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(54) Disk meshing and flexible storage mapping with enhanced flexible caching
(57) A data processing system (10) has a processor with
a processor memory and a mechanism for specifying an Fig- I
address that corresponds to a processor-requested data
block located within another memory to be accessed by . _ _ . o -
the processor. A hierarchical memory system is provided |
which includes a cache (16) and long-term storage (20). In |2 ,
accordance with a mapping and meshing process !
performed by a memory subsystem (22), an address of a I
requested data block is translated to a second addressing 5 :
scheme, and is meshed, so that proximate data blocks are 14 :j'o

placed on different physical target disks within the
long-term storage. In accordance with a cache drain
mechanism, the cache will drain data from the cache to
the physical target disks under different specified
conditions. A further mechanism is provided for
preserving data within the cache that is frequently
accessed by the requester processor. A user-configuration
mechanism is provided.
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DISK MESHING AND FLEXIBLE STORAGE MAPPING
WITH ENHANCED FLEXIBLE CACHING

The present invention relates to a system for managing
the transfer of data between two memories. More particularly,
the present invention is dlrected to a data processing system
with a hierarchical memory sub-system hav1ng at least a first

level memory and a second level memory.

requently provided with cache
in order to optimize the

Computer systems are f

memory sub-systems of various types,
One such type of

With disk

transfer of stored data within the system.
cache memory sub-system utilizes disk caching.
caching, data intended for storage in disk storage (such as
magnetic disk or rewritable optical disk) is first stored
within an intermediate, quickly accessible memory (called a
"cache). '

Another storage mechanism for optimizing the transfer of
stored data is called disk striping. In the process of disk
striping, data intended for disk storage is divided into
"stripes," and each stripe of data is written to a respective
disk. Disk .striping thus results i£ the concurrent transfer
of several parts of a data block to several physical disks,
and decreases the overall physical disk access time for the
data block.

Some mainframe computers are provided with an
interleaving mechanism for the mainframe computer memory.
Interleaving is similar to disk striping, and may, at times,
be rendered user configurable. With an interleaved mainframe
memory, a block of data is divided into portions, and those
portions are interleaved among separate locations within the

mainframe computer’s memory. This results in a decreased



access time for retrieval and storage of data from and to the
memory.

The general purpose of each of the above-described
systems is to increase the efficiency of data exchanges
between memories of a particular computer system. However,
such memory I/O optimization mechanisms are frequently
inflexible. That is, the ﬁarémeters of such systems cannot be
adjusted or changed by the user. In addition, such systems
are frequently complex, and utilize unnecessary processing

steps to achieve their objectives.

For purposes of clarification, and to assist readers in
an understanding of the present invention, a number of terms
used herein are defined as.follows:

Data Block:

A single addressable-unit of a disk (e.g., a track on a

mainframe disk; or a sector on a SCSI disk).

Adjacent Data Blocks:
Data blocks that have addresses, specified in terms of a

requester’s addressing scheme, that indicate a proximate
relationship between the data blocks. For example, when a
string of data blocks within a storage device is being
assigned,. by a processor, the blocks within that string are

typically assigned sequential (i.e., adjacent) addresses.

In view of the above, the present invention, through one
or more of its various aspects and embodiments, and/or
subcombinations thereof, is thus presented to bring about one
or more objects and advantages disclosed herein, such as those
noted below.

It is an object of the present invention to provide a
system for maximizing the efficiency of data exchanges between

memory devices, such as, for example, between physical disks



and a cache, and between a high level memory (e.g., a host
processor memory) and a cache. A more specific object of the
present invention is to provide a system for transferring data
pbetween a processor and large capacity long-term storage.

In accordance with a .particular aspect of the present
invention, several related. data blocks that are stored in
long-term storage may be concurrently accessed. The retrieved
data blocks may then be placed in a cache for fast access by
a requesting processor.

It is a further object of the present invention to
provide a disk cache having a mechanism for draining data to
a set of one or more disks, whereby the speed of 1/0 between
the cache and the disks will not be significantly affected by
the draining operation. .

It is a further object of the present invention to
provide a disk cache which performs a simplified pre-fetch
operation, and brings non-requested data blocks from the disks

into the cache, to he ready for subsequent access requests by

the requesting processor.
A further object is to provide a simplified, enhanced,

and efficient  memory hierarchy. Angther object is to render
such a memory hierarchy uéer—configurable, so that several
parameters of the memory hierarchy are adjustable by the user.

The present invention, therefore, is directed to a data
processing system comprising several elements. A processor is
provided, which operates on various data, and specifies a
source address that corresponds to a requested data block
located within a memory to be accessed by the processor. The
processor requests allocation of memory space in order to hold
a specified data string which has a length that requires a
storage space of a specified plurality of data blocks. A
memory allocation mechanism is provided for allocating blocks

of memory space for the specified plurality of data blocks,



and for assigning source addresses to each of the allocated
blocks of memory. The assigned source addresses comprise a
series of adjacent addresses, when possible.

A hierarchical memory system is provided for holding
data, and comprises a first level memory and a second level
memory. First data, which is held within the first level
memory, is available for quiéker access by the processor, as
compared to second data, which is held within the second level
memory. The second level memory includes a plurality of sub-
memories, and a plurality of physical data exchange paths
which are connected to respective ones of the sub-memories.
The data processing system further includes an assignment
mechanism which comprises a mapping device for mapping source-
addresses to target addresses and a meshing device for
assigning sets of adjacent source-addressed data blocks to
sub-memories. The meshing device assigns each adjacent
source—-addressed data block within a given set to one or more
sub—-memories to which no other adjacent source-addressed data
block within the given set is assigned.

In accordance with a particular aspect of the above-
described data processing system, each of the data blocks are
equal in length. In addition, each of the sub-memories may
comprise a target disk, and the first level memory may include
a cache.

In accordance with yet a further aspect of the above-
described data processing system, each set comprises N
adjacent source-addressed data blocks, and the meshing device
assigns each data block within a given set to a respective one
of the set of sub-memories.

In accordance with a further aspect of the present
invention, a data processing system is provided which includes
a prbcessor, a hierarchical memory system, a storage control

processor, a determining device, and a cache drain device.



The hierarchical memory system includes a cache and a long-
term storage. The storage control processor includes a device
for providing processor access to a requested data block
within the cache, and facilitates transfer of data between the
processor memory and the cache, and between the cache and the
long~-term storage. .

The deteirmining device determines when the storage
control processor is in an idle state and the drain device has
been in an inactive state for a predetermined sleep time. The
cache drain device drains the cache when the storége control
processor is under several conditions, such as when the
storage control processor is in an idle state and the drain
device has been in an inactive state for a predetermined sleep
time.

In accordance with a particular aspect of this data
processing system, a user configuration device is provided for
defining one or more user-configurable conditions, under which
the cache drain device will perform a drain of the cache. A
data processing system may further comprise a device for
determining when the storage control processor has instructed
a physical read of data from the long-term storage to the
cache, and for performing a cache drain when the storage
processor.has instructed a physical read of data from the
long-term storage to the cache.

A similar device may be provided for determining when the
storage control processor has instructed a forced physical
write of data, and for performing a cache drain when the
determining device has determined that a forced physical
write has been instructed. Similarly, a device may be
provided for determining when the storage control processor
has instructed a physical write of data, and for causing a
physical drain operation to be performed when that condition

occurs.



In accordance with yet a further aspect of the data
processing system, a device may be provided for calculating
the predetermined sleep time based upon several sleep
variables, wherein the user configuration device will accept
user configuration data . specifying the several sleep
variables. In this regard,, the several sleep variables used
to calculate the predetéfmined sleep time may include a
maximum predetermined sleep time, over which the predetermined
sleep time will not be set, and a minimum sleep time, under
which the predetermined sleep time will not be set.

In accordance with yet a further aspect of the present
invention, -a data processing system is provided which includes
a processor that operates on various data, a hierarchical
memory system comprising a cache and a long-term storage, and
a storage control processor. The processor comprises a
processor memory and a mechanism for specifying an address
that corresponds to a requested data block to be accessed by
the processor. _The storage control processor comprises
several mechanisms, which, among other functions, provide
processor access to the requested data block within the cache,
transfer data between the processor memory and the cache and
between the cache and the long-term storage, maintain a
iisting of the buffers within the cache, and identify as
updated those cache buffers that have been written to. In
addition, the storage control processor may be provided with
a device for accessing a buffer within the cache that
corresponds to the requested data block, and for reordering
the accessed buffer so that the accessed buffer is placed at
a most-recently-used location of the listing. The listing
serves as a cache storage ordering list structure. A buffer
assignment device may be provided, which is responsive to a
physical read request by the processor, for assigning a cache
buffer to hold the data block to be read from the long-term



storage. The buffer assignment device comprises a search
device for searching only a portion of the listing for an
unupdated and not in use buffer, wherein the searched portion
is remote from the most-recently-used location.

In accordance with yet a further aspect of the present
invention, a data processing system is provided which
comprises a 'proceséor, 3a ‘memory allocation device, a
hierarchical memory, and a storage control processor. The
processor operates on various data, and includes a processor
memory and a device for specifying a source address that

corresponds to a requested data block. The processor further

includes a device for requesting allocation of memory space in
order to hold a specified data string. The data string has a

length that requires a storage space of a specified plurality

of data blocks.
The memory allocation device allocates blocks of memory

space for the specified plurality of data blocks, and assigns
source addresses to each of the allocated blocks of memory.
The assigned source addresses include a series of adjacent
addresses when possible.

The hierarchical memory comprises a cache and a long-term
storage, and the storage control processor comprises a pre-
fetch mechanism for making data blocks available within the
cache for future access. The pre-fetch mechanism comprises a
physical pre-read device, which is responsive to a request for
access to a data block made by the processor. The pre-read
device performs a physical read of data blocks having source
addresses that are adjacent to the specified source address of

the requested data block.
In accordance with yet a further alternative aspect of

the present invention, a data processing system is provided
which includes a processor that operates on various data. The

processor comprises a processor memory and a device for



specifying an address that corresponds to a requested data
block. In addition, the data processing system includes a
hierarchical memory system, having a cache and a long-term
storage, a storage control processor, and a user configuration
mechanisn.

The storage control p:bcessor includes an access device
for providing ‘processor access to the requested data block
within the cache, a first transfer mechanism for transferring
data between the processor and the cache, and a second
transfer mechanism for transferring data between the cache and
the long-term storage. The user configuration mechanism
defines one or more user-configurable parameters, based upon
which the storage control processor will control the access
device, the first transfer mechanism, and the second transfer
mechanism.

