Title: ROLLING BEARING COMPRISING A SEALING GASKET AND AN ANNULAR SHIELD

Abstract: This rolling bearing comprises an outer ring (4), an inner ring (6), rolling bodies (10) arranged between the outer ring and the inner ring, one a sealing gasket (20) mounted on a first ring (4) and extending towards the second ring (6), to the extent that a sealing edge (26) of said sealing gasket is in sliding contact with the second ring. An annular shield (50) is mounted on the second ring (62) and extends radially towards the first ring (4). This shield (50) is provided with at least one annular lip (58) in sliding contact with a lateral face (28) of the sealing gasket (20).
ROLLING BEARING COMPRISING A SEALING GASKET AND AN ANNULAR SHIELD

TECHNICAL FIELD OF THE INVENTION

This invention relates to a rolling bearing comprising, amongst others, a sealing gasket mounted on the outer ring or on the inner ring of the bearing and extending towards the inner ring or the outer ring with which it is in sliding contact.

BACKGROUND OF THE INVENTION

A rolling bearing comprises an inner ring, an outer ring and several rolling bodies installed between these two rings. These rolling bodies can be balls, rollers or needles. In the sense of the present invention, a rolling bearing can be, for instance, a ball bearing, a roller bearing or a needle bearing.

EP-A-1 316 736 discloses a rolling bearing comprising a sealing gasket extending between an inner ring and an outer ring of the bearing. In this bearing, an annular shield is used, on each side of the rolling bearing, to protect a contact zone between the sealing gasket and the inner ring. Such a shield avoids that stones or water impact the sealing gasket in this contact zone. However, dust or water can still penetrate in the space defined between the shield and the gasket, which might induce pollution of the contact zone.

SUMMARY OF THE INVENTION

This invention aims at improving the known devices in order to improve their tightness, while a standard sealing gasket can be used.

To this end, the invention concerns a rolling bearing comprising an outer ring, an inner ring, rolling bodies arranged between the outer ring and the inner ring, at least one sealing gasket mounted on a first ring between the outer ring and the inner ring and extending towards the second ring, to the extent that a sealing edge of the sealing gasket is in sliding contact with the second ring, and at least one annular shield mounted on the second ring and extending radially towards the first ring. According to the invention, the shield is provided with at least one annular lip in sliding contact with a lateral face of the sealing gasket.

Thanks to the invention, pollution, such as liquids or particles, is prevented from entering the space between the shield and the sealing gasket, next to the contact zone between the sealing edge of the sealing gasket and the second ring.

In the present description, the words "axial", "radial", "axially", "radially", "centrifugal", "centripetal" and similar words relate to the axis of rotation of the one ring of the rolling
bearing with respect to the other ring. A direction is "axial" when it is parallel to this axis and "radial" when it is perpendicular and secant to this axis. A surface is "axial" when it is perpendicular to this axis and "radial" when it surrounds this axis and when a direction perpendicular to this surface is radial.

According to further aspects of the invention, which are advantageous but not compulsory, the rolling bearing of the invention might incorporate one or several of the following features:

- The first ring is the outer ring and the second ring is the inner ring. Alternatively, the first ring is the inner ring and the second ring is the outer ring.

- The shield can be metallic or made in a synthetic material, such as a polymer or an elastomer.

- The annular lip is integral with a main body of the shield. Alternatively, the annular lip is fastened to a lateral face of a main body of the shield, e.g. by gluing, welding, vulcanization or clipping. According to a third approach, the annular lip can be over-molded onto a main body of the shield. In this case, the main body is advantageously provided with several through holes and the annular lip is over-molded in these through holes.

- The sealing gasket has an armature and a flexible fitting forming the sealing edge and this fitting has a window giving access to a zone of this armature, which receives the annular lip in sliding contact.

- The sealing gasket is provided with an annular lip in sliding contact with the shield.

- The shield is provided with two annular lips in sliding contact with the sealing gasket. In such a case, these annular lips can be parallel, or diverge when going away from a main body of the shield, or converge.

