

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property  
Organization  
International Bureau



(10) International Publication Number

WO 2018/202480 A1

(43) International Publication Date  
08 November 2018 (08.11.2018)

(51) International Patent Classification:  
*F21S 4/22 (2016.01) F21Y 115/10 (2016.01)*  
*F21V 3/04 (2018.01) F21Y 107/30 (2016.01)*  
*F21V 23/00 (2015.01) F21Y 107/70 (2016.01)*  
*F21V 23/06 (2006.01)*

(21) International Application Number:  
PCT/EP2018/060464

(22) International Filing Date:  
24 April 2018 (24.04.2018)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
17168906.0 02 May 2017 (02.05.2017) EP

(71) Applicant: PHILIPS LIGHTING HOLDING B.V.  
[NL/NL]; High Tech Campus 45, 5656 AE Eindhoven  
(NL).

(72) Inventor: GIELEN, Vincent, Stefan, David; c/o High  
Tech Campus 45, 5656 AE Eindhoven (NL).

(74) Agent: STIL, Lambert, Johannes et al.; Philips Lighting  
B.V. - Intellectual Property High Tech Campus 45, 5656 AE  
Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every  
kind of national protection available): AE, AG, AL, AM,  
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,  
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,  
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,  
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,  
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,  
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,  
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,  
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,  
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every  
kind of regional protection available): ARIPO (BW, GH,  
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,  
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,  
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,  
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,  
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: ELONGATED FLEXIBLE LIGHTING DEVICE BASED ON SOLID-STATE LIGHTING TECHNOLOGY

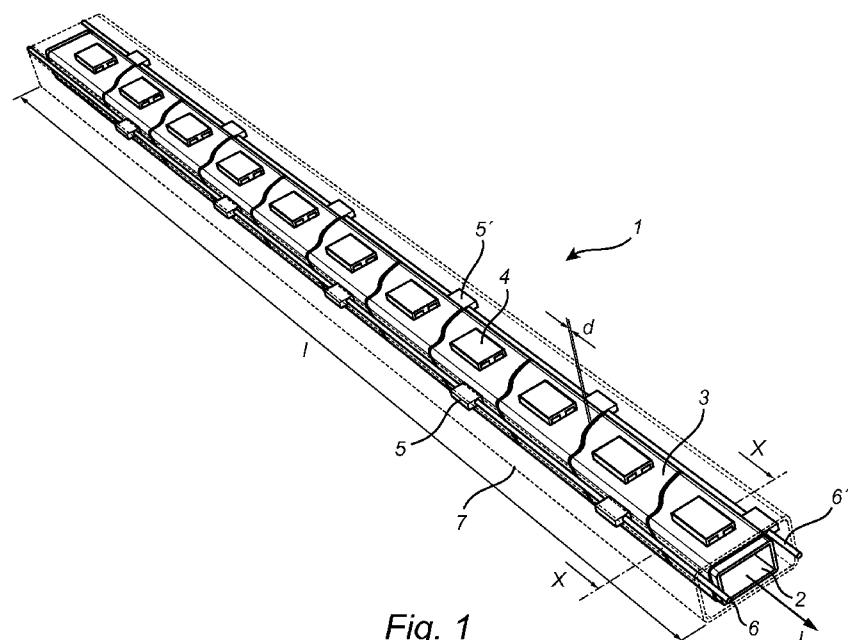



Fig. 1

(57) Abstract: There is presented a lighting device (1) comprising: an elongated flexible core (2) having a polygonal transverse cross section; and a flexible circuit strip (3) having several solid-state lighting elements (4) mounted thereon, the flexible circuit strip (3) being helically wound around the core (2). There is also presented a method for producing such a lighting device (1).



---

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

**Declarations under Rule 4.17:**

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*

**Published:**

- *with international search report (Art. 21(3))*

# Elongated flexible lighting device based on solid-state lighting technology

## FIELD OF THE INVENTION

The present invention relates to an elongated lighting device which is flexible and based on solid-state lighting (SSL) technology.