The above-listed and other objects, features, and
advantages of the present invention will be more fully set

forth hereinafter,

The present invention 1is further described in the
detailed description which follows, by reference to the noted
plurality of drawings by way of non-limiting examples of an
illustrated embodiment of the present invention, in which like
reference numerals represent similar parts or steps throughout
the several views of the drawings, and wherein:

Fig. 1 is a system diagram of a data processing system
comprising several elements of an illustrated example
embodiment of the present invention;

Fig. 2 1is a flow diagram that illustrates the main
control of the memory subsystem of the illustrated embodiment;

Fig. 3 is a flow diagram that illustrates the steps

performed during execution of an access request I/0 operation,



in response to an access request made by a requesting host
processor (requester):;

Fig. 4A is a functional block diagram illustrating the
various function modules of the cache drain mechanism of the
illustrated embodiment;

Fig. 4B is a functional block diagram illustrating the
various function modules of the dynamic sleep time
determination module of the illustrated embodiment:

Fig. 5A is a functional block diagram that illustrates
the main storage I/O path of the data processing system;

Fig. 5B illustrates the relative addressing and locations
of data blocks as they are mapped and meshed from requester-
specified source disks to physical target disks;

Fig. 5C is a comparison diagram which is presented to
illustrate the relative operation of a meshed disk storage
system as compared to a non-meshed disk storage system, when
performing I/O of three requested sequentially addressed

blocks of data, Bl, B2, and B3;
Fig. 5D is a comparison diagram which demonstrates the

relative operation of disk striping as compared to meshing:

Fig. 6A is a functional block diagram illustrating the
various function modules of the passive prediction caching
system of. the illustrated embodiment;

Fig. 6B is a flow diagram illustrating the various steps
performed by the subsystem control mechanism of the
illustrated embodiment during execution of the pre-read
processing;

Figs. 7A and 7B are flow diagrams that illustrate the
steps performed by the subsystem control mechanism which
relate to the preservation of frequently accessed data within

the cache;



Fig. 8 illustrates an example user configuration file
that may be used to configure the subsystem control mechanism
of the illustrated embodiment;

Fig. 9 is a flow diagram which illustrates the process of
implementing an I/0 thread to physically transfer data between
the cache and a particular physical target disk;

Fig. 10 is a flow diagram which illustrates the cache
trickle processing;

Figs. 11A-11E together comprise a flow diagram of the
main cache routine performed by the storage subsystem control
mechanism of the illustrated emnbodiment of the present
invention:;

Fig. 12 is a flow diagram which illustrates the cache
drain-on-write and drain-on-read mechanisms of the illustrated
embodiment; and

Figs. 13A-13D are flow diagrams that illustrate the pre-
read processing of the illustrated embodiment.

A. The Data Processing System

Referring to the drawings now in greater detail, Fig. 1
illustrates a data processing system.10 having a host system
(storage access requester) 12 coupled to a memory subsystem
14. All or a portion of memory subsystem 14 may be provided
either in-board or out-board of a host computer system such as
host system 12. Memory subsystem 14 comprises an I/0
processor 15, a cache 16, an I/0 device driver 18, and a
plurality of target disks 20. Memory subsystem 14 is also
provided with a subsystem control mechanism 22 which is
functionally connected to each of the I/0 processor 15, cache
16, and I/O0 device driver 18.

One potential implementation of the disclosed storage
subsjstem includes use within an emulating storage control

system, such as that disclosed by commonly assigned U.S.




patent application S.N. 07/882,010, entitled "Open
Architecture Interface Storage Controller," which was filed in
the names of David M. Hiatt and Timothy R. Klos on May 13,
1992, the content of which is expressly incorporated by

reference herein in its .entirety. It should be noted,
however, +that the memory subsystem, and each of the
individually defined subcomponents thereof, may have

independent significance in conjunction with other computer
data processing systems or subsystems. In other words, the
noted storage controller of the Hiatt et al. application is

only one example of a system in which the present invention

can be implemented.
B. Memory Subsystem Control
The operation of memory subsystem 14 is controlled by

subsystem control mechanism 22; Fig. 2 is a flow diagram which
illustrates several steps  that may be performed by subsystem
control mechanism 22. In step S2, subsystem control mechanism
22 initializes and configures the system, and thereafter
proceeds to step S4, where the subsystem control awaits
receipt of a data access request from the requester (host
system 12). - Upon receipt of a data access request, the
subsystem control proceeds to step S6, at which time memory
subsystem. 14 receives, via I/O processor 15, the access
request along with a source disk address, specifying an
address of the requested data in terms of the requester’s
addressing scheme. Subsequently, at step S8, the source disk
address is mapped and meshed to obtain a target disk address
corresponding to a physical target disk 20 connected to the
output of I/0 device driver 18. The mapping and meshing will
be described in more detail below with reference to Figs. 5A-
5D. Upon completing the meshing of the address specified by
the requestor in step S8, the process proceeds to step S10,

where the necessary access request I/O processing is performed



(see Fig. 3 for flow diagram of access request I1/0).
Thereafter, the subsystem control returns to step S4, where
the system awaits a further data access request.

Fig. 3 is a flow diagram which illustrates, in general
terms, the access request I/O processing specified in step S10
of Fig. 2. The flow diagram in Fig. 3 demonstrates the
general cache and ‘storége’ retrieval operations of the
illustrated system. Upon receiving a request for access to a
particular data block from the requestor, the access request
I/0 process is activated, and a determination is made in step
S12 of whether the requested data block is located within the
cache. The process determines whether a cache index
corresponding to the data block is located within the cache
storage address list. If the cache index for the requested
data block is found, the system will await any pending I/0 to
the requested block’s cache buffer and then, in step S14, the
caché index is provided to the requester. ”

On the other hand, if the cache index is not located
within the cache, meaning that the data block is not in the
cache, and must be retrieved from the physical long-term
storage, the process proceeds to step S16, and the data is
brought into the cache. The storage address list of the cache
is appropriately modified in step S18, and the cache index is
provided to the requester in step S1i4.

As can be seen from Fig. 3, I/O requests are performed by
a straightforward, simple caching mechanism. No complex
processing is performed to determine whether or not data
should be first placed into the cache before it is then given
to the requesting host processor. Rather, in the illustrated
embodiment, whenever an I/0O access request is made by the
requester, either the data is immediately retrieved from the
cache (if available), or the data is placed in the cache

before it is made available to the requester.
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The illustrated embodiment memory I/0 subsystem 14
responds to storage access requests made by the host requester
12 on a block-by-block basis. Predominant I/0 time delays are
usually caused by physical transfers of data to and from
target disks 20. Accordingly, in order to access a particular
block, that is not stored;within cache 16, a physical I/0
delay will be-encountered. One significant feature of the
illustrated embodiment of the present invention is that it
performs physical data transfers to and from target disks 20
in a manner that will not significantly affect the overall
data transfer completion time. In order to minimize the
affect of. physical transfer delays, whenever possible,
subsystem control mechanism 22 will perform a physical data
transfer of one or more data blocks concurrently with a

physical transfer that is already being made for another

purpose.

C. The Cache Draining Mechanism

One physical data transfer mechanism is the cache
draining mechanism. Cache 16 will drain data therefrom, i.e.,
send the data to target disks 20, under several conditions.
For example, the data will be drained when it must be drained,
in order for an access request to be satisfied by a memory
subsystem 14. Such a "must" drain (a forced physical write)
occurs when there is not sufficient space within cache 16 to
place a requested data block for subsequent access by
requester 12. There is not sufficient space within the cache
when there is no reusable block within the cache which could
be reused without first being written out.

Fig. 4A illustrates a particular implementation of a
draining mechanism 38 as provided in the example illustrated
embodiment of the present invention. A software-implemented
semaphore control mechanism 24 is coupled to a drain condition
switch 26, which 1is in turn connected to several drain



condition modules. Each of three positions of drain condition
switch 26 is respectively connected to a trickle module 28, a
drain-on-read module 30, and a forced physical write module
36. Forced physical write module 36 is also connected to a
drain-on-write module 32. The outputs of each of modules 28,
30, 32 and 36 are each cOnpected to a physical I/0O control
module 19 which is placed- within the I/O path that extends
between cache 16 and target disks 20. Each of trickle module
28 and forced physical write module 36 are functionally "hard-
wired" to a respective switch position of drain condition
switch 26. This means that each of these modules, in
accordance. with this embodiment, is provided as a standard
feature of the illustrated cache systen.

User configuration mnodule 34 1is coupled to |user
configuration switches 35 which each operate to functionally
connect/disconnect each of drain-on-read module 30 and drain-
on-write modulé 32. Accordingly, a user can configure.the
system to select whether or not the caching will perform a
drain-on-read, as controlled by module 30, and/or a drain-on-
write as controlled by module 32. In the particular
embodiment referred to in Fig. 4A, the functions of each of
the modules illustrated therein are implemented with software.
ﬁowever, it should be noted that one or more of these elements
may perform their specified functions if implemented with
hardware, software, or any combination of the same. The
switching mechanisms illustrated in Fig. 4A are meant to
demonstrate the functional aspects of the switches, and may be
implemented by any appropriate well-known software mechanism,
e.g., a semaphore or flag, or hardware mechanism. The
functions of each of modules 28, 30, 32, and 36 will be more
fully described hereinbelow with respect to specific example

implementations.



A cache drain may be performed under several conditions.
Such conditions may include when the cache is performing a
physical read or a physical write operation (in which case the
drain will be called a drain-on-read or a drain-on-write),
when there is a forced physical write to a target disk (to
give space to a cache so that a data block may be placed
within the cache), when the memory subsystem becomes idle
(such a drain is called cache trickle processing), and other
certain conditions are met. The drain-on-read and drain-on-
write conditions are each user-configurable, i.e., they can
each be selected as operable by a user as desired.

Fig. 4B is a functional block diagram which illustrates
a portion of the illustrated memory subsystem that relates to
the cache trickle component of the drain mechanism. This
portion of the memory subsystem is called the dynamic sleep
time determination module. Referring to Fig. 4B, dynamic
sleep time determination module 40 includes a user
configuration module 34, several parameter storage modules 42,
44, 46, and 48, a DST (Dynamic Sleep Time) calculation module
50, a module 52 for monitoring the count of updated cache
records, and an estimating device 54. The parameter storage
modules include a MAX DST module 42, a Threshold DST module
44, a MIN DST module 46, and a Proportion Threshold module 48.
Each of the parameter storage modules 42, .44, 46, and 48 hold
respective parameter values that are specified by the user.
Each of these values is placed within its appropriate module
by user configuration module 34, and are set by the user
during execution of a user configuration process.

In operation, dynamic sleep time determination module 40
determines the dynamic sleep time of the cache system; that
is, the module 40 determines, with the use of DST calculation
module 50, the required amount of time (called the DST)
between actuations of the cache trickle component. The DST



(since a last trickle attempt) must elapse before actuation of
a trickle to the target disks will be allowed. A dynamic
sleeping trickle is performed when the following conditions
are detected by the system: (1) the complete memory subsystem
is idle, (2) no cache processing is taking place, (3) there is
no pending cache activity, and (4) the Dynamic Sleep Time
(DST) has elapsed since the last trickle attempt.

