.038 g). Yield: 0.062 g

15.2 4-(2-(trans-4-Aminocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

0.100 g methyl 4-(4-fluoro-2-(trans-4,2,2-trifluoroacetamido)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd. 1.5.1) and 2 ml 7 M ammonia in MeOH were stirred in a pressure tube overnight at 70°C and 8 days at 90°C. The reaction mixture was concentrated in vacuo. The residue was purified by chromatography to give the desired compound. Yield: 0.067 g

Example 16
4-(4-Fluoro-2-(trans-4-(1-methylpiperidin-4-ylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

0.019 g 1-methyl-4-piperidine in 1.5 ml MeOH followed by 1 drop acetic acid were added to a mixture of 0.070 g 4-(2-(trans-4-aminocyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide (cpd. 1.5.2) in 2 ml methanol. Sodium cyanoborohydride was added when the mixture was stirred at rt for 40 min. After stirring at 50°C for 3 h further 0.010 g 1-methyl-4-piperidone and 0.010 g sodium cyanoborohydride were added and heating was continued overnight.
The reaction mixture was concentrated in vacuo. The residue was purified by chromatography followed by recrystallisation from MeOH.

Yield: 0.056 g
ESI mass spectrum: m/z = 513 (M+H)^+
Rt (HPLC): 1.16 min (method X)

Example 17
4-(4-Fluoro-2-(cis-3-(N-methylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 1.1 from intermediate XV (0.170 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (0.130 g). Purification by chromatography (gradient: CH2Cl2 -> 2%MeOH/CH2Cl2 using the Biotage SP4) Yield: 0.190 g

17.1 Methyl 4-(2-(3-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

17.2 4-(2-(3-(tert-Butoxycarbonyl(methyl)amino)cyclohexyloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid
Prepared analogously to 1.3 from 0.190 g methyl 4-(2-(3-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.17.1). The crude was trituated in hot MeCN.

Yield: 0.120 g

Prepared analogously to 1.4 from 0.110 g 4-(2-(3-(tert-butoxycarbonyl(methyl)amino)cyclohexyloxy-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.17.2). Purification by chromatography (gradient: CH2Cl2 -> 20%MeOH/CH2Cl2 using the Biotage SP4)

Yield: 0.090 g

relative stereochemistry
220 µl 4 M HCl in dioxane was added to 0.093 g tert-butyl 3-(2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl (methyl) carbamate (cpd. 17.3) in 4 ml dioxane. The reaction mixture was stirred for 1 h at rt when further aliquots of 4 M HCl in dioxane were added, methanol was added and the mixture stirred for 2 days at rt. The mixture was purified by chromatography (gradient: CH2Cl2-> 20%MeOH/CH2Cl2 using the Biotage SP4).

ESI mass spectrum: m/z = 430 (M+H)+
Rt (HPLC): 1.20 min (method X)

Example 18
4-(4-Fluoro-2-(trans-3-(N-methylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Chiral relative stereochemistry

Prepared analogously to 17.4 from 0.093 g tert-butyl 3-(2-(6-carbamoyl-5-methylthieno[2,3-d]pyrimidin-4-ylamino)-5-fluorophenoxy)cyclohexyl (methyl) carbamate (cpd. 17.3).

ESI mass spectrum: m/z = 430 (M+H)+
Rt (HPLC): 1.20 min (method X)

Example 19
4-(2-(1,4-Dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
19.1 Methyl 4-(2-((1,4-dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

Prepared analogously to 19.1 from intermediate III (2.300 g) and 4-chloro-5-methylthieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (2.080 g) at 80°C. Yield: 3.600 g

ESI mass spectrum: m/z = 474 (M+H)^+

Rt (HPLC): 1.65 min (method X)

19.2 4-(2-((1,4-Dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid

1.065 g lithium hydroxide monohydrate was added to 2.003 g methyl 4-(2-((1,4-dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.19.1) in 100 ml THF and 60 ml water. After stirring at rt overnight the reaction mixture was quenched by 2 M aq. HCl and concentrated in vacuo. The
resulting aq. layer was filtered. The filtercake was dried and triturated with MeOH:Et₂O 20:1 to give the desired compound.
Yield: 1.280 g

19.3

\[
\text{4-(2-(1,4-Dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide}
\]

Prepared analogously to 1.4 from 1.287 g 4-(2-(1,4-dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (cpd.19.2).

Purification by chromatography.
Yield: 1.210 g

Example 20

Methyl 4-(4-fluoro-2-(4-oxocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate

1.000 g p-toluenesulfonic acid was added to 0.500 g methyl 4-(2-(1,4-dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.19.1) in 10 ml THF and 5 ml water. After refluxing overnight the reaction mixture was adjusted to pH 8 using aq. Na₂CO₃. The aq. layer was extracted with chloroform. The combined extracts were passed through a hydrophobic frit and concentrated to give the desired compound.
Yield: 0.413 g
ESI mass spectrum: m/z = 430 (M+H)^+
Rt (HPLC): 1.50 min (method X)

Example 21

4-(4-Fluoro-2-(4-oxocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to Example 20 from 1.211 g 4-(2-(1,4-dioxaspiro[4.5]decan-8-yloxy)-4-fluorophenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide (cpd.1 9.3). The crude was triturated with MeOH.

Yield: 0.888 g
ESI mass spectrum: m/z = 415 (M+H)^+
Rt (HPLC): 1.27 min (method X)

Example 22

4-(4-Fluoro-2-(trans-4-((2-methoxyethyl)(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

22.1 Methyl 4-(4-fluoro-2-(4-((2-methoxyethyl)(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate
To a stirred mixture of 0.100 g methyl 4-(4-fluoro-2-(4-oxocyclohexyl-oxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.20) in 3 ml methylene chloride was added 0.045 g 2-(methoxyethyl)methylamine. After 15 min at rt 0.045 g sodium triacetoxyborohydride was added and stirring was continued overnight. The reaction was quenched by the addition of water. The mixture was passed through a hydrophobic frit and the organic layer was concentrated. The crude was crystallized in 7 M ammonia in MeOH to give the desired compound.

Yield: 0.062 g

22.2 4-(4-Fluoro-2-(trans-4-((2-methoxyethyl)(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 15.2 from 0.060 g methyl 4-(4-fluoro-2-(4-((2-methoxyethyl)(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.22.1) at 100°C for 14 h. The title compound was obtained by HPLC separation.

Yield: 0.011 g

ESI mass spectrum: m/z = 488 (M+H)

Rt (HPLC): 1.22 min (method X)
Example 23
4-(4-Fluoro-2-(cis-4-((2-methoxyethyl)methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 15.2 from 0.060 g methyl 4-(4-fluoro-2-(4-((2-methoxyethyl)(methyl)amino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.22.1) at 100°C for 14 h. The title compound was obtained by HPLC separation.

Yield: 0.007 g
ESI mass spectrum: m/z = 488 (M+H)+
R_t (HPLC): 1.16 min (method X)

Example 24
4-(4-Fluoro-2-(trans-4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-amide

Methyl 4-(4-fluoro-2-(4-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate
Prepared analogously to 22.1 from 0.249 g methyl 4-(4-fluoro-2-(4-oxocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.20). Crystallisation was replaced by purification by chromatography.

Yield: 0.280 g

24.2 4-(4-Fluoro-2-(trans-4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 15.2 from 0.280 g methyl 4-(4-fluoro-2-(4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.20). The title compound was obtained by HPLC separation.

Yield: 0.055 g

ESI mass spectrum: m/z = 474 (M+H)^+

R_t (HPLC): 1.21 min (method X)

Example 25

4-(4-Fluoro-2-(cis-4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Yield: 0.055 g

ESI mass spectrum: m/z = 474 (M+H)^+

R_t (HPLC): 1.21 min (method X)
Prepared analogously to 15.2 from 0.280 g methyl 4-(4-fluoro-2-(4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.24.1). The title compound was obtained by HPLC separation.

Yield: 0.104 g

ESI mass spectrum: m/z = 474 (M+H)⁺

Rₜ (HPLC): 1.18 min (method X)

Example 26

4-(4-Fluoro-2-(trans-4-morpholinocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 15.2 from 0.280 g methyl 4-(4-fluoro-2-(4-(2-methoxyethylamino)cyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.24.1). The title compound was obtained by HPLC separation.

Yield: 0.104 g

ESI mass spectrum: m/z = 474 (M+H)⁺

Rₜ (HPLC): 1.18 min (method X)

Example 26

4-(4-Fluoro-2-(trans-4-morpholinocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide
Prepared analogously to 15.2 from 0.280 g methyl 4-(4-fluoro-2-(4-morpholinocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.26.1). The title compound was obtained by HPLC separation.

Example 27

4-(4-Fluo-ro-2-(cis-4-morpholinocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 15.2 from 0.280 g methyl 4-(4-fluoro-2-(4-morpholinocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (cpd.26.1). The title compound was obtained by HPLC separation.

Yield: 0.025 g
ESI mass spectrum: m/z = 486 (M+H)⁺
Rᵣ (HPLC): 1.20 min (method X)

Example 28

Yield: 0.023 g
ESI mass spectrum: m/z = 486 (M+H)⁺
Rᵣ (HPLC): 1.15 min (method X)
A reaction mixture of 0.503 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, 0.500 g intermediate XXVIII and 0.070 g p-toluenesulfonic acid in 8 ml dioxane were heated under microwave radiation at 140°C for 15 minutes. The mixture was cooled, filtered and purified by chromatography. The crude was triturated with diethyl ether.

Yield: 0.320 g

ESI mass spectrum: m/z = 448 (M+H)⁺

Rt (HPLC): 1.74 min (method K)
A mixture of 3.4 ml sodium hydroxide solution (1 M) and 0.300 g cpd. 28.1 in 10 ml MeOH was stirred at 100°C for 2 hours and at reflux for 40 minutes. Then the mixture was neutralized with aq. HCl, concentrated and filtered. The filtercake was washed with EtOH and diethyl ether and dried.

Yield: 0.230 g
ESI mass spectrum: m/z = 434 (M+H)⁺
Rt (HPLC): 1.47 min (method K)

A mixture of 0.060 g cpd. 28.2, 0.018 ml 1,3-dimethyl-propane-1,3-diamine, 0.045 g TBTU and 0.049 ml DIPEA in 7.5 ml THF/DMF 2/1 was stirred at rt over the weekend. The mixture was concentrated and the crude was purified by chromatography.

Yield: 0.100 g
ESI mass spectrum: m/z = 518 (M+H)⁺
Rt (HPLC): 1.37 min (method K)
Synthesized analogously to 28.1 from 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (1.532 g) and intermediate XXX (1.700 g). The mixture was filtered and the filtercake was washed with dioxane, MeOH and diethyl ether.

Yield: 2.150 g
ESI mass spectrum: m/z = 476 (M+H)^+
R_t (HPLC): 2.08 min (method K)
R_f (TLC): 0.79 (silica gel, methylene chloride/methanol 9/1)

Prepared analogously to 28.2 from 1.500 g cpd. 28.1.

Yield: 1.200 g
ESI mass spectrum: m/z = 462 (M+H)^+
R_t (HPLC): 1.77 min (method K)
A mixture of 0.150 g cpd. 29.2, 0.700 ml 0.5 M ammonia in THF, 0.112 g TBTU and 0.122 ml DIPEA in 10 ml THF was stirred at rt over the weekend. The mixture was concentrated. The crude was diluted with DCM, washed with water, dried over Na₂SO₄ and concentrated. The residue was triturated with diethyl ether.

Yield: 0.085 g
ESI mass spectrum: m/z = 461 (M+H)⁺
Rt (HPLC): 1.59 min (method K)

Example 30

![Chemical structure](image)

30.1

![Chemical structure](image)

Prepared analogously to 29.1 from 4-chloro-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid methyl ester (0.362 g) and intermedate XXIX (0.360 g).

Yield: 0.290 g
ESI mass spectrum: m/z = 448 (M+H)⁺
Rt (HPLC): 1.65 min (method K)
Prepared analogously to 28.2 from 0.280 g cpd. 30.1.
Yield: 0.230 g
ESI mass spectrum: m/z = 434 (M+H)^+

R_t (HPLC): 1.48 min (method K)

Example 3.1

4-[2-(4^-Dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 29.1 from 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (1.500 g) and intermediate XXXI (1.467 g).
Yield: 2.000 g
ESI mass spectrum: m/z = 444 (M+H)^+
R_t (HPLC): 2.15 min (method K)
3.1.2 4-[2-(4^-Dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 28.2 from 1.000 g 4-[2-(4,4-dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 31.1).

Yield: 0.850 g
ESI mass spectrum: m/z = 430 (M+H)^+
Rt (HPLC): 2.27 min (method K)

3.1.3 4-[2-(4,4-Dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 29.3 from 0.150 g 4-[2-(4,4-dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 31.2).

Yield: 0.065 g
ESI mass spectrum: m/z = 429 (M+H)^+
Rt (HPLC): 2.09 min (method K)

Example 32
4-[2-(4,4-Dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide
Prepared analogously to 29.3 from 0.150 g 4-[2-(4,4-dimethyl-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 31.2) and 0.044 ml A./V-dimethyl-propane-1,3-diamine.

Yield: 0.128 g

ESI mass spectrum: m/z = 514 (M+H)⁺

Rt (HPLC): 1.46 min (method K)

Example 33

4-[2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

A mixture of 0.087 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, 0.088 g intermediate XXXII and 0.006 g p-toluenesulfonic acid in 2 ml
dioxane was heated at 120°C for 1.5 h. The reaction mixture was cooled, filtered and the filtercake was washed with dioxane and dried.

Yield: 0.115 g

33.2 4-[2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3- c]pyrimidine-6-carboxylic acid

0.620 ml sodium hydroxide solution (2M) was added to 0.110 g 4-[2-(4,4-difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 33.1) in 4 ml THF/MeOH (1/1). An additional aliquot of sodium hydroxide solution was added when the reaction mixture was stirred at rt overnight. After further 6 hours at rt the mixture was concentrated, the resulting aq. layer was adjusted to pH 4-5 with aq. 2 M aq. HCl and stirred under cooling for 30 minutes. Then the mixture was filtered, the filtercake was washed with water and dried.

Yield: 0.100 g

33.3 4-[2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3- c]pyrimidine-6-carboxylic acid amide

0.029 g EDC was added to a mixture of 0.050 g 4-[2-(4,4-difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 33.2) and 0.020 g 1-hydroxy-pyrrolidine-2,5-dione in 1 ml DMF and stirred at rt over the weekend. After the addition of 0.327 ml ammonia (7M) the reaction mixture was
stirred at rt for further 1.5 hours. The mixture was concentrated and the residue was recrystallized from hot MeOH.

Yield: 0.041 g

ESI mass spectrum: m/z = 437 (M+H)^+

R_t (HPLC): 1.38 min (method X)

Example 34

4-[2-(4,4-Difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

Prepared analogously to 33.3 from 0.050 g 4-[2-(4,4-difluoro-cyclohexyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 33.2) and 0.126 ml A/_/V-dimethyl-propane-1,3-diamine.

