(51) International Patent Classification:
A61K 33/14 (2006.01) A61K 31/401 (2006.01)
A61K 31/198 (2006.01) A61K 45/06 (2006.01)

(21) International Application Number:
PCT/US2016/033673

(22) International Filing Date:
21 May 2016 (21.05.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/165,238 22 May 2015 (22.05.2015) US

(71) Applicant: UNIVERSITY OF SOUTH FLORIDA

(72) Inventors: TAN, Jun; 10260 Estuary Drive, Tampa, FL 33647 (US). SMITH, Adam, John; 2001 E 2nd Ave #2c, Tampa, FL 33605 (US). SHYTLE, Roland, Douglas; 10510 Vonn Road, Largo, FL 33774 (US).

(74) Agents: LADWIG, Glenn, P. et al; Saliwanchik, Lloyd & Eisenschenk, PO Box 142950, Gainesville, FL 32614-2950 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, TR), South African.

(54) Title: LITHIUM CO-CRYSTALS FOR TREATMENT OF NEUROPSYCHIATRIC DISORDERS

(57) Abstract: The invention concerns methods and compositions for treating a neuropsychiatric disorder, wherein the method comprises administering an effective amount of a co-crystal of lithium to a subject in need thereof, wherein the co-crystal comprises lithium, or a pharmaceutically acceptable salt thereof, and an amino acid.

FIG. 1A
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Published:

— with international search report (Art. 21(3))
LITHIUM CO-CRYSTALS FOR TREATMENT OF NEUROPSYCHIATRY DISORDERS

BACKGROUND OF THE INVENTION

Lithium salts have a long history of human consumption beginning in the 1800s. In psychiatry, they have been used to treat mania and as a prophylactic for depression since the mid-20th century (Shorter, 2009). Today, lithium salts are used as a mood stabilizer for the treatment of bipolar disorder, as well as for other psychiatric indications off-label. For example, lithium is the only drug that consistently reduces suicidality in patients with neuropsychiatric disorders (Thies-Flechtner et al., 1996; Goodwin et al., 2003). Despite these effective medicinal uses, current FDA-approved lithium pharmaceutics (lithium carbonate and lithium citrate) are plagued with a narrow therapeutic window that requires regular blood monitoring of plasma lithium levels and blood chemistry by a clinician to mitigate adverse events. Because conventional lithium salts (carbonate and citrate) are eliminated relatively quickly, multiple administrations throughout the day are required to safely reach therapeutic plasma concentrations.

Evidence suggests that lithium may be efficacious for the treatment of Alzheimer’s disease. As depicted in Figure 12, several mechanisms may underlie lithium’s potential efficacy for Alzheimer’s disease (O’Donnell and Gould, Neurosci Biobehav Rev., 2007; 31(6): 932-962). First, it exerts neuroprotective effects, in part, by increasing brain-derived neurotrophic factor (BDNF). Indeed, chronic lithium treatment has been shown to increase the expression of BDNF in rats (Fukumoto et al., 2001) and
humans (Leyhe et al., 2009). This increase in BDNF activity can lead to restoration of learning and memory through promotion of neurogenesis and long-term potentiation (LTP). Another neuroprotective mechanism of lithium is attenuation of the production of inflammatory cytokines like IL-6 and nitric oxide (NO) in activated microglia (Yuskaitis and Jope, 2009). This is particularly important since aberrant microglial function is a common finding in AD (Frick et al., 2013). Lithium has also been found to inhibit certain enzymes in a noncompetitive manner by displacing the required divalent cation, magnesium (Phiel and Klein, 2001). One of these enzymes, glycogen synthase kinase-3 beta (GSK3P), has important implications in Alzheimer's disease. GSK3P was first identified as the molecular target of lithium by Klein and Melton (Klein and Melton, 1996). It is a ubiquitously expressed serine/threonine kinase that is key in the pathogenesis of Alzheimer's disease. The enzyme phosphorylates tau in most serine and threonine residues hyperphosphorylated in the paired helical filaments. Moreover, GSK3 activity contributes both to amyloid-β (Aβ) production and Aβ-mediated neuronal cell death (Mines et al., J Biol Chem. 2011 Jun 10;286(23):20797-81). Aβ is derived from amyloid precursor protein (APP) by sequential proteolysis, catalyzed by the aspartyl protease BACE followed by presenilin-dependent γ-secretase proteolysis (Vassar et al, Science, 1999 Oct 22;286(5440):735-41).

It has been demonstrated that therapeutic concentrations of lithium blocked the production of Aβ peptides by interfering with APP cleavage at the γ-secretase step, without inhibition of Notch processing (Phiel CJ et al, Nature, 2003 May 22;423(6938):435-9). Lithium also blocked the accumulation of Aβ in the brains of mice overexpressing APP by inhibition of GSK3a, implicating its requirement for maximal processing of APP (Forlenza OV et al, ACS Chem. Neurosci., 2014, 5 (6), pp 443-450).

Since GSK3a also phosphorylates tau protein, inhibition of GSK3a offers a new approach to reduce the formation of both amyloid plaques and neurofibrillary tangles (Phiel CJ et al, 2003). In further support, mice with conditional overexpression of GSK3 in forebrain neurons recapitulate aspects of Alzheimer's disease neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, reactive astrocystosis, and spatial learning deficits (Hernandez F et al, J Alzheimers Dis. 2013;33 Suppl 1:S141-4). Further transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and amelioration of cognitive deficits,
thus further supporting the potential of the GSK3 inhibitor, lithium, for Alzheimer's disease therapeutics. In addition, combined transgenic mice overexpressing GSK3P with transgenic mice expressing tau with a triple FTDP-17 mutation develop prefibrillar tau-aggregates (Hernandez F. et al, 2013), which was averted by lithium as well.

5

BRIEF SUMMARY OF THE INVENTION

The present invention concerns use of a co-crystal of lithium (lithium co-crystal) for treatment of a neuropsychiatric disorder. In one aspect, the treatment method comprises administering an effective amount of a co-crystal of lithium to a subject in need thereof, wherein the co-crystal comprises lithium, or a pharmaceutically acceptable salt thereof, and an amino acid. In some embodiments, the salt is lithium salicylate or lithium hydroxide. In some embodiments, the amino acid is L-proline. In one embodiment, the co-crystal comprises lithium salicylate and L-proline.

In some embodiments, the neuropsychiatric disorder is a neurodegenerative disorder, such as Alzheimer's disease (AD), Parkinson's disease (PD), or amyotrophic laterals sclerosis (ALS). In some embodiments, the neuropsychiatric disorder is a mood disorder (e.g., bipolar disorder, depressive disorder), schizoaffective disorder, tic disorder (e.g., Tourette's syndrome), or suicidality.

A co-crystal of lithium salicylate and L-proline (LISPRO) exhibited plateau-like pharmacokinetics compared to the problematic peak and trough pharmacokinetics of other lithium forms (Smith AJ et al, Mol. Pharmaceutics 2013, 10, 4728-4738). Empirical evidence suggests that the salicylate anion in LISPRO might be therapeutically synergistic with lithium for the treatment of bipolar disorder. For example, a recent pharmacoepeide miological study suggests that low doses of acetylsalicylic acid (aspirin) might be beneficial as an adjunct treatment with lithium salts for the treatment of bipolar disorder (Stolk et al, 2010).

The anion in lithium salicylate, salicylic acid, is the primary bioactive metabolite of aspirin. Stolk et al. reported that low-dose aspirin produced significant reduction in the relative risk of clinical deterioration in subjects on lithium and that this was not the case with other NSAIDs and glucocorticoids (Stolk et al., 2010). Without being limited by theory, the inventors propose that this is due to synergistic anti-inflammatory actions of lithium and acetylsalicylic acid by increasing the brain concentrations of 17-OH-DHA, an
anti-inflammatory brain DHA metabolite. This hypothesis is supported by previous studies that indicated neuroinflammation in BD (Rao et al., 2010), that aspirin increases 17-OH-DHA (Serhan et al., 2002), and that lithium reduces neuroinflammation (Basselin et al., 2007; Basselin et al., 2010; Yu et al., 2012).

In view of the potential for synergistic effects due to the biologically non-inert anion, salicylic acid, efficacy testing of LISPRO was conducted, and is described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

Figures 1A and IB. The co-crystal of lithium salicylate and L-proline (LISPRO) does not inhibit Notch processing, but reduces Aβ generation. (Figure 1A) N2a/APPwt cells were treated with LISPRO at 0, 2.5, 5 and 10 mM as indicated for 12 h followed by analysis of Aβ$_{40}$, 42 peptides secreted in the cell culture media by Aβ ELISA. The Aβ ELISA results are represented as the mean ± SD of Aβ$_{40}$ or Aβ$_{42}$ (ng/ml) in cell culture media after LISPRO treatment. These results are representative of three independent experiments with n = 3 for each condition (*p < 0.05). To examine whether LISPRO can affect Notch processing, the inventors co-transfected N2a cells expressing wild-type human APP (N2a/APPwt) with Notch-ΔE vector. N2a/APPwt/Notch-ΔE cells were plated at 8×10^3/well in 6-well dishes and treated with LISPRO or DFK-167 (positive control for Notch cleavage) at different doses as indicated for 5 hours. The cell lysates were prepared from these cells for Western blot (WB) analysis. (Figure IB) WB with both c-myc antibody (9E10, ABCAM®) and cleaved Notch antibody (Vail 744, CELL SIGNALING TECHNOLOGY®) showed that LISPRO treatment did not inhibit Notch cleavage compared to DFK-167. Figures 1A and IB are described further in Example 2.

Figures 2A and 2B. Treatment with LISPRO dose-dependently increases inhibitory GSK^ (Ser9) phosphorylation in SH-SY5Y cells and primary neuronal cells. Human neuroblastoma (SH-SY5Y) cells (Figure 2A) and primary neuronal cells (Figure 2B) were treated with LISPRO at the indicated concentrations for 12 hours. Cell lysates
were prepared and subjected to WB analysis with specific anti-phospho-GSK3p (Ser9) and total GSK3p antibodies. As shown, phosphorylated GSK3p (Ser9) [pGSK3p (Ser9)] was notably elevated following LISPRO treatment in both SH-SY5Y and primary neuronal cells. Below each figure panel, densitometry analysis shows the band density ratio of pGSK3p (Ser9) to total GSK3p. WB results are representative of three independent experiments. A t-test revealed a significant difference in the ratio of pGSK3p (Ser9) to total GSK3p for both SH-SY5Y cells and differentiated neuronal cells treated with either 2.5, 5 or 10 mM LISPRO compared to control (0 mM) (*p< 0.05).

Figures 3A and 3B. Treatment with LISPRO increases inhibitory GSK3P (Ser9) phosphorylation and decreases tau phosphorylation in HeLa/tau cells. Human tau stably transfected HeLa cells (HeLa/tau cells) were treated with LISPRO at the indicated concentrations for 12 hours. Cell lysates were prepared for WB analysis of both total and phosphorylated levels of GSK3P and tau. (Figure 3A) Phosphorylation status of GSK3P [pGSK3p (Ser9)] was detected by anti-phosphoGSK3p (Ser9) antibody. (Figure 3B) Phosphorylation status of tau was detected by anti-phospho-tau [p-tau (Thr231)] and PHFl antibodies (kindly provided by Dr. Peter Davies). Total tau (phosphorylated and non-phosphorylated) was detected by tau-46. WB results are representative of two independent experiments for pGSK3p (Ser9) and total GSK3P, and three experiments respectively for PHFl, p-tau (Thr231) and total tau. Densitometry analysis shows the band density ratio of pGSK3p (Ser9) to total GSK3P as well as p-tau (Thr231) to total tau shown below each figure panel. A t-test revealed a significant increase in the ratio of pGSK3p (Ser9) to total GSK3P and decrease in p-tau to total tau for HeLa/tau cells treated with either 2.5, 5 or 10 mM LISPRO compared to control (0 mM) (*p< 0.05; **p< 0.01). A β40, 42 peptides were undetectable by A β ELISA of the conditioned media from HeLa/tau cells with or without LISPRO (data not shown). Figures 3A and 3B are described further in Example 3.

Figures 4A-4C. LISPRO inhibits microglial activation-induced by IFNγ and CD40 signaling and enhances microglial phagocytosis of A β. Primary microglial cells were treated with LISPRO in the presence of IFNγ or/and CD40 ligand (CD40L, 1 μg/mL) for 8 h and then examined pro-inflammatory microglial activation as assessed by flow cytometric (FACS) analysis and ELISA (Figure 4A). FACS analysis showed significant dose dependent decreases in IFNγ-induced CD40 expression following 8 h of
co-treatment with LISPRO. Data are represented as mean percentage of CD40 expressing cells (± SD). Results are representative of two independent experiments (Figure 4B). Microglial cell culture supernatants were collected and subjected to cytokine ELISA as indicated. Data were represented as mean pg of TNFa or IL-12p70 per mg of total cellular protein (± SD). Results are representative of three independent experiments (Figure 4C). Primary microglial cell were pre-treated with LISPRO at 10 mM or vehicle (1% DMSO in medium) for 6 hours then incubated with 1 μM aged FITC-Ap_42 for 1 hour. Cellular supernatants and lysates were analyzed for extracellular (top panel) and cell-associated (bottom panel) FITC-Ap_42 using a fluorometer. Data are represented as the relative fold of mean fluorescence change (mean ± SD), calculated as the mean fluorescence for each sample at 37°C divided by mean fluorescence at 4°C (n = 4 for each condition presented) (**P < 0.005). LDH assay showed no significant increase in cell toxicity induced by LISPRO up to 20 mM in both primary microglial cells and N9 microglial cells (data not shown). Figures 4A-C are described further in Example 11.