The DST is calculated by DST calculation module 50, based
upon the above-described user-configurable parameter values,
and further based upon an estimated number of cache buffers
available for re-use without a physical write, as determined
by estimating module 54. Each of the user-configurable
parameter values is defined specifically as follows: MAX DST
(specified in terms of seconds) represents a maximum set
dynamic sleep time. The proportion threshold (which is placed
within proportion threshold storage module 48) represents a
.threshold ratio of the number of cache buffers available for
re-use without a physical write to the total number of cache
buffers. When more cache buffers are "available" than
specified by this ratio, the DST time is set to the MAX DST
value. MIN DST is the minimum dypamic sleep time of the
system, and- Threshold DST represents the threshold dynamic -
sleep time value which is utilized to determine the point at
which the DST should be set to MIN DST.

The dynamic sleep time (DST) value is varied as a
function of the estimated number of cache buffers available,
as determined by the estimation module 54, when the estimated
number of available buffers is within a certain range.
However, when the estimated number of buffers reaches a level
so as to cause the calculated DST to go below the threshold
DST value, the DST is made equal to the MIN DST value. On the
other hand, should the estimated number of available cache

buffers increase to a proportion of the cache that exceeds the



Proportion Threshold value, the DST is set to the MAX DST
value.

The following describes an example algorithm for setting
the Dynamic Sleep Time of the cache trickle mechanism:
IF .

"Number of Cache Buffers" divided by the "Estimated

Number of Available’Caché"Bdffers" (can be re-used without

first being written)
IS LESS THAN

the "Max To One Over" value
THEN

set the "Dynamic Sleep Time" according to the "Max
Dynamic Sleep Time"

OTHERWISE ,

Set the "Dynamic Sleep Time" according to ("Estimated
Number of Available Cache.Buffers" divided by the "Number of
Available Cache Buffers")

multiplied by

the "Max To One Over" value iy

multiplied by the "Max Dynamic Sleep Time"
then check: |

® ® 0 9 © % 0% s 000 20 00 v o e 00

IF

"Dynamic Sleep Time" as calculated
IS LESS THAN

"Min Dynamic Sleep Threshold"

THEN

set the "Dynamic Sleep Time" to the "Min Dynamic Sleep
Time"

* The "Max To One Over" value equals the inverse of the
Proportion Threshold value. See, e.g., the description

corresponding to Fig. 8, hereinafter, for a more detailed

description of this parameter.
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Settings identified as "according to" implies that some
unit conversions are needed to perform the calculations
correctly. These are not shown in this example, as they
depend on the units assigned to the various parameters.

These calculations provide a Dynamic Sleep time value
which is at the maximum allowed value when cache availability
is at or exceeds the availability established by the Max To
One Over usage point, and a linearly decreasing value to the
Min Dynamic Sleep Threshold, at or below which the Min Dynamic
Sleep Time will be used. Had there been no Minimum Threshold,
the Dynamic Sleep Time calculated value would reach zero (0)
when cache availability reached zero (0). "Availability" of
cache is used throughout this illustration to indicate the
estimated number of cache buffers presently available for re-
use without first having to be written to secondary or slow

storage.

D. The Mapping and Meshing Mechanisms
Fig. 5A illustrates the overall physical I/0 path of the

data processing syétem of the illustrated exemplary embodiment
of the present invention. As illustrated in Fig. 5A, data
moves along a physical path that comprises a requestor 12,
connected to a disk mesh module 56, cache 16, physical I/0
control 58 and target disks 20. Each time requester 12
requests access to a specified data block having a particular
source address, the address of the specified data block is
translated to a target disk address that correlates with the
configuration of target disks 20. Sets of N Data blocks that
have adjacent source addresses are allocated, in a rotating
manner, among a selected group of N target disks 20. Such a
rotating allocation of the requested block constitutes a
"meshing"” of the I/O data among the N target disks. N
represents the mesh factor of the meshing process.
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The translated (i.e., mapped) and meshed target disk
addresses are then utilized to reference data blocks within
cache 16. If a data block is not available within cache 16,
a physical I/0O read operation is performed through the use of
physical I/0 control module 58. Subsequent to locating the
data on target disks 20, and placing the same within cache 186,
a cache index is then given to requestor 12 for access.

Fig. 5B shows an illustrative, but non-limiting, example
of a disk mapping and meshing scheme executed by the subsystem
control 22, wherein several source disks and block locations
are mapped to an unmeshed target disk and block, and are
subsequently meshed to a target disk and block. In the
illustrated example, the mesh factor is set to 3, and the
blocks are tracks. There are eight (8) blocks per source
disk, nine (9) blocks per target disk, six (6) source disks
and six (6) target disks. The illustration is greatly
simplified for purpose of explanation. For example, it should
be noted that the storage media illustrated are very small as
compared to actuai storage devices that are available on the
market. However, the principles discussed herein are to be
utilized in such actual storage devices.

The first, left-hand column of the illustrated diagram,
labeled "Source Disk and Block," shows six (6) source disks
(D0-D5), each with eight (8) blocks (tracks) identified as TO-
T7. In a first phase of a disk mapping, the source disk
number and block number are linearly mapped to a target disk
addressing scheme. The second column heading, "Unmeshed
Target Disk and Block," represents this intermediate step.
Oonce an unmeshed target disk number and offset are determined
for a given source disk number and offset, the unmeshed
information is then meshed to a new mapping that corresponds
to the physical target disks, which are shown below the column

heading "Meshed Target Disk and Block."



Within the column labeled "Meshed Target Disk and Block,"
the final mapping results are shown. A first subcolumn
provides original source disk numbers (Dn) and corresponding
offsets (Tn) for each block of data. Corresponding unmeshed,
linear target disk numbers (0ODn) and offsets (OTn) are shown
in the middle subcolumn, and the resulting meshed target disk
numbers (@ ODn) and offsets (@ OTn) of the six (6) target
disks are shown in the third subcolumn.

It is noted that the blocks in this illustration of each
of the source disks and the target disks are equal in size.
In implementation, the target disk blocks will likely comprise
several smaller addressable target disk sectors which are
sequentially accessed in order to store data from a single
source disk block. For example, the target disk blocks may
comprise 94 physical sectors, which correspond to the data of
a single source disk track. For purposes of I/0, the block
being transferred between the cache and the target disks
corresponds to the size of the source disk block, and thus
would include the necessary number of target disk sectors
which can handle each source disk block.

Fig. 5C comprises a comparison diagram, in which a non-
meshed storage system 59A and a meshed storage system 59B are
‘each illustrated, and demonstrates the concurrent block I/O
capability of a meshed storage system 59B. In the event that
a 'physical I/O must be performed for three (3) requested
blocks of data having adjacent source disk addresses, a non-
meshed system (having an effective mesh factor of 1) will need
to perform all I/0O with the same disk. In comparison, in a
meshed system, each of the adjacently addressed blocks Bl, B2
and B3 will be present upon separate disks, and thus can be
concurrently accessed in performance of the physical I/O.

In Fig. 5C, each of the requested blocks have, for

example, addresses as follows: Bl = cyl n, head m, B2 = cyl n,



head m+1, and B3 = cyl n, head m+2. Each of the non-meshed
system 59A and meshed system 59B requests all of the three
requested blocks, Bl, B2 and B3, and includes an I/0 path 60.
However, non—-meshed system 59A includes only one non-meshed
disk 62, which holds the requested blocks, while meshed system
59B includes three respective meshed disks 62a, 62b, and 62c,
which include " the rotatably allocated adjécently addressed
blocks Bl, B2 and B3. In the meshed system 59B, the mesh
factor is equal to 3.

Meshing should be distinguished from systems which
perform striping. Fig. 5D compares a method of striping with
the method of meshing which is utilized in the illustrated
embodiment. Referring to Fig. 5D, in the striping example, a
block 63 is divided into N segments 65, and sequentially
positioned segments 65 within that particular block 63 are
allocated among several illustrated striping disks 64. With
meshing, a set 68 of sequential blocks 69 is distributed, on
a per-block basis, among the respective meshing disks 66.
Accordingly, as demonstrated by Fig. 5D, meshing is
significantly different from disk striping, since meshing
entails the rotating allocation of complete blocks of data,
whereas striping divides each block into several portions, and
allocates those sub-divided portions among different physical
disks.

Calculation of Mapped and Meshed Disk Addresses:

In the mapping and meshing components of the present
system, a first map initialization step is performed, in which
the first block of each source disk is mapped to the target
disk addresses in order to determine where each of the source
disks starts, in terms of the target disk addressing scheme.
In this regard, an unmeshed target disk address is calculated
that corresponds to each first block of each source disk,

using a linear one-to-one mapping. Then, the respective



blocks are allocated, in a rotating manner, among a defined
set of N target disks, wherein N represents the mesh factor.

In the example embodiment disclosed herein, several
features should be specified for purposes of clarity. It is
noted that the number of target disk blocks per storage disk
block is an integer value of at least one, and each target
disk is large enough to hold at least one source disk block
worth of data. The number of target disk blocks per target
disk is small enough to be completely contained within one
target disk. This number is an integer value. The number of
target disks per source disk may be designed so that the
number of target disks comprises an even multiple of target
disks per source disk (or such that the number of source disks
comprises an even multiple of source disks per set of target
disks), even if such a configuration results in incomplete
target disk use. For example, if 1.8 source disks can fit
onto one target disk, the configured size of the target disks
may be modified so that the number of blocks utilized within
each target disk will hold 1.5 source disks. With this
configuration, two target disks will completely hold three
disks, and would fa0111tate a mesh factor of either 1 or 2.

An example set of algorithms are described below to
1llustrate the specific calculations performed by the mapping
and meshing components of the system. All of the reference
values are integers, and the math is integer math, or modulo
function math, as indicated.

The following comprises a set of initialization steps
performed by the system to provide un-meshed target disk
addresses that correspond to the first address of each source
disk.

1) Initialize the unmeshed starting target disk number for
the first source disk to 0.



2) Initialize the unmeshed starting target disk block offset
for the first source disk to 0.

3) For each additional source disk configured, perform the
following steps:

1) Set a scratch value (A) to the target disk
block offset for the prior source disk divided by
the number of target disk blocks per source disk
block. Then add to it the number of source disk
blocks per source disk.

2) Initially set the unmeshed starting target
disk number to the starting target disk block
offset for the prior source disk.

3) If the scratch value (A) is greater than or
equal to the configured number of source disk

blocks per target disk:

1) Reset the unmeshed starting target disk
number for the current source disk to itself
plus: the integer part of the value that
results from division of the scratch value (A)
by the number of source disk blocks per target

disk.