Yield: 0.023 g

ESI mass spectrum: m/z = 522 (M+H)^+

R_t (HPLC): 1.29 min (method X)

Example 35

4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

35.1 4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-
thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

A mixture of 1.700 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, 2.000 g intermediate XXXV and 0.255 g p-toluenesulfonic acid in 20 ml dioxane was heated under microwave radiation at 110°C for 1 h. The reaction mixture was filtered and the filtercake was washed with dioxane and stirred with MeOH. Then water was added and the mixture was filtered.

Yield: 1.700 g
ESI mass spectrum: m/z = 445 (M+H)⁺

35.2 4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-
thieno[2,3-c]pyrimidine-6-carboxylic acid

A mixture of 1.800 g 4-[2-(trans-3-acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd.35.1) in 17 ml sodium hydroxide solution (1 M) and 30 ml MeOH was stirred at rt overnight. The reaction mixture was neutralized with aq. HCl (1 M) and concentrated. The residue was filtered and the filtercake was washed with diethyl ether.

Yield: 1.680 g
ESI mass spectrum: m/z = 431 (M+H)⁺
35.3 4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

0.050 ml DIPEA was added to a mixture of 0.100 g 4-[2-(trans-0.86 3-acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 35.2) and 0.095 g HATU in 1.5 ml DMF and stirred at rt for 15 minutes. 2.323 ml ammonia in THF (0.5M) was added and the stirring was continued for further 6 hours. Then the reaction mixture was concentrated and the residue was purified by chromatography.

Yield: 0.015 g
ESI mass spectrum: m/z = 430 (M+H) + 0.89
Rt (HPLC): 0.86 (method A)

The following compounds were prepared analogously to 35.3:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td></td>
<td>Cpd. 35.2</td>
<td>515 (M+H)+</td>
<td>0.89 (Method A)</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>Cpd. 35.2</td>
<td>458 (M+H)+</td>
<td>2.35 min (Method B)</td>
</tr>
</tbody>
</table>
Example 42

4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

![Chemical structure]

42.1. 4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to 1.1 from 0.846 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 1.000 g Intermediate XXXXIV.

Yield: 1.390 g
42.2 4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

7 mL sodium hydroxide solution (2M) were added to a mixture of 1.270 g 4-[4-fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 42.1) in 10 mL MeOH/THF (1:1). The reaction mixture was stirred at reflux for 15 minutes, then cooled and acidified with 2 M aq. HCl. The solvent was removed in vacuo, the residue suspended in water, filtered and dried.

42.3 4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 1.4 from 0.100 g 4-[4-fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid.

Yield: 0.074 g

ESI mass spectrum: m/z = 431 (M+H) +

R_t (HPLC): 1.41 min (method X)

Example 43
4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

EDC (53 mg, 0.28 mmol) was added to a mixture of 0.100 g 4-[4-fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd.42.2) and 0.040 g N-hydroxysuccinimide in 1 ml DMF. And stirred at rt overnight. The reaction mixture was diluted with EtOAc and washed with water and brine. The organic layer was passed through a hydrophobic frit and concentrated. Yield: 0.100 g

43.2 4-[4-Fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide
0.129 g 3-dimethylaminopropylamine was added to 0.155 g 4-[4-fluoro-2-((1S,2S)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidin e-6-carboxylic acid 2,5-dioxo-pyrrolidin-1-yl ester in 2 ml DMF and stirred at rt for 30 minutes. The reaction mixture was concentrated. The residue was dissolved in EtOAc, washed with water and brine, passed through a hydrophobic frit and concentrated.

Yield: 0.129 g

ESI mass spectrum: m/z = 516 (M+H)+

Rt (HPLC): 1.31 min (method X)

The following compounds were prepared analogously to 43.2:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>H₂N-</td>
<td>Cpd. 43.1</td>
<td>502 (M+H)+</td>
<td>1.30 min (Method X)</td>
</tr>
<tr>
<td>45</td>
<td>H₂N-</td>
<td>Cpd. 43.1</td>
<td>558 (M+H)+</td>
<td>1.31 min (Method X)</td>
</tr>
</tbody>
</table>
Example 50
Racemci 4-[4-Fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

racemic

50.1 racemc 4-[4-Fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

racemic

A reaction mixture of 0.073 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, 0.091 g intermediate XVII and 0.003 g p-toluenesulfonic acid in 1 mL dioxane was heated at 110°C for 10 hours. The reaction mixture was diluted with
methylene chloride and 3M ammonia and passed through a hydrophobic frit. The organic layer was concentrated and the residue was recrystallized from MeOH. Yield: 0.098 g

50.2 racemic 4-[4-Fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 42.2 from 0.089 g racemic 4-[4-fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 50.1).
Yield: 0.075 g

50.3 racemic 4-[4-Fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 1.4 from 0.073 g 4-[4-fluoro-2-(trans-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 50.2).
Yield: 0.041 g
ESI mass spectrum: m/z = 431 (M+H)+
Example 5.1
4-[4-Fluoro-2-((1S,2S)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

A mixture of 1.832 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, 1.700 g intermediate XXI and 0.130 g p-toluenesulfonic acid in 30 ml dioxane was stirred at 100°C for 2 hours. The reaction mixture was cooled, diluted with water and filtered. The filtercake was washed with water and dried.

Yield: 3.020 g
ESI mass spectrum: m/z = 432 (M+H)+
Rt (HPLC): 2.04 min (Method L)
5 mL sodium hydroxide solution (4M) was added to a mixture of 2.960 g 4-[4-Fluoro-2-((1S,2S)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 5.1) in 60 mL methanol/THF (1:1). The reaction mixture was stirred at rt for 3 hours, then acidified with aq. HCl and diluted with water. The mixture was filtered and the filtercake was dried.

Yield: 2.780 g
ESI mass spectrum: m/z = 418 (M+H)⁺
Rt (HPLC): 1.85 min (Method L)

5.1.3 4-[4-Fluoro-2-((1S,2S)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

A mixture of 0.100 g 4-[4-fluoro-2-((1S,2S)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 5.1.2), 2.5 mL ammonia in dioxane (0.5M), 0.109 g HATU and 0.046 mL DIPEA in 2 mL DMF was stirred at rt overnight. The reaction mixture was diluted with water, stirred and filtered. The filtercake was dried.

Yield: 0.086 g
ESI mass spectrum: m/z = 417 (M+H)⁺
Rt (HPLC): 1.61 min (Method L)
Example 52

4-[4-Fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid amide

52.1 4-[4-Fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to 51 from 1.723 g 4-chloro-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester and 1.600 g intermediate XX.

Yield: 2.780 g
ESI mass spectrum: m/z = 432 (M+H)^+
Rt (HPLC): 2.02 min (Method L)
Prepared analogously to 51.2 from 2.750 g 4-[4-fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (cpd. 52.1).

Yield: 2.630 g
ESI mass spectrum: m/z = 418 (M+H)+
Rt (HPLC): 1.74 min (Method L)

52.3 4-[4-Fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 51.3 from 0.120 g 4-[4-fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (cpd. 52.2).

Yield: 0.095 g
ESI mass spectrum: m/z = 417 (M+H)+
Rt (HPLC): 1.74 min (method L)

Example 53
4-[4-Fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide
A mixture of 0.096 g 4-[4-fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (cpd. 52.2), 0.081 g TBTU and 0.088 ml DIPEA in 15 ml THF was stirred at rt for 30 minutes. Then 0.028 ml dimethylaminopropylamine was added and stirring was continued overnight. The reaction mixture was concentrated and purified by chromatography.

Yield: 0.072 g
ESI mass spectrum: m/z = 502 (M+H)⁺
Rt (HPLC): 2.18 min (Method L)
Rf (TLC): 0.33 (silica gel, methylene chloride/methanol/NH₃ 90/1 0/1)

Example 54

4-[4-Fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (2-methoxy-ethyl)-amide

Prepared analogously to 53 from 0.091 g 4-[4-fluoro-2-((1R,2R)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (cpd. 52.2) and 0.020 ml methoxyethylamine.

Yield: 0.069 g
ESI mass spectrum: m/z = 475 (M+H)⁺
Rt (HPLC): 2.85 min (Method L)
Rf (TLC): 0.43 (silica gel, methylene chloride/methanol/NH₃ 90/1 0/1)

Example 55

Racemic 4-[4-Fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid amide
55.1 racemic 4-[4-Fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to 50.1 from 0.136 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.147 g intermediate XVI. Yield: 0.163 g

55.2 racemic 4-[4-Fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 42.2 from 0.163 g racemic 4-[fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (cpd. 55.1).

Yield: 0.149 g
55.3 racemic 4-[4-Fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid amide

Prepared analogously to 1.4 from 0.141 g racemic 4-[4-Fluoro-2-(cis-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid (cpd. 55.2).
Yield: 0.094 g
ESI mass spectrum: m/z = 431 (M+H)+
Rt (HPLC): 1.40 min (method X)

Example 56

Racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid amide

56.1 Racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid methylester

Prepared analogously to example 1.1 from 0.277 g 4-Chloro-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid methyl ester and 0.267 g intermediate XXXXXIV.
Yield: 0.173 g
56.2 Racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to example 1.3 from 0.173 g racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester.

Yield: 0.123 g

56.3 Racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

Prepared analogously to example 1.4 from 0.083 g racemic 4-[4-Fluoro-2-((cis)-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia.

Yield: 0.046 g

ESI mass spectrum: m/z = 417 (M+H)^+

Rt (HPLC): 1.3 (method X)

Example 57

Racemic 4-[4-Fluoro-2-((cis)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide
57.1 4-[4-Fluoro-2-(3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to example 1.1 from 0.485 g 4-Chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.491 g intermediate XXXXVI. Yield: 0.140 g

57.2 4-[4-Fluoro-2-(3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to example 1.3 from 0.48 g 4-[4-Fluoro-2-(3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester. Yield: 0.448 g

57.3 Racemic 4-[4-Fluoro-2-((cis)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide
Prepared analogously to example 1.4 from 0.445 g 4-[4-Fluoro-2-(3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ammonia. Separation in racemic cis and trans-isomer was performed by HPLC.

Yield: 0.095 g (title compound, cis.isomer)
ESI mass spectrum: m/z = 417 (M+H)+
Rt (HPLC): 1.3 (method X)

Example 58

Racemic 4-[4-Fluoro-2-((trans)-3-hydroxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to example 1.1 from 4.956 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 4.6 g intermediate II in isopropanol.

Yield: 6.1 g
ESI mass spectrum: m/z = 432 (M+H)+
58.2 Racemic 4-[4-Fluoro-2-((trans)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

2.665 g lithium hydroxide were added to a mixture of 6.5 g racemic racemic 4-[4-fluoro-2-((trans)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester in 350 ml water and 70 ml water. The mixture was stirred overnight. Then the mixture was acidified by addition of citric acid (10% in water) and concentrated. Water was added and the mixture was filtered. The solid was washed with water and dried.

Yield: 6.15 g
ESI mass spectrum: m/z = 418 (M+H)+

58.3 Racemic 4-[4-Fluoro-2-((trans)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to example 1.4 from 5.6 g racemic racemic 4-[4-Fluoro-2-((trans)-3-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and 100 ml ammonia (0.5 M in THF).

Yield: 3.85 g
ESI mass spectrum: m/z = 417 (M+H)+
Rt (HPLC): 2.55 (method A)

The following compounds were prepared analogously to 1.4:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td></td>
<td>Cpd. 58.2</td>
<td>472 (M+H)^+</td>
<td>1.74 min (Method F)</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>Cpd. 58.2</td>
<td>484 (M+H)^+</td>
<td>1.73 min (Method F)</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>Cpd. 58.2</td>
<td>489 (M+H)^+</td>
<td>1.77 min (Method E)</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>Cpd. 58.2</td>
<td>498 (M+H)^+</td>
<td>2.18 min (Method F)</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>Cpd. 58.2</td>
<td>456 (M+H)^+</td>
<td>1.79 min (Method E)</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>Cpd. 58.2</td>
<td>488 (M+H)^+</td>
<td>2.05 min (Method F)</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>Cpd. 58.2</td>
<td>512 (M+H)^+</td>
<td>1.91 min (Method F)</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>Cpd. 58.2</td>
<td>544 (M+H)^+</td>
<td>1.9 min (Method F)</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>Cpd. 58.2</td>
<td>516 (M+H)^+</td>
<td>1.74 min (Method F)</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>Cpd. 58.2</td>
<td>516 (M+H)^+</td>
<td>1.72 min (Method F)</td>
</tr>
</tbody>
</table>
Example 79
Racemic 4-[4-Fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

![Chemical Structure]

relative stereochemistry
racemic 4-[4-Fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethylester

Prepared analogously to example 1.1 from 0.76 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester and 0.7 g intermediate XXXXI in dioxan.

Yield: 1.04 g
ESI mass spectrum: m/z = 460 (M+H)+
Rt (HPLC): 5.41 (method C)

racemic 4-[4-Fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 1.02 g racemic 4-[4-fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethylester.

Yield: 0.36 g
ESI mass spectrum: m/z = 432 (M+H)+
Rt (HPLC): 4.13 (method C)

Racemic 4-[4-Fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide
Prepared analogously to example 1.4 from 0.15 g racemic racemic 4-[4-Fluoro-2-((trans)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia (7 M in methanol).

Yield: 0.05 g

ESI mass spectrum: m/z = 431 (M+H)^+

Rt (HPLC): 3.65 (method C)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td>Cpd. 79.2</td>
<td>498 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>Cpd. 79.2</td>
<td>503 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>Cpd. 79.2</td>
<td>512 (M+H)^+</td>
<td>1.95 min (Method E)</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>Cpd. 79.2</td>
<td>530 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>Cpd. 79.2</td>
<td>530 (M+H)^+</td>
<td>1.55min (Method E)</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>Cpd. 79.2</td>
<td>388 (M+H)^+</td>
<td>1.87 min (Method E)</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>Cpd. 79.2</td>
<td>528 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
</tbody>
</table>
Example 89

Racemic 4-[4-Fluoro-2-((cis)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

\[\text{Cpd. 79.2} \]

542 (M+H)+
1.56 min
(Method E)

88

Cpd. 79.2
516 (M+H)+
1.54 min
(Method E)

Prepared analogously to example 1.1 from 0.52 g 4-chloro-5-ethyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.43 g intermediate XXXX in dioxan.

Yield: 0.82 g

ESI mass spectrum: m/z = 460 (M+H)+

\(R_1 \) (HPLC): 5.34 (method C)

89.2 Racemic 4-[4-Fluoro-2-((cis)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid
Prepared analogously to 1.3 from 0.8 g racemic 4-[4-fluoro-2-((cis)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester.