## 5 BACKGROUND OF THE INVENTION

Light-emitting diode (LED) strips formed by a flexible flat substrate with surface-mounted LEDs are widely used in many applications, for example cove lighting, wall washing and other decorative lighting applications. However, a factor that limits their applicability is that they are typically only easily flexible out of the plane of the substrate, the 10 in-plane stiffness of the substrate being too high to allow extensive in-plane bending. Various attempts have been made to provide lighting devices that are easily flexible in several directions, an example being the lighting device disclosed in US 2005/0162850 A1. That lighting device has a flexible cylindrical tube inside which a helically wound LED strip with a stiffening wire is arranged.

15 Despite the efforts that have gone into developing elongated flexible lighting devices, there exists a need for further technological development aimed at improving, or simply expanding, the state of the art in order to satisfy evolving consumer expectations.

## SUMMARY OF THE INVENTION

20 It is an object of the present invention to provide an improved or alternative elongated flexible lighting device.

According to a first aspect of the invention, there is presented a lighting device comprising: an elongated flexible core having a polygonal transverse cross section; and a flexible circuit strip having several SSL elements mounted thereon, the flexible circuit strip 25 being helically wound around the core.

The present invention is based on the realization that one way of overcoming the problem that flexible circuit strips are generally not flexible in the plane of the strip is to form the circuit strip into a helix and to arrange the helix around a flexible core. The above-described lighting device, which is designed in that way, can be easily and extensively

flexible in several directions. The lighting device may for example be adapted so as to be bendable in at least two non-parallel directions. It is also possible to produce the above-described lighting device in a relatively fast, simple and inexpensive manner.

The core greatly facilitates the helical winding of the circuit strip, and the fact that the cross section of the core is polygonal facilitates accurate positioning of the SSL elements and thus the provision of a light distribution that is not omnidirectional. For example, a light distribution that equals the beam angle(s) of the SSL elements is easy to provide using such a core. The cross section of the core may have the shape of a regular or an irregular polygon. Examples of cross sections include, but are not limited to, cross sections that are triangular, rectangular, pentagonal, hexagonal or heptagonal. All of the SSL elements may be arranged on a single longitudinal side of the core. In that way all of the SSL elements may be oriented so that all of them have the same general direction of illumination. Alternatively, the SSL elements may be arranged on several longitudinal sides of the core. In that way the SSL elements may be oriented so that the lighting device is capable of emitting light in several general directions of illumination.

The core may have a modulus of elasticity in the range from 0.001 GPa to 1 GPa, for example from 0.1 GPa to 1 GPa, and/or a yield strength in the range from 5 MPa to 50 MPa, for example from 25 MPa to 50 MPa. The core can for example be made of a plastic material. Examples of core materials include PUR (foam), PVC and silicone.

The lighting device may comprise a flexible light-transmissive housing inside which the core and the flexible circuit strip are arranged. The housing may for example be translucent or transparent. The housing may be adapted to control the light distribution. By combining such a housing with a polygonal core it is possible to control the direction of the light emitted by the lighting device to a particularly high degree. The housing may for example have a lens shape. The housing may have a modulus of elasticity in the range from 0.001 GPa to 1 GPa, for example from 0.1 GPa to 1 GPa, and/or a yield strength in the range from 5 MPa to 50 MPa, for example from 25 MPa to 50 MPa. The housing can for example be made of PVC or silicone.

The lighting device may comprise a first set of connectors which are mounted on the flexible circuit strip and which are adapted for electrically connecting the SSL elements to a power supply. The first set of connectors can be used as aligning features to make sure that the SSL elements are correctly aligned/oriented. The first set of connectors and the SSL elements can be arranged on different sides of the core. The lighting device may

comprise a wire which electrically connects the first set of connectors to each other and which extends along a side of the core where the first set of connectors are arranged.

The lighting device may comprise a second set of connectors which are mounted on the flexible circuit strip and which are adapted for electrically connecting the 5 SSL elements to a power supply. Like the connectors of the first set, the connectors of the second set can be used as aligning features. Moreover, the second set of connectors may provide redundancy. The second set of connectors may be arranged on a different side of the core than the first set of connectors and the SSL elements. The lighting device may comprise a wire which electrically connects the second set of connectors to each other and which 10 extends along a side of the core where the second set of connectors are arranged.

According to a second aspect of the invention, there is presented a method for producing a lighting device, the method comprising: providing an elongated flexible core having a polygonal transverse cross section; providing a flexible circuit strip having several SSL elements mounted thereon; and helically winding the flexible circuit strip around the 15 core.