2) Reset the unmeshed starting target disk
block offset to the remainder of the division
of the scratch value (A) divided by the number
of source disk blocks per target disk, result
multiplied by the number of target disk blocks
per source disk block.

4) If item 3 was false, leave the unmeshed
starting target disk number as is and set the
unmeshed starting target disk block offset to the
scratch value (A) multiplied by the number of
target disk blocks per source disk block.

The above-described initialization steps may be described

in terms of pseudo-code as follows:

UnmeshedStartTargetDiskNumber [0}=0;
UnmeshedStartTargetOffset [0)=0;
for(i=1; i<NumberOfSourceDisks; i++)

{

TempOf fset=(UnmeshedStartTargetOffset[i-11/Config.TargetBlocksPerSourceBlock)+
NumberOfSourceBlocksPerSourceDisk;



UnmeshedStartTargetDiskNumber [i]l=Unmeshed StartTargetDiskNumber[i-1];
i f(TempOffset2Config.SourceDiskBlocksPer TargetDisk)

{
UnmeshedStartTargetDiskNumber (¥} =
TempOf fset/NumberOfSourceD isk
BlocksPerTargetDisk;
UnmeshedStartTargetDiskOffset[i)=(TempOffset %
Config.SourceBlocksPerTargetDisk)*
Config.TargetDiskBlocksPerSourceDiskBlock;

)
else
UnmeshedTargetDiskOffset [i]=TempOffset*

Config.TargetDiskBlocksPerSourceDiskBlock;

The addresses provided by the initialization steps
described above are then used in the following mapping and
meshing algorithm.

1) Set a scratch value (A) to the unmeshed starting target
disk offset for the source disk number being referenced,
divided by the number of target disk blocks per source disk
block. Add to that result the source disk block number.

2) Calculate the unmeshed starting target disk offset for
this source disk block as the remainder of the division of the
scratch value (A) by the calculated number of source disk
blocks per target disk , result multiplied by the number of
target disk blocks per source disk block.

3) Calculate the unmeshed target disk number for this source
disk block as the unmeshed starting target disk number for the
source disk. being referenced plus the integer part of the
value that results from the division of the scratch value (A)
by the calculated number of source disk blocks per target
disk.

4) The above calculations provide a linear mapping of source
disks onto target disks. The next phase of the mapping is to
mesh the target disk blocks based on the user-specified mesh
factor:

1) Set the final target disk number to use as the
unmeshed starting target disk number divided by the
configured mesh factor, result multiplied by the
configured mesh factor. Add to this the result of
dividing the unmeshed target disk offset by the number of
target disk blocks per source disk block mod'd by the
configured mesh factor.



2) Set the final target disk offset to use as the
unmeshed target disk offset divided by the number of
target disk blocks per source disk block, result divided
by the configured mesh factor, result multiplied by the
configured mesh factor, result added to the unmeshed
target disk number mod'd by the configured mesh factor.
Multiply the result so far by the number of target disk

blocks per source disk block.

In terms of pseudo-code, the above-described steps are as

follows:

TeﬂpOffset:(UnmeshedstartTargetDiskOffset[SourceDisk Number] /
NumberOfTargetDiskBlocksPerSourceD iskBlock+Source DiskBlockNumber;

UnmeshedTargetDiskOffset=(Tenp0ffset%NmberofSourceDisk BlocksPerTargetDisk) *
NumberOfTargetDiskBlocksPerSourceDiskBlock;

UnmeshedTargetDi skNumber=UnmeshedStartTargetDiskNumber [SourceD i skNumber]+
(Ternpoffset/NunberofSourceDiskBlocksPerTargetDisk):

MeshedTargetDiskNunber=((UrﬂeshedTargetDiskNunber/Mesh factor) *MeshFactor)+
((UrﬂeshedrargemiskOffset/NmberOfTargetDiskBlocksPerSourceDiskBlock)'/.MeshFactor);

MeshedTargetDiskOffset=((((UnHeshedTargetDiskoffset/
NunberOfTargetDiskBlocksPerSourceDiskBlock)/Hesh Factor)* MeshFactor) +

{UnMeshedTargetDiskNumber?Meshfactor)) *
NumberOfTargetDiskBlocksPerSourceDiskBlock;

The mapping and meshing algorithm is described in terms

of symbols as follows:

Inputs:
a=UnMeshed Target Disk Offset for the starting block of

an identified Source Disk as previously calculated.
b=UnMeshed Target Disk Number for the starting block of
an identified Source Disk as previously calculated.
c=Number of Target Disk Blocks Per Source Disk Block.
=Number of Source Disk Blocks Per Target Disk.
e=Source Disk Block Number.
. M=Mesh Factor.

Intermediate Results:
t=Temporary Offset Value
o=UnMeshed Target Disk Offset.
=UnMeshed Target Disk Number.

Final Results:
O=Meshed Target Disk Offset.
N=Meshed Target Disk Number.



t=(a/c)+e
o=(t%d) *c
n=(b+(t/4))
N=((n/M) *M) + ( (o/c) M)
0=((((o/c) /M) *M)+(n3M) ) *c -
The above calculations assume a constant target disk
size; however, modifications may be made to accommodate target
disks of disparate sizes.

E. Passive Prediction Caching
The cache system of the illustrated embodiment of the

present invention includes a mechanism, referred to herein as
"passive prediction caching". With the use of passive
prediction caching, non-requested data is pre-read, i.e., pre-
fetched, so that it will be within the cache and ready for
subsequent access requests made by the requester. Passive
prediction caching does not require a prediction mechanism
which predicts what data will be accessed based upon the
tracking of data -use. Rather, a set number of adjacently
addressed (in source address) data blocks, that are adjacent
(in source address terms) to a requested data block are pre-
read when there is a request for access to the requested data
block. '

Fig.'6A’'shows an illustrative, but non-limiting, example
embodiment of the passive prediction caching mechanism of the
present invention. User configuration module 34 is connected
to a pre-read count storage module 70, which is in turn
connected to a passive prediction mechanism 72. Passive
prediction mechanism 72 is then coupled to subsystem control
22, which is also connected to, inter alia, requestor 12.

In operation, requestor 12 initiates a request for access
to block "a". Passive prediction mechanism 72 then initiates
a supplemental access request, which may entail a physical
read to the target disks, based upon a block that was



requested, and also based upon the user- configured pre-read

count k. Passive prediction mechanism 72 will then instruct

the subsystem control 22 to perform the supplemental access
request.
This process is illustrated in more detail in the general

flow chart shown in Fig. 6B. At an initial step S32 of the

pre-read procéssing,’the étorage subsystem control will wait
for a request for access to a specified block a. Upon receipt
of such an access request, the process will proceed to step
S34, where the user 'configured pre-read count k will be
compared to the estimated number of buffers available within
the cache for immediate re-use. In this regard, step S36 is
performed, in which a value p is set to the estimated number
if the estimated number is less than k. However, if the
estimated number is equal to or greater than k, p is set to k.
Thereafter, step S$38 is performed, in which the access request
made by the requestor is supplemented to include a physical
read of p sequentially addressed blocks, having addresses a +
1 through a + p (in terms of the source disk block addressing
scheme, as specified by the requestor), if several conditions
are met. The specified conditions include the following: (1)
each of the blocks to be physically read are on separate
physical ‘targets disks; (2) each block is not already in
cache; and (3) each physical read does not require a forced
write of a cached block, before the pre-read block can be
placed within the cache.

The pre-read processing is passive in that it performs
pre-reads in response to receipt of a request for access by
the requestor. In addition, the pre-read processing is highly
efficient because physical reads of blocks are only performed
if the respective blocks are on separate physical target
disks. This allows physical transfers from the physical

target disks to be concurrent, and greatly minimizes the
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physical data transfer time consumed by the pre-read process.
The meshing of source disk data blocks maximizes the
probability that data blocks to be pre-read all reside on
different target disks.

Several safety mechanisms are provided to ensure that the
pre-read does not impinge upon updated, or frequently used,
data blocks that are'withih the cache. Accordingly, a number
is estimated which represents the buffers available for re-use
within the cache, and the number of physical reads that are
performed by a pre-read process 1is based upon such an
estimated number. In addition, unnecessary physical reads are
not performed, such as, e.g., 1if the block is already in
cache. Another time-saving aspect of the pre-read processing
is that a pre-read will not be performed for a particular
block if such a read requires forcing the write of a cached
block. Each pre-read buffer is indexed with an MRU position
within the destage list, once the corresponding physical read
has been completed.

F. Frequently Read Data_ Preservation

Another significant feature of the illustrated embodiment

of the cache system is the use ¢of frequently read data
preservation. With this system, not only will updated cache
buffers be preserved, but un-updated cache buffers that are
frequently read by the requester will also be preserved, under
several conditions. Such a feature reduces or eliminates the
need to thrash in and out of cache for data which is
frequently accessed but seldomly or never updated. The system
may be provided with a process that preserves un-updated, but
frequently used, data buffers in the cache by 1limiting
searches for available cache buffers, and by indexing the
cache buffers so that the frequently used cache buffers are
placed within in an area of an indexed list which will not be

searched when looking for an available cache buffer.
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Figs. 7A and 7B illustrate the relevant components of the
storage subsystem control of the present invention which
pertain to the frequently read data preservation. In Fig. 7A,
step S40 is shown to represent the point in time at which the
storage subsystem control - receives a request to access a
stored buffer. Whenever.sﬁch a request to access a stored
buffer is received, the process proceeds to step S42, at which
time the buffer is placed at the top of the destage list
(which corresponds to the MRU position).

Referring to Fig. 7B, when a physical read of a block
must be performed by the system, as determined at step S44,
the process proceeds to step S46, where an appropriate cache
buffer is located so that the physically read block can be
placed within that cache puffer. In performing step S46, a
selected lower portion of a destage list is searched, which

corresponds to a range of- LRU positions. When an un-updated

buffer is located within the selected lower portion of the
destage list, and.is. thus available for use, that cache buffer
is chosen for the location of the physically read block.
Proceeding to step S48, if all searched buffers are "updated, "
or in use, a forced physical write is performed.

Figs. 7A and 7B jllustrate that whenever a request is
received for access- to a particular stored buffer, that buffer
is placed at the top of a destage list, which corresponds to
the MRU position of the destage list. Thereafter, whenever a
physical read of a particular block is requested, the cache
puffer which is used to store that physically read block will
be obtained from a selected lower (LRU) portion of the destage
list. Thus, the frequehtly accessed cache buffers, which
would end up at or near the top of the destage list (within an
MRU range of the list) will not be chosen for storage of a

physically read block.



The user-configuration module of the system may be
configured so that the size of the selected lower LRU portion
of the destage table may be specified by the user, i.e., user-
configurable. Separate sizes may be configured for ordinary
reads and pre-reads.