Yield: 0.7 g

89.3 Racemic 4-[4-Fluoro-2-((cis)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

 Prepared analogously to example 1.4 from 0.3 g racemic 4-[4-Fluoro-2-((cis)-3-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia (0.5 M in dioxan).

Yield: 0.25 g

ESI mass spectrum: m/z = 431 (M+H)+

Rt (HPLC): 2.13 (method I)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td>Cpd. 89.2</td>
<td>486 (M+H)+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
<td>Compound</td>
<td>Mass (M+H)+</td>
<td>Retention Time</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>Cpd. 89.2</td>
<td>498(M+H)+</td>
<td>1.56min (Method E)</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>Cpd. 89.2</td>
<td>503(M+H)+</td>
<td>1.95 min (Method E)</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>Cpd. 89.2</td>
<td>512 (M+H)+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>Cpd. 89.2</td>
<td>470 (M+H)+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>Cpd. 89.2</td>
<td>502 (M+H)+</td>
<td>1.92 min (Method E)</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>Cpd. 89.2</td>
<td>526 (M+H)+</td>
<td>1.58min (Method E)</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>Cpd. 89.2</td>
<td>558 (M+H)+</td>
<td>1.57min (Method E)</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>Cpd. 89.2</td>
<td>530 (M+H)+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>Cpd. 89.2</td>
<td>530 (M+H)+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>Cpd. 89.2</td>
<td>529 (M+H)+</td>
<td>1.97 min (Method E)</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>Cpd. 89.2</td>
<td>475 (M+H)+</td>
<td>1.92 min (Method E)</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>Cpd. 89.2</td>
<td>528 (M+H)+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>Cpd. 89.2</td>
<td>542 (M+H)+</td>
<td>1.59 min (Method E)</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>Cpd. 89.2</td>
<td>489 (M+H)+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>Cpd. 89.2</td>
<td>489 (M+H)+</td>
<td>1.94min (Method E)</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>Cpd. 89.2</td>
<td>542 (M+H)+</td>
<td>1.57min (Method E)</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>Cpd. 89.2</td>
<td>525 (M+H)+</td>
<td>1.56min (Method E)</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>Cpd. 89.2</td>
<td>516 (M+H)+</td>
<td>1.31min (Method X)</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Cpd. 89.2</td>
<td>459 (M+H)+</td>
<td>2.0min (Method E)</td>
</tr>
</tbody>
</table>

Example 110
Racemic 4-[2-((cis)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide.

Prepared analogously to example 1.1 from 2.22 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 1.669 g intermediate XXXXII in dioxan.

Yield: 1.82 g
ESI mass spectrum: m/z = 429 (M+H)+
Rt (HPLC): 5.08 (method C)
110.2 Racemic 4-[2-((cis)-3-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 1.82 g racemic 4-[2-((cis)-3-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid methylester.
Yield: 1.75 g
ESI mass spectrum: m/z = 415 (M+H)+
Rt (HPLC): 4.06 (method C)

110.3 Racemic 4-[2-((cis)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid amide.

Prepared analogously to example 1.4 from 0.1 g racemic 4-[2-((cis)-3-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid and ammonia (7 M in methanol) using TBTU instead of HATU in DMF as solvent.
Yield: 0.078 g
ESI mass spectrum: m/z = 414 (M+H)+
Rt (HPLC): 1.32 (method J)

The following compounds were prepared analogously to 1.4:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td></td>
<td>Cpd. 110.2</td>
<td>469 (M+H)^*</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>Cpd. 110.2</td>
<td>481 (M+H)^+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>Cpd. 110.2</td>
<td>486 (M+H)^+</td>
<td>1.95 min (Method E)</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>Cpd. 110.2</td>
<td>495 (M+H)^+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>Cpd. 110.2</td>
<td>453 (M+H)^+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>Cpd. 110.2</td>
<td>485 (M+H)^+</td>
<td>1.91 min (Method E)</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>Cpd. 110.2</td>
<td>509 (M+H)^+</td>
<td>1.91 min (Method E)</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>Cpd. 110.2</td>
<td>541 (M+H)^+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>Cpd. 110.2</td>
<td>513 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>Cpd. 110.2</td>
<td>513 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>No.</td>
<td>Formula</td>
<td>Compound</td>
<td>Retention Time</td>
<td>Detailed Info</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>Cpd. 110.2</td>
<td>512 (M+H)^+</td>
<td>1.92 min (Method E)</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>Cpd. 110.2</td>
<td>458 (M+H)^+</td>
<td>1.92 min (Method E)</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>Cpd. 110.2</td>
<td>511 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>Cpd. 110.2</td>
<td>525 (M+H)^+</td>
<td>1.57 min (Method E)</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>Cpd. 110.2</td>
<td>472 (M+H)^+</td>
<td>2.21 min (Method E)</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>Cpd. 110.2</td>
<td>472 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>Cpd. 110.2</td>
<td>525 (M+H)^+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>Cpd. 110.2</td>
<td>508 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>Cpd. 110.2</td>
<td>499 (M+H)^+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>Cpd. 110.2</td>
<td>442 (M+H)^+</td>
<td>2.01 min (Method E)</td>
</tr>
</tbody>
</table>

Example 13.1

Racemic 4-{2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino}1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide.
13.1.1 Racemic 4-[2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester

Prepared analogously to example 1.1 from 1.48 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester and 1.1 g intermediate XXXIII in dioxan.

Yield: 1.14 g
ESI mass spectrum: m/z = 443 (M+H)+
Rt (HPLC): 1.76 (method H)

13.1.2 Racemic 4-[2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 1.1 g racemic 4-[2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethylester.

Yield: 0.92 g
ESI mass spectrum: m/z = 415 (M+H)+
Rt (HPLC): 4.15 (method C)

13.1.3 Racemic 4-[2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

Relative stereochemistry
Prepared analogously to example 1.4 from 0.11 g racemic 4-[2-((trans)-3-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia (7 M in methanol) using TBTU instead of HATU in DMF as solvent.

Yield: 0.068 g

ESI mass spectrum: m/z = 414 (M+H)^+

Rt (HPLC): 3.4 (method C)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td></td>
<td>Cpd. 131.2</td>
<td>469 (M+H)^+</td>
<td>1.49 min (Method E)</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>Cpd. 131.2</td>
<td>481(M+H)^+</td>
<td>1.5 min (Method E)</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>Cpd. 131.2</td>
<td>486 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>Cpd. 131.2</td>
<td>495 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>Cpd. 131.2</td>
<td>453 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>Cpd. 131.2</td>
<td>485 (M+H)^+</td>
<td>2.26 min (Method F)</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>Cpd. 131.2</td>
<td>509 (M+H)^+</td>
<td>1.53 min (Method E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>Cpd. 131.2</td>
<td>541 (M+H)+</td>
<td>1.51 min (Method E)</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>Cpd. 131.2</td>
<td>513 (M+H)+</td>
<td>1.5 min (Method E)</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>Cpd. 131.2</td>
<td>513 (M+H)+</td>
<td>1.51 min (Method E)</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>Cpd. 131.2</td>
<td>512 (M+H)+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>Cpd. 131.2</td>
<td>458 (M+H)+</td>
<td>1.89 min (Method E)</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>Cpd. 131.2</td>
<td>511 (M+H)+</td>
<td>1.51 min (Method E)</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>Cpd. 131.2</td>
<td>525 (M+H)+</td>
<td>1.55 min (Method E)</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>Cpd. 131.2</td>
<td>472 (M+H)+</td>
<td>1.93 min (Method E)</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>Cpd. 131.2</td>
<td>472 (M+H)+</td>
<td>1.92 min (Method E)</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>Cpd. 131.2</td>
<td>525 (M+H)+</td>
<td>1.53 min (Method E)</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>Cpd. 131.2</td>
<td>499 (M+H)+</td>
<td>1.5 min (Method E)</td>
</tr>
</tbody>
</table>

Example 150

4-[4-Fluoro-2-((cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyridine-6-carboxylic acid amide
0.064 g sodium borohydride were added to a mixture of 0.7 g 4-(4-fluoro-2-(4-oxocyclohexyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide (example 21) in 20 ml methanol at 0 °C. The mixture was allowed to warm up overnight. The reaction mixture was filtered. The solid was recrystallized from hot methanol. The mixture of cis and trans isomer was separated by HPLC.

Cis-Isomer:

Yield: 0.412 g

ESI mass spectrum: m/z = 417 (M+H)+

Rt (HPLC): 1.28 (method X)

Example 15.1

4-[4-Fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

15.1.1 4-[4-Fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to example 1.1 from 0.218 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.225 g intermediate XXVI in dioxan.

Yield: 0.301 g
15.1.2 4-[4-Fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.301 g 4-[4-fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester.

Yield: 0.262 g

15.1.3 4-[4-Fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

Prepared analogously to example 1.4 from 0.11 g 4-[4-fluoro-2-(cis-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid in DMF.

Yield: 0.113 g

ESI mass spectrum: m/z = 502 (M+H)⁺

Rt (HPLC): 1.23 (method X)

Example 152

4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide
152.1 4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester

Prepared analogously to example 1.1 from 2.756 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester and 2 g intermediate XXVII in dioxan.
Yield: 2.85 g
ESI mass spectrum: \(m/z = 446 \) (M+H)

152.2 4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 2.8 g 4-[4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester.
Yield: 2.29 g
ESI mass spectrum: \(m/z = 418 \) (M+H)
Rt (HPLC): 1.65 (method K)

152.3 4-[2-((trans)-4-hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid
0.072 g EDC were added to a mixture of 0.13 g 4-[4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and 0.054 g N-Hydroxysuccinimide in DMF(2ml). The reaction mixture was stirred at rt overnight then diluted with EtOAc and washed with water and brine (2x). The organic phase was passed through a hydrophobic frit and evaporated. The residue was treated with 2ml DMF and 213 μl 3-dimethylaminopropylamine were added. The mixture was stirred at rt for 40 minutes and then diluted with EtOAc and washed with water and brine (2x). The organic phase was dried with MgSO₄ and passed through a hydrophobic frit.

Yield: 0.089 g

ESI mass spectrum: m/z = 502 (M+H)⁺

Rt (HPLC): 1.23 (method X)

Example 153

4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-pyrrolidin-1-yl-propyl)-amide

153.1
0.309 g EDC were added to a suspension of 0.573 g 4-[4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid and 0.231 g N-Hydroxysuccinimide in 5 ml DMF. The reaction mixture was stirred at rt overnight. Then EtOAc and water were added. The suspension was filtered, the filtrate was separated and the aqueous phase was discarded. The organic phase was washed with water and brine (2x) and water. The solvent was evaporated and the residue suspended in ether and filtered. The residues were combined, washed with further ether and air-dried under vacuum.

Yield: 0.707 g

153.2 4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-pyrrolidin-1-yl-propyl)-amide

175 µl 3-pyrrolidin-1-yl-propylamine were added to a solution of 0.12 g compound 153.1 in 1 ml DMF. The reaction mixture was stirred for 1h then diluted with EtOAc/H₂O. The mixture was filtered, the solid washed with water and ether. The solid was dissolved in d₆-DMSO and evaporated to dryness (Genevac).

Yield: 0.058 g

ESI mass spectrum: m/z = 528 (M+H)⁺

Rt (HPLC): 1.24 (method X)
The following compounds were prepared analogously to 153.2:

\[
\begin{array}{c}
\text{Example} \\
154 \\
155 \\
156 \\
157
\end{array}
\]

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td></td>
<td>Cpd. 153.1</td>
<td>544 (M+H)<sup>+</sup></td>
<td>1.23 min (Method X)</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>Cpd. 153.1</td>
<td>461 (M+H)<sup>+</sup></td>
<td>1.25 min (Method X)</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>Cpd. 153.1</td>
<td>525 (M+H)<sup>+</sup></td>
<td>1.23 min (Method X)</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>Cpd. 153.1</td>
<td>528 (M+H)<sup>+</sup></td>
<td>1.24 min (Method X)</td>
</tr>
</tbody>
</table>

5 Example 158

4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide
Prepared analogously to example 1.4 from 7 g 4-[4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c']pyrimidine-6-carboxylic acid in DMF.

Yield: 2.82 g

ESI mass spectrum: m/z = 417 (M+H)^+

Rt (HPLC): 1.62 (method K)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td></td>
<td>Cpd. 152.2</td>
<td>472(M+H)^+</td>
<td>1.77 min (Method F)</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>Cpd. 152.2</td>
<td>484 (M+H)^+</td>
<td>1.75 min (Method F)</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>Cpd. 152.2</td>
<td>489 (M+H)^+</td>
<td>1.82 min (Method E)</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>Cpd. 152.2</td>
<td>498 (M+H)^+</td>
<td>1.83 min (Method E)</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>Cpd. 152.2</td>
<td>456 (M+H)^+</td>
<td>1.83 min (Method E)</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>Cpd. 152.2</td>
<td>488 (M+H)^+</td>
<td>2.09 min (Method F)</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>Cpd. 152.2</td>
<td>512 (M+H)^+</td>
<td>1.46 min (Method E)</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Compound</td>
<td>Mass (M+H)+</td>
<td>Retention Time</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>Cpd. 152.2</td>
<td>516 (M+H)+</td>
<td>1.75 min (Method F)</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td>Cpd. 152.2</td>
<td>516 (M+H)+</td>
<td>1.77 min (Method F)</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>Cpd. 152.2</td>
<td>515 (M+H)+</td>
<td>1.84 min (Method E)</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>Cpd. 152.2</td>
<td>514 (M+H)+</td>
<td>1.46 min (Method E)</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>Cpd. 152.2</td>
<td>528 (M+H)+</td>
<td>1.48 min (Method E)</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td>Cpd. 152.2</td>
<td>475 (M+H)+</td>
<td>1.81 min (Method E)</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td>Cpd. 152.2</td>
<td>475 (M+H)+</td>
<td>1.8 min (Method E)</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>Cpd. 152.2</td>
<td>445 (M+H)+</td>
<td>1.87 min (Method E)</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td>Cpd. 152.2</td>
<td>511 (M+H)+</td>
<td>1.45 min (Method E)</td>
</tr>
</tbody>
</table>

Example 175

4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

![Chemical Structure](image10.png)

175.1 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethylester
Prepared analogously to example 1.1 from 5.842 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethyl ester and 4.9 g intermediate XXXXXVII in dioxan.

Yield: 2.85 g

ESI mass spectrum: \(m/z = 446 \ (M+H)^+ \)

175.2 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 58.2 from 9.1 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid ethylester.

Yield: 6.8 g

ESI mass spectrum: \(m/z = 432 \ (M+H)^+ \)

\(R_t \) (HPLC): 3.17 (method A)

175.3 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide
Prepared analogously to 1.4 from 0.1 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia (7M in methanol).