Figures 5A-5C. LISPRO markedly promotes neuronal cell differentiation. (Figure 5A) Wild-type mouse neuroblastoma (N2a cells) were plated in 8-well slide chambers (10^5/well), incubated overnight, and treated with LISPRO or appropriate controls (including Li_2C_0_3, LiCl and L-proline, Sigma) at 10 mM (as optimized by pilot studies) for 24 hours. This concentration was optimized in the pilot study. These cells were then permeabilized with 0.05% Triton X-100 for 5 minutes, washed and stained with mouse anti-β-tubulin III monoclonal antibody (STEMCELL™) and rabbit anti-phospho-Synapsin I (Ser^62, Ser^67) polyclonal antibody (EMD Millipore) overnight at 4°C. ALEXA FLUOR® 488 Goat anti-mouse IgG (green) and ALEXA FLUOR® 594 Donkey anti-rabbit IgG (red, Life Technologies) were used to detect β-tubulin III and phospho-synapsin I signals, respectively. Confocal images were taken by Olympus fluoview FV1000 laser scanning confocal microscope (Tokyo, Japan). (Figure 5B) In parallel, additional N2a cells were cultured in 6-well plates (3 x 10^5/well), treated with LISPRO, Li_2C_0_3, LiCl or L-proline at 10 mM, lysed with cell lysis buffer and then subjected to western blot (WB) analysis of β-tubulin III, p-synapsin I or β-actin. (Figure 5C) The band density ratios of β-tubulin and phospho-synapsin I to β-actin are presented as mean ± S.D. These data are representative of three independent experiments with similar results (*P < 0.05; **P < 0.005). There was no notable or significant difference in β-tubulin III
and phospho-synapsin I immunofluorescence and WB analysis between Li$_2$C$_0$$_3$, LiCl or L-proline ($P > 0.05$). Figures 5A-C are described further in Example 8.

Figures 6A-6F. LISPRO notably enhances neuronal stem cell differentiation. (Figures 6A and 6D) Murine neuronal stem cells (ATCC) were plated in 8-well slide chambers (106/well), incubated overnight and treated with LISPRO, Li$_2$C$_0$$_3$, LiCl or L-proline at 10 mM for 48 hours. These cells were then permeabilized, washed and stained with mouse anti-MAP2 monoclonal antibody (EMD Millipore) or mouse anti-total tau (tau46) antibody overnight at 4°C. ALEXA FLUOR® 488 Goat anti-mouse IgG (green) was used to detect MAP2 and total tau and DAPI (Life Technologies) was used to detect nuclear DNA. Confocal images were taken by Olympus Fluoview FV1000 laser scanning confocal microscope. (Figures 6B and 6E) In parallel, additional neuronal stem cells were cultured in 6-well plates (3 x 106/well), treated with LISPRO, Li$_2$C$_0$$_3$, LiCl or L-proline, lysed with cell lysis buffer and analyzed by WB. (Figures 6C and 6F) The band density ratios of MAP2 to β-actin and total tau to β-actin are presented as mean ± S.D. These data are representative of two independent experiments with similar results (***$P < 0.005$). Note that there was no significance difference in MAP2 and total tau immunofluorescence and WB analysis between Li$_2$C$_0$$_3$, LiCl or L-proline ($P > 0.05$).

Figures 7A and 7B. LISPRO does not increase COX2 expression in human renal proximal tubule (HRPT) cells, but markedly reduces GSK3P activity. Human primary renal proximal tubule cells (ATCC) were cultured in InVitroGKO medium (BioreclamationIVT) and 24-well plates (5 x 105/well), incubated overnight and treated with LISPRO, Li$_2$C$_0$$_3$, LiCl or L-proline at 0 to 30 mM for 12 hours. These cells were then lysed with cell lysis buffer and analyzed by WB for COX2, total GSK3P and phospho GSK3P (Ser9 and Thr390) expression using anti-COX2 antibody (Figure 7A, ABCAM®) and anti-phospho- and total GSK3P antibodies (Figure 7B). Note that there were no notable differences in COX2 expression or GSK3P phosphorylation between Li$_2$C$_0$$_3$ and LiCl. L-proline treatment induced no change in COX2 expression and GSK3P phosphorylation.

Figures 8. LISPRO promotes autophagy in mouse primary microglial cells. Mouse primary microglial cells were plated in 8-well slide chambers (106/well), incubated overnight, and treated with LISPRO, Li$_2$C$_0$$_3$, LiCl or L-proline at 10 mM for 18 hours. These cells were then permeabilized, washed, stained with LC3B rabbit
polyclonal antibody and visualized with ALEXA FLUOR® 647 Goat anti-rabbit IgG (LC3B antibody kit, MOLECULAR PROBES®). The fluorescence intensity of the autophagosomes and the cytosol were quantified using SLIDEBOOK™ digital microscopy software. Note that there was no significance difference in the fluorescence intensity of the autophagosomes and the cytosol between L$_2$CO$_3$ and LiCl ($P > 0.05$). L-proline failed to promote any notable autophagy.

Figures 9A and 9B. Crystal packing in LISPRO and LNAPRO. Square grid network exhibited by LISPRO (Figure 9A) and LNAPRO (Figure 9B). Hydrogen atoms are removed for clarity.

Figure 10: LISPRO structure with probability ellipsoids.

Figure 11: LNAPRO structure with probability ellipsoids.

Figure 12: Diagram showing mechanisms that may underlie lithium's (and LISPRO's) potential efficacy for Alzheimer's disease.

Figure 13 shows the reaction scheme of lithium salicylate (a salt) and L-proline (an amino acid conformer) producing LISPRO (an ionic co-crystal).

Figures 14A-C show that orally administered LISPRO reduces β-amyloid pathology in Tg2576 mice (described in Example 5).

Figures 15A-C show that orally administered LISPRO attenuates tau hyperphosphorylation and GSK3P activation in Tg2576 mice (described in Example 6).

Figures 16A-D show that orally administered LISPRO promotes anti-inflammatory/Th2 responses and decreases sCD40L in the CNS of Tg2576 mice (described in Example 7).

Figures 17A and B-1 to B-3 show that LISPRO enhances murine neuronal stem cell differentiation (described in Example 9).

Figures 18A-C show that LISPRO enhances human neuronal stem cell differentiation (described in Example 10).

Figure 19 shows that LISPRO promotes autophagy in murine primary microglial cells (described in Example 12).

Figures 20A-B show that LISPRO reduces GSK3P activity in human renal proximal tubule (HRPT) cells, but does not increase COX2 expression (described in Example 13).
Figures 21A, and 21B-1 to B-3 show that LISPRO does not increase COX2 expression in vivo (described in Example 14).

Figures 22A, 22B-1, and 22B-2 show that LISPRO does not increase COX2 expression in Tg2576 mice following 8-week treatment (described in Example 15).

Figures 24A-1, A-2, B-1, and B-2 show long-term serum and brain pharmacokinetics of LISPRO, lithium salicylate, and lithium carbonate (described in Example 17).

Figures 25A-B show long-term serum and brain pharmacokinetics of LISPRO or lithium carbonate in Tg2576 mice (described in Example 18).

Figures 26A-1, A-2, and B-1 to B-3 show 3XTg-AD mouse brain tumor sections stained with anti-Aβ antibody (4G8), shown in Figures 26A-1 (2X magnification) and 26A-2 (20X magnification) or anti-phospho-tau (Thr231) antibody [p-tau (Thr231)], shown in Figures 26B-1 (4X magnification, 26B-2 (40X magnification), and 26B-3 (40X magnification).

DETAILED DESCRIPTION OF THE INVENTION

The present invention concerns a method for treating a neuropsychiatric disorder, comprising administering an effective amount of a co-crystal of lithium to a subject in need thereof, wherein the co-crystal comprises: lithium, or a pharmaceutically acceptable salt thereof, as a molecular or ionic active pharmaceutical ingredient (API), and an amino acid as a co-crystal former that is a solid under ambient conditions.

Various amino acids may be used as co-crystal formers for the lithium co-crystals, as long as they are not toxic to the subject as an administered lithium co-crystal. The amino acid may be an essential amino acid (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, or valine) or a non-essential amino acid (alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, pyrrolysine, proline, selenocysteine, serine, or tyrosine). The amino acid may be cyclic (such as proline), aliphatic (glycine, alanine, valine, leucine, isoleucine), hydroxyl or sulfur/selenium-containing (serine, cysteine, selenocysteine, threonine, methionine), aromatic (phenylalanine, tyrosine, tryptophan), basic (histidine, lysine, arginine), or
acidic or their amide (aspartate, glutamate, asparagine, glutamine). The amino acid may be a non-standard amino acid or non-proteinogenic (non-coded) amino acid, such as L-DOPA, GABA, 2-aminobutyric acid, dehydralanine, d-carboxyglutamic acid, formylmethionine, selenocysteine, and pyrrolyseine. Any organic compound with an amine (-\(\text{NH}_2\)) and a carboxylic acid (-\(\text{COOH}\)) functional group can be considered an amino acid, and may potentially be used for the lithium co-crystal. The proteinogenic amino acids are small subset of this group that possess central carbon atom (a- or 2-) bearing an amino group, a carboxyl group, a side chain and an a-hydrogen levo conformation, with the exception of glycine, which is achiral, and proline, whose amine group is a secondary amine. The amino acid may be a non-coded amino acid that is nonetheless found in proteins, such as carboxyglutamic acid, hydroxyproline, hypusine, or pyroglutamic acid. In some embodiments, the amino acid is a zwitterionic co-former. Zwitterionic co-formers are characterized by the presence of strong charge-assisted hydrogen bonds. Each co-crystal may have a single amino acid or multiple (two or more) different amino acid.

The amino acids may be in levorotatory form (1-amino acid) or dextrorotatory form (d-amino acid).

Various salts of lithium may be used as APIs for the lithium co-crystals. Each co-crystal may have a single salt form, or multiple (two or more) salt forms of lithium. Salicylic acid and derivatives such as acetylsalicylic acid (aspirin) are particularly useful, both for the pharmacokinetic advantage and the "co-drug" synergistic effects for the treatment of Alzheimer’s disease and (AD) other neuropsychiatric disorders.

In some embodiments, the salt is a derivative of salicylic acid. In some embodiments the salt is an ester derivative such as acetylsalicylic acid or methyl salicylate. Other examples of salicylic acid derivatives that may be used are disclosed in Weizmann CH et al., "Derivatives of Salicylic Acid", J. Org. Chem., 13(6):796-799; and Clissold SP, "Aspirin and related derivatives of salicylic acid", Drugs, 1986, 32 Suppl 4: 8-26, which are each incorporated herein by reference in their entirety.

In some embodiments, the salt is lithium salicylate, lithium hydroxide, lithium nicotinate, lithium citrate, lithium sulfate, lithium oxybutyrate, lithium orotate, or lithium carbonate. The lithium salt may be one described in Frost RE and Messiha FS, Brain Res Bull, 1983, Aug, 11(2)219-31, which is incorporated herein by reference in its entirety.
In some embodiments, the amino acid is proline. In some embodiments, the amino acid is L-proline. In one embodiment, the co-crystal comprises lithium salicylate and proline (l-proline or d-proline). In one embodiment, the co-crystal comprises lithium salicylate and l-proline, and the neuropsychiatric disorder is Alzheimer's disease (early-onset, late-onset, or familial Alzheimer's disease (FAD)) or a mild-cognitive impairment (MCI).

In some embodiments, the neuropsychiatric disorder is a neurodegenerative disorder, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or amyotrophic laterals sclerosis (ALS). In some embodiments, the neuropsychiatric disorder is mood disorder (e.g., bipolar disorder, depressive disorder), schizoaffective disorder, tic disorder (e.g., Tourette's syndrome), or suicidality (e.g., suicidal ideation or suicidal behavior). Subjects may have one or a combination of two or more neurodegenerative disorders, mood disorders, or other neuropsychiatric disorders.

The psychiatric disorders that may be treated with lithium co-crystals may be acute or chronic, early-stage, or late-stage. For example, in the case of Alzheimer's disease (AD), the disorder may be early-onset, late-onset, or familial Alzheimer's disease (FAD). The neurodegenerative disorder may be a mild-cognitive impairment (MCI), which is the stage between normal forgetfulness due to aging, and the development of Alzheimer's disease.

Optionally, the methods may further comprise identifying the subject as having a neuropsychiatric disorder prior to administration of the lithium co-crystal (e.g., through diagnosis by a clinician or appropriately licensed health care professional) and/or conducting one or more tests on the subject one or more times after administration to determine whether there has been improvement in the condition. The tests may be behavioral diagnostistics and/or assays for biomarkers, or other tests known and used by those of ordinary skill in the art.

Aspects of the invention include methods for delivery of lithium and/or achieving one or more of the following in a subject by administering an effective amount of a lithium co-crystal of the invention or composition comprising the co-crystal through any route of delivery, including those disclosed herein: increasing brain-derived neurotrophic factor (BDNF) activity, attenuating of interleukin-6 and/or nitric oxide in microglia, reducing amyloid beta (Aβ) generation, increasing inhibitory GSK3P (Ser9)
phosphorylation (e.g., in neuronal cells), decreasing tau phosphorylation (e.g., in neuronal cells), increasing brain 17-hydroxy-docosahexaenoic acid (17-OH-DHA), inhibiting microglial activation-induced by IFNy and CD40 signaling, enhancing microglial phagocytosis of Aβ, promoting or enhancing neuronal stem cell differentiation, or promoting autophagy.

As used herein, the term "subject" refers to a human or non-human mammal. The subject may be any age or gender. Mammalian species which benefit from the disclosed methods include, but are not limited to, primates, such as apes, chimpanzees, orangutans, humans, monkeys; domesticated animals (e.g., pets) such as dogs, cats, guinea pigs, hamsters, Vietnamese pot-bellied pigs, rabbits, and ferrets; domesticated farm animals such as cows, buffalo, bison, horses, donkey, swine, sheep, and goats; exotic animals typically found in zoos, such as bear, lions, tigers, panthers, elephants, hippopotamus, rhinoceros, giraffes, antelopes, sloth, gazelles, zebras, wildebeests, prairie dogs, koala bears, kangaroo, opossums, raccoons, pandas, hyena, seals, sea lions, elephant seals, otters, porpoises, dolphins, and whales. Other species that may benefit from the disclosed methods include fish, amphibians, avians, and reptiles. As used herein, the terms "patient" and "subject" are used interchangeably and are intended to include such human and non-human species. Likewise, in vitro methods of the present invention can be carried out on cells of such human and non-human species.

As used herein, a "pharmaceutical composition" refers to a preparation of one or more of the active ingredients described herein (e.g., lithium co-crystal) with other components such as physiologically suitable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of an agent to the subject.

As used herein, the term "active ingredient" refers to the lithium co-crystal accountable for the intended biological effect.