The effects and features of the second aspect of the invention are largely analogous to those described above in connection with the first aspect of the invention

The step of helically winding the flexible circuit strip around the core may comprise arranging all of the SSL elements on a single side of the core. Differently stated, the 20 step of helically winding the flexible circuit strip around the core may be performed in such a way that the SSL elements end up being positioned on a single side of the core. Alternatively, the step of helically winding the flexible circuit strip around the core may be performed in such a way that the SSL elements end up being positioned on two or more sides of the core.

The method may comprise: overmolding the flexible circuit strip and the core 25 to form a flexible light-transmissive housing; or inserting the flexible circuit strip and the core into a pre-formed flexible light-transmissive housing. The overmolding can for example be performed by co-extrusion.

It is noted that the invention relates to all possible combinations of features recited in the claims.

30

#### BRIEF DESCRIPTION OF THE DRAWINGS

This and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing embodiment(s) of the invention.

Fig. 1 shows a perspective view of a lighting device according to an embodiment of the invention.

Fig. 2 shows a cross sectional view along line X-X in Figure 1.

Fig. 3 shows a flowchart of a method for producing the lighting device in

5 Figures 1 and 2.

## DETAILED DESCRIPTION

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which currently preferred embodiments of the 10 invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided for thoroughness and completeness, and fully convey the scope of the invention to the skilled person.

Figures 1 and 2 show a lighting device 1 which is suitable for use in 15 applications such as, for example, cove lighting, wall washing, signage and architectural lighting. The lighting device 1 is elongated. In Figure 1 the lighting device 1 is shown in a straight configuration and defines a longitudinal direction L. The length l of the lighting device 1 in the longitudinal direction depends on the application, but is typically in the range from 5 m to 10 m. The width w of the lighting device 1 is typically in the range from 10 mm 20 to 20 mm., and the height h of the lighting device 1 is typically in the range from 10 mm to 15 mm.

The lighting device 1 has a central elongated flexible core 2, henceforth referred to as the “core” for brevity. The major extension of the core 2 is in the longitudinal direction L. The core 2 is capable of flexing in any direction perpendicular to the longitudinal 25 direction L. Differently stated, the core 2 is bendable in any direction perpendicular to the longitudinal direction L. The core 2 is in this case made of a plastic material with a low modulus of elasticity and a high yield strength. The core 2 has the shape of a prism, more precisely a rectangular prism. The cross section of the core 1, transverse to the longitudinal direction L, is substantially rectangular, and the core 2 has four flat outer side surfaces 30 extending in the longitudinal direction L. The side surfaces are pairwise oppositely arranged. The core 2 is a hollow tube and may thus be referred to as a core tube. In a different example the core 2 may be solid.

A flexible circuit strip 3, which may alternatively be referred to as a flexible circuit board, is wound around the core 2. The flexible circuit strip 3 will in the following be

referred to as the “strip” for brevity. The strip 3 follows the contour of the core 2 in a helical path in the longitudinal direction. This means that the strip 3 has the shape of a helix, the axis of which is parallel with the longitudinal direction L. The strip 3 includes electrical circuitry for electrically connecting the SSL elements 4 (further discussed below). The strip 3 may for 5 example be formed by a flexible plastic substrate on which a conductive pattern has been printed. Further, the strip 3 is wound around the core 2 so that there is a longitudinal gap, or space, between consecutive portions of the strip 3. The gap follows a helical path in the longitudinal direction L. The width d of the gap is typically in the range from 0.1 mm to 1 mm. The gap facilitates movement of the strip 3 during bending of the lighting device 1.

10 Several SSL elements 4 are mounted on and electrically connected to the strip 3. The SSL elements 4 are adapted to emit light. Each SSL element 4 includes one or more light sources, such as semiconductor LEDs, organic LEDs, polymer LEDs, or laser diodes. All of the SSL elements 4 may be configured to emit light of the same color, for example white light, or different SSL elements 4 may be configured to emit light of different colors. In 15 the illustrated example, the SSL elements 4 are arranged in a row in the longitudinal direction L. It should be noted that even if the illustrated SSL elements 4 are aligned with each other, they could be arranged in for example a zigzag pattern in a different example. All of the SSL elements 4 are arranged along the same side of the core 2 (the top side in Figure 1). Further, the SSL elements 4 are oriented so that, when the lighting device 1 is in the straight 20 configuration illustrated in Figure 1, all of the SSL elements 4 have the same general direction of illumination. The general direction of illumination is in this case perpendicular to the longitudinal direction L.