- The annular lip has a frustoconical shape.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood on the basis of the following description which is given in correspondence with the annexed figures and as an illustrative example, without restricting the object of the invention. In the annexed figures:

- figure 1 is a sectional view of a rolling bearing according to the invention,
- figure 2 is an enlarged view of detail II on figure 1,
- figures 3 to 10 are detailed views similar to figure 2 for some other embodiments of the invention, and
- figure 11 is a schematic view showing how one shield can be used in different configurations.
DETAILED DESCRIPTION OF SOME EMBODIMENTS

Figure 1 depicts a ball bearing 2 comprising an outer ring 4 and an inner ring 6 defining between them a chamber 8 where a single set of balls 10 is installed and held in position by a cage 12. Outer ring 4 is fast in rotation and inner ring 6 rotates with respect to outer ring 4, around a central axis X_2 of ball bearing 2.

Two sealing gaskets 20 and 30 are mounted on outer ring 4 and extend towards inner ring 6. More precisely, outer ring 4 is provided with two grooves 42 and 44 where a part of sealing gaskets 20 and 30 is wedged.

Sealing gasket 20 is made of a metallic armature 22 and an elastomeric fitting 24 which surrounds armature 22 and forms a sealing edge 26 which is in sliding contact with the outer radial surface 62 of inner ring 6.

Sealing gasket 30 is identical to sealing gasket 20 and also includes an armature 32 and a fitting 34 defining a sealing edge 36.

Two annular shields 50 and 70 are mounted on inner ring 6 and adapted to protect sealing gaskets 20 and 30 from shocks, e.g. from stones arriving from the outside, and from humidity, in particular water. Shields 50 and 70 more particularly protect sealing edges 26 and 36 and surface 62, that is the sliding contact zones between sealing gaskets 20 and 30 and inner ring 6.

Shields 50 and 70 are identical.

Shield 50 has an inner radial bended portion 52 adapted to be blocked within an inner peripheral groove 64 of inner ring 6 in order to hold shield 50 with respect to inner ring 6. Shield 50 also has an outer radial portion 54 which is outwardly concave and inwardly convex, when considered with respect to chamber 8.

Between portions 52 and 54, shield 50 is flat and forms a main body 56 which is integral with portions 52 and 54.

The shape of outer radial portion 54 defines with an external lateral face 28 of sealing gasket 20 an entry zone Z_1 to the annular volume defined between items 20 and 50. Face 28 is an axial face of gasket 20. The arcuate shape of outer radial portion 54 implies that the minimum axial width W_1 of zone Z_1 is small, as compared to the other dimensions of rolling bearing 2. This small width W_1 of zone Z_1 prevents most contaminants from entering the annular space between items 50 and 70 and from reaching the contact zone Z_2 between edge 26 and surface 62. The arcuate shape of outer portion 54 also allows shield 50 to eject contaminants by means of a centrifugal or "ventilator" effect due to its rotation around axis X_2.
Shield 50 is provided with an annular lip 58 which is frustoconical and is in sliding contact with external lateral face 28 of sealing gasket 20. Annular lip 58 prevents contaminants that could penetrate between items 20 and 50 via entry zone \(Z_1 \) to reach the contact zone \(Z_2 \) between sealing edge 26 and surface 62.

Thus, an auxiliary sealing function is obtained between sealing gasket 20 and shield 50 without modifications to sealing gasket 20. This gasket can thus be standard product, which can be manufactured in large quantities and have a low cost.

Similarly, shield 70 is provided with an annular sealing lip 78 which is in sliding contact with the external lateral axial face 38 of sealing gasket 20.

Shields 50 and 70 are metallic. Alternatively, shields 50 and 70 can be made in a synthetic material, for instance plastics, such as a polymer, e.g. PA 4.6 or PA 6.6 which may be or may not be reinforced with glass fibers or PEEK. One can also use an elastomer to build the shields. This applies to all embodiments.

Annular lips 58 and 78 are integral with the main bodies 56 and 76 of the shields 50 and 70.

In the second to ninth embodiments of the invention represented on figures 3 to 10, the elements similar to the ones of the first embodiment have the same references. Hereafter, one describes mainly the differences between the second to ninth embodiments and the first embodiment. Unless otherwise specified, the second to ninth embodiments work as the first embodiment.

In the second embodiment, shield 50 is identical to the first embodiment and the fitting 24 of the sealing gasket 20 defines a window 25 which allows direct contact between the free edge 582 of annular lip 58 and armature 22. This metal/metal contact avoids damages to fitting 24.