As used herein, the phrases "physiologically acceptable carrier" and "pharmacologically acceptable carrier," which may be used interchangeably, refer to a carrier or a diluent that does not cause significant irritation to the subject and does not abrogate the biological activity and properties of the administered agent.

As used herein, the term "excipient" refers to an inert substance that may be included in a pharmaceutical composition to further facilitate administration of an active ingredient. Examples of excipients include, but are not limited to, calcium carbonate,
calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils, and polyethylene glycols.

Techniques for formulation and administration of drugs may be found in the latest edition of "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, Pa., which is herein fully incorporated by reference.

Suitable routes of administration for the lithium co-crystals, and pharmaceutical compositions comprising them, may, for example, include oral, rectal, transmucosal, especially transnasal, intestinal, or parenteral delivery, including intramuscular, subcutaneous, and intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, topical, transdermal, or intraocular injections.

Alternately, one may administer the lithium co-crystals or pharmaceutical composition in a local rather than systemic manner, for example, via delivery of the pharmaceutical composition directly into a tissue region of a subject (e.g., intracranially).

Pharmaceutical compositions of the present invention may be manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. Co-crystals of lithium may be produced using the methods described in Smith AJ et al. (Mol. Pharmaceutics 2013, 10, 4728-4738), which is incorporated herein by reference in its entirety. Characterization of the structure and properties of embodiments of lithium co-crystals that may be used in the invention are described in Smith AJ et al. and in Figures 9A-B, 10, and 11 herein.

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active ingredients into preparations that can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.

For injection, the active ingredients of the pharmaceutical composition may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological salt buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated may be used in the formulation. Such penetrants are generally known in the art.
For oral administration, the pharmaceutical composition can be formulated readily by combining the active ingredient(s) (e.g., lithium co-crystal) with pharmaceutically acceptable carriers well known in the art. Such carriers enable the pharmaceutical composition to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral ingestion by a patient. Pharmacological preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries as desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, and sodium carbomethylcellulose; and/or physiologically acceptable polymers such as polyvinylpyrrolidone (PVP). If desired, disintegrating agents, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate, may be added. The pharmaceutical composition may be an edible or drinkable composition intended for ingestion.

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical compositions that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules may contain the active ingredients in admixture with filler such as lactose, binders such as starches, lubricants such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active ingredients may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for the chosen route of administration.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.
For administration by nasal inhalation, the active ingredients for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from a pressurized pack or a nebulizer with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane, or carbon dioxide. In the case of a pressurized aerosol, the dosage may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, for example, gelatin for use in a dispenser may be formulated containing a powder mix of the compound and a suitable powder base, such as lactose or starch.

The pharmaceutical composition described herein may be formulated for parenteral administration, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers with, optionally, an added preservative. The compositions may be suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing, and/or dispersing agents.

Pharmaceutical compositions for parenteral administration include aqueous solutions of the active preparation in water-soluble form. Additionally, suspensions of the active ingredients may be prepared as appropriate oily or water-based injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters such as ethyl oleate, triglycerides, or liposomes. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the active ingredients, to allow for the preparation of highly concentrated solutions.

Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., a sterile, pyrogen-free, water-based solution, before use.

The pharmaceutical composition of the present invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, for example, conventional suppository bases such as cocoa butter or other glycerides.

Pharmaceutical compositions suitable for use in the context of the present invention include compositions wherein the active ingredients are contained in an amount effective to achieve the intended purpose. More specifically, an "effective amount" means an amount of active ingredients (e.g., lithium co-crystal) effective to prevent, delay onset
of, alleviate, or ameliorate one or more symptoms of a neuropsychiatric disorder (e.g., a neurodegenerative disorder such as Alzheimer's disease), e.g., by increasing brain-derived neurotrophic factor (BDNF) activity, attenuating of interleukin-6 and/or nitric oxide in microglia, reducing Aβ generation, increasing inhibitory GSK3P (Ser9) phosphorylation, decreasing tau phosphorylation, increasing brain 17-hydroxydocosahexaenoic acid (17-OH-DHA), inhibiting microglial activation-induced by IFNy and CD40 signaling, enhancing microglial phagocytosis of Aβ, promoting or enhancing neuronal stem cell differentiation, promoting autophagy, or by a different mechanism.

Determination of an effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For administration, the lithium co-crystals may, in one embodiment, be administered in a formulation containing 0.001% to 70% per weight of the co-crystal, preferably between 0.01% to 70%, per weight of the co-crystal, even more preferred between 0.1%> and 70% per weight of the co-crystal. In one embodiment, a suitable amount of co-crystal administered is in the range of 0.01 mg/kg body weight to 1 g/kg body weight.

Lithium co-crystal-containing pharmaceutical compositions may be in the form of a sustained release system. Suitable examples of sustained release systems include semipermeable matrices of solid hydrophobic polymers containing the compound of the invention, which matrices may be in form of shaped articles, e.g., films or microcapsules.

For any preparation used in the methods of the invention, the dosage or the effective amount can be estimated initially from in vitro and cell culture assays (e.g., proliferation assay as further described herein below). For example, a dose can be formulated in animal models to achieve a desired concentration or titer. Such information can be used to more accurately determine useful doses in humans.

The methods of the invention may further comprise administering an additional agent for treating the neuropsychiatric disorder before, during, or after the administration of the lithium co-crystal. The additional agent may be administered to the subject in the same composition as the lithium co-crystal or in separate compositions administered by the same or different anatomical routes. Accordingly, the compositions of the invention may include one or more additional agents as well.

In some embodiments, the additional agent is an anti-depressant, anti-convulsant, or mood stabilizer, or a combination of two or more of the foregoing.
In some embodiments, the additional agent is a selective serotonin reuptake inhibitor (SSRI), serotonin-noroepinephrine reuptake inhibitor (SNRI), serotonin antagonist and reuptake inhibitor (SARI), monamine oxidase inhibitor (MAOI), carboxamide, fructose derivative, triazine, or a combination of two or more of the foregoing.

In some embodiments, the disorder is a neurodegenerative disease such as Alzheimer's disease, and the additional agent is selected from the group consisting of a cholinesterase inhibitor (e.g., donepezil, rivastigmine, galantamine), N-methyl D-aspartate antagonist (e.g., memantine), or vitamin E.

Lithium co-crystals of the subject invention can be formulated according to known methods for preparing physiologically acceptable and/or pharmaceutically acceptable compositions. Formulations are described in detail in a number of sources which are well known and readily available to those skilled in the art. For example, Remington's Pharmaceutical Science by E.W. Martin describes formulations which can be used in connection with the subject invention. In general, the compositions of the subject invention will be formulated such that an effective amount of the compound is combined with a suitable carrier in order to facilitate effective administration of the composition. The compositions used in the present methods can also be in a variety of forms. These include, for example, solid, semi-solid, and liquid dosage forms, such as tablets, pills, powders, liquid solutions or suspension, suppositories, injectable and infusible solutions, and sprays. The preferred form depends on the intended mode of administration and therapeutic application. The compositions also preferably include conventional physiologically-acceptable carriers and diluents which are known to those skilled in the art. Examples of carriers or diluents for use with the subject compounds include ethanol, dimethyl sulfoxide, glycerol, alumina, starch, saline, and equivalent carriers and diluents. To provide for the administration of such dosages for the desired therapeutic treatment, compositions of the invention may comprise between about 0.1% and 99%, and especially, 1 and 15% by weight of the total of one or more of the subject inflammatory mediator based on the weight of the total composition including carrier or diluent.

Lithium co-crystals, and compositions comprising them, can be delivered to a cell either through direct contact with the cell or via a carrier means. Carrier means for
delivering lithium co-crystals and compositions to cells are known in the art and include, for example, encapsulating the composition in a liposome moiety. Another means for delivery of lithium co-crystals and compositions of the invention to a cell comprises attaching the lithium co-crystal to a protein, nucleic acid, or other moiety that is targeted for delivery to the target cell. U.S. Patent No. 6,960,648 and Published U.S. Patent Application Nos. 20030032594 and 20020120100 disclose amino acid sequences that can be coupled to another composition and that allows the composition to be translocated across biological membranes. Published U.S. Patent Application No. 20020035243 also describes compositions for transporting biological moieties across cell membranes for intracellular delivery. Lithium co-crystals can also be incorporated into polymers, examples of which include poly (D-L lactide-co-glycolide) polymer for intracranial delivery; poly[bis(p-carboxyphenoxy) propane : sebacic acid] in a 20:80 molar ratio (as used in GLIADEL); chondroitin; chitin; and chitosan.

While lithium co-crystals of the invention can be administered by themselves, they can also be administered as part of a pharmaceutical composition. The subject invention thus further provides compositions comprising one or more one or more lithium co-crystals in association with at least one pharmaceutically acceptable carrier. The pharmaceutical composition can be adapted for various routes of administration, such as enteral, parenteral, intravenous, intramuscular, topical, subcutaneous, and so forth. Administration can be continuous or at distinct intervals, as can be determined by a person of ordinary skill in the art.

Other formulations of lithium co-crystals suitable for administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient; and aqueous and nonaqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powder, granules, tablets, etc. It should be understood that in addition to the ingredients particularly mentioned above, the
compositions of the subject invention can include other agents conventional in the art having regard to the type of formulation in question.

Lithium co-crystals of the invention, and compositions thereof, may be locally administered at one or more anatomical sites, optionally in combination with a pharmaceutically acceptable carrier such as an inert diluent. Lithium co-crystals of the invention, and compositions thereof, may be systemically administered, such as intravenously or orally, optionally in combination with a pharmaceutically acceptable carrier such as an inert diluent, or an assimilable edible carrier for oral delivery. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the lithium co-crystals may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, aerosol sprays, and the like.

The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac, or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices.

Lithium co-crystals, and compositions of the invention can be administered intravenously, intramuscularly, or intraperitoneally by infusion or injection. Solutions of the active agent or its salts can be prepared in water, optionally mixed with a nontoxic
surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative to prevent the growth of microorganisms.

The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. The ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. Optionally, the prevention of the action of microorganisms can be brought about by various other antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the inclusion of agents that delay absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating a lithium co-crystal of the invention in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.

For topical administration, lithium co-crystals of the invention may be applied in as a liquid or solid. However, it will generally be desirable to administer them topically to the skin as compositions, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid. Lithium co-crystals can be applied in a formulation such as an ointment, cream, lotion, solution, tincture, or the like. Drug delivery systems
for delivery of pharmacological substances to dermal sites can also be used, such as that
described in U.S. Patent No. 5,167,649.

Useful solid carriers include finely divided solids such as talc, clay, microcrystalline
 cellulose, silica, alumina and the like. Useful liquid carriers include
 water, alcohols or glycols or water-alcohol/glycol blends, in which the compounds can be
dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
Adjuvants such as fragrances and additional antimicrobial agents can be added to
optimize the properties for a given use. The resultant liquid compositions can be applied
from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto
the affected area using pump-type or aerosol sprayers, for example.

Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty
alcohols, modified cellulosics or modified mineral materials can also be employed with
liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for
application directly to the skin of the user. Examples of useful dermatological
compositions which can be used to deliver an inflammatory mediator to the skin are
4,559,157; and U.S. Patent No. 4,820,508.

Useful dosages of the lithium co-crystals, and pharmaceutical compositions of the
present invention can be determined by comparing their in vitro activity, and in vivo
activity in animal models. Methods for the extrapolation of effective dosages in mice,
and other animals, to humans are known to the art; for example, see U.S. Patent No.
4,938,949.

The subject invention also concerns kits comprising a lithium co-crystal of the
invention, or a composition comprising a lithium co-crystal of the invention, in one or
more containers, for treatment of a neuropsychiatric disorder. Kits of the invention can
optionally include pharmaceutically acceptable carriers and/or diluents. A kit of the
invention can comprise one or more additional agents for treatment of neuropsychiatric
disorders. In one embodiment, a kit of the invention includes one or more other
components, adjuncts, or adjuvants as described herein. In one embodiment, a kit of the
invention includes instructions or packaging materials that describe how to administer a
lithium co-crystal or composition of the kit. Containers of the kit can be of any suitable
material, e.g., glass, plastic, metal, etc., and of any suitable size, shape, or configuration.
In one embodiment, lithium co-crystal of the invention is provided in the kit as a solid, such as a tablet, pill, or powder form. In another embodiment, lithium co-crystal of the invention is provided in the kit as a liquid or solution. In one embodiment, the kit comprises an ampoule or syringe containing a lithium co-crystal of the invention in liquid or solution form.

The following terms are intended to have the meanings presented therewith below and are useful in understanding the description of the present invention and are not meant to limit the scope of the invention.

The term "amyloid beta peptide" means amyloid beta peptides processed from the amyloid beta precursor protein (APP). The most common peptides include amyloid beta peptides 1-40, 1-42, 11-40 and 11-42. Other species of less prevalent amyloid beta peptides are described as y-42, whereby y ranges from 2-17, and 1-x whereby x ranges from 24-39 and 41.

The term "carrier" means a non-toxic material used in the formulation of pharmaceutical compositions to provide a medium, bulk and/or useable form to a pharmaceutical composition. A carrier may comprise one or more of such materials such as an excipient, stabilizer, or an aqueous pH buffered solution. Examples of physiologically acceptable carriers include aqueous or solid buffer ingredients including phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter ions such as sodium; and/or nonionic surfactants such as TWEEN, polyethylene glycol (PEG), and PLURONICS.

The term "contact" or "contacting" means bringing at least two moieties together, whether in an in vitro system or an in vivo system.

The term "condition" or "disease" means the overt presentation of symptoms (i.e., illness) or the manifestation of abnormal clinical indicators (e.g., biochemical indicators),
or a genetic or environmental risk of or propensity for developing such symptoms or abnormal clinical indicators.