It should be noted that it is not necessary that all of the SSL elements 4 be oriented so as to emit light in the same general direction. In a different example (not shown), 25 different SSL elements 4 may be oriented to emit light in different directions. For example, instead of all of the SSL elements 4 being positioned on the core’s 2 top side, there may, alternatively or in addition, be SSL elements positioned on the core’s 2 bottom side and/or lateral side(s). In this way the lighting device 1 may be adapted to emit light in two or more directions.

30 A first set of connectors 5 are mounted on the strip 3 and electrically connected to the SSL elements 4. In the illustrated example, the first set of connectors 5 are arranged in a row in the longitudinal direction L. The connectors 5 in the first set are aligned with each other. The first set of connectors 5 are arranged along a different side of the core 2 than the SSL elements 4, a lateral side in Figure 1. The first set of connectors 5 may for

example be SMT crimp contacts, like the Harwin S1721-06R. The connectors 5 in the first set are typically equidistantly arranged in the longitudinal direction L. The longitudinal distance between the connectors 5 in the first set may for example be in the range from 10 mm to 20 mm. The first set of connectors 5 are electrically connected to each other by a first 5 wire 6 for providing electrical power to the SSL elements 4. The first wire 6 is in this case a main bus wire adapted to carry a current from an electric power supply, such as the mains electric power supply, via an LED driver (not shown).

A second set of connectors 5' are mounted on the strip 3 and electrically connected to the SSL elements 4. In the illustrated example, the second set of connectors 5' 10 are arranged in a row in the longitudinal direction L. The connectors 5' in the second set are aligned with each other. The second set of connectors 5' are arranged along a different side of the core 2 than the SSL elements 4 and the first set of connectors 5', a lateral side in Figure 1. In the illustrated example the first set of connectors 5 and the second set of connectors 5' are arranged on opposite sides of the core 2. The connectors 5' in the second 15 set are typically of the same type as the connectors 5 in the first set. For example, the connectors 5' in the second set may be SMT crimp contacts, like the Harwin S1721-06R. The connectors 5' in the second set of connectors are typically equidistantly arranged in the longitudinal direction L. The longitudinal distance between the connectors 5' in the second set may for example be in the range from 10 mm to 20 mm. The second set of connectors 5' 20 are electrically connected to each other by a second wire 6' for providing electrical power to the SSL elements 4. The second wire 6' is in this case a main bus wire adapted to carry a current from an electric power supply, such as the mains electric power supply, via an LED driver (not shown).

It should be noted that several factors need to be taken into account when 25 positioning the connectors 5, 5'. One such factor is "voltage drop" along the length l of the lighting device 1. One usually positions the connectors 5, 5' so as to eliminate, or at least reduce, voltage drop effects and, thereby, to ensure that the LEDs shine with substantially equal intensity. Further, the LEDs are typically grouped into parallel strings with the main bus, and the connectors 5, 5' are then usually placed at the points where the LED strings are 30 connected to the main bus wires. Still further, where to best put the connectors 5, 5' may depend on the pitch of solder pads on the strip 3 and the diameter and the pitch of the helix. If the pitch and diameter are inaccurate, the error will accumulate and increase with the length of the helix, something which may result in misalignment of the connectors 5, 5' and the LEDs.

The lighting device 1 further comprises an outer housing 7. The housing 7 has a hollow tubular shape. The shape of the housing 7 may alternatively be referred to as hollow and cylindrical. Hence, the housing 7 has an interior space, and the core 2, the strip 3 with the SSL elements 4, the connectors 5, 5' and the wires 6, 6' are arranged in the interior space of the housing 7. These components are thus arranged inside the housing 7. The housing 7 is light-transmissive and flexible. In the illustrated example the housing 7 is capable of flexing in any direction perpendicular to the longitudinal direction L. Differently stated, the housing 7 is bendable in any direction perpendicular to the longitudinal direction L. The housing 7 is in this case made of a plastic material with a low modulus of elasticity and a high yield strength.