G. User Configuration )

Another significant Ffeature of the illustrated memory
subsystem of the present invention, and of each of several
subcombinations thereof, is the flexibility and adaptability
of the system. Several parameters of the system may be
configured by the user depending upon the particular needs and
physical constraints involved in a particular implementation.
The user configuration aspects of the invention will now be
described with reference to-an illustrative, but non-limiting,

example implementation.
In the illustrated enibodiment, a user configuration file

may be provided within the storage subsystem, and may include
each of the user-configurable parameters of the system in the
form of a 1list. The user can specify and/or modify the
contents of the user configuration file, and reconfigure the
system, either upon system initialization, or dynamically, by
initiating an appropriate re-configuration process during run-
time of the 'system: However, certain parameters within the
user confiquration. file may not be dynamically altered.

A particular example implementation user configuration
file is shown in Fig. 8. The example parameters given in the
user configuration file illustrated in Fig. 8 have relevance
in the context of a data processing system which includes a
host processor which addresses IBM 3380 source disks, and is
connected to a storage subsystem which emulates a 3990 storage
controller, and which translates addresses so that data may be
placed on target disks which comprise typical SCSI disks.



A config ID parameter 76 is provided at the top of the
list contained in the user configuration file. Within this
parameter, the user may provide a file name to identify each
user configuration file. For example, the user may want to
name a particular user-configuration file as a test file, as
it may contain parameters which are used solely for testing
purposes, while another fiie may be named a default file, and
may contain a set of default parameters. A third file name
may be given for a nsystem-under-strain" file that comprises
parameters which should be used when the system is under
stress due to excessive use.

Each parameter can be specified by placing an appropriate
value alongside the name of the parameter. Each of these
parameters has a particular use in various aspects of the

illustrated storage subsystem described herein.
MF Num Channels parameter 78 represents the number of

mainframe channels connected in the system. MF_Num Disk
parameter 80 represents the number of disks of the mainframe
(called source disks) which are being emulated by the storage
subsystems. MF_Base Address parameter 82 represents the
device subchannel address relative tg the mainframe. SCSI Map

parameter 84 represents a switch, which, when on, causes the
system to .provide a.file that contains mapping information for
subsequent viewing by a user. When the parameter is a 0, the
switch is off; when the parameter is a 1, the switch is on.
SCSI Mesh Factor parameter 86 represents the mesh factor of
the storage subsystem, and thus the number of target disks (in
this case SCSI disks) to which the linearly sequentially
mapped source disk data blocks will be meshed. SCSI Num Disks
parameter 88 represents the number of target disks hooked up
to the system. SCSI Sector Size parameter 90 represents the
target disk block size, in bytes. In this case, a SCSI sector
is a target disk block. SCSI Sectors Per Disk parameter 92




represents the number of target disk blocks (SCSI sectors) per
target disk. SCSI Sectors Per MF Track parameter 94
represents the number of target disk blocks per source disk
block. SCST Verify Write parameter 96 represents whether or
not a verify write switch of the system is on or off, 0
representing an off condition, and 1 representing an on

condition.

Cache Drain On Read parameter 98 indicates whether or not
the system has been configured to perform a drain-on-read. 0
represents an off condition, and 1 represents an on condition.
Cache Drain on Write parameter 100 similarly represents the
configuration of the system with respect to performing a
drain-on-write. Cache Read Ahead Track Count parameter 102
represents the pre-read count a, i.e., the number of blocks
(tracks) which the system will attempt to read ahead (pre-
read), when a request is made for access to a particular
block. Cache Max Dynamic Sleep parameter 104 represents, in
seconds, the maximum DST (Dynamic Sleep Time) which is used in
calculating the DST for the cache trickle process of the cache
storage subsystem. Cache Max to One Over parameter 106 is the
threshold proportion. When the ratjo of estimated available
cache buffers to the total number of cache buffers goes below

a value equal to 1-over the specified max-to-one-over value,
the DST is reduced from the maximum value, and is determined
based on a calculated value. Cache Min Dynamic Sleep
Threshold parameter 108 represents the threshold DST value in
milliseconds; when the calculated DST goes below this value,
the DST is set to the minimum DST.

Cache Num Buffers parameter 110 represents the number of
cache buffers. Cache Min Dynamic Sleep Time parameter 112
represents the minimum DST in milliseconds. Cache Update Log
parameter 114 represents a switch indication. When the switch

is set to on, the value is 1, and the system keeps track of



the state of the cache buffers, and logs data corresponding to
the cache buffers in a non-volatile fast memory (e.g., an
SRAM) .

A Cache Read Preserve Percent parameter 116 represents
the percentage of the destage table, starting at LRU, to
search for an "available" ééche buffer before simply selecting
an LRU entry'which‘can be 'physically written to allow a
physical read to be accomplished. A Cache_ Preread Preserve

Percent parameter 118 represents the percentage of the destage

table, starting at LRU to search for an "available” cache
buffer to allow a pre-read to occur before terminating the
pre-read due to unavailability of a cache buffer to re-use
without first performing a physical write.

Several features may be provided in conjunction with a
user configuration mechanism, such as the above example user-
configuration file.

Soft meshing:
The mesh factor of a particular meshing process may be

specified by the user. This allows the user to specify how
many target disks should be meshed with a particular range of
data that has been linearly mapped opto the target disks. The
mesh factor value may be determined and specified by the user
based upon such considerations as the anticipated access data
characteristics, reliability of storage devices, risk
assessment, and performance requirements. The meshing
components are thus not hard-coded to a particular value, and
the user may modify the mesh factor at subsystem
initialization time, as desired.

Variable Mapping:

The cache system mapping process of the memory subsystem
may be provided with considerable flexibility by rendering
several variables of the process user-configurable. For

example, the system could be configured so that any number of



source disks having any particular designated size may be
mapped onto any number of any size target disks, provided that
the target disks I/O block size is less than the source disk
I/0 block size used for caching.

The configuration mechanism provided by the present
invention may be implementéd to specify several key values
which define the mabping'prbcess. Such user-configurable
values may include (1) the target disk capacity, (2) the
target disk I/O block size, and (3) the number of targets disk
blocks per source disk block.

User-Configurable Passive Prediction:

As noted above, the user may be able to specify a pre-
read count k. This pre-read count may be any integer value up
to one less than the mesh factor in the particular embodiment
disclosed herein. Based upon the data characteristics and
access characteristics of-a system, the user can set the pre-
read value to appropriately match the mesh factor and data
access traits of .the system. In this regard, the pre-read
value setting can be based upon how much stored data is
expected to be sequentially accessed. For example, one might
configure the system to have a hjgh pre-read count when
sequentially addressed (in terms of the source disk address)
‘data is being transferred from one storage device to another,
thus resulting in a sequential access of large portions of
data. Such a situation will typically occur during a load or
a backup process. On the other hand, a lower pre-read count
might be desired for regular random-access requests of data.

User-Configurable Cache Buffer Count:

The user-configuration mechanism of the present invention
might also be implemented to allow the number of cache buffers
to be specified by the user configuration mechanism. This
allows the user to change this parameter, for example, if

memory and hardware changes are made in the system. For
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example, if the cache systenm is implemented on a PC, with a
multi-processing operating system, the cache memory allocated
can be modified to allow other processes on the PC to have
sufficient amounts of available memory.

Dynamically Configurable Cache Settings:

Many of the configuration file parameters may be deemed
dynamically user-configurable, and thus may be changed during
the operation of the cache system without system interruption.
The remaining configuration file parameters would remain
configurable only at system initialization. Several example
parameters which would be appropriate for dynamic
configurability include (1) drain-on-read, (on or off), (2)
drain-on-write (on or off), (3) pre-read counts k, (4) maximum
dynamic sleep time, (5) proportion of buffers used before
reducing the dynamic sleep time from the maximum, (6) minimum
(minimum dynamic sleep time), and (7) threshold below which to
reduce dynamic sleep time to the minimum dynamic sleep time.

The dynamic user configuration and user configuration
upon system initialization mechanisms may be implemented in
any manner within the skill of the artisan.

As one illustrative, but non-ligiting example, all of the
configuration parameters stored in the user-configuration file
'may be read into -a configuration data structure that is
accessed by the cache system. Dynamic user-configuration may
be implemented by means of a key-in mechanism. In response to
a key-in by a user during run-time of the cache system, the
system will enact a user-interface, such as a keyboard and
screen, that allows several dynamically configurable
parameters to be altered as they exist with the configuration
data structure. The cache system may be configured so that it
is continuously responsive to changes of dynamically-
configurable parameters within the configuration data

structure. The user-configuration can be provided with a
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screening/evaluating mechanism which checks parameter
changes, and only allows dynamically-configurable values to be
changed during run-time. All parameters may be changed at
system initialization.

Configurable Verified Writes:

The user-configuration, mechanism provided by the present
invention may also be'configured to allow an entry for setting
whether or not the target storage devices should perform
verify writes or not. For example, SCSI disks are provided
with a verify-write mechanism, which allows a detection of
errors at the time of write instead of waiting for a read
operation to be performed. Accordingly, such a feature which
is already provided in selected target storage devices, such
as SCSI disk devices, can be utilized in conjunction with a
mainframe storage subsystem, in accordance with a particular

implementation of the present invention.

H. The Cache and I/0 System

In executing each physical data transfer (I/0 request) to
target disks 20, referring to Fig. 1, I/0 device driver 18
sets up a unique I/0 thread corresponding to each target disk
20 to be read from or written to.  Each I/0 thread is re-
entrant, and is performed once its corresponding I/O request
semaphore. has been cleared. Fig. 9 is a flow chart which
illustrates the operation of an I/0 thread. In step S50, the
I/0 thread awaits the time when the I/0 request semaphore
corresponding to that particular thread has been cleared
(i.e., unlocked). Upon clearing of the I/0 request semaphore,
the process proceeds to step S52, where the I/0 request is set
up. In this case, the set up of the I/0 request entails
conversion of an I/O packet of information to a packet
suitable for the actual I/0 interface (i.e., device driver).
Thereafter, in step S54, the I/0 device driver is invoked. 1In

step S56, it 1is determined whether or not an error was
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encountered in invoking the I/O device driver. If an error
was detected, the error is logged in step S60, and the process
will re-try I/O in step S61. It is then determined whether or
not the re-try failed in step S62. If it did fail, an error
status is displayed at step S64, and intervention is requested
at step S66. Thereafter, a.determination is made at step Sé8
e-try was requested, that is whether or not

If intervention was made, the process

as to whether a r

intervention was made.
returns to step S61, and I/0 will be re-tried. If no such re-

try or intervention was requested, the process proceeds from
step S68 to step 570, and an in-error flag will be set.
Subsequent- to execution of step S70, the process proceeds to

step 858, where the I/0 pending flags and established
semaphores are cleared. The same occurs if no error is
detected in step S56; i.e., the process will proceed to step
s58, and appropriate I/O pending flags and established
semaphores are cleared. After step S58, the process returns
to step S50, where the I/O thread awaits clearance of its
particular I/O request semaphore. The I/0 thread is thus
again ready fof another request. '

As described above in an example embodiment, the cache of
the overall system may perform cache trickle processing. Fig.
10 is a flow diagram which illustrates the general steps
performed by the cache trickle processing. At step S71, the
processing will wait until the cache trickle has been
scheduled by the operating system (OS). Such a scheduling
will occur only when the storage subsystem processor is idle
to the 0S. At step S72, a determination is made as to whether
the destage table (DT) is locked. If the DT is locked, the
process proceeds to step S88. If the DT is not locked, the
process proceeds to S74, where the destage table is

jmmediately re-locked. The cache trickle processing now has
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complete control over the destage table; no other process can
access the destage table.