Yield: 0.072 g

ESI mass spectrum: m/z = 431 (M+H)^+
Rt (HPLC): 1.39 (method X)

The following compound were prepared analogously to 1.4:

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td></td>
<td>Cpd. 175.2</td>
<td>516(M+H)^+</td>
<td>1.29 min (Method X)</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>Cpd. 175.2</td>
<td>542 (M+H)^+</td>
<td>2.2 min (Method A)</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>Cpd. 175.2</td>
<td>498 (M+H)^+</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td>Cpd. 175.2</td>
<td>530 (M+H)^+</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>Cpd. 175.2</td>
<td>530 (M+H)^+</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>Cpd. 175.2</td>
<td>503 (M+H)^+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>Cpd. 175.2</td>
<td>470 (M+H)^+</td>
<td>1.95 min (Method E)</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Compound</td>
<td>Mass (M+H)+</td>
<td>Retention Time</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>Cpd. 175.2</td>
<td>529 (M+H)+</td>
<td>1.96 min (Method E)</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>Cpd. 175.2</td>
<td>489 (M+H)+</td>
<td>1.94 min (Method E)</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>Cpd. 175.2</td>
<td>512 (M+H)+</td>
<td>1.95 min (Method E)</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td>Cpd. 175.2</td>
<td>525 (M+H)+</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>187</td>
<td></td>
<td>Cpd. 175.2</td>
<td>526 (M+H)+</td>
<td>1.56 min (Method E)</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td>Cpd. 175.2</td>
<td>502 (M+H)+</td>
<td>1.91 min (Method E)</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td>Cpd. 175.2</td>
<td>486 (M+H)+</td>
<td>1.54 min (Method E)</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>Cpd. 175.2</td>
<td>542 (M+H)+</td>
<td>1.58 min (Method E)</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td>Cpd. 175.2</td>
<td>528 (M+H)+</td>
<td>1.55 min (Method E)</td>
</tr>
</tbody>
</table>

Example 192

4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-morpholin-4-yl-propyl)-amide
Prepared analogously to 153.1 from 0.267 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and 0.143 g EDC.

Yield: 0.232 g

Prepared analogously to 153.2 from 0.161 g compound 192.1 and 222 µl N-(3-aminopropyl)morpholine.

Yield: 0.130 g

ESI mass spectrum: m/z = 558 (M+H)+

R_t (HPLC): 1.29 (method X)

The following compound were prepared analogously to 153.2:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td></td>
<td>Cpd. 192.1</td>
<td>502(M+H)^+</td>
<td>1.29 min (Method X)</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td>Cpd. 192.1</td>
<td>542 (M+H)^+</td>
<td>1.3 min (Method X)</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>Cpd. 192.1</td>
<td>489 (M+H)^+</td>
<td>1.37 min (Method X)</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td>Cpd. 192.1</td>
<td>475 (M+H)^+</td>
<td>1.35 min (Method X)</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td>Cpd. 192.1</td>
<td>539 (M+H)^+</td>
<td>1.3 min (Method X)</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td>Cpd. 192.1</td>
<td>571 (M+H)^+</td>
<td>1.24 min (Method X)</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td>Cpd. 192.1</td>
<td>544 (M+H)^+</td>
<td>1.28 min (Method X)</td>
</tr>
</tbody>
</table>

Example 200

4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (pipehdin-3-ylmethyl)-amide
200.1 3-[[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carbonyl]-amino)-methyl1-piperidine-1-carboxylic acid tert-butyl ester

Prepared analogously to 153.2 from 0.1 g compound 192.1 and 0.15 g 3-aminomethyl-piperidine-1-carboxylic acid tert-butyl ester.

Yield: 0.119 g

200.2 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (piperidin-3-ylmethyl)-amide

Prepared analogously to IV.2 from 0.119 g 3-[[4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)]-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carbonyl]-amino)-methyl]-piperidine-1-carboxylic acid tert-butyl ester.

Yield: 0.059 g

ESI mass spectrum: m/z = 558 (M+H)+

Example 201

4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid [3-(3-hydroxy-pyrrolidin-1-ylD-propyll-amide
201.1 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3,3-diethoxy-propyl)-amide

5 Prepared analogously to 153.2 from 0.287 g compound 192.1 and 437 μl 1-amino-3,3-diethoxypropane.

Yield: 0.266 g

201.2 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-oxo-propyl)-amide

A mixture of 0.261 g compound 201.1 and p-toluene sulfonic acid in 3 ml acetone were heated at reflux for 30 minutes. Then methylene chloride and aq. potassium carbonate solution (10%) were added and the mixture was shaken. After that the mixture was passed through a hydrophobic frit. The filtrate was evaporated.

Yield: 0.213 g
0.155 g sodium triacetoxyborohydride were added to a solution of the 0.21 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-oxo-propyl)-amide and 43 µl 3-pyrrolidinol in methylene chloride followed by addition of 49 µl acetic acid. The mixture was stirred at rt overnight, diluted with methylene chloride and then washed with 10% aq. K2CO3. The mixture was passed through a hydrophobic frit. The filtrate was evaporated and purified by chromatography.

Yield: 0.15 g

ESI mass spectrum: m/z = 558 (M+H)^+

Rt (HPLC): 1.28 (method X)

Example 202

4-[4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

202.1 4-[4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester
Prepared analogously to example 1.1 from 0.507 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.5 g intermediate XXXXXVIII in dioxan.

Yield: 0.905 g
ESI mass spectrum: \(m/z = 446 \text{ (M+H)}^+ \)
Rt (HPLC): 2.22 (method K)

202.2 4-[4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.85 g 4-[4-fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester.

Yield: 0.753 g
ESI mass spectrum: \(m/z = 432 \text{ (M+H)}^+ \)
Rt (HPLC): 3.22 (method A)

202.3 4-[4-Fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide
Prepared analogously to 1.4 from 0.1 g 4-[4-fluoro-2-(cis-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and 42 µN,N-dimethyl-1,3-propanediamine.

Yield: 0.097 g

ESI mass spectrum: m/z = 516 (M+H)^+

Rt (HPLC): 1.34 (method K)

The following compound was prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>H</td>
<td>Cpd. 202.2</td>
<td>489(M+H)^+</td>
<td>1.83min (Method K)</td>
</tr>
</tbody>
</table>

Example 204

4-[2-(trans-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

204.1 4-[2-(4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester
Prepared analogously to example 1.1 from 1.78 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 1.53 g intermediate XXXXXXIX in dioxan.

Yield: 1.8 g

204.2 4-[2-(4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to 1.3 from 0.363 g 4-[2-(4-hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester.

Yield: 0.221 g

204.3 4-[2-(trans-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to 1.4 from 0.1 g 4-[2-(trans-4-hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia in methanol (7M) in DMF. Separated from cis isomer by chromatography.

Yield: 0.008 g

Example 205
4-[2-(cis-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-\n\c/pyrimidine-6-carboxylic acid amide

Prepared analogously to 1.4 from 0.1 g 4-[2-(4-hydroxy-cyclohexyloxy)-pyridin-3-
ylamino]-5-methyl-thieno[2,3-\c/pyrimidine-6-carboxylic acid and ammonia in methanol (7M) in DMF. Separated from trans isomer by chromatography.

Yield: 0.009 g
ESI mass spectrum: m/z = 400 (M+H)^+
Rt (HPLC): 1.26 (method X)

Example 206
4-[2-(trans-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-
c/pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

Prepared analogously to example 1.1 from 0.262 g 4-chloro-5-methyl-thieno[2,3-
c/pyrimidine-6-carboxylic acid methyl ester and 0.203 g intermediate XXXXXX in dioxan.

Yield: 0.352 g
ESI mass spectrum: \(m/z = 415 \text{ (M+H)}^+ \)

206.2 4-[2-(trans-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid

Prepared analogously to 58.2 from 0.352 g 4-[2-(trans-4-hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid methylester.

Yield: 0.083 g

ESI mass spectrum: \(m/z = 401 \text{ (M+H)}^+ \)

206.3 4-[2-(trans-4-Hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

Prepared analogously to 1.4 from 0.083 g 4-[2-(trans-4-hydroxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid and 26 \(\mu l \) N,N-dimethyl-1,3-propanediamine in THF using TBTU instead of HATU.

Yield: 0.077 g

ESI mass spectrum: \(m/z = 485 \text{ (M+H)}^+ \)

\(R_t \) (HPLC): 1.91 (method A)

Example 207

4-[2-(trans-4-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c/]pyrimidine-6-carboxylic acid amide
207.1 4-(2-Hydroxy-pyridin-3-ylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to example 1 from 0.2 g 4-chloro-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.1 g 3-amino-pyridin-2-ol in dioxan.

Yield: 0.258 g
ESI mass spectrum: m/z = 317 (M+H)^+

207.2 4-[2-(trans-4-Methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to example XVI.1 from 1.215 g 4-(2-hydroxy-pyridin-3-ylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester and 0.6 g cis-4-methoxycyclohexanol using DTAD and triphenylphosphine (polymerically bound from Aldrich).

Yield: 0.24 g
ESI mass spectrum: m/z = 429 (M+H)^+
Prepared analogously to 1.3 from 0.24 g 4-[2-(trans-4-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methylester.
Yield: 0.21 g

207.4 4-[2-(trans-4-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (3-dimethylamino-propyl)-amide

Prepared analogously to 1.4 from 0.005 g 4-[2-(trans-4-methoxy-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid and ammonia (0.5 M in THF) in DMF using TBTU instead of HATU.
Yield: 0.034 g
ESI mass spectrum: m/z = 414 (M+H)⁺

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>[H]</td>
<td>Cpd. 207.3</td>
<td>428 (M+H)⁺</td>
<td>1.83min (Method K)</td>
</tr>
</tbody>
</table>
Intermediate XXXXX (243 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (250 mg) and p-toluenesulfonic acid (20 mg) in dioxane (3.0 ml) were heated at 110°C for 8 h. The reaction mixture was diluted with DCM and NH₄OH, separated and filtered. The solid was washed with DCM and water. The filtrate was separated and the organic layer was concentrated in vacuo. The residue was suspended in water and filtered. The combined solids were washed with water and diethyl ether then dried in vacuo to give the desired product.

Yield: 366 mg
2.0 M aq. sodium hydroxid was added to a mixture of compound 211.1 (366 mg) in ethanol (4.0 ml) and THF (4.0 ml) and stirred at rt for 4 h. The mixture was diluted with 10% aq. KH\textsubscript{2}SO\textsubscript{4} and filtered. The filtercake was washed with water and diethyl ether and dried in vacuo to give the desired product.

Yield: 342 mg

HATU (388 mg) was added at 0°C to a mixture of compound 211.2 (356 mg) and DIPEA (178 µl) in DMF (4.0 ml). After 30 min 7 M NH\textsubscript{3} in methanol (2.0 ml) was added and the mixture was allowed to warm to room temperature overnight. The reaction mixture was partitioned between EtOAc and water and filtered. The filtercake was washed with EtOAc and water, then suspended in ethanol and evaporated in vacuo. The residue was suspended in methanol, filtered and dried in vacuo to give the desired product.

Yield: 200 mg

ESI-MS: m/z = 419 [M+H]+

Rt (HPLC): 1.19 (method X)
Example 2.1

Intermediate XXXXV (379 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (344 mg) and p-toluenesulfonic acid (27 mg) in dioxane (5.0 ml) were heated at 110°C for 1 h. The reaction mixture was diluted with EtOAc and washed with 10% aq. K2CO3 and brine. The organic layer was concentrated in vacuo. The residue suspended in methanol and filtered to yield the desired product.

Yield: 428 mg

Example 2.2

2 M aq. HCl (10.0 ml) was added to compound 2.1 (672 mg) in THF (10.0 ml) and the mixture was heated at reflux. After 30 min the reaction mixture was concentrated
in vacuo. The residue was partitioned between methylene chloride and 2 M aq. sodium hydroxid. The mixture was filtered. The filtercake was washed with diethyl ether and dried under vacuo to give the desired product.

Yield: 406 mg

ESI-MS: m/z = 434 [M+H]+

Prepared analogously to 1.3 from 0.333 g compound 212.2.

Yield: 250 mg

Prepared analogously to 1.4 from 0.249 g compound 212.3 and ammonia (7 M in methanol).

Yield: 183 mg

ESI-MS: m/z = 419 [M+H]+

Rt (HPLC): 1.2 (method X)
A mixture of compound 212.4 (84 mg), 2,2-dimethoxypropan (1.0 ml) and p-
toluenesulfonic acid (16 mg) in DMF (1.0 ml) was stirred at room temperature
overnight. The reaction mixture was diluted with EtOAc and washed with 10%
aq. K2CO3 and water. The organic layer was concentrated in vacuo. After trituated
with diethyl ether the residue was heated in methanol/water, allowed to cool and
filtered to give the desired product.
Yield: 60 mg
ESI-MS: m/z = 459 [M+H]^+
Rt (HPLC): 1.4 (method X)

Example 214

Relative stereochemistry

214.1

Relative stereochemistry

214.1

Relative stereochemistry
Intermediate XXXXVI (89 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (83 mg) and p-toluenesulfonic acid (7 mg) in dioxane (1.0 ml) were heated at 110°C for 2 h. The reaction mixture was diluted with methylene chloride and 3 M aq. NH₃ and passed through a hydrophobic frit. The organic layer was concentrated in vacuo. The residue suspended in methanol and filtered to yield the desired product.

Yield: 128 mg

ESI-MS: m/z = 446 [M+H]⁺

214.2

Compound 214.1 (126 mg) in ethanol (1.0 ml), THF (1.0 ml) and 2 M aq. sodium hydroxid (0.7 ml) were heated at reflux for 1.5 h. 2 M aq. HCl was added to the reaction mixture and filtered. The filtercake was suspended in ethanol and concentrated in vacuo to give the desired product.

Yield: 119 mg

214.3

HATU (123 mg) was added at 0°C to a mixture of compound 214.2 (116 mg) and DIPEA (56 µl) in DMF (1.5 ml). After 30 min 7 M NH₃ in methanol (0.7 ml) was added and the mixture was allowed to warm to room temperature overnight. The reaction
mixture was concentrated in vacuo and re-evaporated from toluene. The residue was suspended in methanol, heated to reflux and cooled. The mixture was filtered and the filtercake was washed with diethyl ether to give the desired product.

Yield: 86 mg

ESI-MS: m/z = 431 [M+H]^+

Rt HPLC-MS: 1.32 min (Method X)

The following compound was prepared analogously to 1.4.:

![Chemical structure]

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td></td>
<td>Cpd. 214.2</td>
<td>516 (M+H)^+</td>
<td>1.93min (Method A)</td>
</tr>
</tbody>
</table>

Example 216

![Chemical structure]

relative stereochemistry

216.1
Intermediate XXXXVII (360 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (285 mg) and p-toluenesulfonic acid (22 mg) in dioxane (3.0 ml) were heated at 110°C for 5 h. The reaction mixture was allowed to cool, diluted with methylene chloride and 10% aq. K2CO3 and passed through a hydrophobic frit. The organic layer was concentrated in vacuo to give the desired product.