The lighting device 1 usually comprises additional components not shown in Figures 1 and 2, such as one or more drivers for the LEDs and end caps for connecting the lighting device 1 to a mains electric supply and/or to other lighting devices. The end caps may for example form a housing for the driver(s). The lighting device 1 is put in operation by connecting it to an electricity supply so that power is supplied to the SSL elements 4 via the driver(s), the wires 6, 6', the connectors 5, 5' and the strip 3. The SSL elements 4 emit light that is transmitted through the housing 7.

The lighting device 1 may be produced by the method schematically illustrated in Figure 3, i.e. by first, in steps S1 and S2, providing the core 2 and the strip 3 with the SSL elements 4, and then, in step S3, helically winding the strip 3 around the core 2. The SSL elements 4 of the illustrated lighting device 1 are positioned on the same side of the core 2, and this may be achieved by helically winding the strip 3 around the core 2 in the appropriate manner. The housing 7 may be formed by overmolding the strip 3 and the core 2.

Alternatively, the housing 7 may be pre-formed separately, whereafter the strip 3 and the core 2 are inserted thereinto.

The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. For example, one of the first and second sets of connectors 5, 5' may be omitted.

Additionally, variations to the disclosed embodiments can be understood and effected by the skilled person in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a

plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

## CLAIMS:

1. A lighting device (1) comprising:  
an elongated flexible core (2) having a polygonal transverse cross section; and  
a flexible circuit strip (3) having several solid-state lighting elements (4) mounted thereon, the flexible circuit strip (3) being helically wound around the core (2),  
5 further comprising a first set of connectors (5) mounted on the flexible circuit strip (3), said first set of connectors (5) and the solid-state lighting elements (4) are arranged on different sides of the core (2), the first set of connectors (5) being adapted for electrically connecting the solid-state lighting elements (4) to a power supply.
- 10 2. The lighting device (1) according to claim 1, wherein the lighting device (1) is bendable in at least two non-parallel directions.
- 15 3. The lighting device (1) according to claim 1 or 2, wherein the core (2) has a modulus of elasticity in the range from 0.001 GPa to 1 GPa, alternatively from 0.1 GPa to 1 GPa.
- 20 4. The lighting device (1) according to any of the preceding claims, wherein the core (2) has a yield strength in the range from 5 MPa to 50 MPa, alternatively from 25 MPa to 50 MPa.
5. The lighting device (1) according to any of the preceding claims, wherein the core (2) is made of a plastic material.
- 25 6. The lighting device (1) according to any of the preceding claims, further comprising a flexible light-transmissive housing (7), the core (2) and the flexible circuit strip (3) being arranged inside the housing (7).

7. The lighting device (1) according to claim 5 or 6, further comprising a wire (6) electrically connecting the first set of connectors (5) to each other, said wire (6) extending along a side of the core (2) where the first set of connectors (5) are arranged.