At step S76, the processing will wait for any target disk
I/0’s to complete. Once that step is completed, at step S78,
the destage table will be. searched for LRU updated items
corresponding to each targét disk connected to the systemn.
Subsequently, at step S80, all relevant cache information is
updated. At step S82, the appropriate I/O request semaphore,
for the I/0 thread of each target disk to be written to, will
be unlocked/cleared. All I/O operations will then be
performed in conjunction with the I/0 threads, the execution
of which is described above with reference to Fig. 9. At step
S84, the process will await completion of all I/0 to the
target disks. Subsequently, at step S86, the destage table
lock will be released, and the process will proceed to step
s8s8.

At step S88, the dynamic sleep time (DST) will be set.
The DST value is set as described above with reference to Fig.
4B. Then, at step S90, the process will be deactivated for
the DST interval. Subsequent to expiration of the DST
interval, at step S92, the process will again await scheduling
by the O0S. Such scheduling occurs only when the storage
subsystem. processor is idle to the O0S. The process then
returns to step S§72.

A particular detailed example embodiment of a main cache
routine which may be provided in order to implement the
illustrated cache system of the present invention is
illustrated in Figs. 11A-11E. Sub-programs corresponding to
the main cache routine are illustrated in Figs. 12 and 13A-
13D. These include the cache drain-on-read and cache drain-
on-write processes which are illustrated in Fig. 12, and the
pre-read process which is illustrated in Figs. 13A-13D.
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The illustrated example main cache routine will now be
described, starting with the portion illustrated in Fig. 11A.
At step S94, a target disk address is provided to correspond
to a particular source disk data area. At step S96, the
MRU/LRU link information is- initialized. Thereafter, at step
598, the main cache routine will wait for the destage table to
be unlocked, and then will immediately re;lock the destage
table.

Subsequent to locking the destage table, at step S100.
the current hash table (HT) index will be found which
corresponds to the requested data block. If the HT index was
found, thus indicating that the requested data block was
within cache, the cache is updated at step $108, the HT index
is moved to the MRU position at step S110, and the destage
entry corresponding to the data block is unlinked and relinked
at the MRU position in steps S112 and S114.

Referring back to the determination step 5102, if the HT
index was not found, that means that the requested data block
was not within cache, and that several processing steps must
be performed, as specified in steps 5104 and S106. 1In step
S104, an HT index is made. If possible, a primary hash table
entry will be made to correspond to the requested data block,
which will need to be physically obtained from the target
disks. However, if no such primary hash table is available,
an overflow hash table entry will be made, and the HT will be
linked to the overflow entry. After the HT index is made, at
step S106, an index is selected for a destage table entry.

Selection of Index for DT Entry:

The selection of an index for destage table entry is
depicted in greater detail in Fig. 11B. In step S116, if
possible, the available destage table (DT) index will be
attained. This entails the performance of either a first or

a second step. The first step is performed if a new DT entry



was added, in which case a flag is set to link the new destage
entry at MRU. Otherwise, if the new DT table entry was not
added, the second step will be performed, in which case the
flag will be set to re-link the destage entry at MRU.

The process then proceeds to step 5118. At step si1is,
the process determines whéther or not the DT entry was set in
step S116. If not, the pfocéss proceeds to step 8120, where
an available DT index is made. This entails discarding an un-
updated DT entry if possible, and using that entry. In
performing this step, the processor searches a selected oldest
portion of the cache. The system may be implemented so that
the definition and size of the selected oldest portion can be
user-configured.

If the DT entry was set as determined in step S118, the
process proceeds to step S146 which is shown in Fig. 11D.

Continuing on after -execution of step S120 and step S122,
the process then proceeds to determination step S124, and
determines if the..DT entry is still not set. If it is still
not set, the process proceeds to step S126 where the updated
DT entry is discarded. In this regard, step S128 is performed
in which there is a forced acquisitjon of a DT entry. Thus,
the oldest non-in-use entry is selected for use at the DT
entry. .Upon execution of step S126 and step S128, a
determination is made at step S130 of whether the selected
entry was an updated one. If it was an updated entry, a
forced physical write must be performed for that DT entry in
step S132. If the entry was not updated, the process may
proceed to step S146, as shown in Fig. 11D.

Forced Physical Write:

Fig. 11C includes a flow diagram which illustrates the
forced physical write processing performed in conjunction with
the example main cache routine. The forced physical write
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processing of Fig. 11C is started at step S132, as shown in
Fig. 11B.

Before execution of the forced physical write, at step
S134, the routine will wait until the appropriate I/O0 thread
is available. After the I/O thread becomes available, at step
S136, an I/0 packet will be set up for the target disk thread,
and the count of updatéd records will be decremented.
Thereafter, at step S138, the I/0 initialized indication flag
will be set, and at step S140, the I/O request semaphore will
be cleared, thus causing the appropriate I/O threads to
execute. An example I/O thread routine is illustrated in Fig.
9.

Depending on how the system is configured by user
configuration mechanism 34/, the forced physical write may
contain step S142, at which a cache drain-on-write is
performed. If such a step is not configured to be present
within the forced physical write routine, the process proceeds
directly to step. S144, where the routine proceeds when a
physical I/0 is complete, for the selected DT entry. Thus,
the routine at that point will proceed to step S146 of the
main cache routine, which is shown in Fig. 11D. At that
point, the DT entry is now set.

At step S146, the routine sets the cache table (CT) entry
based upon the DT‘information. Then, at step S148, new HT
values are set, the tables are updated, and HT overflow area
1ink updates are handled. At step 5150, the new CT values are
set in accordance with the appropriate requirements of the
system.

Thereafter, at step S152, the new destage table (DT)
values are set. In this regard, if there is a need to link a
new DT entry at MRU, the routine links that destage at MRU.
on the other hand, if there is a need to re-link the DT entry
at MRU, the HT index is moved to MRU, the destage entry is



unlinked and the destage entry is then linked at MRU. The
routine then proceeds to step S154 of the main cache routine
which is depicted at the top of Fig. 11E.

In step S154, the routine will proceed only when the I/O
thread is available. Once the I/O thread is available, the
routine will proceed to step S156, where the appropriate I/0
packet will be set up for ‘the target disk thread of concern.
Then, at step S158, the routine will set the I/O initialized
indication flag. At step S160, the I/O request semaphore will
be cleared, thus causing the corresponding I/O0 thread of the
appropriate target disk to be executed (see Fig. 9).
Thereafter, at step S162, a pre-read processing is executed.
After the pre-read processing is executed, the routine
proceeds to perform a cache drain-on-read at step S164, if the
system is so configured, as determined by user configuration
module 34/. However, if.the system is not so configured, the
routine proceeds directly from step S162 to step78168. Ihrahy
event, the routine ends up at step 5168, at which point a
value is set for the pointer to the requested cache buffer.

Returning to Fig. 11A, for the case when the HT index was
originally found, thus meaning that_the requested data block
was already in cache, the main cache routine will proceed
‘directly from step.S114 to step S166, which is shown in Fig.
11E, where a pre-read processing will be performed in
conjunction with the data access request made by the
requester. Thereafter, the routine continues from step S166
to step S5168.

Subsequent to execution of step S168, if any forced
physical read is in process for the originally requested data,
the routine will wait for completion of the same in step S170.
Thereafter, in step S172, the destage table lock will be
unlocked, thus allowing access to the DT table by another
routine within the systemn. At step S174, the main cache



routine returns, providing information allowing access to the
data of the requested buffer to the requester.

In executing either a cache drain-on-write or a cache
drain-on-read process, the illustrated exemplary main cache
routine will perform several steps as illustrated in Fig. 12.
In particular, for each target disk on which an I/0 has not
already been requested, and which is in a particular set of
meshed disks, the process will search, at step S176, the DT
for the LRU updated not-in-use item for the selected target
disk. Thereafter, at step S178, the process will set the I/0
initialized indication flag. At step 5180, the I/0 packet
will be set up for the target disk thread, and the count of
updated records will be decremented. At step S182, the I/O
request semaphore will be cleared, thus causing the
appropriate I/0 thread to be executed (see Fig. 9). Once all
of. the iterations are completed, and each of steps S176-5182
have been executed for each eligible target disk, the cache
drain-on-read or drain-on write processing will return to the
point at which it was called.

Figs. 13A-13D include a detailed diagram of an example
pre-read processing which can be performed in conjunction with
the exemplary detailed illustrative, but non-limiting, main
'cache routine which is depicted in Figs. 11A-11lE. Referring
to Fig. 13A, in execution of the pre-read process, at step
S184, the process estimates the number of available read
aheads which are to be performed. In this regard, step S186
is performed, in which the available cache buffer count is
obtained; that is, the process estimates the count of buffers
available for immediate re-use. The pre-read processing then
executes step 5188, which comprises a number of processing
steps, for the number of possible pre-reads allowed. The
number of pre-reads allowed will be based on either a maximum

number k, as configured by the user, or based on the estimated



available cache buffer count. If the estimated available
cache buffer count is less than the maximum number, the
estimated count will be used.

Within each iteration of step S188, the process proceeds
from step S190. At step S190, the next target disk block
number is determined, andiﬁpe process passes the target disk
address corresponding to "the determined target disk block
number. Thereafter, at step S192, the cache is pre-loaded.
In this regard, the process establishes local target disk
information, and initializes the MRU/LRU link information. At
step S194, the current HT index is obtained. If the HT index
is found, as determined at step S196, the process proceeds to
step S200, where several table processing steps are performed
in conjunction with steps S200, S202, S204, and S206 (see,
e.g., steps S108, S110, and S114 and the text corresponding
thereto). Thereafter, the process will iterate at step 5208,
thus returning to step S190 for each possible pre-read. If
the HT index is not found, as determined at step S196, the
process proceeds to step S198, where the HT index is made.

Continuing on to Fig. 13B, at step S210, if it is
possible, the process will get the_ available destage table
index. If the DT entry was set during execution of step S210,
.as determined at step S212, the process proceeds directly to
step S218, which is shown at the top of Fig. 13C. If no DT
entry was set, the process proceeds to step S214, where an
available DT index will be made. In this regard, step S216
will be executed, in which the un-updated DT entry will be
discarded, if possible, and used. In order to determine if
such a use is possible, a selected LRU (lower) portion of the
cache will be searched.