Yield: 430 mg

Compound 216.1 (430 mg) in methanol (5.0 ml), THF (5.0 ml) and 2 M aq. sodium hydroxid (2.4 ml) was heated at reflux for 20 min. After addition of 2 M aq.HCl the reaction mixture was concentrated in vacuo. The crude was suspended in water, filtered and washed with water. The filtercake was re-evaporated from ethanol. The residue was triturated with hot methanol, cooled, filtered and dried to give the desired product.

Yield: 346 mg
HATU (91 mg) was added at 0°C to a mixture of compound 216.2 (90 mg) and DIPEA (42 µl) in DMF (1.0 ml). After 30 min 7 M NH₃ in methanol (1.0 ml) was added and the mixture was allowed to warm to room temperature over weekend. The reaction mixture was concentrated in vacuo. The residue was treated with ethanol and water, filtered and washed with water and diethyl ether. The filtercake was re-evaporated from DMSO to yield the desired product.

Yield: 20 mg

ESI-MS: m/z = 447 [M+H]⁺

Rᵣ HPLC-MS: 1.31 min (Method X)

The following compound was prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td></td>
<td>Cpd. 216.2</td>
<td>532 (M+H)⁺</td>
<td>1.25min (Method X)</td>
</tr>
</tbody>
</table>

Example 218
Intermediate XXXVIII (139 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (128 mg) and p-toluenesulfonic acid (10 mg) in dioxane (2.0 ml) were heated at 100°C for 2 h. The reaction mixture was allowed to cool and treated with DCM and 10% aq. K2CO3. The mixture separated. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue triturated with MeOH to yield the desired product.

Yield: 194 mg
Compound 2.18.1 (194 mg) in MeOH (2.5 ml), THF (2.5 ml) and 2 M aq. sodium hydroxid (1.0 ml) were heated at reflux for 30 min. The reaction mixture was allowed to cool and concentrated in vacuo. The crude was treated with 2 M aq. HCl and filtered. The filtercake was washed with water, suspended in EtOH and concentrated in vacuo to give the desired product.

Yield: 153 mg

HATU (158 mg) was added at 0°C to a mixture of compound 2.18.2 (150 mg) and DIPEA (72 µl) in DMF (1.5 ml). After 30 min 7 M NH₃ in methanol (0.75 ml) was added and the mixture was allowed to warm to room temperature overnight. The reaction mixture was concentrated in vacuo. The residue was partitioned between EtOAc and water and filtered. The filtercake was washed with water and diethyl ether and purified by chromatography to give the desired product.

Yield: 50 mg

ESI-MS: m/z = 431 [M+H]⁺
Rt HPLC-MS: 1.29 min (Method X)
Example 2.19

Intermediate XXXIX (363 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (330 mg) and p-toluenesulfonic acid (26 mg) in dioxane (5.0 ml) were heated at 110°C for 4 h. The reaction mixture was treated with EtOAc and 10% aq. K2CO3. The mixture was filtered and the filtercake was washed with diethyl ether. The filtrate was separated. The organic layer was concentrated in vacuo. The crude was suspended in methanol and filtered to yield the desired product.

Yield: 615 mg
2 M aq. HCl (10.0 ml) was added to compound 219.1 (644 mg) in THF (10.0 ml) and the mixture was heated at reflux. After 20 min the reaction mixture was allowed to cool and concentrated in vacuo. The residue was partitioned between methylene chloride and 10% aq. K2CO3. The mixture was filtered. The filtercake was washed with diethyl ether and dried to give the desired product.

Yield: 531 mg
ESI-MS: m/z = 434 [M+H]^+

Compound 219.2 (448 mg) in EtOH (5.0 ml), THF (5.0 ml) and 2M aq. sodium hydroxid (3.0 ml) was stirred at room temperature for 1.5 h. The reaction mixture was concentrated in vacuo. The crude was treated with 10% aq. KHSO4 and filtered. The filtercake was washed with water and diethyl ether and dried to give the desired product.

Yield: 372 mg
HATU (91 mg) was added at 0°C to a mixture of compound 219.3 (82 mg) and DIPEA (42 µl) in DMF (1.0 ml). After 30 min 7 M NH₃ in methanol (0.5 ml) was added and the mixture was allowed to warm to room temperature overnight. The reaction mixture was partitioned between EtOAc and water. The organic layer was washed with brine and water. The resultant mixture was filtered. The filtercake was washed with diethyl ether, water and diethyl ether to give the desired product.

Yield: 46 mg

ESI-MS: m/z = 419 [M+H]⁺

Rₜ HPLC-MS: 1.21 min (Method X)

Example 220

A mixture of compound 219.4 (218 mg), 2,2-dimethoxypropan (1.0 ml) and p-toluenesulfonic acid (20 mg) in DMF (1.0 ml) was stirred at room temperature overnight. Further p-toluenesulfonic acid (20 mg) was added and stirring continued at 60°C for 45 min. The reaction mixture was diluted with 10% aq. K₂CO₃ and methanol. The mixture was filtered to give the desired product.

Yield: 177 mg

ESI-MS: m/z = 459 [M+H]⁺
Rt HPLC-MS: 1.35 min (Method X)

Example 221.

Intermediate XXXXX (505 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (385 mg) and p-toluenesulfonic acid (60 mg) in dioxane (5.0 ml) were heated at 110°C for 8 h. The reaction mixture was diluted with methylene chloride and 10% aq. K2CO3 and brine. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was triturated with methanol to yield the desired product.

Yield: 488 mg
Compound 221\textsubscript{1} (488 mg) in methanol (5.0 ml), THF (5.0 ml) and 2 M aq. sodium hydroxid (2.6 ml) were stirred at reflux for 30 min. The reaction mixture was allowed to cool and treated with 10% aq. KHSO\textsubscript{4}. The mixture was filtered. The filtercake was washed with water and dried to give the desired product.

Yield: 600 mg

HATU (228 mg) was added at 0°C to a mixture of compound 221\textsubscript{2} (230 mg) and DIPEA (104 \textmu l) in DMF (3.0 ml). After 30 min 7 M NH\textsubscript{3} in methanol (1.5 ml) was added and the mixture was allowed to warm to room temperature over weekend. The reaction mixture was concentrated in vacuo. The residue was treated with THF (3.0 ml) and 2 M aq. HCl (3 ml) at reflux for 20 min. The mixture was partitioned between EtOAc and water and filtered. The filtercake was washed with water and diethyl ether to give the desired product.

Yield: 134 mg

ESI-MS: m/z = 419 [M+H]+

Rt HPLC-MS: 1.21 min (Method X)
HATU (228 mg) was added at 0°C to a mixture of 221.2 (230 mg) and DIPEA (104 µl) in DMF (3.0 ml). After 30 min 3-dimethylaminopropylamine (31.5 µl) was added and the mixture was allowed to warm to room temperature over weekend. The reaction mixture was concentrated in vacuo. The residue was treated with THF (3.0 ml) and 2 M aq. HCl (3 ml) at reflux for 20 min. The mixture was partitioned between EtOAc and 10% aq. K2CO3. The organic layer was concentrated in vacuo. The residue was triturated with methanol, filtered and washed with diethyl ether to give the desired product.

Yield: 65 mg

ESI-MS: m/z = 504 [M+H]^+

R_t HPLC-MS: 1.18 min (Method X)

Example 223
Prepared analogously to 1.1 from intermediate 0.091 g XXXXXI and 0.076 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester.

Yield: 76 mg

Compound 223.1 (76 mg) in MeOH (0.5 ml), THF (0.5 ml) and 2M aq. sodium hydroxid (0.4 ml) were stirred at reflux for 20 min. The reaction mixture was allowed to cool and treated with 10% aq. KHSO₄. The mixture was filtered. The filtercake was washed with water and dried to give the desired product.

Yield: 70 mg
HATU (64 mg) was added at 0°C to a mixture of compound 223.2 (94 mg) and DIPEA (29 µl) in DMF (1.0 ml). After 30 min 7 M NH₃ in methanol (0.5 ml) was added and the mixture was allowed to warm to room temperature over weekend. The reaction mixture was concentrated in vacuo. The residue was treated with THF (1.0 ml) and 2 M aq. HCl (1.0 ml) at reflux for 20 min. The mixture was diluted with EtOAc and washed with water and 10% aq. K₂CO₃. The organic was concentrated in vacuo. The residue was purified by chromatography to yield the desired product.

Yield: 15 mg

ESI-MS: m/z = 419 [M+H]+

R₁ HPLC-MS: 1.20 min (Method X)

Example 224

Intermediate XXXXII (384 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (429 mg) and p-toluenesulfonic acid (34 mg) in dioxane (5.0 ml) were heated at 110°C for 4 h. The reaction mixture was diluted with methylene chloride and washed with 10% aq. K₂CO₃ and brine. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was treated with diethyl ether, filtered and washed to yield the desired product.
Yield: 480 mg

224.2

Compound 224.1 (200 mg) in methanol (1.5 ml), THF (1.5 ml) and 2 M aq. sodium hydroxid (1.3 ml) were stirred at reflux for 20 min. After addition of 2 M aq. HCl (3.0 ml) the reaction mixture was concentrated in vacuo. The residue was treated with water, filtered and washed with water. The crude was re-evaporated from ethanol before it was treated with diethyl ether. The mixture was filtered and the filtercake was washed with diethyl ether to give the desired product.

Yield: 156 mg

224.3

HATU (207 mg) was added at 0°C to a mixture of compound 224.2 (156 mg) and DIPEA (95 µl) in DMF (2.0 ml). After 30 min 7 M NH₃ in methanol (1.0 ml) was added and the mixture was allowed to warm to room temperature overnight. The reaction mixture was concentrated in vacuo and re-evaporated from toluene. The residue was treated with hot methanol. The mixture was allowed to cool, then it was filtered to yield the desired product.

Yield: 78 mg

ESI-MS: m/z = 403 [M+H]+
Rt HPLC-MS: 1.28 min (Method X)

Example 225

Intermediate XXXXXIII (990 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (948 mg) and p-toluenesulfonic acid (74 mg) in dioxane (10.0 ml) were heated at 110°C for 8 h. The reaction mixture was diluted with methylene chloride and 10% aq. K2CO3. The organic layer was passed through a hydrophobic frit and concentrated in vacuo. The residue was treated with methanol to yield the desired product.

Yield: 898 mg

225.2 4-(4-fluoro-2-(3-hydroxycyclopentyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid
Methyl 4-(4-fluoro-2-(3-hydroxycyclopentyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (150 mg) in methanol (2.0 ml), THF (2.0 ml) and 2M aq. sodium hydroxid (0.9 ml) was stirred at reflux for 40 min. After addition of 2 M aq. HCl (8.0 ml) the reaction mixture was concentrated in vacuo. The aqueous layer was filtered and washed with water. The crude was re-evaporated from EtOH to give the desired product.

Yield: 141 mg

225.3. 4-(4-fluoro-2-(3-hydroxycyclopentyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

HATU (147 mg) was added at 0°C to a mixture of 4-(4-fluoro-2-(3-hydroxycyclopentyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxilic acid (130 mg) and DIPEA (67 µl) in DMF (2.0 ml). After 30 min 7 M NH₃ in MeOH (1.0 ml) was added and the mixture was allowed to warm to room temperature over weekend. The reaction mixture was concentrated in vacuo. The residue was treated with hot MeOH. The mixture was allowed to cool, then it was filtered to yield the desired product.

Yield: 88 mg

ESI-MS: m/z = 403 [M+H]+
Rt HPLC-MS: 1.27 min (Method X)

Example 226

EDC (147 mg) was added to a mixture of 268 mg 4-(4-fluoro-2-(3-hydroxycyclopentyl oxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxilic acid (225.2) and N-hydroxysuccinimide (110 mg) in DMF (3.0 ml). After stirring at room temperature overnight the reaction mixture was diluted with EtoAc and washed with water and brine. The organic layer was passed through a hydrophobic frit and concentrated in vacuo to yield the desired product.

Yield: 314 mg

N-(3-(dimethylamino)propyl)-4-(4-fluoro-2-(3-hydroxycyclopentyl oxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 153.2 from 0.145 g compound 226.1 and 3-dimethylaminopropylamine (200 µl)
Example 227

4-(4-Fluoro-2-(3-hydroxycyclopentyloxy)phenylamino)-N-(2-hydroxyethyl)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Prepared analogously to 153.2 from 0.165 g compound 226.1 and 2-aminoethanol (100 µl).

Example 228

4-[2-((1S,3S)-3-Amino-cyclopentyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyridine-6-carboxylic acid methyl ester
Intermediate XXXVII (155 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-
carboxylic acid methyl ester (121 mg) and p-toluenesulfonic acid (15 mg) in dioxane
(3.0 ml) were heated at 110°C for 2 hours under microwave radiation. The reaction
mixture was filtered, the filtercake was washed with diisopropyl ether and dried to
give the desired compound.
Yield: 150 mg
ESI-MS: m/z = 417 [M+H]⁺

A mixture of 4-[2-((1 S,3S)-3-amino-cyclopent oxyloxy)-4-fluorophenylamino]-5-methyl-
thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (150 mg), di-tert-butyl
dicarbonate (173 mg) and triethylamine (145 µL) in THF (10 ml) was stirred at rt
overnight. The reaction mixture was concentrated and the crude partitioned between
DCM and water. The organic layer was dried, concentrated and the residue was
triturated with diisopropyl ether to give the desired compound.
Yield: 113 mg
ESI-MS: m/z = 517 [M+H]⁺
Rt HPLC-MS: 4.05 min (method A)
Rf (TLC): 0.29 (silica gel, DCM)
228.3 \[4-[2-((1\,S,3\,S)-3-\text{t-Butoxycarbonylamino-cyclopentyloxy})-4-\text{fluoro-phenylamino}1-5\text{-methyl-thieno}[2,3-c]\text{pyrimidine-6-carboxylic acid}

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{NH} \\
\text{O} \\
\text{Chiral}
\end{array}
\]

A mixture of 4-[2-((1\,S,3\,S)-3-\text{t-Butoxycarbonylamino-cyclopentyloxy})-4-\text{fluoro-phenylamino}1-5\text{-methyl-thieno}[2,3-c]\text{pyrimidine-6-carboxylic acid methyl ester} (100 mg) and lithium hydroxide (133 mg) in THF/MeOH/H_2O 1/1/1 (15 ml) was stirred at rt over the weekend. The reaction mixture was acidified with aq. HCl and extracted with DCM. The organic layer was dried, concentrated and the residue was triturated with diisopropyl ether to give the desired compound.