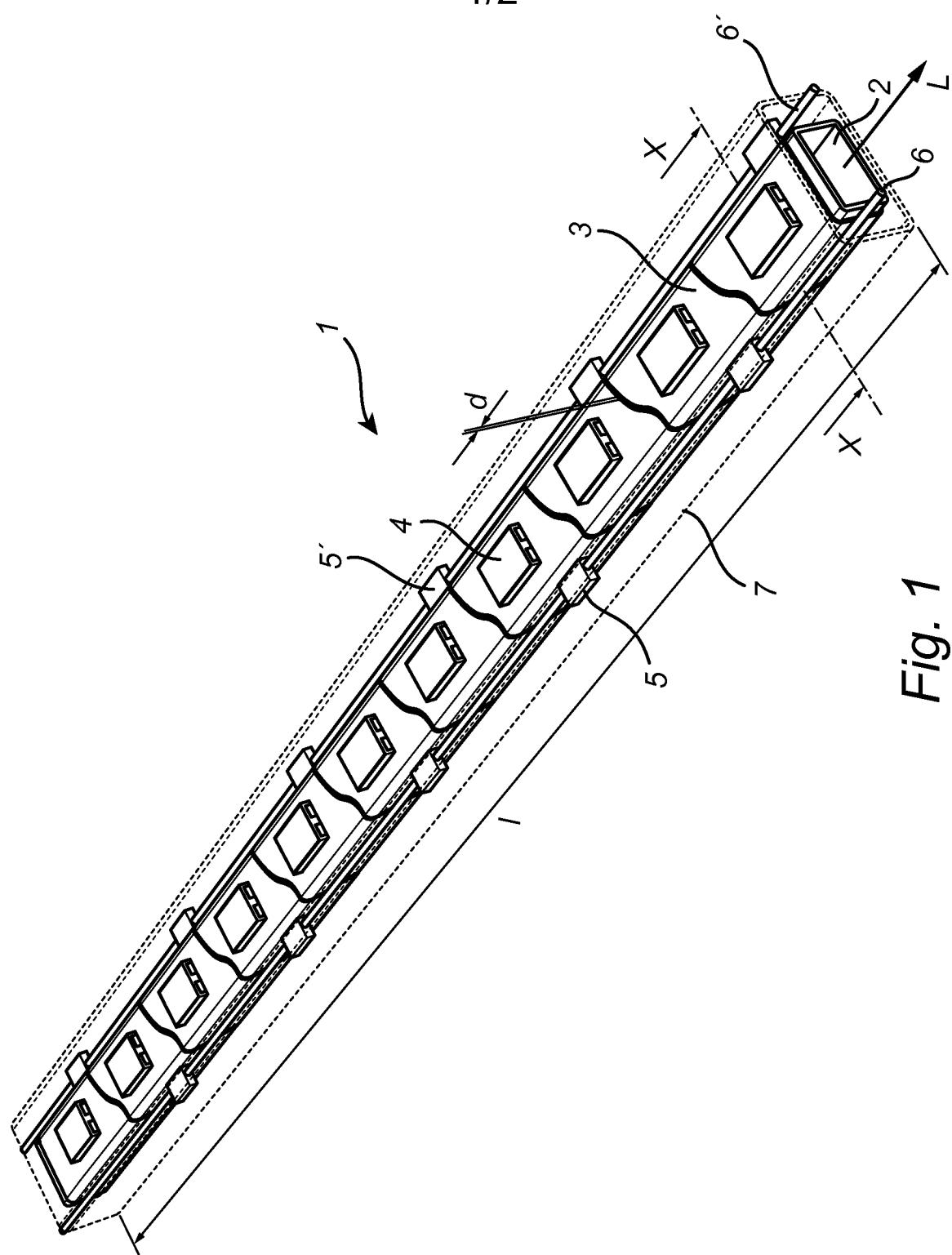
5 8. The lighting device (1) according to any of the claims 5 to 7, further comprising a second set of connectors (5') mounted on the flexible circuit strip (3), the second set of connectors (5') being adapted for electrically connecting the solid-state lighting elements (4) to a power supply and arranged on a different side of the core (2) than the first set of connectors (5) and the solid-state lighting elements (4).

10

9. The lighting device (1) according to claim 8, further comprising a wire (6') electrically connecting the second set of connectors (5') to each other, said wire (6') extending along a side of the core (2) where the second set of connectors (5') are arranged.

15

10. Method for producing a lighting device (1), comprising:  
providing (S1) an elongated flexible core (2) having a polygonal transverse cross section;  
providing (S2) a flexible circuit strip (3) having several solid-state lighting elements (4) mounted thereon; and  
20 helically winding (S3) the flexible circuit strip (3) around the core (2).


11. The method according to claim 10, wherein helically winding the flexible circuit strip (3) around the core (2) comprises arranging all of the solid-state lighting elements (4) on a single side of the core (2).

25

12. The method according to claim 10, wherein helically winding the flexible circuit strip (3) around the core (2) comprises arranging all of the solid-state lighting elements (4) on two or more sides of the core (2).

13. The method according to any of the claims 10 to 12, further comprising:  
overmolding the flexible circuit strip (3) and the core (2) to form a flexible light-transmissive housing (7); or  
inserting the flexible circuit strip (3) and the core (2) into a pre-formed flexible light-transmissive housing (7).