The term "inhibit" or "inhibiting" or "suppress" or "suppressing" or "suppressive," in relationship to the term "response" means that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

The term "pharmaceutically acceptable prodrugs" as used herein means the prodrugs of the compounds useful in the present invention, which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients with undue toxicity, irritation, allergic response commensurate with a reasonable benefit/risk ratio, and effective for their intended use of the compounds of the invention. The term "prodrug" means a compound that is transformed in vivo to yield an effective compound useful in the present invention or a pharmaceutically acceptable salt, hydrate or solvate thereof. The transformation may occur by various mechanisms, such as through hydrolysis in blood. The compounds bearing metabolically cleavable groups have the advantage that they may exhibit improved bioavailability as a result of enhanced solubility and/or rate of absorption conferred upon the parent compound by virtue of the presence of the metabolically cleavable group, thus, such compounds act as pro-drugs. A thorough discussion is provided in Bundgaard (1985), Widder et al. (1985), Krogsgaard-Larsen and Bandaged (1991), Bundgard (1992), Nielsenw and Bundgaard (1988), Nakeya et al. (1984), Higuchi and Stella (1987), which are incorporated herein by reference. An example of the prodrugs is an ester prodrug. "Ester prodrug" means a compound that is convertible in vivo by metabolic means (e.g., by hydrolysis) to an inhibitor compound according to the present invention. For example an ester prodrug of a compound containing a carboxy group may be convertible by hydrolysis in vivo to the corresponding carboxy group.

The term "pharmaceutically acceptable salts" refers to the non-toxic, inorganic and organic acid addition salts, and base addition salts, of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of compounds useful in the present invention.
The term "pharmaceutical excipients" refers to non-toxic adjuvants or compounds which can be added to the present invention which is capable of enhancing the biologically active effects of the peptide or its absorbancy in the body.

The term "solvent" means a physical association of a compound useful in this invention with one or more solvent molecules. This physical association can include hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Representative solvates include hydrates, ethanolates and methanolates.

The term "effective amount" or "therapeutically effective amount" means that amount of a compound or agent that will elicit the biological or medical response of a subject that is being sought by a medical doctor or other clinician. In particular, with regard to treating a neuropsychiatric disorder, the term "effective amount" is intended to mean that effective doses of medicament which can decrease one or more symptoms of the disorder in a subject such as cognitive impairment. The typical weight for an average mouse is approximately .025 kg with a metabolic rate of approximately 7.2 times that of a human. The typical weight for an average person is approximately 70 kg. With the standard weight and metabolic rate adjustments, it is within the scope of one of ordinary skill in the art to be able to derive effective doses for therapies of medicament of the invention as described herein. For example, effective amounts within the scope of the invention are equivalent mouse doses which is within about 5 meg/day for a period as needed to achieve cognitive effects which is within about 2 mg/day for humans. Alternatively, effective doses for humans can also be within the range of about 50 meg/day to about 2 mg/day, or alternatively 50 meg/day, or 100 meg/day, or 250 meg/day, or 500 meg/day, or 750 meg/day or 1 mg/day or 1.25 mg/day, or 1.5 mg/day or 2 mg/day, or 2.25 mg/day, or 2.5 mg/day or adjusted as needed for the weight, metabolism and metabolic needs of the individual to at least achieve the effective cognitive effects of such individual.

The term "treating" means an intervention performed with the intention of reversing or preventing the development or altering the pathology of, and thereby alleviating a disorder, disease or condition, including one or more symptoms of such disorder, disease, or condition. Preventing refers to prophylactic or preventative
measures, and includes delaying the onset of the disorder, disease or condition. The related term "treatment," as used herein, refers to the act of treating a disorder, symptom, disease or condition, as the term "treating" is defined above.

REFERENCES

Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction; University of Gottingen: Gottingen, Germany, 1996.

Exemplified Embodiments:

Exemplified embodiments of the invention include, but are not limited, to:

Embodiment 1. A method for treating a neuropsychiatric disorder, comprising administering an effective amount of a co-crystal of lithium to a subject in need thereof, wherein the co-crystal comprises lithium, or a pharmaceutically acceptable salt thereof, and an amino acid.

Embodiment 2. The method of embodiment 1, wherein the co-crystal comprises a pharmaceutically acceptable salt of lithium, and an amino acid.

Embodiment 3. The method of embodiment 1 or 2, wherein the pharmaceutically acceptable salt is lithium salicylate or lithium hydroxide.
Embodiment 4. The method of any preceding embodiment, wherein the amino acid is L-proline.

Embodiment 5. The method of any preceding embodiment, wherein the co-crystal comprises lithium salicylate and L-proline.

Embodiment 6. The method of any preceding embodiment, wherein the neuropsychiatric disorder is a neurodegenerative disorder.

Embodiment 7. The method of embodiment 6, wherein the neurodegenerative disorder is Alzheimer's disease, Parkinson's disease, or amyotrophic laterals sclerosis (ALS).

Embodiment 8. The method of any one of embodiments 1 to 5, wherein the neuropsychiatric disorder is a mood disorder, schizoaffective disorder, tic disorder, or suicidality.

Embodiment 9. The method of any preceding embodiment, further comprising administering an additional agent for treating the neuropsychiatric disorder before, during, or after the administration of the lithium co-crystal.

Embodiment 10. The method of embodiment 9, wherein the neuropsychiatric disorder is Alzheimer's disease or other dementia, and the additional agent is a cholinesterase inhibitor, N-methyl D-aspartate antagonist, vitamin E, or a combination of two or more of the foregoing.

Embodiment 11. The method of embodiment 10, wherein the additional agent is donepezil, rivastigmine, galantamine, memantine, or a combination of two or more of the foregoing.

Embodiment 12. The method of embodiment 9, wherein the additional agent is an anti-depressant, anti-convulsant, or mood stabilizer.

Embodiment 13. The method of embodiment 9, wherein the additional agent is a selective serotonin reuptake inhibitor (SSRI), serotonin-norepinephrine reuptake inhibitor (SNRI), serotonin antagonist and reuptake inhibitor (SARI), monamine oxidase inhibitor (MAOI), carboxamide, fructose derivative, triazine, or a combination of two or more of the foregoing.

Embodiment 14. The method of any preceding embodiment, wherein the lithium co-crystal is administered to the subject in a composition comprising the lithium co-crystal and a pharmaceutically acceptable carrier.
Embodiment 15. The method of any preceding embodiment, wherein the subject has the neuropsychiatric disorder at the time of administration, and wherein said method further comprises identifying the subject as having the neuropsychiatric disorder prior to administration.

Embodiment 16. The method of any one of embodiments 1 to 14, wherein the subject does not have the neuropsychiatric disorder at the time of administration, and wherein the lithium co-crystal is administered as a prophylaxis to prevent or delay the onset of the neuropsychiatric disorder.

Embodiment 17. A pharmaceutical composition comprising a co-crystal of lithium comprising lithium, or a pharmaceutically acceptable salt thereof, and an amino acid; and an additional agent effective in treating a neuropsychiatric disorder.

Embodiment 18. The composition of embodiment 17, wherein the additional agent is a cholinesterase inhibitor, N-methyl D-aspartate antagonist, vitamin E, or a combination of two or more of the foregoing.

Embodiment 19. The composition of embodiment 17, wherein the additional agent is donepezil, rivastigmine, galantamine, memantine, or a combination of two or more of the foregoing.

Embodiment 20. The composition of embodiment 17, wherein the additional agent is an anti-depressant, anti-convulsant, or mood stabilizer.

Embodiment 21. The composition of embodiment 17, wherein the additional agent is a selective serotonin reuptake inhibitor (SSRI), serotonin-norepinephrine reuptake inhibitor (SNRI), serotonin antagonist and reuptake inhibitor (SARI), monamine oxidase inhibitor (MAOI), carboxamide, fructose derivative, triazine, or a combination of two or more of the foregoing.

Embodiment 22. A method for delivery of lithium and/or achieving one or more of the following in a subject comprising administering an effective amount of a lithium co-crystal or pharmaceutical composition of any preceding embodiment through any route of delivery: increasing brain-derived neurotrophic factor (BDNF) activity, attenuating interleukin-6 and/or nitric oxide in microglia, reducing Aβ generation, increasing inhibitory GSK3P (Ser9) phosphorylation (e.g., in neuronal cells), decreasing tau phosphorylation (e.g., in neuronal cells), increasing brain 17-hydroxy-docosahexaenoic acid (17-OH-DHA), inhibiting microglial activation-induced by IFNγ.
and CD40 signaling, enhancing microglial phagocytosis of Aβ, promoting or enhancing neuronal stem cell differentiation, or promoting autophagy.

MATERIALS AND METHODS

Reagents and Materials. Lithium salicylate (>98% purity), lithium hydroxide (>98% purity), nicotinic acid (>98% purity), and proline (>99% purity) were purchased from Sigma-Aldrich Corporation (St. Louis, MO) and used as such without further purification.

Lithium Cocrystal Syntheses. LISPRO. Lithium salicylate (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol) and L-proline (>99% pure, used as received from Sigma Aldrich, 1 mmol) were dissolved in 2.0 mL of hot deionized water. The resulting solution was maintained on a hot plate (75-90 °C) to allow slow evaporation of solvent until crystals had formed. Colorless crystals of LISPRO were collected.

LNAPRO. Lithium hydroxide (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol), nicotinic acid (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol), and L-proline (>99% pure, used as received from Sigma Aldrich, 2 mmol) were dissolved in 3.0 mL of deionized water and left to stand on a hot plate until block shape colorless crystals had emerged from solution.

Single-Crystal X-ray Data Collection and Structure Determinations. The X-ray diffraction data were collected using a Bruker-AXS SMART-APEXII CCD diffractometer (Cu Kα, λ = 1.54178 Å). Indexing was performed using APEX2 (Bruker APEX2, version 2008.1-0; Bruker AXS Inc.: Madison, WI, 2008) (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01 (SAINT, V6.28A; Data Reduction Software; Bruker AXS Inc.: Madison, WI, 2001). Absorption correction was performed by multiscan method implemented in SA-DABS (Sheldrick, 1996). Space groups were determined using XPREP implemented in APEX2 (Bruker APEX2, version 2008.1-0; Bruker AXS Inc.: Madison, WI, 2008). The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-97 (full-matrix least-squares on F²) contained in OLEX2 (Dolomanov et al., 2009) and WinGX v1.70.01 (Farrugia, 1999; Sheldrick, 1997; Sheldrick, 2008; Sheldrick, 1990) programs.
LISPRO. All non-hydrogen atoms, except disordered C29a and C29b, were refined anisotropically. Hydrogen atoms of -CH, -CH2, -NH2, and -OH groups were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2Ueq (–CH, -CH2, -NH2), Uiso(H) = 1.5Ueq(-OH). One of the L-proline rings is disordered over two positions in a 1:1 ratio. SADI commands were used to restrain distances between disordered carbon atoms. The crystal was a twin, and refinement was conducted with an HKL5 type file generated using the [-l/0/0;0/-l/0;0. 14/0/1] twin law. This corresponds to 180° rotation about the [001] reciprocal lattice direction. Crystallographic data is available in the Cambridge Structural Database (CCDC 962323). The structure with probability ellipsoids is available in Figure 10.

LNAPRO. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of the -CH and -CH2 groups were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2Ueq (–CH, -CH2, -NH2). Hydrogen atoms of the -NH2 group were found from difference Fourier map inspection and were freely refined. Crystal data and refinement conditions are shown in Table 1. The L-proline ring was found to be disordered over two positions with an approximate ratio of 0.7:0.3. Crystallographic data is available in the Cambridge Structural Database (CCDC 962324). The structure with probability ellipsoids is available in Figure 11.

Table 1. Crystallographic Data and Structure Refinement Parameters

<table>
<thead>
<tr>
<th></th>
<th>LISPRO</th>
<th>LNAPRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C12H14LiNO3</td>
<td>C11H13LiN3O4</td>
</tr>
<tr>
<td>MW</td>
<td>259.18</td>
<td>244.17</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>P2_1</td>
<td>P2_12_12_1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3601(19)</td>
<td>10.2156(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.1556(16)</td>
<td>10.4646(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.173(3)</td>
<td>11.3811(3)</td>
</tr>
<tr>
<td>a (deg)</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>β (deg)</td>
<td>93.415(11)</td>
<td>90.00</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1278.5(4)</td>
<td>1216.66(5)</td>
</tr>
<tr>
<td>Dc (mg m⁻³)</td>
<td>1.347</td>
<td>1.333</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2θ range</td>
<td>7.28–131.94°</td>
<td>7.76–131.9°</td>
</tr>
</tbody>
</table>
Crystal Structure Description. Lithium Salicylate Proline, LISPRO. Single crystal X-ray structural analysis reveals that LISPRO contains four lithium cations, four salicylate anions, and four \(L^- \)-proline molecules in the unit cell. There are two formula units in the asymmetric unit. Each lithium cation is linked to adjacent lithium cations by four bridging carboxylate moieties, two from salicylate and two from \(L^- \)-proline (Li-0 distances: 1.916(1), 1.915(1) and 1.875(1), 1.905(1) Å). The overall network can be described as square grids and is illustrated in Figure 9A. The hydroxyl group of salicylate and protonated nitrogen of \(L^- \)-proline are involved in intramolecular and intermolecular hydrogen bonds (\(\text{O}^- \cdot \text{H} \cdot \cdot \text{O}^- \): 2.558(1) and 2.641(1); \(\text{N}^\cdot \cdot \text{H} \cdot \cdot \text{O}^- \): 2.751(1), 2.745(1) and 2.874(1) Å) (Table 2). The single crystal X-ray diffraction parameters of this and the other crystal structures reported herein are tabulated in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>LISPRO</th>
<th>LNAPRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{cell} / N_{para})</td>
<td>6896/352</td>
<td>2116/183</td>
</tr>
<tr>
<td>(T) (K)</td>
<td>228(2)</td>
<td>228(2)</td>
</tr>
<tr>
<td>(R_1 [l > 2\sigma(l)])</td>
<td>0.0394</td>
<td>0.0394</td>
</tr>
<tr>
<td>(wR_2)</td>
<td>0.0935</td>
<td>0.0935</td>
</tr>
<tr>
<td>GOF</td>
<td>0.988</td>
<td>0.988</td>
</tr>
<tr>
<td>abs coef.</td>
<td>0.872</td>
<td>0.843</td>
</tr>
</tbody>
</table>

Table 2. LISPRO Hydrogen Bonds

<table>
<thead>
<tr>
<th>D</th>
<th>H</th>
<th>A</th>
<th>(d(D-H)/\AA)</th>
<th>(d(H-A)/\AA)</th>
<th>(d(D-A)/\AA)</th>
<th>(D-H-A/\text{deg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9</td>
<td>H9B</td>
<td>O3</td>
<td>0.91</td>
<td>1.84</td>
<td>2.750(6)</td>
<td>178.4</td>
</tr>
<tr>
<td>N11</td>
<td>H11A</td>
<td>O10</td>
<td>0.91</td>
<td>1.83</td>
<td>2.744(6)</td>
<td>176.6</td>
</tr>
<tr>
<td>N11</td>
<td>H11B</td>
<td>O7</td>
<td>0.91</td>
<td>2.01</td>
<td>2.873(8)</td>
<td>158.7</td>
</tr>
<tr>
<td>O26</td>
<td>H26</td>
<td>O4</td>
<td>0.83</td>
<td>1.92</td>
<td>2.640(9)</td>
<td>144.1</td>
</tr>
<tr>
<td>O28</td>
<td>H28</td>
<td>O5</td>
<td>0.83</td>
<td>1.82</td>
<td>2.557(7)</td>
<td>146.9</td>
</tr>
</tbody>
</table>

\(^{a}1 + X, + Y, + Z \).