Yield: 57 mg

ESI-MS: m/z = 503 [M+H]^+

Rt HPLC-MS: 3.95 min (method A)

\[
\begin{array}{c}
\text{F} \\
\text{NH} \\
\text{O} \\
\text{Chiral}
\end{array}
\]

228.4 \{(1\,S,3\,S)-3-\text{r2-(6-Carbamoyl-5-methyl-thieno2,3-c/Pyrimidin-4-ylamino)-5-fluoro-phenoxy1-cyclopentyl-carbamic acid te/t-butyl ester}

A mixture of 4-[2-((1\,S,3\,S)-3-\text{t-Butoxycarbonylamino-cyclopentyloxy})-4-\text{fluoro-phenylamino}1-5\text{-methyl-thieno}[2,3-c]\text{pyrimidine-6-carboxylic acid} (115 mg), TBTU (81 mg) and DIPEA (88 \mu l) in THF (15 ml) was stirred at rt for 30 minutes. After the addition of 0.5 M ammonia in dioxane (458 \mu l) and DMF the mixture was stirred at rt overnight. The reaction mixture was concentrated, diluted with water and extracted
with DCM. The organic layer was concentrated and the crude was purified by chromatography to give the desired product.

Yield: 53 mg
ESI-MS: m/z = 502 [M+H]⁺
Rt HPLC-MS: 2.78 min (method A)
Rf (TLC): 0.69 (silica gel, DCM/MeOH/NH₃ 80/20/1)

Example 229
4-[2-((1S,3S)-3-Amino-cyclopentyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide trifluoroacetate

To compound 228.4 (310 mg) in DCM 815 ml) was added at 0°C TFA (1.7 ml) and stirred at rt for 4 hours. The reaction mixture was concentrated at rt and the crude was triturated with diisopropyl ether to give the desired product.

Yield: 376 mg
ESI-MS: m/z = 402 [M+H]⁺
Rt HPLC-MS: 2.56 min (method A)
Rf (TLC): 0.37 (silica gel, DCM/MeOH/NH₃ 80/20/1)

Example 230
4-[2-((1S,3S)-3-Acetylamino-cyclopentyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide
Acetyl chloride (21 µl) was added at 0°C to a mixture of 4-[2-((1S,3S)-3-amino-cyclopentyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide trifluoroacetate (cpd. 229, 206 mg) and DIPEA (348 µl) in DCM (25 ml) and stirred at rt for 4 hours. The reaction mixture was concentrated, diluted with water and extracted with DCM. The organic layer was dried, concentrated and the crude was purified by chromatography to give the desired product.

Yield: 55 mg

ESI-MS: m/z = 444 [M+H]^+

Rf HPLC-MS: 3.04 min (method A)

Rf (TLC): 0.74 (silica gel, DCM/MeOH 4/1)

Example 231

4-[2-((1S,3S)-3-Acetylamino-cyclopentyloxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (2-hydroxy-ethyl)-amide

Intermediate XXXXXXXII (155 mg), 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (242 mg) and p-toluenesulfonic acid (34 mg) in dioxane (4.0 ml) were heated at 110°C for 1 hours under microwave radiation. The reaction mixture was concentrated, washed with water and concentrated. The crude was purified by chromatography and triturated with diisopropyl ether to give the desired compound.
Yield: 196 mg
ESI-MS: m/z = 459 [M+H]+
Rt HPLC-MS: 3.02 min (method A)
Rf (TLC): 0.34 (silica gel, DCM/MeOH/NH3 90/1 0/1)

231.2 4-[2-((1S,3S)-3-Acetylamino-cyclopentyl)oxy]-4-fluoro-phenylamino-1-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid

Prepared analogously to example 228.3 from 4-[2-((1S,3S)-3-acetylamino-cyclopentyl)oxy]-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester, cpd. 231.1 (1.44 g).
Yield: 1.15 g
ESI-MS: m/z = 445 [M+H]+
Rt HPLC-MS: 2.72 min (method A)

231.3 4-[2-((1S,3S)-3-Acetylamino-cyclopentyl)oxy]-4-fluoro-phenylamino-1-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (2-hydroxy-ethyl)-amide

Synthesized analogously to example 225.3 from 4-[2-((1S,3S)-3-acetylamino-cyclopentyl)oxy]-4-fluoro-phenylamino]-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (111 mg) and 2-aminoethanol (18 µl). The reaction mixture was concentrated, the residue was partitioned between DCM and water and the organic layer was dried and concentrated again. The crude was purified by chromatography to give the desired product.
Yield: 32 mg
ESI-MS: \(m/z = 488 \ [M+H]^+ \)
Rt HPLC-MS: 2.43 min (method A)
R\(_f\) (TLC): 0.21 (silica gel, DCM/MeOH/NH\(_3\) 90/1 0/1)

The following compounds were prepared analogously to 231.3:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td></td>
<td>Cpd. 231.2</td>
<td>599 (M+H)*</td>
<td>2.87 (method A)</td>
</tr>
<tr>
<td>233</td>
<td></td>
<td>Cpd. 231.2</td>
<td>539 (M+H)*</td>
<td>2.07 min (method AC1)</td>
</tr>
<tr>
<td>234</td>
<td></td>
<td>Cpd. 231.2</td>
<td>541 (M+H)*</td>
<td>2.05 min (method A)</td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>Cpd. 231.2</td>
<td>458 (M+H)+</td>
<td>2.55 min (method A)</td>
</tr>
<tr>
<td>236</td>
<td></td>
<td>Cpd. 231.2</td>
<td>474 (M+H)+</td>
<td>2.57 min (method A)</td>
</tr>
<tr>
<td>237</td>
<td></td>
<td>Cpd. 231.2</td>
<td>529 (M+H)+</td>
<td>2.07 min (method A)</td>
</tr>
</tbody>
</table>
Example 240

4-{2-[(1S,3S)-3-(Acetyl-methyl-amino)-cyclopentyl]oxy-1-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide

Prepared analogously to example 231.1 from intermediate XXXVIII (266 mg) and 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (243 mg).

Yield: 242 mg

ESI-MS: m/z = 473 [M+H]+

Rf (TLC): 0.52 (silica gel, DCM/MeOH/NH3 90/1 0/1)
240.2 4-{2-r(1S,3S)-3-(Acetyl-methyl-amino)-cyclopentyloxy}-1-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid

Prepared analogously to example 228.3 from 4-{2-[1 S,3S)-3-(acetyl-methyl-amino)-cyclopentyloxy]-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester (185 mg).
Yield: 126 mg
ESI-MS: m/z = 459 [M+H] +
Rt HPLC-MS: 2.80 min (method A)

240.3 4-{2-r(1S,3S)-3-(Acetyl-methyl-amino)-cyclopentyloxy}-1-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid amide

Prepared analogously to example 225.3 from 4-{2-[1 S,3S)-3-(acetyl-methyl-amino)-cyclopentyloxy]-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (126 mg) and 0.5 M ammonia in dioxane (2.1 ml).
Yield: 37 mg
ESI-MS: m/z = 458 [M+H] +
Rt HPLC-MS: 2.55 min (method A)
Rf (TLC): 0.30 (silica gel, DCM/MeOH/NH 3 90/1 0/1)

Example 241
4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-1-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid cyanomethyl-amide
Prepared analogously to example 35.1 from compound 35.2 (80 mg) and aminoaetonitrile (14 mg).

Yield: 70 mg

ESI-MS: m/z = 469 [M+H]⁺

Rt HPLC-MS: 1.61 min (method L)

Example 242

Separation into 4-(4-fluoro-2-(cis-3-hydroxycyclopentloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide and 4-(4-fluoro-2-(trans-3-hydroxycyclopentloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

The cis/trans mixture from 225.3 (50 mg) was separated into the isomers by SFC chromatography:

Column: Daicel ASH 250 mm x 4.6 mm

Mobile phase: CO₂/ Methanol 60:40 (with addition of 0.2% Diethyl amine)

Eluting first: cis isomer; eluting second: trans isomer

Yield: 5 mg
ESI-MS: \(m/z = 403 \ [M+H]^+ \)

4-(4-fluoro-2-(trans-3-hydroxycyclopentyloxy)phenylamino)-5-methylthieno[2,3-d]pyrimidine-6-carboxamide

Yield: 5 mg
ESI-MS: \(m/z = 403 \ [M+H]^+ \)

Example 243
4-(2-Cyclobutoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

A mixture of 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (500 mg), 2-amino-5-fluor-phenol (265 mg) and p-toluenesulfonic acid (75 mg) in dioxane (5 ml) was stirred at 140°C for 15 minutes under microwave radiation. The reaction mixture was allowed to cool, filtered and the filtercake was washed with dioxane, MeOH and diethyl ether to give the desired product.

Yield: 605 mg
ESI-MS: \(m/z = 334 \ [M+H]^+ \)
243.2 4-(2-Cyclobutoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-
\[\text{d}]\]pyrimidine-6-carboxylic acid methyl ester

A mixture of 4-(4-fluoro-2-hydroxy-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-
carboxylic acid methyl ester (200 mg), potassium carbonate (166 mg) and bromocyclobutane (113 µl) in DMF (3 ml) was stirred at 60°C over the weekend. The reaction mixture was diluted with EtOAc and washed with water and brine. The organic layer was concentrated and the residue was triturated with diethyl ether to give the desired compound.

Yield: 130 mg

243.3 4-(2-Cyclobutoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-
c]/pyrimidine-6-carboxylic acid

Prepared analogously to example 1.3 from 4-(2-cyclobutoxy-4-fluoro-phenylamino)-5-
methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester (130 mg).

Yield: 125 mg

243.4 4-(2-Cyclobutoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-
c]/pyrimidine-6-carboxylic acid amide
Prepared analogously to example 1.4 from 4-(2-cyclobutoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid (127 mg) and 7 M ammonia in MeOH (1 ml).

Yield: 45 mg
ESI-MS: m/z = 372 [M+H]+
Rt HPLC-MS: 1.42 min (method X)

Example 244

4-(2-Cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid amide

244.1 4-(2-Cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]/pyrimidine-6-carboxylic acid methyl ester
Prepared analogously to example 243.2 from 4-(4-fluoro-2-hydroxy-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (67 mg) and bromocyclopentane (60 mg).
Yield: 46 mg

\[\text{244.2} \quad \text{4-(2-Cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid} \]

\[
\begin{array}{c}
\text{F} \\
\text{NH} \\
\text{O} \\
\text{OH} \\
\text{O} \\
\text{OH} \\
\text{NH} \\
\text{N} \\
\text{S} \\
\text{O} \\
\end{array}
\]

Prepared analogously to example 1.3 from 4-(2-cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid methyl ester (73 mg).
Yield: 62 mg

\[\text{244.3} \quad \text{4-(2-Cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid amide} \]

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{NH} \\
\text{N} \\
\text{S} \\
\text{O} \\
\text{NH} \\
\text{NH} \\
\text{NH} \\
\end{array}
\]

Prepared analogously to example 1.4 from 4-(2-cyclopentoxy-4-fluoro-phenylamino)-5-methyl-thieno[2,3-c]pyrimidine-6-carboxylic acid (59 mg) and 7 M ammonia in MeOH (0.5 ml).
Yield: 27 mg
ESI-MS: \(m/z = 387 \ [M+H]^+ \)
Rt HPLC-MS: 1.45 min (method X)
Example 245

4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (4-dimethylamino-but-2-vnyl)-amide

Prepared analogously to 35.3 from 0.080 g 4-[2-(trans-3-acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (cpd. 35.2) and 0.045 g 4-(dimethylamino)-but-2-vnylamino·2HCl.

Yield: 0.0075 g
ESI mass spectrum: m/z = 525 (M+H)D

Example 246

4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (2-amino-cyclopropyl)-amide

246.1 [2-[(4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carbonyl)amino]-cyclopropyl]-carbamic acid tert-butyl ester
Prepared analogously to 35.3 from 0.080 g 4-[2-(trans-3-acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno [2,3-d]pyrimidine-6-carboxylic acid (cpd. 35.2) and 0.050 g tert-butyl (1R,2R)-2-aminocyclopropylcarbamate hydrochloride.

246.2 4-[2-(trans-3-Acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno [2,3-d]pyrimidine-6-carboxylic acid (2-amino-cyclopropyl)-amide

A mixture of 0.15 g [2-((4-[2-(trans-3-acetylamino-cyclobutoxy)-4-fluoro-phenylamino]-5-methyl-thieno [2,3-d]pyrimidine-6-carbonyl)amino)-cyclopropyl]-carbamic acid tert-butyl ester in 5 ml dioxane was added 1 M hydrochloric acid solution in Dioxan and was stirred at rt overnight. The reaction mixture was concentrated and the residue was purified by chromatography.

Yield: 0.014 g

ESI mass spectrum: m/z = 485 (M+H)D

Rt (HPLC): 1.71 min (method L)
4-[4-Fluoro-2-((1R,2R)-2-methoxy-cyclohexyloxy)-phenylamino-1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

A reaction mixture of 1.00 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 1.98 g intermediate XVIII and 0.071 g p-toluenesulfonic acid in 20 ml dioxane was heated at 100°C for 2 hours. The reaction mixture was allowed to reach rt and diluted with water. The mixture was filtered. The solid was washed with water. The solid was dried in vacuo at 65°C.

Yield: 1.75 g
ESI mass spectrum: m/z = 446 (M+H)^+
Rt (HPLC): 2.41 min (method L)

Example 248

4-[4-Fluoro-2-((1R,2R)-2-methoxy-cyclohexyloxy)-phenylamino-1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid
248.1 4-[4-Fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

Prepared analogously to 247 from 1.00 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 1.98 g intermediate XVIII.

248.2 4-[4-Fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

A mixture of 1.75 g 4-[fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 4M sodium hydroxide solution, 20 ml THF and 20 ml MeOH was stirred at rt overnight. The reaction mixture was acidified by addition of hydrochloric acid, diluted with 80 ml water and filtered. The solid was washed with water and dried in vacuo at 65°C.

Yield: 1.575 g

ESI mass spectrum: m/z = 432 (M+H)+

Rt (HPLC): 2.05 min (method L)

Example 249
4-[4-Fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

Prepared analogously to 247 from 1.00 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 1.98 g intermediate XVIII.

A mixture of 1.75 g 4-[fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 4M sodium hydroxide
solution, 20 ml THF and 20 ml MeOH was stirred at rt overnight. The reaction mixture was acidified by addition of hydrochloric acid, diluted with 80 ml water and filtered. The solid was washed with water and dried in vacuo at 65°C.

Yield: 1.575 g

ESI mass spectrum: m/z = 432 (M+H)D
Rt (HPLC): 2.05 min (method L)

249.3 4-[4-Fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

A mixture of 0.21 g 4-[4-Fluoro-2-((1 R,2R)-2-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid, 5 ml ammonia 0.5 M in dioxane, 0.22 g HATU, 0.10 ml DIPEA and 2 ml DMF was stirred at rt overnight. The reaction mixture was diluted with water and filtered. The solid was dried in vacuo at 65°C.