In the third embodiment of the invention, shield 50 is identical to the one of the first embodiment and fitting 24 of sealing gasket 20 is provided with a window 25, as in the second embodiment. Fitting 24 also forms an annular lip 27 which is in sliding contact against the internal lateral axial face 57 of shield 50, so that a double sealing contact is obtained, respectively between annular lip 58 and armature 22 and between annular lip 27 and main body 56 of shield 50. This embodiment requires sealing gasket 20 to be specifically designed for this function, which is not the case for most of the other embodiments.

In the embodiment of figure 5, annular lip 58 is obtained by overmolding an elastomeric annular lip 58 over the main body 56 of the shield 50. In this case, sealing gasket 20 is identical to the one of the first embodiment. Actually, through holes 562 are regularly made through main body 56, around the central axis of shield 50, and they serve
as anchoring means for annual lip 58. This construction allows the contact between shield 50 and sealing gasket 20 to be made between two elastomeric parts, namely annular lip 58 and fitting 24.

In the embodiment of figure 6, shield 50 is provided with two sealing lips 58, 58' which are parallel and come into sliding contact with the same lateral axial face 28 of sealing gasket 20, this lateral face being constituted by the elastomeric fitting 24. These two annular lips 58 and 58' are made by overmolding some elastomer into through holes 562, 562' of the main body 56 of shield 50, as in the embodiment of figure 5.

In the embodiment of Figure 7, two lips 58 and 58' made of plastic material are glued onto the main body 56 of shield 50 which is also made of plastic. Lips 58 and 58' come into sliding contact with the lateral axial face 28 of sealing gasket 20. Alternatively, annual lips 58 and 58' could be vulcanized or welded onto body 56. Alternatively, these two lips can also be integral with the main body, as the single lip 58 of the first embodiment.

In the first six embodiments of the invention, the annular lip or lips 58 and 58' born by the shield 50 extend towards ring 4 when going away from the internal face 57 of shield 50.

In the embodiment of Figure 8, the two annular lips 58 and 58', which are integral with the main body 56 of the shield 50, extend toward inner ring 6 when going away from internal lateral axial face 57 of main body 56.

In the embodiments of figures 6, 7 and 8, sealing lips 58 and 58' are parallel.

In the embodiment of figure 9, the annular lips 58 and 58' diverge when going away from the internal lateral axial face 57 of shield 50. More particularly, annular lip 58 which is closer to inner ring 6 is oriented towards this ring, whereas annular lip 58' which is closer to outer ring 4 is oriented towards this ring.

In the embodiment of figure 10, annular lips 58 and 58' converge when going away from the internal face 57 of shield 50. In other words, annular lip 58 which is closer to inner ring 6 is oriented towards outer ring 4, whereas annular lip 58' which is closer to outer ring 4 is oriented towards inner ring 6.

As shown on figure 11, the same shield 50 can be mounted on three inner rings 6, 6' and 6" of rolling bearings having different respective radial thicknesses, so that the lip 58 of this shield can interact with sealing gaskets 20, 20' and 20" mounted on outer rings 4, 4' and 4". The sealing gaskets 20, 20' and 20" shown on figure 11 have different sizes and the sealing lip 58 of shield 50 can cooperate with these different gaskets, at different locations on the lateral faces 28, 28' and 28" of the gaskets. The respective configurations of figure 11 are shown with the shield of figure 5. They can be obtained with the shields of the other embodiments.
According to alternative embodiments of the invention, sealing gasket 20 and 30 can be mounted on inner ring 6 of roll bearing 2 and in sliding contact, by their edges 26 or 36 with outer ring 4. In such a case, the shields 50 and 70 are mounted on the outer ring 4. According to the invention, they are provided with annular lips which are in sliding contact against the lateral external axial faces 28 and 38 of the sealing gasket.

In the embodiments of figures 2 to 10, the shield has an arcuate outer radial portion similar to position 54 of the first embodiment.

The technical features of the embodiments considering above can be combined.
CLAIMS

1. A rolling bearing (2) comprising:
 - an outer ring (4),
 - an inner ring (6),
 - rolling bodies (10) arranged between the outer ring and the inner ring,
 - at least one sealing gasket (20, 30) mounted on a first ring (4) between said outer ring and said inner ring and extending towards the second ring (6) between said outer ring and said inner ring, to the extent that a sealing edge (26, 36) of said sealing gasket is in sliding contact with the second ring,
 - at least one annular shield (50, 70) mounted on said second ring and extending radially towards said first ring

 wherein

 said shield (50, 70) is provided with at least one annular lip (58, 58', 78) in sliding contact with a lateral face (28, 38) of said sealing gasket (20, 30).