1/2



2/2

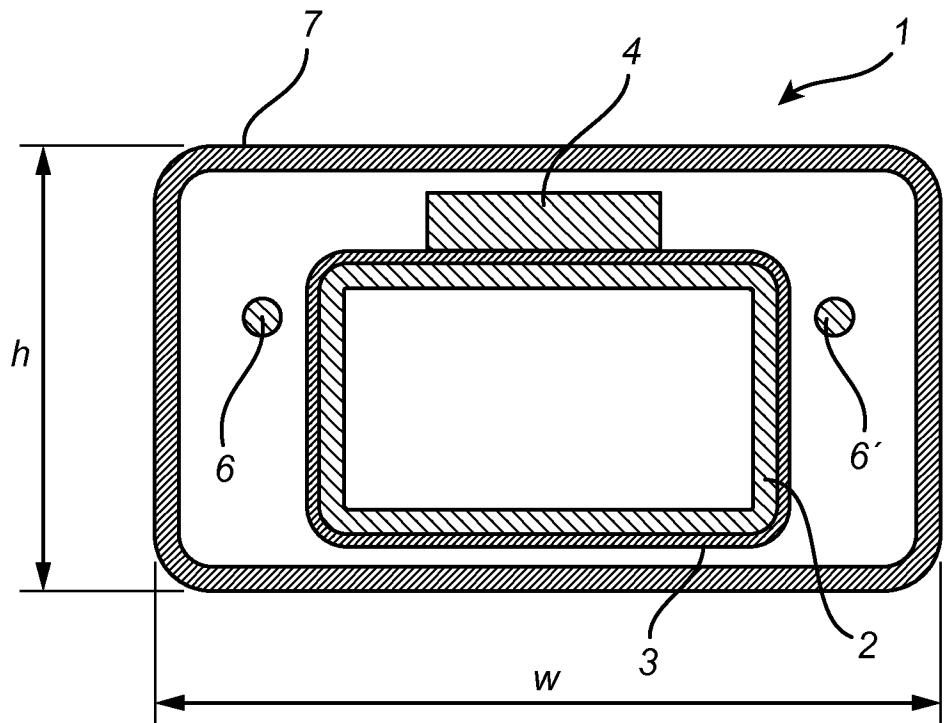



Fig. 2

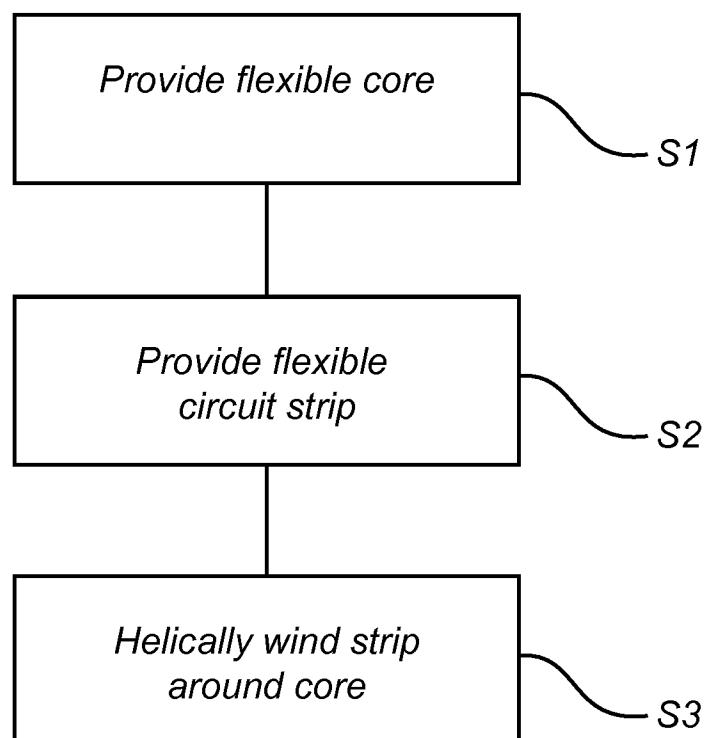



Fig. 3

# INTERNATIONAL SEARCH REPORT

International application No  
PCT/EP2018/060464

**A. CLASSIFICATION OF SUBJECT MATTER**

INV. F21S4/22  
ADD. F21V3/04 F21V23/00 F21V23/06 F21Y115/10 F21Y107/30  
F21Y107/70

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
F21S F21V F21Y

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 2010/164409 A1 (LO PAUL [CN] ET AL)<br>1 July 2010 (2010-07-01)                                                | 10-13                 |
| A         | paragraph [0101] - paragraph [0104]<br>paragraph [0115]<br>figures 11C, 16B, 16C                                  | 1-9                   |
| X         | -----<br>CN 103 016 999 B (ZHONGSHAN KESHUN<br>ANALYSIS & TEST TECHNOLOGY CO LTD)<br>20 January 2016 (2016-01-20) | 10-13                 |
| A         | the whole document<br>-----                                                                                       | 1-9                   |
| X         | US 2004/095078 A1 (LEONG SUSAN J [US])<br>20 May 2004 (2004-05-20)                                                | 10, 12, 13            |
| A         | paragraph [0044]<br>paragraph [0164]<br>paragraph [0185]<br>figure 2<br>-----                                     | 1-9                   |
|           | - / --                                                                                                            |                       |

Further documents are listed in the continuation of Box C.

See patent family annex.

\* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

|                                                           |                                                    |
|-----------------------------------------------------------|----------------------------------------------------|
| Date of the actual completion of the international search | Date of mailing of the international search report |
| 22 June 2018                                              | 03/07/2018                                         |

Name and mailing address of the ISA/  
European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040,  
Fax: (+31-70) 340-3016

Authorized officer

Soto Salvador, Jesús

## INTERNATIONAL SEARCH REPORT

|                              |
|------------------------------|
| International application No |
| PCT/EP2018/060464            |

## C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                            | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | WO 2016/063067 A1 (WAND LITE COMPANY LTD [GB]) 28 April 2016 (2016-04-28)<br>page 10, line 5 - line 9<br>page 20, line 22 - line 29<br>figures 11,12<br>----- | 10-13                 |
| A         | JP 2015 153705 A (PANASONIC IP MAN CORP) 24 August 2015 (2015-08-24)<br>the whole document<br>-----                                                           | 1-9                   |
| A         | JP 2011 108424 A (IIMURA KEIJI; IIMURA HIDEKI) 2 June 2011 (2011-06-02)<br>the whole document<br>-----                                                        | 1-13                  |
| A         | US 8 398 258 B1 (GERRISH TODD [US] ET AL) 19 March 2013 (2013-03-19)<br>the whole document<br>-----                                                           | 1-13                  |