Yield: 0.211 g
ESI mass spectrum: m/z = 431 (M+H)D
Rt (HPLC): 1.80 min (method L)

The following compounds were prepared analogously to 1.4 using TBTU and TEA instead of HATU and DIPEA:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1 R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td>Cpd. 249.2</td>
<td>515 (M+H) □</td>
<td>1.86 min (Method L)</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>Cpd. 249.2</td>
<td>515 (M+H) □</td>
<td>1.87 min (Method L)</td>
</tr>
<tr>
<td>252</td>
<td></td>
<td>Cpd. 249.2</td>
<td>505 (M+H) □</td>
<td>2.05 min (Method L)</td>
</tr>
<tr>
<td>253</td>
<td></td>
<td>Cpd. 249.2</td>
<td>515 (M+H) □</td>
<td>1.40 min (Method L)</td>
</tr>
<tr>
<td>254</td>
<td></td>
<td>Cpd. 249.2</td>
<td>542 (M+H) □</td>
<td>1.42 min (Method L)</td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>Cpd. 249.2</td>
<td>521 (M+H) □</td>
<td>3.67 min (Method B)</td>
</tr>
</tbody>
</table>

Example 256

Pure enantiomers of 4-[4-fluoro-2-(3-hydroxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

(The absolute configuration has not been determined, i.e. the compound can be either the structure shown or the other enantiomer.)
Prepared analogously to 247 from 0.437 g 4-chloro-5-methyl-thieno[2,3d]_pyrimidine-
6-carboxylic acid methyl ester and 0.410 g intermediate XXII.3.

Yield: 0.707 g

ESI mass spectrum: m/z = 432 (M+H)

Rt (HPLC): 2.08 min (method L)

Example 257

Pure enantiomers of 4-[4-fluoro-2-(d-glucopyranosyl)cyclohexyl]phenylamino-5-
methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

(The absolute configuration has not been determined, i.e. the compound can be either the structure shown or the other enantiomer.)

Prepared analogously to 247 from 0.451 g 4-chloro-5-methyl-thieno[2,3d]_pyrimidine-
6-carboxylic acid methyl ester and 0.420 g intermediate XXII.4

Yield: 0.783 g

ESI mass spectrum: m/z = 432 (M+H)

Rt (HPLC): 2.03 min (method L)
Pure enantiomere of 4-[4-fluoro-2-(cis-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid
(The absolute configuration has not been determined, i.e. the compound can be either the structure shown or the other enantiomer.)

Prepared analogously to 5.1.2 from 0.630 g 4-[4-fluoro-2-(trans-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (cpd. 256)

Yield: 0.594 g

ESI mass spectrum: m/z = 418 (M+H)

Rt (HPLC): 1.78 min (method L)

The following compounds were prepared analogously to 1.4 using TBTU and TEA instead of HATU and DIPEA:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td></td>
<td>Cpd. 258</td>
<td>514 (M+H)</td>
<td>1.31 min (Method L)</td>
</tr>
</tbody>
</table>
Example 262

Pure enantiomeric 4-[4-fluoro-2-(cis-2-hydroxy-cyclohexyloxy)-phenylamino]-1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

(The absolute configuration has not been determined, i.e. the compound can be either the structure shown or the other enantiomer.)

Chiral

Prepared analogously to 5.4 from 0.72 g 4-[4-fluoro-2-(cis-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester (cpd. 257)

Yield: 0.585 g
ESI mass spectrum: m/z = 418 (M+H)

Rt (HPLC): 1.77 min (method L)

The following compounds were prepared analogously to 1.4 using TBTU instead of HATU and no DIPEA:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1 R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td></td>
<td>Cpd. 262</td>
<td>528 (M+H)</td>
<td>1.32 min (Method L)</td>
</tr>
<tr>
<td>264</td>
<td></td>
<td>Cpd. 262</td>
<td>502 (M+H)</td>
<td>1.33 min (Method L)</td>
</tr>
</tbody>
</table>

The following compound was prepared analogously to 1.4 using TBTU and TEA instead of HATU and DIPEA:

[Diagram of the following compound]

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td></td>
<td>Cpd. 262</td>
<td>514 (M+H)</td>
<td>1.32 min (Method L)</td>
</tr>
</tbody>
</table>
A reaction mixture of 2.913 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 2.5 g intermediate XXIV and 0.413 g p-toluenesulfonic acid in 60 ml dioxane was heated at 110°C in the microwave for 1 hour. The reaction mixture was concentrated and the residue was purified by chromatography.

Yield: 1.547 g
ESI mass spectrum: m/z = 415 (M+H)^+
extracted with DCM. The organic phase was dried, filtered and the filtrate was concentrated.

Yield: 1.683 g
ESI mass spectrum: m/z = 401 (M+H)

266.3 4-[2-(trans-4-hydroxy-cyclohexyloxy)-pyrimidin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (2-hydroxy-ethyl)-amide

Prepared analogously to 1.4 from 0.2 g 4-[4-fluoro-2-(cis-2-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid and 36 µl ethanolamine.

Yield: 0.051 g
ESI mass spectrum: m/z = 444 (M+H)
Rt (HPLC): 2.27 min (method A)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>267</td>
<td>H</td>
<td>Cl</td>
<td>495 (M+H)</td>
<td>2.05 min (Method A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cpd.</td>
<td>266.3</td>
<td></td>
</tr>
</tbody>
</table>

270
<table>
<thead>
<tr>
<th>268</th>
<th></th>
<th>Cpd. 266.3</th>
<th>511 (M+H)</th>
<th>2.05 min (Method A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
<td></td>
<td>Cpd. 266.3</td>
<td>497 (M+H)</td>
<td>1.94 min (Method A)</td>
</tr>
<tr>
<td>270</td>
<td></td>
<td>Cpd. 266.3</td>
<td>497 (M+H)</td>
<td>1.24 min (Method A)</td>
</tr>
</tbody>
</table>

Example 271

4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid [3-(2-oxo-pyrrolidin-1-yl)-propyll-amide

![Chemical Structure](image)

5

4-[4-Fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

![Chemical Structure](image)

A reaction mixture of 2.56 g 4-chloro-5-methyl-thieno[2,3-d] pyrimidine-6-carboxylic acid ethyl ester, 1.86 g intermediate XXVII and 0.25 g p-toluenesulfonic acid in 50 ml dioxane was heated at 100°C for 1.5 hours. At rt the reaction mixture was diluted with water. The mixture was filtered and the solid was washed with water. The solid was dried in vacuo at 50°C. To the solid was added 10 ml THF, 10 ml MeOH, 2 ml 2M
sodium hydroxide solution. This mixture was stirred at rt overnight. The mixture was concentrated, neutralized with 2M hydrochloric acid and filtered. The solid was washed with water and and triturated with diethylether. The the solid was dried in vacuo at 50°C.

Yield: 2.14 g
ESI mass spectrum: m/z = 418 (M+H)
Rt (HPLC): 2.05 min (method K)

Prepared analogously to 1.4 from 0.042 g 4-[4-fluoro-2-(trans-4-hydroxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid and 0.015 g 1-(3-aminopropyl)-2-pyrrolidinone. The residue was purified by chromatography.

Yield: 0.034 g
ESI mass spectrum: m/z = 542 (M+H)
Rt (HPLC): 2.18 min (method method E)

Example 272

2-((4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carbonyl)-amino)-3-hydroxy-propionic acid methyl ester

Chiral
272.1 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

A reaction mixture of 11.2 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 10.0 g intermediate XXXXXXVII and 1.76 g p-toluenesulfonic acid in 95 ml dioxane was heated at 90°C for 2 hours. The reaction mixture was poured in water and filtered. The solid was washed with water and dissolved in DCM. The organic phase was dried and then filtered. The filtrate was concentrated.

Yield: 15.914 g
ESI mass spectrum: m/z = 446 (M+H)

272.2 4-[4-Fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

Prepared analogously to 58.2 from 15.914 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester.

Yield: 14.54 g
ESI mass spectrum: m/z = 432 (M+H)

272.3 Methyl (2S)-2-[(4-[(4-fluoro-2-[(4-methoxy-cyclohexyl)oxy]phenyl)amino]-5-methylthieno[2,3-d]pyrimidin-6-yl]formamido)-3-hydroxypropanoate
Prepared analogously to 1.4 from 1.50 g 4-[4-fluoro-2-(trans-4-methoxy-cyclohexyloxy)-phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid and 0.541 g L-(+)-serine methyl ester hydrochloride.

Yield: 1.648 g

ESI mass spectrum: m/z = 533 (M+H)

Rt (HPLC): 2.87 min (method A)

The following compounds were prepared analogously to 1.4:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td></td>
<td>Cpd. 272.2</td>
<td>558 (M+H)</td>
<td>1.8 min (Method N)</td>
</tr>
<tr>
<td>274</td>
<td></td>
<td>Cpd. 272.2</td>
<td>558 (M+H)</td>
<td>1.81 min (Method N)</td>
</tr>
</tbody>
</table>

The following compounds were prepared analogously to 1.4 using TBTU instead of HATU:
<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td></td>
<td>Cpd. 272.2</td>
<td>556 (M+H)<sup>+</sup></td>
<td>1.42 min (Method L)</td>
</tr>
<tr>
<td>276</td>
<td></td>
<td>Cpd. 272.2</td>
<td>544 (M+H)<sup>+</sup></td>
<td>min (Method……)</td>
</tr>
<tr>
<td>277</td>
<td></td>
<td>Cpd. 272.2</td>
<td>532 (M+H)<sup>+</sup></td>
<td>min (Method……)</td>
</tr>
<tr>
<td>278</td>
<td></td>
<td>Cpd. 272.2</td>
<td>576 (M+H)<sup>+</sup></td>
<td>1.37 min (Method L)</td>
</tr>
<tr>
<td>279</td>
<td></td>
<td>Cpd. 272.2</td>
<td>556 (M+H)<sup>+</sup></td>
<td>min (Method……)</td>
</tr>
<tr>
<td>280</td>
<td></td>
<td>Cpd. 272.2</td>
<td>570 (M+H)<sup>+</sup></td>
<td>min (Method……)</td>
</tr>
</tbody>
</table>

Example 281

4-[2-(4-Amino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester
A reaction mixture of 0.5 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 0.636 g intermediate XXXXXXIII and 0.04 g p-toluenesulfonic acid in 10 ml isopropanol was heated at 140°C in the microwave for 14 min. The reaction mixture was concentrated and the residue was purified by chromatography.

Yield: 0.36 g

ESI mass spectrum: m/z = 414 (M+H)D

Rt (HPLC): 1.22 min (method K)

Example 282
4-[2-(4-Amino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid
A mixture of 0.05 g 4-[2-(4-amino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 1M sodium hydroxide solution in 5 ml MeOH was stirred at 70°C for 1 hour. The reaction mixture was neutralized with 1M hydrochloric acid and concentrated. The residue was dissolved in DCM and MeOH, dried and filtered. The filtrate was concentrated. The residue was triturated with diethylether.

Yield: 0.048 g
ESI mass spectrum: m/z = 400 (M+H)+

Example 283
4-[2-(4-Amino-cvclohexyloxy)-pyridin-3-ylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide

283.1 4-[2-(4-tert-Butoxycarbonylamino-cvclohexyloxy)-pyhdin-3-ylamino1-5-
methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester

A reaction mixture of 0.2 g 4-chloro-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester, 0.506 g intermediate XXXXXXIII and 0.4 ml DIPEA in 6 ml Isopropanol were heated at 140°C in the microwave for 7 hours. The reaction
mixture was cooled down overnight and filtered. The solid was washed with diethylether, the residue was dissolved in DCM+MeOH, filtered and concentrated.

Yield: 0.140 g

ESI mass spectrum: m/z = 514 (M+H)

Rt (HPLC): 2.19 min (method K)

283.2 4-[2-(4-tert-Butoxycarbonylamino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

A mixture of 7 g 4-[2-(4-tert-Butoxycarbonylamino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 4M sodium hydroxide solution (60 ml) and 500 mg lithium hydroxide in 60 ml MeOH was stirred at 80°C for 5 hours. To the reaction mixture were added 65.2 ml 4M hydrochloric acid and the mixture was concentrated afterwards. The residue was triturated with water. The solid was isolated by filtration, washed with water and dried in a desiccator.

Yield: 6.8 g

ESI mass spectrum: m/z = 500 (M+H)

283.3 4-[2-(4-Amino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid amide
A mixture of 0.025 g 4-[(2-(4-tert-butoxycarbonylamino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid, 0.016 g TBTU, 17 µl DIPEA and 3 ml DMF/THF 1:1 was stirred for 30 minutes at rt. 20 µl ammonia were added and the mixture was stirred overnight. The reaction mixture was concentrated and the residue was dissolved in DCM. The organic phase was washed with water, dried and filtered. The filtrate was concentrated. The residue was dissolved in 5 ml DCM, 1 ml trifluoroacetic acid was added and the mixture was stirred at rt for 1 hour. The reaction mixture was concentrated and the residue was purified by chromatography.

Yield: 0.020 g
ESI mass spectrum: m/z = 399 (M+H)D
Rt (HPLC): 1.75 min (method K)

The following compounds were prepared analogously to 283.3:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
</table>

279
The following compounds were prepared analogously to 283.3 using DMF instead of DMF/THF:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>288</td>
<td></td>
<td>Cpd. 283.2</td>
<td>443 (M+H)</td>
<td>1.36 min (Method K)</td>
</tr>
</tbody>
</table>

Example 289

4-[2-(4-Amino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid propyl amide
A mixture of 0.1 g 4-[2-(4-tert-butoxycarbonylamino-cyclohexyloxy)-pyridin-3-ylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid, 39.689 µl chlor-trimethylpropylenamine, 24 µl propylamine, 30.664 µl TEA and 5 ml DCM was stirred at rt overnight. The reaction mixture was washed successively with 0.1 M hydrochloric acid and 0.1 M sodium hydroxide solution, dried and filtered. The filtrate was concentrated. The residue was triturated with diethylether.

Yield: 0.050 g
ESI mass spectrum: m/z = 441 (M+H)D
Rt (HPLC): 1.10 min (method M)

Example 290

4-[4-Flouro-2-(tetrahvdro-cvclopenta [1,31dioxol-5-yloxy)phenylamino1-5-methyl-thieno[2,3-d]pyhmidine-6-carboxylic acid

relative stereochemistry

290.1 4-[4-Flouro-2-(tetrahvdro-cvclopenta [1,31dioxol-5-yloxy)phenylamino1-5-methyl-thieno[2,3-d]pyhmidine-6-carboxylic acid methyl ester
A reaction mixture of 1.79 g 4-chloro-5-methyl-thieno[2,3d]_pyrimidine-6-carboxylic acid methyl ester, 1.77 g intermediate XXXXVI and 0.422 g p-toluenesulfonic acid in 50 mL isopropanol was heated at 90°C for 2 hours. The reaction mixture was poured in water and filtered. The solid was washed with water, triturated with ACN and dried in vacuo at 60°C.

Yield: 72.2 g

ESI mass spectrum: m/z = 446 (M+H)+

Rt (HPLC): 3.30 min (method A)

290.2 4-[4-Fluoro-2-(tetrahydro-cyclopenta [1,3dioxol-5-yloxy)phenylamino1-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid

A reaction mixture of 2.1 g 4-[4-fluoro-2-(tetrahydro-cyclopenta [1,3]dioxol-5-yloxy)phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid methyl ester and 0.56g lithium hydroxide in 150 mL THF was stirred at rt overnight. Then the mixture was acidified by addition of 10% citric acid, concentrated and filtered. The solid was dried in vacuo at 60°C.