Continuing on at step $218, which is shown at the top of
Fig. 13C, a determination is again made. In this
determination, it is determined whether or not the DT entry



was set. If the DT entry was not set, the process returns.
The fact that no DT entry was set means that no un-updated
entries are available, and a physical write would have been
needed to accomplish the pre-read. the process returns at
this point because a physical write will not be performed in
the pre-read processing.

If the DT entry was -set, the process proceeds to step
§220. At step S220, the cache table entry will be set based

upon the DT information. Thereafter, at step 5222, new HT
values will be set, the tables will be updated, and HT
overflow area link updates will be handled. Thereafter, at
step S224, the new CT values will be set, and at step S226,
the new destage table values will be set.

After execution of step 8226, the process will proceed to
step S228, which is shown at the top of Fig. 13D. At step
S228, the process will wait until the I/O thread is available;
then it Qill proceed to step 8230, where the I/0 packet will
be set up for the target disk thread of concern. At step S232,
the I/O0 initialiéed indication flag will be set, and at step
S234, the appropriate I/O request semaphore will be cleared.
Thus, as a result of execution of step s234, the I/0 thread
will be executed, thus causing physical I/0 to the disk (see
Fig. 9). . The process will iterate after step S234, for the
number of possible pre-reads that are allowed for step S188.
Subsequent to execution of step 5188, the pre-read process
will return to the point at which it was called.

The Data Structures '

Several data structures used by the example main cache

routine described above are defined as follows:

General Variables
cache Table Target Disk Number: This holds the disk

number for the target disk location for the data in the

associated Cache Buffer.
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Cache Table Source Disk Offset: This holds the disk block
offset for the source disk location for the data in the

associated Cache Buffer.
Cache Table Source Disk Number: This holds the disk

number for the source disk location for the data in the
associated Cache Buffer. A

Cache Table in Error Flag: This flag is set when an I/0
corresponding to the Cache Buffer associated with this Cache
Table Entry fails.

Cache Table I/0 Pending Flag: This flag is set when an
I/0 operation is pending on the buffer associated with this
Cache Table Entry. This prevents I/O routines from re-
selecting this buffer for I/0 operations once it has already
been selected for an I/O which has not .yet completed. Once
the I/0 is scheduled, the Cache Table Record Updated Flag will
be cleared, so this f;ag’s_setting prevents re-use of the

buffer before the I/O completes.
I. cCache Buffer: This is an array of memory areas in

which data from disk resides while in cache.
II. Destage Table Entry Structure: This is an array of

information concerning each Cache Buffer.

Destage Table Entry Prior: This is the index of the prior
‘Destage Table Entry in the Destage Table Entry chain.

Destage Table Entry Next: This is the index of the next
Destage Table Entry in the Destage Table Entry chain.

Destage Table Hash Table Index: This is the index of the
Hash Table Entry associated with the same Cache Buffer
associated with this Destage Table Entry.

Destage Table Target Disk Number: This is the disk number
of the target disk on which the associated Cache Buffer’s data
resides. This is used primarily for debug purposes.

III. Destage Table Structure: This is an array of Destage

Table Entries, one for each Cache Buffer. This structure
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constitutes a double linked list of entries always kept
linked in sorted order ranging from the entry associated
with the Cache Buffer which was most recently used (MRU)
to the entry associated with the Cache Buffer which was
least recently used (LRU). This list is used by the
cache system to assist 1n making the decision as to which
Cache Buffer should be re-used (or initially used) for
holding data for a data request. It is also used in
determining which cache buffer(s) should be written out.
In reality, there are two chains present here, one for
in-use entries, and one for non-in-use entries, though
the not-in-use chain is quickly depleted and never re-
establishes itself. The not-in-use chain is only used to

allow the chain to initialize.

IV. Target Disk I/0 Structure: This structure is used to

control the I/0 requests establlshed by the cache systen.

It, therefore, is only concerned with target disk I/0

operations.

Target Disk I/0 Thread Identification: This value holds
the identification number for the activity thread used to
accomplish I/0 with a target disk. There is an array of these
entries, one for each target disk (and there is also one I/0

thread for each target disk).
Target Disk I/0 locks: These are semaphores set up for

each target disk I/0 thread used to hold the I/O threads when
they are inactive, to begin the I/0 thread to process an I/0
request, and to hold requests and data usage when an I/0 is
pending on a target disk.

Target Disk I/O Packet: This set of values holds
information pertinent to an I/O request. There is one packet
for each target disk. The I/0 requestor fills in the packet
when an I/0 is not pending on the target disk, then unlocks
the target disk’s I/0 thread to perform the I/0 defined in the



packet. Depending on cache configuration values, ancillary
I/0 may also be triggered by an I/O request. The packet
includes the following types of information:
I/0 Operation to perform.
Target disk offset to perform the I/0 on.
Cache Buffer Index for the I/O.
I/0 size. -
Source disk number and offset involved.
V. Cache Table Log Structure: In this structure a list
is maintained of the status of each Cache Buffer. This
information can be written to non-volatile storage in
order- to ensure that a system failure does not result in
an inability to identify lost cache data information.
Source Disk Number: The source disk number for the data
in the associated Cache Buffer.
Source Disk Offset: The source disk offset for the data
in the associated Cache Bﬁffer. 7 |
Updated Flag: Set when the data in the associated Cache
Buffer is updated relative to the image on the target disks.
VI. Cache -Control Structure: This structure contains

status information on cache ag a whole. It is used
primarily to allow and ensure cache draining prior to a
shutdown.
Lock: This lock is a semaphore to control access to this
structure. 7 ' '
Updated Cache Record Count: This variable holds a count
of the number of updated records in cache at any time.
Updated Record Exists Lock: This semaphore is kept set
whenever the Updated Cache Record Count is not zero.
Hash Table Entry Structure: This structure holds hashing
information to allow rapid look up of desired data buffers in

cache.



- 49 -

VII. Hash Table Cache Table Index: This contains an index
into the Cache Table for the data whose address hashes to

this Hash Table entry. If this entry is not in use, a

flag is set here to indicate such.
Prior This Hash: This.is the Hash Table Entry number of

the prior Hash Table Entry which has the same hash look up
value as this -Hash Table Entry. .

Next This Hash: This is the hash Table Entry number of
the next Hash Table Entry which has the same hash look up
value as this Hash Table Entry.

VIII. Hash Table Structure: This structure is an array of

Hash Table Entries, one for each possible hash index PLUS

one for each cache buffer. The first part of this Table

is considered to be the Primary Hash Table Entry set.

The second part is the Overflow Hash Table Entry set.

Any hash look up originates by calculating a Hash Table

Index based on the target disk number and offset of the

target disk location where the data is to reside mod’d

with the conflgured number of Primary Hash Table Entries.

To then find if the desired data is in a cache buffer,
the calculated hash Table Entryais reviewed. If the Hash
Table Cache Table Index is not flagged as in use, then
the Next This Hash field of the calculated primary Hash
Table Entry is reviewed. If it indicates that there is
a next entry in the Hash Table chained to it (i.e., the
data reflected in it has the same calculated hash index
as the entry that points to it), then that entry is
reviewed. In any case, whenever a Hash Table Entry is
found that does indicate that it is associated with a
Cache Table Entry, the associated Cache Table Entry is
reviewed to check if it represents the requested data
puffer. If not, additional Overflow Hash Table Entries

are reviewed (based on Next This Hash values) until all



in the chain are reviewed or until a match is found. If
the Primary Hash Table Entry (i.e., the one whose index
was calculated) indicates that it points to a Cache Table
entry, the associated Cache Table Entry is reviewed to
check if it represents the requested data buffer. If
not, the Overflow Hash;Table Entries are reviewed (based
on Next This Hash valués) until all in the chain are
reviewed or until a match is found, as previously
described. The double linked 1list of entries is
maintained as data is added to and removed from cache
buffers. Note, however, that the Primary Hash Table
Entries are static, only the Overflow Hash Table Entries
can be linked to Primary Hash Table Entries, and only
Overflow Hash Table Entries can be released completely to
be chained to any chain of entries with a common
calculated hash index. Unused Overflow Hash Table
Entries are maintained in a single linked list and the
start of that 1list is separately maintained. This
allows for a no-search determination of an overflow entry
to use. '

Hash Table Entries: As described with the Hash Table

Entry Structure.

' IX. .Cache Table Structure: This table contains most
essential information for every cached piece of data. It
is used to identify data in cache and to determine when
a cache buffer can be released and re-used. It also
indicates if the buffer it is associated with is updated
or not, allowing write operations to write updated data
and allowing suitable decisions to be made when a buffer
is needed for a read operation. There is one entry per
Cache Buffer.

Cache Table Entry Next: When initially filling cache,
this points to the cache table entry to be used next.



Cache Table Destage Table Index: This is the index into
the Destage Table for this cache entry.

Ccache Table Record Updated Flag: This is set whenever the
cache buffer identified with this Cache Table Entry is in an
updated state. )

Cache Table Record in Use Flag: This flag is set whenever
the cache buffer identified with this cache Table Entry is
being referenced. This allows the cache system to recognize
when an un-updated cache buffer is in use and must not be
selected as a candidate for re-use.

Cache Table Hash Table Entry Index: This is the index of
the Hash Table Entry associated with this Cache Table Entry.

Cache Table Data Index: This is the index used to
identify the Cache Buffer (i.e., data) associated with this
Cache Table Entry.

~ Cache Table Number of Target Disk Blocks: This holds the
number of target disk blocks required for the Cache Buffer it
is associated with.

cache Table Target Disk Offset: This holds the disk block
offset for the target disk location for the data in the
associated Cache Buffer. .

Although the presently disclosed storage subsystem may be
‘implemented with hardware, or software controlled hardware, or

any combination of the same, a significant aspect of the
-present invention is that the features facilitate
implementation of the complete system with the use of a
general purpose computer controlled with software. Thus, the
memory subsystem of the present invention has a minimized
hardware dependency, and a maximized mobility in that it is
implementable with different hardware systems.

In accordance with one aspect, the entire I/O system of
the storage subsystem of the present invention may be designed

and implemented to be re-entrant and to fully support multi-
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tasking. It is noted that some evidence has suggested an
approximate 25% improvement in performance results when a mesh
factor of 2 is used instead of a mesh factor of 1. An
additional improvement has been seen with larger mesh factors.