# INTERNATIONAL SEARCH REPORT

Information on patent family members

|                                                   |
|---------------------------------------------------|
| International application No<br>PCT/EP2018/060464 |
|---------------------------------------------------|

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                                                                   |  | Publication date                                                                                                                         |
|----------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------|
| US 2010164409                          | A1<br>01-07-2010 | AU 2010345500 A1<br>BR 112012011208 A2<br>CN 102696278 A<br>EP 2534925 A1<br>HK 1171322 A1<br>JP 2013510448 A<br>TW 201129251 A<br>US 2010164409 A1<br>WO 2011098135 A1<br>ZA 201202778 B |  | 17-05-2012<br>05-07-2016<br>26-09-2012<br>19-12-2012<br>18-03-2016<br>21-03-2013<br>16-08-2011<br>01-07-2010<br>18-08-2011<br>27-12-2012 |
| CN 103016999                           | B<br>20-01-2016  | CN 102788283 A<br>CN 103016999 A                                                                                                                                                          |  | 21-11-2012<br>03-04-2013                                                                                                                 |
| US 2004095078                          | A1<br>20-05-2004 | NONE                                                                                                                                                                                      |  |                                                                                                                                          |
| WO 2016063067                          | A1<br>28-04-2016 | NONE                                                                                                                                                                                      |  |                                                                                                                                          |
| JP 2015153705                          | A<br>24-08-2015  | NONE                                                                                                                                                                                      |  |                                                                                                                                          |
| JP 2011108424                          | A<br>02-06-2011  | NONE                                                                                                                                                                                      |  |                                                                                                                                          |
| US 8398258                             | B1<br>19-03-2013 | NONE                                                                                                                                                                                      |  |                                                                                                                                          |