Yield: 1.79 g

ESI mass spectrum: m/z = 432 (M+H)+

Rt (HPLC): 3.02 min (method A)

Example 291

4-[4-Fluoro-2-(tetrahydro-cyclopenta [1,3dioxol-5-yloxy)phenylamino1-
5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid (3-pyrrolidin-1-yl-propylamide

A mixture of 0.15 g 4-[4-fluoro-2-(tetrahydro-cyclopenta[1,3]dioxol-5-yloxy)phenylamino]-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylic acid, 0.045 g 1-(3-aminopropy)pyrrolidine, 0.159 g HATU and 0.097 ml TEA in 15 ml DMF was stirred at rt for 1 hour. The reaction mixture was poured on water, extracted with DCM, dried and filtered. The filtrate was concentrated. The residue was triturated with diisopropylether.

Yield: 0.110 g

ESI mass spectrum: m/z = 542 (M+H)

Rt (HPLC): 1.28 min (method K)

The following compound was prepared analogously to 291.3:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1R2</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>292</td>
<td></td>
<td>Cpd. 291.2</td>
<td>528 (M+H)</td>
<td>min (Method......)</td>
</tr>
</tbody>
</table>

Example 293
0.15 g \((1S,2S)\) 4-[2-(aminocyclopentoxy)-4-fluoro-phenylamino]-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic acid amide and 0.45 ml N,N-diisopropylethylamine were mixed with DCM. 0.047 g cyclopropanecarbonyl chloride were added to the mixture and stirred for 1 hour at rt. Then the reaction mixture was diluted with water and filtrated. The residue was dissolved in 3 ml dioxane and sodium-carbonate-solution and stirred at rt overnight. The mixture was added DCM and water. The mixture was filtrated and the solid was air-dried.

Yield: 0.093 g

ESI mass spectrum: m/z = 470 (M+H)D

Rt (HPLC): 1.66 min (method L)

The following compound was prepared analogously to 293:

<table>
<thead>
<tr>
<th>Example</th>
<th>NR1</th>
<th>educt</th>
<th>Mass spectrum</th>
<th>HPLC (retention time)</th>
</tr>
</thead>
</table>
Example 295

\[(1\,S,2\,S)\,4-\{2-\text{[2-(Acetyl-amino)-cyclopentyloxy]1-4-fluoro-phenylamino}\}-5\text{-methyl thieno[2,3-d]pyrimidine-6-carboxylic\ acid\ amide}\]

0.15 g \((1\,S,2\,S)\) 4-\{2-(2-amino-cyclopentyloxy)-4-fluoro-phenylamino\}-5-methyl thieno[2,3-d]pyrimidine-6-carboxylic\ acid amide and 0.32 mL N,N-diisopropylethylamine were mixed with DCM. 0.027 g acetylchloride were added to the mixture and stirred for 1 hour at rt. Then the reaction mixture was diluted with water and filtrated. The solid was air-dried.

Yield: 0.14 g

ESI mass spectrum: \(m/z = 444\ \text{(M+H)D}\)

Rt (HPLC): 1.53 min (method L)
Claims

1. A compound of general formula

\[
\begin{align*}
&\text{wherein } X \text{ is } \text{CH} \text{ or } \text{N}, \\
&R^1 \text{ is a hydrogen or halogen atom,} \\
&R^2 \text{ is } \text{C3-7 cyclalkyl group that is substituted with one or two substituents selected from oxo, halogen, } \text{C1-3 alkyl, hydroxy, C3-4 alkoxy-carbonyl, amino and morpholiny}, \end{align*}
\]

wherein the hydrogen atoms of the amino group may optionally be independently replaced by a \text{C1-3 alkyl, C3-4 alkoxy-carbonyl, C3-4 alkylsulfonyl, C3-4 alkyl-carbonyl, C3-6-cycloalkyl-carbonyl or piperidiny}, wherein \text{m is 2 or 3 and wherein the piperidiny} group may optionally be substituted by a methyl group,

wherein two substituents, which are attached to the same carbon atom, together may form a \text{-O-(CH}_2\text{)}_{2}\text{-O- group}, and

wherein two substituents, which are attached to two adjacent carbon atoms, together may form a \text{-O-CH}_2\text{-O- or -O-C(CH}_3\text{)}_{2}\text{-O- group},
R3 is a C\textsubscript{1-2} alkyl group and

R4 is a carboxy, Ci-3 alkoxy-carbonyl, aminocarbonyl, N-(Ci \textsubscript{-4} alkyl)-aminocarbonyl or N,N-[di-(Ci \textsubscript{-4} alkyl)]-aminocarbonyl group,

wherein the aminocarbonyl group may be substituted with a Ci-3 alkysulfonyl, CN, OH, Ci \textsubscript{3-4} alkoxy, C\textsubscript{3-6} cycloalkyl, -CH\textsubscript{2}C\equivC-CH\textsubscript{2}NH\textsubscript{2}, -CH\textsubscript{2}C\equivC-CH\textsubscript{2}NH(Ci-3 alkyl) or -CH\textsubscript{2}C\equivC-CH\textsubscript{2}N(Ci-3 alkyl) \textsubscript{2} group or with a piperidinyl or pyrrolidinyl group bound via a carbon atom,

and

wherein the alkyl moieties of the above-mentioned N-(Ci \textsubscript{-4} alkyl)-aminocarbonyl and N,N-[di-(Ci \textsubscript{-4} alkyl)]-aminocarbonyl groups may optionally be substituted with an aminocarbonyl, N-(Ci-3 alkyl)-aminocarbonyl or N,N-[di-(Ci-3alkyl)]-aminocarbonyl group or with a pyrrolidinyl, oxazolyl, imidazolyl, piperidinyl or morpholinyl group, each bound via a carbon atom, or, from position 2 of an ethyl, propyl or butyl moiety onwards, with a OH, CN, Ci-3 alkoxy, amino, N-(Ci-3 alkyl)-amino, N,N-[di-(Ci-3 alkyl)]-amino, Ci \textsubscript{5-6} alkyloxy-carbonyl-amino, morpholino, piperidino, pyrazino, pyrrolidino, azetidinyl, aziridinyl or imidazolyl group,

wherein each of the above-mentioned cycloalkyl, pyrrolidinyl, oxazolyl, piperidinyl, morpholinyl, pyrazilinyl and imidazolyl groups may be substituted with a methyl, amino, hydroxy group or Ci-3 alkoxy,

or a salt thereof.

2. A compound of formula (I) according to claim 1, wherein
X, R\(^1\), R\(^2\) and R\(^4\) are defined as in claim 1 and

\[R^3 \text{ is methyl,} \]

or a salt thereof.

3. A compound of formula (I) according to claim 1 or 2, wherein

\[\text{R}^2 \text{ to } \text{R}^4 \text{ are defined as in claim 1 and} \]

X is CH and

\[\text{R}^1 \text{ is a fluorine atom,} \]

or a salt thereof.

4. A compound of formula (I) according to claim 1 or 2, wherein

\[\text{R}^2 \text{ to } \text{R}^4 \text{ are defined as in claim 1 and} \]

X is N and

\[\text{R}^1 \text{ is a hydrogen atom,} \]

or a salt thereof.

5. A compound of formula (I) according to any of the preceding claims, wherein

X and R\(^1\) to R\(^3\) are defined as in any one of claims 1 to 4, and
R^4 is carboxy, C_{i-3}alkoxy-carbonyl, aminocarbonyl or N-(C_{i-3}alkyl)-aminocarbonyl group,

wherein the methyl moiety of the above-mentioned N-(methyl)-aminocarbonyl group may optionally be substituted with a piperidinyl, N-methyl-piperidinyl or morpholinyl group, each bound via a carbon atom, and wherein the ethyl resp. propyl moiety of the above-mentioned N-(C_{2-3}alkyl)-aminocarbonyl group may optionally be terminally substituted with hydroxy, methoxy, amino, N-methyl-amino, N,N-dimethyl-amino, morpholino, imidazolyl, 4-methyl-piperazinyl, 1-methyl-pyrrolidinyl, piperidinyl, pyrrolidinyl or 4-hydroxy-piperidino group,

or a salt thereof.

6. A compound of formula (I) according to claim 5, wherein

X and R^1 to R^3 are defined as in any one of claims 1 to 4, and

R^4 is aminocarbonyl or N-(C_{i-3}alkyl)-aminocarbonyl group,

wherein the methyl moiety of the above-mentioned N-(methyl)-aminocarbonyl group may optionally be substituted with a piperidinyl, N-methyl-piperidinyl or morpholinyl group, each bound via a carbon atom, and wherein the ethyl resp. propyl moiety of the above-mentioned N-(C_{2-3}alkyl)-aminocarbonyl group may optionally be terminally substituted with hydroxy, methoxy, amino, N-methyl-amino, N,N-dimethyl-amino, morpholino, imidazolyl, 4-methyl-piperazinyl, 1-methyl-pyrrolidinyl, piperidinyl, pyrrolidinyl or 4-hydroxy-piperidino group,

or a salt thereof.
7. A compound of formula (I) according to any of the preceding claims, wherein

X, R¹, R³ and R⁴ are defined as in any one of claims 1 to 4, and

5 R² is cyclopentyl substituted with one or two hydroxy or methoxy groups or with an amino, methylcarbonyl-amino, N-methyl-N-methylcarbonyl-amino group or wherein two adjacent carbon atoms are linked to each other via a -O-CH₂-O- or -O-C(CH₃)₂-O- group, or

10 cyclohexyl substituted with one or two fluorine atoms or one or two hydroxy or methoxy groups or an oxo, C₁₋₃ alkoxy-carbonyl, morpholino, methyl-piperidinyl or an amino group, wherein the hydrogen atoms of the amino group may optionally independently be replaced with a methyl, methylcarbonyl, 2-methoxy-ethyl or methylsulfonyl group, or wherein two adjacent carbon atoms are linked to each other via O-C(CH₃)₂-O- group or wherein two hydrogen atoms attached to the same carbon atom are replaced by a -O-(CH₂)₂-O- group,

or a salt thereof.

8. A compound of formula (I) according to claim 7, wherein

X, R¹, R³ and R⁴ are defined as in any one of claims 1 to 4, and

25 R² is cyclohexyl substituted with one hydroxy or methoxy group,

cyclopentyl substituted with one hydroxy, methoxy, methylcarbonyl-amino or N-methyl-N-methylcarbonyl-amino group or

30 cyclopentyl, wherein two adjacent carbon atoms are linked to each other via a -O-CH₂-O- group, or
cyclobutyl substituted with a methylcarbonyl-annino or methylcarbonyl-N(methyl)-amino group,

or a salt thereof.

9. A compound of formula (I) according to claim 1 selected from:
or a salt thereof.

10. A pharmaceutically acceptable salt of a compound according to any one of claims 1 to 9.

11. Pharmaceutical composition comprising a compound according to any one of claims 1 to 9 or a salt according to claim 10 and optionally a pharmaceutically acceptable carrier.

12. Pharmaceutical composition according to claim 11 further comprising an
additional therapeutic agent.

13. Pharmaceutical composition according to claim 12 wherein the additional therapeutic agent is selected from an antidiabetic agent, a lipid lowering agent, a cardiovascular agent, an antihypertensive agent, a diuretic agent, a thrombocyte aggregation inhibitor, an antineoplastic agent or an anti-obesity agent.

14. Compound as defined in any one of claims 1 to 9 or a salt according to claim 10 for use in inhibiting the activity of the kinase activity of Mnk1 or Mnk2 (Mnk2a, Mnk2b) or variants thereof.

15. Compound as defined in any one of claims 1 to 9 or a salt according to claim 10 for use in the prophylaxis or therapy of metabolic diseases, hematopoietic disorders, neurodegenerative diseases, kidney damage, inflammatory disorders and cancer and their consecutive complications and diseases.

16. Compound according to any one of claims 1 to 9 or a salt according to claim 10 for use in the prophylaxis or therapy of metabolic diseases of the carbohydrate and/or lipid metabolism and their consecutive complications and disorders.

17. Compound according to claim any one of claims 1 to 9 or a salt according to claim 10 for use in the prophylaxis or therapy of diabetes.

18. Compound according to any one of claims 14 to 17 for concomitant or
sequential administration to a patient in combination with an additional therapeutic agent.

19. Compound as defined in any of claims 1 to 9 or a salt according to claim 10 for use in treating or preventing cytokine related disorders.

20. Compound according to claim 19 for concomitant or sequential administration to a patient in combination with an additional therapeutic agent.

21. Compound according to claim 20, wherein the additional therapeutic agent is selected from a histamine antagonist, a bradikinin antagonist, serotonin antagonist, leukotriene, an anti-asthmatic, an NSAID, an antipyretic, a corticosteroid, an antibiotic, an analgetic, a uricosuric agent, chemotherapeutic agent, an anti gout agent, a bronchodilator, a cyclooxygenase-2 inhibitor, a steroid, a 5-lipoxygenase inhibitor, an immunosuppressive agent, a leukotriene antagonist, a cytostatic agent, an antineoplastic agent, a mTor inhibitor, a Tyrosine kinase inhibitor, antibodies or fragments thereof against cytokines and soluble parts (fragments) of cytokine receptors.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D495/04 A61K31/519 A61P3/00 A61P3/06 A61P7/00 A61P25/28

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/136402 A1 (DEVELOGEN AG [DE]; JAEKEL STEFAN [DE]; MURFIN STEFEN [GB]; TAYLOR STEV) 28 December 2006 (2006-12-28) cited in the application claims 1, 16-33, compound 19c</td>
<td>1-21</td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/023181 A1 (BOEHRINGER INGELHEIM INT [DE]; AUSTEN MATTHIAS [DE]; BLACK PHI LLI P [GB]) 4 March 2010 (2010-03-04) claims 1, 12-24, compounds 56, 57</td>
<td>1-21</td>
</tr>
</tbody>
</table>

X | Further documents are listed in the continuation of Box C. | X | See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document wherein may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

Date of the actual completion of the international search: 11 April 2011

Date of mailing of the international search report: 26/04/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer:

Brandstetter, T
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006136402 A1</td>
<td>28-12-2006</td>
<td>AU 2006261082 A1</td>
<td>28-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2655799 A1</td>
<td>28-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1899353 A1</td>
<td>19-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008543898 T</td>
<td>04-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010143341 A1</td>
<td>10-06-2010</td>
</tr>
<tr>
<td>WO 2007059905 A2</td>
<td>31-05-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2010023181 A1</td>
<td>04-03-2010</td>
<td>AR 073209 A1</td>
<td>20-10-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009286734 A1</td>
<td>04-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 32072 A</td>
<td>26-03-2010</td>
</tr>
</tbody>
</table>