Table 3. LNAPRO Hydrogen Bonds

<table>
<thead>
<tr>
<th>D</th>
<th>H</th>
<th>A</th>
<th>(d(D-H)/\AA)</th>
<th>(d(H-A)/\AA)</th>
<th>(d(D-A)/\AA)</th>
<th>(D-H-A/\text{deg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5</td>
<td>H5A</td>
<td>O2</td>
<td>0.97(2)</td>
<td>1.83(2)</td>
<td>2.779(2)</td>
<td>163(2)</td>
</tr>
<tr>
<td>N5</td>
<td>H5B</td>
<td>O1</td>
<td>0.95(3)</td>
<td>1.81(3)</td>
<td>2.762(2)</td>
<td>176(2)</td>
</tr>
</tbody>
</table>

\(^{a}-1/2 -X, 1/2 + Y, -1 - Z \).

Lithium Nicotinate Proline, LNAPRO. The crystal structure of LNAPRO reveals that the 1:1 ICC crystallized in space group \(\text{p}2_1\text{2i2i2} \) and that it contains four lithium cations, four nicotinate anions, and four \(L^- \)-proline molecules in the unit cell. There is one
formula unit in the asymmetric unit. Two carboxylate moieties of nicotinate and two carboxylate moieties of proline molecules bridge adjacent lithium cations (Li-O distances: 1.897(3), 1.897(3) and 1.920(3), 2.920(3) Å). Undulating square grid networks are thereby generated as shown in Figure 9B. The protonated nitrogen atoms of proline form hydrogen bonds with carboxylate moieties (N+ - H - O: 2.779(2) and 2.762(2) Å) (Table 3).

All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.

All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1—Preparation and characterization of lithium salicylate proline (LISPRO, M.W. 258.18)

Lithium salicylate (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol) and L-proline (>99% pure, used as received from Sigma Aldrich, 1 mmol) were dissolved in 2.0 mL of hot deionized water. The resulting solution was maintained on a hot plate (75-90°C) to allow slow evaporation of solvent until crystals had formed. Colorless crystals of LISPRO were collected. In addition, lithium hydroxide (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol), nicotinic acid (>98% pure, anhydrous, used as received from Sigma Aldrich, 1 mmol), and L-proline (>99% pure, used as received from Sigma Aldrich, 2 mmol) were dissolved in 3.0 mL of deionized water and left to stand on a hot plate until block shape colorless crystals had emerged from solution. The purity of both co-crystal preparations were confirmed by powder X-ray diffraction, differential scanning (DSC) calorimetry and atomic absorption spectrometry (AAS) (20). Co-crystals of lithium may be produced using the methods described in Smith AJ et al. (Mol. Pharmaceutics 2013, 10, 4728-4738), which is incorporated herein by reference in its entirety. Characterization of the structure and
properties of embodiments of lithium co-crystals that may be used in the invention are described in Smith AJ et al. and in Figures 9A-B, 10, and 11 herein.

Example 2—LISPRO reduces Aβ generation without inhibiting Notch processing

N2a cells expressing human wild-type APP (N2a/APPwt cells) were treated with LISPRO followed by analysis of Aβ40,42 peptides secreted in the cell culture media by Aβ ELISA. The Aβ ELISA results are represented as the mean ± SD of Aβ40 or Aβ42 (ng/mL) for 3 independent experiments for each condition (*P < 0.05) (Figure 1A). To examine whether LISPRO can affect Notch processing, N2a/APPwt cells were co-transfected with Notch—ΔE vector. N2a/APPwt/Notch-AE cells were treated with LISPRO or DFK-167 (positive control for Notch cleavage) at 0, 2.5, 5 and 10 mM for 5 hours followed by analysis of the cell lysates by Western blot (WB) (Figure 1B). WB with both c-myc antibody (9E10, abeam®) and cleaved Notch antibody (Vail 744, Cell Signaling Technology®) showed that LISPRO treatment did not inhibit Notch cleavage compared to DFK-167.

Example 3—Treatment with LISPRO decreases tau phosphorylation in HeLa/tau cells while increasing inhibitory GSK^ (Ser9) phosphorylation

Human tau stably transfected HeLa cells (HeLa/tau cells) were treated with LISPRO at the indicated concentrations for 12 hours, followed by analysis of cell lysates by WB. Phosphorylation status of GSK3α [pGSK3α (Ser9)] was detected by anti-phospho-GSK^ (Ser9) and total GSK3α antibodies (Figure 3A). Phosphorylation status of tau was detected by anti-phospho-tau [p-tau (Thr231)] and PHFl antibodies. Total tau (phosphorylated and non-phosphorylated) was detected by tau-46. WB results are representative of two independent experiments for pGSK^ (Ser9) and total GSK^, and three experiments respectively for PHFl, p-tau (Thr231) and total tau (Figure 3B). Densitometry analysis below each WB figure panel in Figures 3A and 3B shows the band density ratio of pGSK^ (Ser9) to total GSK^ as well as p-tau (Thr231) to total tau. A t-test revealed a significant increase in the ratio of pGSK3α (Ser9) to total GSK3α and decrease in p-tau to total tau for HeLa/tau cells treated with 10 mM LISPRO compared to control (0 mM) (*P < 0.05; **P < 0.01). Aβ40,42 peptides were undetectable by Aβ ELISA of the conditioned media from HeLa/tau cells with or without LISPRO (data not shown).
Example 4—Treatment with LISPRO dose-dependently increases inhibitory GSK3P (Ser9) phosphorylation in SH-SY5Y cells and primary neuronal cells

Human neuroblastoma (SH-SY5Y) cells (Figure 2A) and primary neuronal cells (Figure 2B) were treated with LISPRO for 12 hours followed by analysis of cell lysates by WB. Below each figure panel, densitometry analysis shows the band density ratio of pGSK3p (Ser9) to total GSK3p. WB results are representative of three independent experiments. A t-test revealed significant difference in the ratio of pGSK3p (Ser9) to total GSK3P for both SH-SY5Y cells and differentiated neuronal cells treated with either 5 or 10 mM LISPRO compared to control (0 mM) (*P < 0.05).

Example 5—Oral LISPRO reduces β-amyloid pathology in Tg2576 mice

Tg2576 mice at 8 months of age (the Tg mouse line 2576) were divided into two groups (n = 9; 5 male/4 female) and were fed for 8 weeks with 2 diets providing lithium at 2.25 mmol/kg/day as indicated. These diets consisted of a standard NIH31 chow supplemented with Li2CO3 (0.5 g/kg) or LISPRO (3.5 g/kg). The dosages were chosen to give brain lithium concentrations of 0.25 - 0.50 mmol/L, which fall in a range of clinical therapy for AD (2, 14, 27). All mice received normal drinking water ad libitum. In parallel, six additional Tg2576 mice (3 male/3 female) were fed a standard NIH31 chow for 8 weeks as a control group. Mouse brain tissue sections and homogenates were prepared from each mouse after treatment. Half-brain coronal sections were analyzed by Aβ antibody 4G8 staining (Figure 14A). Percentage of 4G8 positive plaques (mean ± SD) was quantified by image analysis (28, 29) (Figure 14B). Total soluble and insoluble Aβ40,42 peptides from homogenates were analyzed by ELISA, and represented as picograms of Aβ peptides per mg of total protein (Figure 14C). LISPRO but not Li2CO3 treatment markedly reduced total soluble and insoluble Aβ40,42 levels. A t-test for independent samples revealed significant differences (**P < 0.01, ***p < 0.005) between groups. There was no notable or significant difference in both 4G8 positive Aβ plaques and cerebral soluble/insoluble Aβ40,42 levels in brain sections and homogenates between Li2CO3 and control NIH31 diet-fed Tg2576 mice (P > 0.05).
Example 6—Oral LISPRO treatment attenuates tau hyper-phosphorylation and GSK3P activation in Tg2576 mice

Mouse brain sections from LISPRO, Li₂C0₃ and control NIH31 chow fed Tg2576 mice as described in Figures 14A-C above were immunohistochemistry stained with anti-phospho-tau (Thr²³¹) [p-tau (Thr²³¹)] antibody (Figure 15A). Mouse brain homogenates were subjected to WB analysis with antibodies against p-tau (Thr²³¹) or total tau (Figure 15B) or with antibodies against phospho- or total-GSK3p (Figure 15C). Inhibitory phosphorylation status of GSK3P was detected by anti-phospho-GSK3p (Ser⁹) [pGSK3p (Ser⁹)] antibody. As shown below WB, densitometry analysis shows the band density ratios of p-tau (Thr²³¹) to total tau and pGSK3p (Ser⁹) to total GSK3p. A t-test revealed significant decreases in the ratios of p-tau (Thr²³¹) to total tau and increases in pGSK3p (Ser⁹) to total GSK3p in LISPRO-treated compared to Li₂C0₃-treated Tg2576 mice (**P < 0.005). Similar results from both immunochemistry staining and WB analyses were also obtained with PHF-1 antibody (data not shown). There was no notable and significant difference in both phospho-tau and inactivated GSK3P levels in brain homogenates between Li₂C0₃ and control NIH31 diet-fed Tg2576 mice (P > 0.5).

Example 7—Oral administration of LISPRO promotes anti-inflammatory/Th2 responses and decreases sCD40L in the CNS of Tg2576

Plasma samples and brain homogenates were prepared from the LISPRO- and Li₂C0₃-treated and untreated Tg2576 (Ctrl chow) mice as described in Figures 14A-C above and subjected to biochemical analysis. In addition, spleens from these mice were isolated and splenocytes cultured as described previously (30). ELISA results are shown for: plasma (Figure 16A), splenocyte cultured media (Figure 16B), and brain tissue-derived cytokines (Figure 16C) and sCD40L (Figure 16D). Data are presented as mean ± SD (n = 9 mice in the LISPRO- and Li₂C0₃-treated groups; n = 6 mice for the untreated group) values of cytokines (pg/mL plasma or medium) (Figures 16A and 16B) or fold increase of brain tissue-derived cytokines or sCD40L over untreated Tg2576 mice (Figures 16C and 16D) (*P < 0.05; **P < 0.01). There was no notable or significant difference in cytokine levels in plasma and splenocyte cultured media between Li₂C0₃ and control NIH31 diet-fed Tg2576 mice (P > 0.05).
Example 8 — LISPRO markedly promotes neuronal cell differentiation

Murine neuroblastoma (N2a cells) were treated with LISPRO or appropriate controls (including Li$_2$CO$_3$, LiCl, and L-proline, Sigma, all at 10 mM, optimized by our pilot studies) for 24 hours. These cells were then permeabilized with 0.05% Triton X-100 for 5 min, washed, and stained with mouse anti-β-tubulin III monoclonal antibody (STEMCELL™) and rabbit anti-phospho-synapsin I (Ser62, Ser67) polyclonal antibody (EMD Millipore) overnight at 4°C. Alexa Fluor® 488 Goat anti-mouse IgG (green) and Alexa Fluor® 594 Donkey anti-rabbit IgG (red), Life Technologies, were used to detect β-tubulin III and phospho-synapsin I signals respectively. Confocal images were taken by Olympus Fluoview™ FV1000 laser scanning confocal microscope (Tokyo, Japan) (Figure 5A). In parallel, additional N2a cells were treated with LISPRO, Li$_2$CO$_3$, LiCl, or L-proline at 10 mM, lysed with cell lysis buffer, and then subjected to WB analysis of β-tubulin III, phospho-synapsin I or β-actin (Figure 5B). The band density ratios of β-tubulin and phospho-synapsin I (p-synapsin I) to β-actin are presented as mean ± S.D (Figure 5C). These data are representative of three independent experiments with similar results (*P < 0.05; **P < 0.005). There was no notable or significant difference in β-tubulin III and phospho-synapsin I immunofluorescence and WB analysis between Li$_2$CO$_3$ and LiCl, or L-proline (P > 0.05).

Example 9 — LISPRO enhances murine neuronal stem cell differentiation

Murine neuronal stem cells (ATCC) were treated with LISPRO, Li$_2$CO$_3$, LiCl, or L-proline at 10 mM for 4 days, permeabilized and stained with mouse anti-MAP2 monoclonal antibody (EMD Millipore), mouse anti-total tau (tau46), or rabbit anti-phospho-synapsin I (Ser62, Ser67) polyclonal antibody overnight at 4°C. Alexa Fluor® 488 Goat anti-mouse IgG (green) and Alexa Fluor® 594 Donkey anti-rabbit IgG (red) were used to detect MAP2, phospho-synapsin I and total tau. DAPI staining (Life Technologies) was used to detect nuclear DNA. Confocal images were taken by Olympus Fluoview™ FV1000 laser scanning confocal microscope (Figure 17A). In parallel, additional neuronal stem cells were treated with LISPRO, Li$_2$CO$_3$, LiCl or L-proline, lysed with cell lysis buffer and analyzed by WB. The band density ratios of MAP2 to β-actin, total tau to β-actin, and phospho-synapsin I to β-actin are presented as mean ± S.D (Figures 17B-1, 17B-2, and 17B-3, respectively). These data are
representative of two independent experiments with similar results (**P < 0.005). Note that there was no significance difference in MAP2, phospho-synapsin I, and total tau immunofluorescence and WB analysis between Li₂C₀₃ and LiCl or L-proline (P > 0.05).