While the invention has been described with reference to
preferred embodiments, it is understood that the words which
have been used herein are words of descripfion, rather than
words of limitation. Changes may be made, within the purview
of the appended claims, without departing from the scope and
spirit of the invention in its aspects. Although the
invention has been described herein in reference to particular
means, materials and embodiments, it is understood that the
invention is not to be limited to the particulars disclosed
herein, and that the invention extends to all equivalent
structures, methods, and uses, such as are within the scope of

the appended claims.
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CLAIMS

1. A data processing system comprising:-

a processor that operates on various data, said processor
comprising means for specifying a source address that
corresponds to a requested data block located within a memory
to be accessed by said processor, and means for requesting
allocation of memory space in order to hold a specified data
string, said data string having a length that requires a
storage space of a specified plurality of data blocks;

memory allocation means for allocating blocks of memory
space for said specified plurality of data blocks, and for
assigning source addresses to each of the allocated blocks of
memory, the assigned source addresses comprising a series of
adjacent addresses;

a hierarchical memory system for holding data, said
hierarchical memory system comprising a first level memory and
a second level memory, first data held within said first level
memory being available for quicker access by said processor as
‘compared to second data held within said second level memory,
said second level memory comprising a plurality of sub-
memories and a plurality of physical data exchange paths which
are connected to respective ones of said sub-memories; and

» assignment means comprising mapping means for mapping
source addresses to target addresses and meshing means for
assigning sets of adjacent source—~addressed data blocks to
sub-memories, wherein said meshing means comprises means for
assigning each adjacent source-addressed data block within a
given set of assigned blocks to one or more of said sub-memories
to which no other adjacent source-addressed data block within
said given set is assigned.

2. A data processing system according to claim 1

wherein each of said data blocks are equal in length.



3. A data processing system according to claim 1
wherein each said sub-memory comprises a disk.

4., A data processing system according to claim 3
wherein said first level memory comprises a cache.

5. A data processing system according to claim 1
wherein each assigned set comprises N adjacent source-addressed
data blocks, and wherein said meshing means comprises means for
assigning each data block within a given set to a respective one
of N sub-memories. )

6. A data processing system comprising:-

a processor that operates on various data, said processor
comprising a processor memory and means for specifying an
address that corresponds to a requested data block located
within another memory to be accessed by said processor;

a hierarchical memory system comprising a cache and a
long-term storage;

a storage control processor comprising means for
providing processor access to said requested data block within
said cache, means for transferring data between said processor
memory and said cache, and means for transferring data between
said cache and said long-term storage;

drain means for draining said cache; and

means for determining when the storage control processor
is in an idle state and said drain means has not attempted to
drain said cache for a predetermined sleep time;

said drain means draining said cache when said
determining means determines that said storage control
processor satisfies the conditions that said storage control
processor is in said idle state and said drain means has not
attempted to drain said cache for said predetermined sleep
time.

7. A data processing system according to claim 6

further comprising user configuration means for defining at

&
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least one additional condition which must be satisfied to
enable said drain means to drain said cache.

8. A data processing system according to claim 7
further comprising means for determining when said storage
control processor has instructed a physical read of data from
said long-term storage to said cache, wherein said at least
one additional condition éomprises a deterﬁination that said
storage control processor has instructed a physical read of
data from said cache to said long-term storage.

9. A data processing system according to claim 7
further comprising means for determining when said storage
control processor has instructed a forced physical write of
data from said cache to said long-term storage in order to

provide room for data to be read from said long-term storage
into said cache, wherein said at least one additional
condition comprises a determination that said storage control
processor has instructed a forced physical write of data from
said cache to said long-term storage.

10. A data processing system according to claim 7
further comprising means for determining when said storage
control processor has instructed a physical write of data from
said cache to said long-term storage, wherein said at least
one condition comprises a determination that said storage
control processor has instructed a physical write of data from
said cache to said long-term storage.

1. A data processing system according to claim 7
further comprising means for calculating said predetermined
sleep time based upon several sleep variables, wherein said
user configuration means comprises means for accepting user
configuration data specifying said several sleep variables
that are used to calculate the predetermined sleep time.

12. A data processing system according to claim 11

wherein said several sleep variables comprise a maximum



predetermined sleep time, over which said predetermined sleep
time will not be set, and a minimum sleep time, under which
said predetermined sleep time will not be set.

13. A data processing system comprising:-—

a processor that operates on various data, said processor
comprising a processor memory and means for specifying an
address that corresponds to a requested data block located
within another memory to be accessed by said processor;

a hierarchical memory system comprising a cache and a
long-term storage; and

a storage control processor comprising:

means for providing processor access to said
requested data block within said cache;

means for transferring data between said processor
memory and said cache;

. means for transferring data between said cache and

said long-term storage:;

means for maintaining a listing of buffers located
within said cache, and for identifying as updated those
buffers that have been written to from said processor:;

means for accessing a buffer within said cache that
corresponds to said requested data block, and for reordering
the accessed buffer so that the accessed buffer is placed at
a most-recently-used location of said listing; and

buffer assignment means, responsive to a physical
read request, for assigning a cache buffer to hold the data
block to be read from said long-term storage; said buffer
assignment means comprising search means for searching only a
portion of said listing, wherein the searched portion does not
include said most-recently-used location.

l4. A data processing system comprising:-

a processor that operates on various data, said processor

comprising a processor memory, means for specifying a source
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address that corresponds to a requested data block located
within another memory to be accessed by said processor, and
means for requesting allocation of memory space in order to
hold a specified data string, said data string having a length
that requires a storage space of a specified plurality of data
blocks:

memory allocation means for allocating blocks of memory
space for said specified plurality of data blocks, and for
assigning source addresses to each of the allocated blocks of
memory, the assigned source addresses comprising a series of

adjacent addresses when possible;

a hierarchical memory means comprising a cache and a long-
term storage which has several independent sub-memories; and

a storage control processor comprising pre-fetch means for
making data blocks available within said cache for future access
by said processor, said pre-fetch means comprising physical pre-
read means, responsive to a request made by said processor for
access to a specified data block having a specified source
address, for performing a physical read from said long-term
storage of selected adjacently addressed data blocks, said
selected adjacently addressed data blocks comprising data blocks
that are stored in separate sub-memories and that have source
addresses adjacent to said specified source address.

15. A data processing system according to claim 5 furthef

comprising configuration means for configuring said systenm,
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said configuration means comprising means for setting N to an
integer value ranging from 1 to the number of said plurality of
sub-memories available for storage.

16. A data processing system according to claim 13 further
comprising defining means for defining the searched portion of said
listing, wherein when said physical read request comprises a
required read request initiated by said processor, the searched
portion of said listing comprises a first number of cache buffers,
and when said physical read request comprises a pre-read request
initiated by said storage control processor, the searched portion
of said listing comprises a second number of cache buffers.

17. A data processing system according to claim 16 wherein

said defining means comprises a user-configuration interface.

18. A data processing system according to claim 13 further
comprising meshing means for assigning sets of adjacently addressed
data blocks, that have source addresses adjacent to a processor-
specified source address, to separate sub-memories, wherein said
méshing means comprises means for assigning each said adjacently
addressed data block within a given set of assigned data blocks to
one or more of said sub-memories to which l.‘lO other adjacently
addressed data block within said giveﬁ set is assigned.

19. A data processing system comprising:-

a processor that operates on various data, said processor

comprising a processor memory and means for specifying an address

that corresponds to a requested data block located within another
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memory to be accessed by said processor;

a hierarchical memory system comprising a cache and a
long-term storage which has several independent sub-memories;

a storage control processor comprising means for
providing processor access to said requested data block within said
cache, means for transferring data between said processor memory

and said cache, and means for transferring data between said cache

and said long-term storage;

meshing means for assigning sets of adjacently addressed
data blocks to separate sub-memories, wherein said meshing means
comprises means for assigning each adjacently addressed data block
within a given set of assigned data blocks to one or more of said
sub-memories to which no other adjacently addressed data block
within said given set is assigned:; and

drain means for draining said cache by concurrently
writing a plurality of blocks from said cache to said sub-memories,
writing no more than one block per separate sub-memory, upon the
occurrence of- a predetermined event.

20. A data processing system according to claim 19 further
comprising means for determining when said storage control
processor has instructed a physical read of data from said long- .
term storage to said cache, wherein said predetermined event
comprises a determination that said storage control processor has

instructed a physical read of -data from said cache to said long-

term storage.



2l. A data processing systenm according to claim 19 further
comprising means for determining when said’ storage contfol
processor has instructed a forced physical write of data from said
cache to said long-term storage in order to provide room for data
to be read from said long-term storage into said cache, wherein
said predetermined event comprises a determination that said
storage control processor has instructed a forced physical write of
data from said cache to said long-term storage.

22. A data processing system according to claim 19 further
comprising means for determining when said storage control
processor has instructed a physical write of data from said cache
to said 1long-term storage, wherein said predetermined event
comprises a determination that said storage control processor has
instructed a physical write of data from said cache to said long-
term storage.

23. A storage controller for use in a data processing sYsteﬁ'
comprising:-

' a host computer that operates on various data, said host

computer comprising a processor memory and means for specifying,

according to a source addressing scheme, a source address of a

source block that corresponds to a requested data block located .

within another memory to be accessed by said host computer; and
an external memory for storing data within target blocks
according to a target addressing scheme;

said storage controller comprising:



address mapping means for correlating source addresses
specified by said processor with target addresses that correspond
to storage locations within said another memory; and

configuration means for defining several parameters of

said address mapping means -  based upon the physical storage

characteristics of said external memory, to thereby configure said
address mapping means to correlate source addresses of source
.blocks specified by said host computer with target addresses of

target blocks that correspond to storage locations within said

external memory.
24. A storage controller according to claim 23 wherein

said configuration means comprises first setting means for setting
the number and size of source blocks within said source addressing
scheme, and wherein said_configurétion means further comprises
second setting means for setting the number and size of target
blocks to be addressed within said external memory.

25. A storage controller according to claim 24 wherein
séid first and second setting means comprise means for accepting
user input without reprogramming said storage controller.

26. A storage controller according to claim 23 wherein
said external memory comprises a plufality of sub-memories and a -
plurality of physical data exchange paths which are connected to
respective ones of said sub-memories; and

wherein said addresé'nmpping means comprises meshing

means for assigning adjacent source blocks to separate sub-



memories.

27. A storage controller according to claim 26 further
comprising a cache and means for reading and writing data between
said cache,;nd said sub-memories, said reading and writing means
comprising reading means - for .reading from a sub-memory a target
block corresponding to a requested source block, requested by said
host computer, into said cache, and for concurrently reading from
said sub-memories other target blocks, not corresponding to said
requested source block, into said cache, when the other target
blocks are located in separate respective sub-memories.

28. A storage controller according to claim 27 wherein
said reading and writing means further comprises writing means for
writing a forwarded source block, forwarded by said host computer,
from said cache to a target block of a sub-memory, and for
concurrently writing data from said cache to other target blocks of
said sub-memories, when the other target blocks are located in

separate respective sub-memories.

R
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