2. Rolling bearing according to claim 1, wherein said first ring is said outer ring (4) and said second ring is said inner ring (6).

3. Rolling bearing according to claim 1, wherein said first ring is said inner ring (6) and said second ring is said outer ring (4).

4. Rolling bearing according to one of the previous claims, wherein said shield (50, 70) is metallic.

5. Rolling bearing according to one of claims 1 to 3, wherein said shield (50, 70) is made in a synthetic material, such as a polymer or an elastomer.

6. Rolling bearing according to one of the previous claims, wherein said annular lip (58, 58', 78) is integral with a main body (56, 76) of said shield (50, 70).

7. Rolling bearing according to one of claims 1 to 5, wherein said annular lip (58, 58', 78) is fastened to a lateral face (57) of a main body (56, 76) of said shield, in particular by gluing, welding, vulcanization or clipping.
8. Rolling bearing according to one of claims 1 to 5, wherein said annular lip (58, 58', 78) is over-molded onto a main body (56, 76) of said shield (50, 70).

9. Rolling bearing according to claim 8 wherein said main body (56, 76) is provided with several through holes (562, 562') and said annular lip (58, 58', 78) is over-molded in these through holes.

10. Rolling bearing according to one of the previous claims whereas said sealing gasket (20, 30) has an armature (22 ; 32) and a flexible fitting (24, 34) forming said sealing edge (26, 36) and wherein said fitting has a window (25) giving access to a zone of said armature which receives said annular lip (58, 58', 78) in sliding contact.

11. Rolling bearing according to one of the previous claims wherein said sealing gasket (20, 30) is provided with an annular lip (27) in sliding contact with said shield (50, 70).

12. Rolling bearing according to one of the previous claims wherein said shield (50, 70) is provided with two annular lips (58, 58') in sliding contact with said sealing gasket (20, 30).

13. Rolling bearing according to claim 12, wherein said annular lips (58, 58') are parallel.

14. Rolling bearing according to claim 12 wherein said annular lips (58, 58') diverge when going away from a main body (56) of said shield.

15. Rolling bearing according to claim 12 wherein said annular lips (58, 58') converge when going away from a main body (56) of said shield.

16. Rolling bearing according to one of the previous claims wherein said annular lip (58, 58', 78) has a frustoconical shape.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F16C33/78 F16J15/32
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F16C F16J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 042 272 A (NAGASE MOTOHIKO [JP]) 28 March 2000 (2000-03-28)</td>
<td>1-10,15, 16</td>
</tr>
<tr>
<td>Y</td>
<td>column 3, line 25 - column 6, line 47 column 1, line 39 - line 50 figures 1,2</td>
<td>11-14</td>
</tr>
<tr>
<td>X</td>
<td>US 4 792 242 A (COLANZI FRANCO [IT] ET AL) 20 December 1988 (1988-12-20) column 2, line 13 - line 53 figures 1,3</td>
<td>1,2,4,5, 12,13</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 388 258 A1 (ROULEMENTS SOC NOUVELLE [FR]) 19 September 1990 (1990-09-19) column 1, line 54 - column 2, line 28 figure 2</td>
<td>1,2,4,5, 8,10</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search: 3 August 2010

Date of mailing of the international search report: 10/08/2010

Name and mailing address of the ISA/EP: European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HA Hilversum Tel. (+31-70) 340-2040, Fax: (+31-70) 340-2016

Authorized officer: Schlossarek, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 419 642 A (MCLARTY DANIEL R [US]) 30 May 1995 (1995-05-30) column 3, line 27 - line 50 figure 3</td>
<td>1, 2, 4, 5, 7</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 695 290 A (MONDAK STEPHEN M [US] ET AL) 9 December 1997 (1997-12-09) figures 2,5</td>
<td>11, 14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6042272 A</td>
<td>28-03-2000</td>
<td>DE 69726478 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69726478 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0789152 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9196071 A</td>
</tr>
<tr>
<td>US 4792242 A</td>
<td>20-12-1988</td>
<td>DE 3863649 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0276877 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1206866 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1145108 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0746699 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9527150 A1</td>
</tr>
<tr>
<td>US 5695290 A</td>
<td>09-12-1997</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005021989 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007503562 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009285516 A1</td>
</tr>
</tbody>
</table>