Example 10—LISPRO enhances human neuronal stem cell differentiation

Human neural stem cells (H9-Derived) were obtained from Life technologies and cultured with StemPro® NSC SFM media. They were treated with LISPRO, Li₂C₀₃, LiCl or L-proline at 10 mM for 14 days, permeabilized and stained with mouse anti-MAPI monoclonal antibody or rabbit anti-GFAP polyclonal antibody overnight at 4°C. Alexa Fluor® 488 Goat anti-mouse IgG (green) and Alexa Fluor® 594 Donkey anti-rabbit IgG (red) were used to detect MAP2 and GFAP respectively. DAPI was used to detect nuclear DNA. Confocal images were taken by Olympus Fluoview™ FV1000 laser scanning confocal microscope (Figure 18A). In parallel, additional human neuronal stem cells were treated with LISPRO, Li₂C₀₃, LiCl, or L-proline, lysed with cell lysis buffer and analyzed by WB (Figure 18B). The band density ratios of MAP2 to β-actin (**P < 0.001) and GFAP to β-actin (P > 0.05) are presented as mean ± S.D (Figure 18C). These data are representative of two independent experiments with similar results. Note that there was no significance difference in MAP2 and GFAP immunofluorescence and WB analyses between Li₂C₀₃ and LiCl or L-proline (P > 0.05).

Example 11—LISPRO inhibits microglial activation-induced by IFNγ and CD40 signaling and enhances microglial phagocytosis of Aβ

In order to further evaluate LISPRO’s in vivo effects on reducing inflammatory immune responses and decreasing CD40 signaling, primary microglial cells were treated with LISPRO in the presence of IFNγ or/and CD40 ligand (CD40L, 1 μg/mL) for 8 hours and then examined pro-inflammatory microglial activation as assessed by flow cytometric (FACS) analysis and cytokine ELISA. FACS analysis showed significant dose-dependent decreases in IFNγ-induced CD40 expression following 8 hours of co-treatment with LISPRO. Data are represented as mean percentage of CD40-expressing cells (± SD) (Figure 4A). Results are representative of two independent experiments. Microglial cell culture supernatants were collected and subjected to cytokine ELISA as indicated. Data are represented as mean pg of TNFa or IL-12p70 per mg of total cellular protein (± SD)
(Figure 4B). Results are representative of three independent experiments. Primary microglial cells were pre-treated with LISPRO at 10 mM or vehicle (1% DMSO in medium) for 6 hours and then incubated with 1 μM aged FITC-AP$_{42}$ for 1 hour. Cellular supernatants and lysates were analyzed for extracellular (top panel) and cell-associated (bottom panel) FLTC-AP$_{42}$ using a fluorometer (Figure 4C). Data are represented as the relative fold of mean fluorescence change (mean ± SD), calculated as the mean fluorescence for each sample at 37°C divided by mean fluorescence at 4°C (n = 4 for each condition presented) (**p < 0.005). LDH assay showed no significant increase in cell toxicity induced by LISPRO up to 20 mM in primary microglial cells (data not shown).

Example 12—LISPRO promotes autophagy in mouse primary microglial cells

Mouse primary microglial cells were treated with LISPRO, Li$_2$C$_3$, LiCl or L-proline at 10 mM or PBS (Control) for 18 hours. These cells were then permeabilized, stained with LC3B rabbit polyclonal antibody, and visualized with Alexa Fluor® 647 Goat anti-rabbit IgG (LC3B antibody kit, Molecular Probes®). The fluorescence intensity of the autophagosomes and the cytosol were quantified using Slidebook™ digital microscopy software (mean ± SD) (Figure 19). Both LISPRO and Li$_2$C$_3$ treatments showed significant enhancement of autophagy (**p < 0.001). Note that there was no significance difference in the fluorescence intensity of the autophagosomes and the cytosol between Li$_2$C$_3$ and LISPRO or LiCl (P > 0.05). L-proline failed to promote any notable autophagy.

Example 13—LISPRO markedly reduces GSK3P activity in human renal proximal tubule (HRPT) cells, but does not increase COX2 expression

Human primary renal proximal tubule cells (ATCC® PCS-400-010™) were cultured in InVitroGKO medium (BioreclamationlVT) and treated with LISPRO, Li$_2$C$_3$, LiCl or L-proline at 0 to 30 mM for 12 hours. These cells were then lysed with cell lysis buffer and analyzed by WB for COX2, total GSK3p and phospho GSK3p (Ser9) expressions using anti-COX2 antibody (Figure 20A, abeam®) and anti-phospho- and total GSK3P antibodies (Figure 20B). There were no notable differences in COX2 expression or GSK3P phosphorylation between Li$_2$C$_3$ and LiCl. L-proline treatment induced no change in COX2 expression and GSK3P phosphorylation.
Example 14—LISPRO does not increase COX2 expression *in vivo*

C57BL/6J male mice (6 weeks old, the Jackson Laboratory) were fed for 1 or 2 weeks with 3 diets providing lithium at 1.125 or 2.25 mmol/kg/day as indicated or control NIH31 diet. These diets consisted of a standard NIH31 chow supplemented with Li$_2$C0$_3$ (0.25 g/kg or 0.5 g/kg), lithium salicylate (Li Salicylate, 0.975 g/kg or 1.95 g/kg) or LISPRO (1.75 g/kg or 3.5 g/kg). All mice received normal drinking water *ad libitum.* Kidneys were collected after treatment and analyzed by immunohistochemistry for COX2 expression in the renal medulla (*Figure 21A*). In addition, the kidney microsomal proteins were extracted to assess COX2 expression by WB (*Figures 21B-1, 21B-2*). Data are expressed as mean ± SD in duplicates from six mice in each group (*Figure 21B-3*). Statistical analysis was carried out using ANOVA (*P < 0.05, n = 6 for LISPRO, Li$_2$C0$_3$ or lithium salicylate, n = 3 for control NIH3 diet). There was no significant difference in kidney microsomal COX2 expression levels between LISPRO-, lithium salicylate- and control NIH31 diet treated mice at 1.125 mmol/kg/day and 2.25 mmol/day (*P > 0.5*).

Example 15—LISPRO does not increase COX2 expression in Tg2576 mice following 8-week-treatment

Tg2576 mice (8 months old) were treated for 8 weeks with 2 diets providing lithium at 2.25 mmol/kg/day, consisting of standard NIH31 chow supplemented with Li$_2$C0$_3$ (0.5 g/kg) or LISPRO (3.5 g/kg), or control NIH31 chow as described in *Figures 14A-C, above.* All mice received normal drinking water *ad libitum.* Kidneys were collected after treatment and analyzed by immunohistochemistry for COX2 expression in the renal medulla (*Figure 22A*). The kidney microsomal proteins were extracted to assess COX2 expression by WB (*Figures 22B-1, 22B-2*). Statistical analysis was carried out using ANOVA (*P < 0.05, **P <0.01*). There was no significant difference in kidney microsomal COX2 expression levels between LISPRO-treated and control mice (*P > 0.05*).

Example 16—Short-term plasma and brain pharmacokinetics of LISPRO and Li?CQ$_3$

Male Sprague-Dawley rats (*n = 3 per formulation per time point*) were dosed with 4 mEq/kg of lithium *via* oral gavage as LISPRO or Li$_2$C0$_3$. Plasma and brain lithium
levels were determined at 2, 24, 48, and 72 h by AAS. \(\text{Li}_2\text{C}_0\text{3} \) plasma lithium concentration versus time (mean ± SD) is shown in Figure 23A. \(\text{Li}_2\text{C}_0\text{3} \) brain lithium per gram of wet weight versus time (mean ± SD) is shown in Figure 23B. LISPRO plasma lithium concentration versus time (mean ± SD) is shown in Figure 23C. LISPRO brain lithium per gram of wet weight versus time (mean ± SD) is shown in Figure 23D. The plasma pharmacokinetics of \(\text{Li}_2\text{C}_0\text{3} \) produced a sharp peak and rapid elimination with nearly undetectable levels at 48 hours (Figure 23A). This produced a concomitant spike in brain lithium levels at 24 hours (Figure 23B). LISPRO produced elevated lithium plasma levels at the earliest time point (2 hours) (Figure 23C). The plasma lithium levels peaked at 24 hours and remained elevated at 48 hours before becoming almost undetectable at 72 hours. LISPRO produced steady brain levels of lithium at 24 hours and 48 hours (Figure 23D).

Example 17—Long-term serum and brain pharmacokinetics of LISPRO, lithium salicylate, and lithium carbonate

C57BL/6J mice were fed for 1 or 2 weeks with 3 diets providing lithium at 1.125 or 2.25 mmol/kg/day as indicated followed by analysis of serum (Figures 24A-1, 24B-1) and brain lithium levels (Figures 24A-2, B-2) by AAS. All mice received normal drinking water ad libitum. Statistical analysis was carried out following ANOVA analysis. There was no significant difference in lithium levels in serum and brain homogenate between \(\text{Li}_2\text{C}_0\text{3} \) and lithium salicylate-treated mice \((P > 0.5)\). There was no detectable lithium in serum and brain homogenates in control NIH31 diet-fed C57BL/6J mice (data not shown).

Example 18—Long-term serum and brain pharmacokinetics of LISPRO or lithium carbonate in Tg2576 mice

As described in Figures 14A-C, above, Tg2576 mice were treated for 8 weeks with 2 diets providing lithium at 2.25 mmol/kg/day as indicated followed by analysis of serum (Figure 25A) and brain (Figure 25B) lithium levels by AAS. Statistical analysis was carried out using ANOVA analysis \((**P < 0.001, n = 9)\) for LISPRO or lithium carbonate. There was no detectable lithium in serum and brain homogenates in control NIH31 diet-fed Tg2576 mice (data not shown).
Example 19—Examination of cognitive impairment in 3XTg-AD mice following oral LISPRO treatment

Despite effective medicinal uses, current FDA-approved lithium pharmaceutics (lithium carbonate) are plagued with a narrow therapeutic window that requires regular monitoring of plasma lithium levels and blood chemistry by a clinician to mitigate adverse events. This is especially troublesome in the elderly where AD is most prevalent. These patients are frequently on poly-pharmacy and have low compliance rates. Further, many patients undergoing lithium therapy find the side effects to be unbearable, which discourage physicians from utilizing this treatment. This suggests a need to develop a safer lithium formulation for treatment of AD. Thus, the inventors have employed crystal engineering techniques to create an ICC of lithium (LISPRO) which should effectively reduce AD pathologies with less frequent or lower doses than that of the most commonly used lithium compound, lithium carbonate (Li$_2$CO$_3$) (Figure 13). This is in part due to LISPRO’s enhanced pharmacokinetic profile relative to Li$_2$CO$_3$. Treatment of rats with LISPRO delivering lithium at 4 mEq/kg provided consistently elevated levels of lithium in the plasma and brain out to 48 hours (Figures 23C, D). Conversely, Li$_2$CO$_3$ was almost undetectable at 48 hours in the plasma and produced a large spike in the plasma and brain at 24 hours post dosage (Figures 23A, B; (20)). This type of pharmacokinetic profile can contribute to the toxicity of lithium given its narrow therapeutic window. Lippman and Evans (31) suggested that an ideal lithium preparation would attenuate high blood level peaks and exhibit gradually declining blood concentrations. This has been the driving logic behind the development and evaluation of many controlled-release formulations and suggests LISPRO may be effective with less frequent or lower dosing requirements (32-34).

The inventors have confirmed that low doses of LISPRO are safe and effective in reducing AD pathology. The inventors have shown that Tg2576 mice fed with a LISPRO supplemented diet delivering lithium at 2.25 mmol/kg/day for 8 weeks, has no effect on renal COX2 activity (Figures 20-22), a biomarker of renal toxicity (21, 35), while markedly reducing abnormal β-amyloid pathology, tau phosphorylation and neuroinflammation (Figures 14-16). In addition, LISPRO treatment did not induce tissue pathological damage in the heart, kidney, liver, and lung by a general autopsy. In
contrast, equimolar doses of lithium carbonate enhanced renal COX2 expression (Figures 20-22) while having little or no impact on AD pathology (Figures 14-16). The inventors have also shown that LISPRO at the effective dose yields higher lithium levels in the brain compared with equimolar doses of lithium carbonate, while producing low nontoxic steady state levels in the periphery (0.1 mM, Figures 24 and 25). Indeed, the improved pharmacokinetics of LISPRO in the blood and brain explains its enhanced effectiveness and safety for treating AD compared with lithium carbonate. These results confirm and build upon recent studies indicating that low lithium doses can be effective in AD treatment (14, 27). Moreover, the salicylate group in LISPRO may underlie many of its anti-inflammatory effects which were not seen with lithium carbonate.

The inventors wish to further examine whether oral administration of LISPRO could improve neurocognition in 3XTg-AD mice. These mice were developed from single-cell embryos from mice bearing the presenilin PS1M146V knock-in mutation with co-injection of two independent mutant human transgenes, Swedish mutant amyloid precursor protein (APPswe) and microtubule-associated protein tau (tauP301L) (36). The resulting triple-transgenic AD mice show progressive development of plaques and tangles. Extracellular Aβ plaques and NFTs were originally found in the neocortex and hippocampus accompanied by significantly impaired long- and short-term memory retention as assessed by contextual fear testing at six months of age (37-39). Recent studies indicate that the development of AD pathology in these mice is somewhat delayed from that shown in earlier reports, with Aβ plaques and tau pathology becoming readily detectable around 10 months of age ((37, 39-41)). The inventors will investigate if long-term 4 month treatment of these mice with LISPRO reduces cognitive impairment observed after aging (10 - 14 months of old). The inventors will investigate if LISPRO-elicited cognitive improvement is correlated with reductions in AD-like pathology (Aβ levels/p-amyloid deposits, NFT formation and neuroinflammation).

As shown in Figure 26, mouse brain tissue sections prepared from three 3XTg-AD mice at 10 months of age (n = 3) were immunohistochemistry stained with anti-Aβ antibody (4G8) (Figures 26A-1, 26A-2) or anti-phospho-tau (Thr231) antibody [p-tau (Thr231)] (Figures 26B-1, 26B-2, 26B-3). Three 3XTg-AD mice showed similar AD-like pathology, as was expected. Thus, these mice will be fed with LISPRO-containing chow, in comparison with L.12CO3, prophylactically between 6 and 10 months of age and
therapeutically between 10 and 14 months of age. Overall, this model should provide robust Aβ and tau/NFT pathology while also addressing their response to LISPRO prophylaxis and treatment.

Three or four month-old 3XTg-AD mice (Stock No. 034830) and their recommended controls (WT, B6129SF2/J (Stock No. 101045), a cross between B6 females and 129S males) will be purchased from Jackson laboratories through the MMRRC. The inventors will determine if LISPRO can protect 3XTg-AD mice from cognitive impairment (prophylactic effectiveness) or improve cognitive performance after the onset of such impairment (therapeutic effectiveness). Therefore, LISPRO oral administration will begin in the prophylactic group at 6 months of age, prior to visible histological Aβ deposit and NFTs formation, and continue until between 10 and 10.5 months of age. The effectiveness of three doses of LISPRO will be tested to determine the minimum effective dose: 1.75 (minimum), 3.5 (moderate) and 7 g/kg/chow (maximum), delivering lithium at 1.125, 2.25 and 4.5 mmol/kg/day, respectively, as detailed in Table 4. In order to reduce potential lithium toxicity in the kidney, a saline bottle will be provided in addition to water in all cages. Behavior of animals in these groups and in non-transgenic untreated wild-type mice will be evaluated after treatment, with a established behavioral battery which measures multiple cognitive domains, including open field, novel object recognition, radial arm water maze, and contextual and cued fear conditioning (42-46). For the therapeutic group, LISPRO treatment will begin at 10 months and continue through 14 months of age. During the final week of treatment, between 14 and 14.5 months of age, the animals in this group and in non-transgenic littersmtes will be evaluated with the same behavioral battery used for the prophylactic group.

Table 4.
The behavioral battery will include the Balance Beam Task, to evaluate vestibular and general motor function and account for any problems that may occur with the rest of the tests due to motor (and not behavioral/cognitive) impairment. The contextual and cued fear-conditioning tests have been well demonstrated to be valid correlates of β-amyloid deposition and AD-like memory deficits in various AD mouse models, including 3XTg-AD mice (37-39, 47-53). In parallel, the inventors will include the traditionally clinically used lithium (Li₂C₀₃) as control for LISPRO in both prophylactic and therapeutic paradigms as detailed in Table 4.

It is expected that LISPRO treatment will reverse or abolish long-term and short-term memory impairment as assessed by the behavioral battery at 10-10.5 months of age in the prophylactic group and 14-14.5 months of age in the therapeutic group. It is also expected that LISPRO-elicited cognitive improvement to correlate with reductions in AD-like pathology (Aβ levels/p-amyloid deposits NFT formation and neuroinflammation).

Specifically, minimum doses of LISPRO will inhibit APP γ-secretase proteolytic processing and modulate GSK3α/p signaling pathway in the transgenic mice, thereby improving cognitive performance. This would reflect LISPRO’s ability to provide improved lithium bioavailability in the brain (Figures 23 and 25; (20)), even at low nontoxic levels in the periphery. In addition, it is expected that LISPRO will be more effective than equimolar doses of Li₂C₀₃ on abolishing AD-like cognitive impairment in the 3XTg-AD mice.
Example 20—Determination of AD-like pathological changes in 3XTg-AD mice following oral LISPRO treatment

In preliminary studies using N2a, HeLa/tau and SH-SY5Y cell cultures, it was found that LISPRO inhibits abnormal Aβ generation (Figure 1A) and tau phosphorylation (Figure 3), while leaving Notch processing unaltered (Figure 1B). Likewise, LISPRO treatment reduces β-amyloid (Figure 14) and tau pathology in Tg2576 mice (Figure 16). It was found that LISPRO potentially mediated these therapeutic effects via multiple mechanisms, including promotion of anti-inflammatory/Th2 responses (Figure 16), neurogenesis (Figure 5), neural stem cell differentiation (Figures 17 and 18), microglial phagocytosis of Aβ (Figure 4) and microglial autophagy (Figure 19), while inhibiting microglial activation mediated by proinflammatory IFNγ and CD40 signaling (Figure 4) and neuronal GSK3β activity (Figures 2, 3, and 15). Taken together, the above data suggest that targeting multiple signaling pathways, including inhibition of γ-secretase APP cleavage, modulation of GSK3P activation, reduction of tau hyperphosphorylation, neural stem cell differentiation, rebalance of anti-/pro-inflammatory responses to Aβ exposure and microglial autophagy may mediate mechanisms underlying LISPRO-reduced AD-like pathology. The inventors intend to fully characterize and quantify LISPRO’s therapeutic potential in AD mice against multiple pathological targets, including β-amyloidosis, tau hyperphosphorylation/NFT formation and neuroinflammation, in the triple-transgenic model of AD (3XTg-AD mice) (36). Furthermore, the inventors will investigate if any cognitive improvement elicited by this treatment could be correlated with reductions in AD-like pathology.

The minimum and safe dosage of LISPRO for inhibiting Aβ/ NFT pathology and neuroinflammation in 3XTg-AD mice will be determined. The three doses tested in this Example will be the same as that used for Example 19, delivering lithium at 1.125 (minimum), 2.25 (moderate), and 4.5 mmol/kg/day (maximum). The inventors will orally treat 3XTg-AD mice prophylactically and therapeutically with LISPRO in chow, using the same number and ages of mice and treatment/dose sub-grouping as in Example 19 (Table 4). In parallel, the inventors will include the traditionally clinically used L.12CO3 as control for LISPRO in both prophylactic and therapeutic paradigms. At sacrifice, blood will be collected, the mice will be perfused with saline, and brains will be bisected sagittally. The left half of the brain will be immersion fixed in paraformaldehyde for
histological processing (54) and the right half will be dissected into various regions, including hippocampus and anterior and posterior cortex, and rapidly frozen for subsequent biochemical analyses (54, 55). For sub-dissection of the cortex, the inventors will bisect laterally at the hippocampal commissure to yield anterior and posterior portions. A concentrated macromolecular fraction will be used for ELISA (54, 55) and the remaining supernatants as well as blood samples will be further processed for AA Spectroscopy analysis of lithium in both brain tissues and plasma per our recent studies (20). This will provide insight as to LISPRO’s brain anatomical penetrance by region. The primary neuropathological analyses will be Aβ formation, which will be measured by both Aβ immunohistochemistry and Congo red staining, as well as biochemically by ELISA (Aβ_{40}, Aβ_{42}) and WB analysis for Aβ as well as sAPPα, β and CTF-α, β (54).

Dependent analytes are summarized in Table 5.

Table 5.

<table>
<thead>
<tr>
<th>Method</th>
<th>Marker</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunohistochemistry (left hemispheres) (Rezai-Zadeh et al., 2005; 2009; Zhu et al., 2011a,b)</td>
<td>Aβs</td>
<td>Diffuse and compact amyloid deposits</td>
</tr>
<tr>
<td></td>
<td>Congo red dye</td>
<td>Compact amyloid deposits</td>
</tr>
<tr>
<td></td>
<td>lba1, CD11b, CD45, MHC</td>
<td>Activated microglia</td>
</tr>
<tr>
<td></td>
<td>Alz50, MC-1, and Aβ39</td>
<td>Conformational tau epitopes</td>
</tr>
<tr>
<td></td>
<td>PHF-1 (phospho-396/404)</td>
<td>Phosphorylated tau epitopes</td>
</tr>
<tr>
<td>Western blot analysis (right hemispheres) (Rezai-Zadeh et al., 2005; 2008, 2009)</td>
<td>hAPP</td>
<td>Expression of the transgene</td>
</tr>
<tr>
<td></td>
<td>α, β-CTF, sAPPα, β</td>
<td>Relative α, β-secretase activity</td>
</tr>
<tr>
<td></td>
<td>human tau-specific antibody, E1</td>
<td>Insoluble and soluble tau</td>
</tr>
<tr>
<td></td>
<td>WKS45 (antibody that recognizes mouse and human tau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phospho-GSK3α/β</td>
<td>Relative activity of GSK component of γ-secretase complex</td>
</tr>
<tr>
<td></td>
<td>NFκB, MAPK, autophagy (lMPase)</td>
<td>Activity of this M1 promoting intracellular pro-inflammatory signaling protein complex</td>
</tr>
<tr>
<td></td>
<td>Peroxisome proliferator-activated receptor-γ (PPARγ)</td>
<td>Activity of this M2 promoting intracellular anti-inflammatory signaling protein complex</td>
</tr>
<tr>
<td>ELISA (Rezai-Zadeh et al., 2005; 2009; Zhu et al., 2011a,b)</td>
<td>Brain Aβ_{40} and Aβ_{42}</td>
<td>Oligomer Aβ and full length Aβ;</td>
</tr>
<tr>
<td></td>
<td>α, β, γ secretase</td>
<td>Relative α, β, γ secretase activity</td>
</tr>
<tr>
<td>AA Spectroscopy analysis (Smith et al., 2010; 2013)</td>
<td>Lithium</td>
<td>Total lithium levels and bioavailability in brain and plasma</td>
</tr>
</tbody>
</table>
The inventors will examine hAPP levels and processing into α/β-CTFs and sAPPα/β using WB analysis (54). Furthermore, the inventors will measure α-, β- and γ-secretase cleavage activity using fluorescence/ELISA kits (R&D; 54, 55). Given that LISPRO may inhibit γ-secretase cleavage of APP through modulation of GSK3α/p activation, and thereby modulate tau phosphorylation, the inventors will determine phospho-tau levels in brain homogenates of LISPRO-treated mice by WB with anti-phospho-tau antibodies (including PFIF1) (56). The inventors will measure conformational tau epitopes with Alz50, MC-1, and Aβ39 (56), since these conformational changes are critical to NFT formation caused by hyperphosphorylation. Further total soluble and insoluble tau will be measured with E1 and WKS45 antibodies as previously described via WB (57). Finally, the inventors will correlate these NFT-like structures with Aβ levels/deposition and microglia-associated inflammation (Ibal, CD1 lb and CD45 staining) (56, 58) in these mice. To monitor LISPRO bioavailability, tail blood will be drawn once per month over 4 months and analyzed via AA Spectroscopy analysis for levels of total lithium in plasma (20, 59). LISPRO bioavailability will be correlated with anti-amyloidogenic APP processing and phospho-tau. Many γ-secretase inhibitors described in the literature demonstrate an accumulation of APP stubs in the membrane, which may have long term effects in vivo. It will be possible to detect these α- and β-secretase-generated C-terminal APP stubs via characterization of their levels by WB in both the supernatant (non-membrane associated stubs) and cell extracts (membrane associated stubs) of the brain homogenates of the mice as performed previously laboratory (54, 55). As further mechanisms whereby LISPRO may mediate beneficial effects against AD pathology, the levels of microglial M1 and M2 inflammatory signaling mediators will be determined, including NF-kB, MAPK, and PPARγ. Since LISPRO may reduce AD pathology by inhibition of IMPase, thereby enhancing autophagy of neurotoxic substrates such as Aβ (60), these activities will be also be determined in the LISPRO-treated mice.

Recent studies indicate that LISPRO may also reduce AD pathology and cognitive impairment by enhancing neurogenesis (Figures 5, 17, and 18; 20, 61)). Therefore, the inventors will stain neurons with several neurogenesis markers within the neurogenic niches (dentate gyrus, suventricular zone, olfactory epithelium). BrdU will be injected for 6 consecutive days before sacrifice for determination of total proliferating cells.
Neuroprogenitor cells will be detected by Ki67 and GFAP, newborn neurons will be detected by doublecortin (DCX) and PSA-NCAM, and mature neurons will be detected by NeuN and calbindin. As LISPRO may act as a pan γ-secretase inhibitor (either directly or indirectly), modulating T cell immunity and eliciting gut and other pathologies as side effects, the following further measures will be made. γ-secretase inhibitors have been shown to alter notch processing in such a way that may cause intestinal goblet cell metaplasia and induction of genes which regulate gut secretary lineage differentiation. As such, the inventors will use the methods of Milano (62) to analyze the acidic, basic, sulphomucin and sialomucin contents of goblet cells, as well as their Hematoxylin Eosin staining characteristics. In addition, the degree to which damage is occurring in gastrointestinal tissues will be evaluated by determining wet weight and histology of the stomach, large and small intestines and intestinal goblet cells (62).

Given that lithium may have some potential toxicity in the kidney, liver, spleen, lung, and heart, these organs will also be subjected to careful microscopic, biochemical and functional examination for pathological changes. The liver will be analyzed histologically for portal cirrhosis, fat vacuoles and areas of necrosis and biochemically for alanine aminotransferase (ALT/AST) activity, using a diagnostic kit (New Zealand). Renal pathology and the presence of diabetes insipidus will be determined by analysis of glomerular and tubular fibrosis, GFR (63) as well as COX2 expression by immunoblotting and immunohistochemistry (21). Cardiovascular pathology will be assessed by measuring myocardial levels of antioxidant enzymes (64), as well as monitoring heart rate, blood pressure, plasma sodium, potassium and calcium levels, as well as vascular and myocardial levels of ATP (65). The presence of hypothyroidism will be determined by measuring plasma levels of T3, T4 and TSH (66). Affective disorders will be determined by the open field test, particularly watching for signs of hypokinesia and reduced exploratory behavior or rearing (67, 68). Motor deficits will be determined by the vertical pole test (69).

It is expected that LISPRO will reduce Aβ deposits and tau phosphorylation as well as total soluble and insoluble tau with minimum doses to a much higher degree than L 12CO3. This would reflect LISPRO's ability to provide improved lithium bioavailability in the brain compared with L 12CO3, even at low nontoxic levels in the periphery (Figures 23-25). Data generated from the measurement of APP processing, as examined by the
analysis of AD-like tau pathology, sAPPa and β and α- and β-CTFs, will be informative as to the actions of LISPRO for modulating GSK3α/p signaling and reducing γ-secretase cleavage of APP. In addition, the results will provide information regarding the mechanism for LISPRO’s beneficial effects, including reduction of neuroinflammation, enhancement of microglial autophagy and enhancement of neural stem cell differentiation. This will provide further information regarding LISPRO’s therapeutic effect while utilizing minimum doses to reduce AD-like pathology. Such data will be suggestive of more safe and effective lithium treatments which would be applied to the human condition.

Example 2.1—Characterization of glial activation state *ex vivo* in young and aged 3XTg-AD mice following oral LISPRO treatment

Recent studies have identified many important bioactivities of lithium that may contribute to its therapeutic efficacy in its current FDA-approved indications and beyond. For example, lithium exerts neuroprotective effects, in part, by increasing BDNF. Chronic lithium treatment increases expression of BDNF in rats (5) and humans (6) which can lead to reversal of learning and memory deficits through promotion of neurogenesis and long-term potentiation (LTP). In addition, lithium attenuates production of inflammatory cytokines like IL-6 and NO in activated microglia (7). As a follow up to the observation that LISPRO reduces tau and β-amyloid pathology in Tg2576 mice (Figures 14 and 15), the inventors further discovered that LISPRO promoted anti-inflammatory/Th2 responses and decreased levels of pro-inflammatory CD40L in the CNS of these mice (Figure 16). In addition, using microglial cultures, the inventors found that LISPRO reduces pro-inflammatory microglial activation-induced by IFNγ and CD40 signaling and promoted microglial Aβ phagocytosis (Figure 4). This is important as primary microglial cells exposed to LPS or IFNγ are characterized by a pronounced pro-inflammatory phenotype, which is comparable to the classical M1-like state in macrophages (70) and believed to promote AD-like pathology (71). Moreover, the phagocytic capacity of these cells is dramatically decreased. On the other hand, microglia treated with IL-10 or IL-4 become anti-inflammatory, called M2-deactivated or M2-alternatively activated microglia. Microglia exposed to oligomeric, fibrillary or full length Aβ present an M1-like phenotype (70), along with a diminished
phagocytic capacity and enhanced expression of a pro-inflammatory gene profile. These events will not only decrease the microglial clearance of $\text{A}\beta$ but also increase neuronal production of this peptide (28), leading to a vicious cycle which seems to fuel AD progression. Interestingly, a most recent study indicates a role for γ-secretase activity in microglial functions critical for the phagocytosis/clearance of β-amyloid deposits (72). Thus, the results suggest that LISPRO not only reduces $\text{A}\beta$ by inhibiting γ-APP cleavage but may also support microglial function in the phagocytosis and clearance of $\text{A}\beta$. Thus, an objective will be to determine the relative importance of LISPRO-mediated activation of microglial $\text{A}\beta$ phagocytosis and anti-inflammatory profile in correlation with its ability to promote non-amyloidogenic APP processing.

Given that the current data show that LISPRO induces the M2 phenotype through down-regulation of microglial CD40 signaling (Figures 4 and 16; (73, 74), the inventors will test the hypothesis that LISPRO treatment preserves this M2 phenotype in primary microglia from young and aged 3XTg-AD mice after the development of AD amyloid pathology and cognitive impairment. The inventors will test the hypothesis that LISPRO preserves the M2 phenotype ex vivo in primary microglia isolated from young or aged 3XTg-AD mice (10 and 14 months, respectively) treated with LISPRO as described for Example 19, in comparison with those fed control diets. The inventors will fully examine microglial pro-inflammatory MAPK, NF-kB and CD40 signaling pathways, cytokine secretion, $\text{A}\beta$ phagocytosis capacity, markers of M1 or M2 phenotype and microglial autophagy (IMPase) ex vivo via immunohistochemistry, WB, RT-PCR and Flow analysis in primary microglia isolated from these mice. These methods and assays have been well established as previously published (56, 73, 75). The culturing of primary microglial cells from young and aged mice has been routinely conducted (28, 29, 73).

Since normal aging of the human brain is characterized by an increase in newly synthesized oligomers of $\text{A}\beta$ and expression of pro-inflammatory cytokines (76, 77), along with a decrease of anti-inflammatory cytokines, such as IL-10 (78) and IL-4 (79, 80), it is to be expected that microglial cells isolated from older 3XTg-AD mice will be more easily skewed towards an M1-like phenotype than those isolated from young mice. However, microglia isolated from older 3XTg-AD mice treated with LISPRO at minimum dose will strongly preserve an M2 phenotype, in comparison with those treated with Li_2CO_3 or control diet, as shown with young mice in our preliminary results (Figures
4 and 16). A preserved M2 phenotype in microglia derived from LISPRO-fed 3XTg-AD mice will be evidenced by M2 phenotype markers (PPARy activation) (81), increased microglial phagocytosis, decreased pro-inflammatory intracellular signaling (MAPK, NF-kB), and resultant decreased M1 cytokine profile. It is hypothesized that LISPRO will decrease Thl/Th2 cytokine and M1/M2 microglial ratios in primary microglial cultures, strongly enhance M2 phenotype polarization in the presence of IL-4 and dampen or abolish the M1 response to TNFa. IL-4 should decrease Notch1 expression in microglial cells since an up-regulation of Notch1 is associated with pro-inflammatory events (82). These data should be important to begin to understand how LISPRO mechanistically works at the cellular level to reduce AD pathology and cognitive impairment.

In light of one recent study (72), it is possible that LISPRO’s γ-secretase inhibitor (GSI) inhibitory activity may impair microglial phagocytosis of Aβ. However, the current results showed that LISPRO promotes microglial phagocytosis of Aβ (Figure 4). If the in vivo studies show that LISPRO reduces behavioral impairment and AD-like pathology in these mice, the conclusion could be drawn that any GSI mediated reduction in phagocytic ability by LISPRO is over-ridden by their GSI effect in reducing neuronal APP amyloidogenic processing. Extra aliquots of primary microglial cell samples will be stocked so that there will be enough to cover all the analysis, in the event that any of these cells are lost by attrition. Taken together, these results should clearly emphasize that microglial activity is not merely a reflection of stimulus strength or persistence. Rather, it is determined largely by the nature and context of the stimuli and the intracellular signal transduction pathways that they activate.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims. In addition, any elements or limitations of any invention or embodiment thereof disclosed herein can be combined with any and/or all other elements or limitations (individually or in any combination) or any other invention or embodiment thereof disclosed herein, and all such combinations are contemplated with the scope of the invention without limitation thereto.
REFERENCES for Examples 1-21

49. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's

58

We claim:

1. A method for treating a neuropsychiatry disorder, comprising administering an effective amount of a co-crystal of lithium to a subject in need thereof, wherein the co-crystal comprises lithium, or a pharmaceutically acceptable salt thereof, and an amino acid.

2. The method of claim 1, wherein the co-crystal comprises a pharmaceutically acceptable salt of lithium, and an amino acid.

3. The method of claim 1, wherein the pharmaceutically acceptable salt is lithium salicylate or lithium hydroxide.

4. The method of claim 1, wherein the amino acid is L-proline.

5. The method of claim 1, wherein the co-crystal comprises lithium salicylate and L-proline.

6. The method of claim 1, wherein the neuropsychiatric disorder is a neurodegenerative disorder.

7. The method of claim 6, wherein the neurodegenerative disorder is Alzheimer's disease, Parkinson's disease, or amyotrophic laterals sclerosis (ALS).

8. The method of claim 1, wherein the neuropsychiatric disorder is a mood disorder, schizoaffective disorder, tic disorder, or suicidality.

9. The method of claim 1, further comprising administering an additional agent for treating the neuropsychiatric disorder before, during, or after the administration of the lithium co-crystal.
10. The method of claim 9, wherein the neuropsychiatric disorder is Alzheimer's disease or other dementia, and the additional agent is a cholinesterase inhibitor, N-methyl D-aspartate antagonist, vitamin E, or a combination of two or more of the foregoing.

11. The method of claim 10, wherein the additional agent is donepezil, rivastigmine, galantamine, memantine, or a combination of two or more of the foregoing.

12. The method of claim 9, wherein the additional agent is an anti-depressant, anti-convulsant, or mood stabilizer.

13. The method of claim 9, wherein the additional agent is a selective serotonin reuptake inhibitor (SSRI), serotonin-norepinephrine reuptake inhibitor (SNRI), serotonin antagonist and reuptake inhibitor (SARI), monamine oxidase inhibitor (MAOI), carboxamide, fructose derivative, triazine, or a combination of two or more of the foregoing.

14. The method of claim 1, wherein the lithium co-crystal is administered to the subject in a composition comprising the lithium co-crystal and a pharmaceutically acceptable carrier.

15. The method of claim 1, wherein the subject has the neuropsychiatric disorder at the time of said administering, and wherein said method further comprises identifying the subject as having the neuropsychiatric disorder prior to said administering.

16. A pharmaceutical composition comprising a co-crystal of lithium comprising lithium, or a pharmaceutically acceptable salt thereof, and an amino acid; and an additional agent effective in treating a neuropsychiatric disorder.

17. The composition of claim 16, wherein the additional agent is a cholinesterase inhibitor, N-methyl D-aspartate antagonist, vitamin E, or a combination of two or more of the foregoing.
18. The composition of claim 16, wherein the additional agent is donepezil, rivastigmine, galantamine, memantine, or a combination of two or more of the foregoing.

19. The composition of claim 16, wherein the additional agent is an anti-depressant, anti-convulsant, or mood stabilizer.

20. The composition of claim 16, wherein the additional agent is a selective serotonin reuptake inhibitor (SSRI), serotonin-noradrenaline reuptake inhibitor (SNRI), serotonin antagonist and reuptake inhibitor (SARI), monoamine oxidase inhibitor (MAOI), carboxamide, fructose derivative, triazine, or a combination of two or more of the foregoing.
FIG. 1A

FIG. 1B
FIG. 5A

Immunofluorescence staining (anti-β-tubulin III and anti-phospho-synapsin I antibodies)

FIG. 5B

FIG. 5C
FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F
Direct Targets (competitive displacement of Mg\(^{2+}\) from the enzymes catalytic site)
IMPase, IPPase, GSK3α/β

Molecular mechanisms
1. ERK, PI3K/Akt, PLC
2. CREB/BDNF
3. IL-1β, TNFα
4. Tau phosphorylation & APP processing
5. REST (neural repressor element 1-silencing transcription factor)
6. Promotion of Neurogenesis

Anti-AD-related Pathology, Behavior & Neuroprotection

LISPRO (L)

Physiological consequences
- Regulated autophagy
- BDNF expression ↑
- pro-inflammatory responses ↓
- p-tau ↓
- Aβ ↓

Cited from O’Donnell and Gould (2007) with minor modifications

FIG. 12

Lithium salicylate (salt) + L-proline (amino acid coformer) → Ionic cocrysal (LISPRO)

FIG. 13
FIG. 15A

FIG. 15B

FIG. 15C
FIG. 17A

FIG. 17B-1

FIG. 17B-2

FIG. 17B-3
FIG. 22A

FIG. 22B-1

FIG. 22B-2
FIG. 24A-1
1.125 mmol/kg/day, oral

Serum Li⁺ levels (mmol/L)

- LISPRO
- Li₂CO₃
- Li Salicylate

C57/BL/ mice on Lithium (n = 6)

FIG. 24B-1
2.25 mmol/kg/day, oral

Serum Li⁺ levels (mmol/L)

- LISPRO
- Li₂CO₃
- Li Salicylate

C57/BL/ mice on Lithium (n = 6)

FIG. 24A-2

Brain Li⁺ levels (mmol/L)

- LISPRO
- Li₂CO₃
- Li Salicylate

FIG. 24B-2

Brain Li⁺ levels (mmol/L)

- LISPRO
- Li₂CO₃
- Li Salicylate

C57/BL/ mice on Lithium (n = 6)
FIG. 25A

FIG. 25B
INTERNATIONAL SEARCH REPORT

International application No. PCT/US2016/033673

A. CLASSIFICATION OF SUBJECT MATTER
A61K 33/14(2006.01)i, A61K 31/198(2006.01)i, A61K 31/401(2006.01)i, A61K 45/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61K 33/14; C07F 1/02; A61K 31/191; A61K 47/22; A61K 33/00; A61K 31/28; A61K 33/24; A61K 31/198; A61K 31/401; A61K 45/06

Documentary searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords - crystal, lithium, amino acid, neuropsychiatric disorder

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2014-172650 A1 (UNIVERSITY OF SOUTH FLORIDA) 23 October 2014 See claims 16-17, 23-24; and paragraph [0012].</td>
<td>16-20</td>
</tr>
<tr>
<td>X</td>
<td>US 2014-0242193 A1 (SAGGOTTO, MICHAEL JOHN et al.) 28 August 2014 See claims 1-2, 8; and paragraph [0024].</td>
<td>16-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2012-007387 A1 (NEDESIS PHARMA) 19 January 2012 See the whole document.</td>
<td>16-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2013-0156869 A1 (ANDRADE NUNES, MARIELEA et al.) 20 June 2013 See the whole document.</td>
<td>16-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2014-106050 A1 (FRIEDLICH, AVI) 03 July 2014 See the whole document.</td>
<td>16-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"T" document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
'&' document member of the same patent family

Date of the actual completion of the international search 25 October 2016 (25.10.2016)
Date of mailing of the international search report 25 October 2016 (25.10.2016)

Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea Facsimile No. +82-42-481-8578

Authorized officer KIM, Seung Beom
Telephone No. +82-42-481-3371

Form PCT/ISA/210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: 1-15
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claims 1-15 pertain to methods for treatment of the human body by therapy and thus relate to a subject matter which this International Searching Authority is not required to search under PCT Article 17(2)(a)(i) and Rule 39.1(iv).

2. [] Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2016-0052941 Al</td>
<td>25/02/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2688575 A2</td>
<td>29/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2688575 A4</td>
<td>03/09/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2688575 Bl</td>
<td>23/03/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2012-129568 A2</td>
<td>27/09/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¥0 2012-129568 A3</td>
<td>22/11/2012</td>
</tr>
<tr>
<td>WO 2012-007387 Al</td>
<td>19/01/2012</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102858349 A</td>
<td>02/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2556833 Al</td>
<td>13/02/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2556833 A4</td>
<td>04/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¥0 2011-123916 Al</td>
<td>13/10/2011</td>
</tr>
<tr>
<td>WO 2014-106050 Al</td>
<td>03/07/2014</td>
<td>US 2015-0342985 Al</td>
<td>03/12/2015</td>
</tr>
</tbody>
</table>