

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

WIPO | PCT

(10) International Publication Number

WO 2013/134283 A1

**(43) International Publication Date
12 September 2013 (12.09.2013)**

(51) International Patent Classification:
B60G 3/20 (2006.01) *B60G 11/12* (2006.01)
B60G 7/02 (2006.01)

(21) International Application Number: PCT/US2013/029149

(22) International Filing Date: 5 March 2013 (05.03.2013)

(25) Filing Language: English

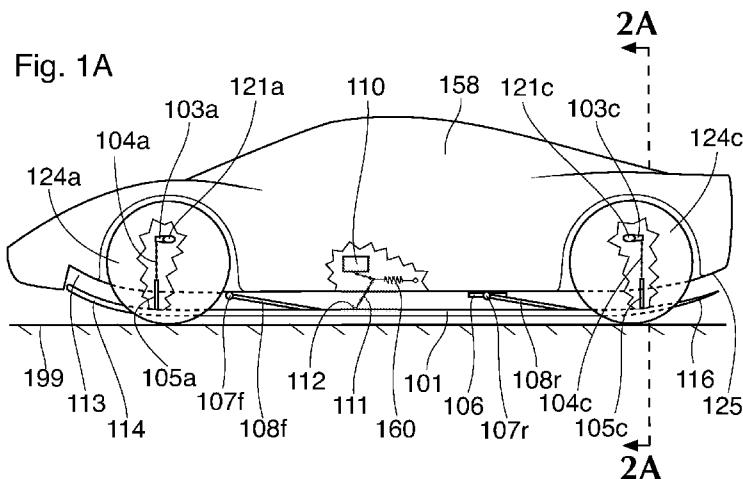
(26) Publication Language: English

13/413,064 6 March 2012 (06.03.2012) US

(71) **Applicant :** PRENTICE, Michael [US/US]; 13325 Stoneland Drive, Reno, Nevada 89511 (US).

(74) **Agents:** **ELMAN, Gerry J.** et al.; PO Box 209, Swarthmore, Pennsylvania 19081 (US).

(81) **Designated States** (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,


BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *with amended claims (Art. 19(1))*

(54) Title: A DYNAMICALLY-SUPPORTED MOVABLE DOWNFORCE-GENERATING UNDERBODY IN A MOTOR VEHICLE

(57) Abstract: A downforce-generating device for improving motor vehicle control is described. The device includes a movable underbody with a suspension-mounted support system such that the movable underbody transfers downforce load to, and moves with, the wheels of the vehicle. The suspension-mounted support system is adapted to functionally or physically disengage the movable underbody from the suspension of the vehicle upon lifting the movable underbody with a separate retraction system. A height-adjustment system may be provided to precisely control the ride height and orientation of the movable underbody relative to the roadway during vehicle travel.

A DYNAMICALLY-SUPPORTED MOVABLE DOWNFORCE-GENERATING UNDERBODY IN A MOTOR VEHICLE

BACKGROUND

Field of Invention

This application concerns motor vehicle aerodynamics, specifically a downforce-generating device that functions through ground effect.

SUMMARY

The present invention includes a movable underbody for a motor vehicle. The present invention further includes support systems that allow for two modes of operation of the movable underbody. In a first mode, the movable underbody is deployed and occupies a comparatively low position. In this deployed mode, the movable underbody is connected with the suspension of the vehicle in such manner that the movable underbody maintains a more constant distance and orientation above the road, street, ground, track, or other support surface (hereinafter "roadway") being traversed by the vehicle than maintained by the vehicle body. By "traversing" I mean starting, stopping, and/or traveling at a constant or varying speed along the roadway. In this mode, the movable underbody may, at various times, generate high levels of downforce through ground effect. In this mode, the movable underbody transfers downforce load directly to the substantially unsprung components of the suspension of the vehicle so that the suspension of the vehicle is not substantially compressed by the load generated by the movable underbody. In the second mode of operation, the movable underbody is retracted and occupies an elevated position. In this retracted mode, the movable underbody is functionally disengaged from the suspension and moves with, and transfers load to, the fully sprung body of the vehicle. In the retracted mode the movable underbody may be largely hidden from normal view.

In the present invention, the ability to switch between the deployed mode of operation and the retracted mode of operation is partly accomplished by use of two systems for supporting the movable underbody. An exemplary first support system

includes, at each corner of the vehicle, a linkage attached to the substantially unsprung portion of the suspension that extends to the corresponding corner area of the movable underbody. An exemplary second support system includes a linkage (or set of linkages) that extends from the movable underbody to the fully sprung body of the vehicle. Additionally, the horizontal position of the movable underbody is stabilized throughout its range of motion by linkages that extend from the movable underbody to the vehicle body.

Embodiments of the movable underbody thus allow an otherwise normal road car to have both a high downforce, low ground clearance mode, and a low downforce, high ground clearance mode. This duality of function enables such a road car to be driven both rapidly on a closed-course racetrack and with practicality on public roads. Embodiments of the movable underbody in accordance with the present invention may also be used on public roads for traction enhancement in situations where emergency braking or turning are required. Other objects, advantages, and novel features of the present invention are described in the following detailed description of the basic embodiment of the movable underbody of the invention, along with descriptions of several additional and alternative embodiments.

A first aspect of the invention is a motor vehicle, including a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels defines a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body, a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a retraction means for elevating and lowering said movable underbody relative to said body wherein elevation of said movable underbody to said body

functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.

A second aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further comprising a retraction control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said retraction means.

A third aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further comprising a retraction control means, comprising sensor means for sensing one or more of the following inputs: (a) current position of said movable underbody, (b) current movements of said suspension system, (c) a state of a vehicle electronic stability control system, and (d) a signal from a driver-operated retraction switch; and a retraction actuator adapted to activate said retraction means responsive to said sensor means.

A fourth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, wherein said suspension-mounted support means includes a tensile support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each said tensile support linkage being adapted to constrain in the downward direction, through tension thereon, movement of the movable underbody.

A fifth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, wherein said suspension-mounted support means includes a portion of each of said corner areas of said movable underbody, or a structure attached to each of said corner areas of said movable underbody, said portion or structure being adapted to sit upon a portion of said suspension system, or a structure attached to said

suspension system, such that movement of said movable underbody is constrained in the downward direction.

A sixth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further including a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

A seventh aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further including a movable underbody height-adjustment means for varying the height and/or orientation of said movable underbody when said movable underbody is supported by said suspension-mounted support means.

An eighth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further including at least one fan mounted to said movable underbody, said at least one fan being adapted to accelerate or evacuate air below said movable underbody.

A ninth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, wherein said movable underbody includes a lower surface having an orifice, said motor vehicle further including a vacuum generator adapted to generate negative pressure, and a vacuum hose connected to transmit negative pressure generated by said vacuum generator to said orifice, whereby negative pressure is transmitted to said lower surface of said movable underbody.

A tenth aspect of the invention is the motor vehicle in accordance with the ninth aspect of the invention, further including a skirt extending about and depending from a periphery of said movable underbody, said skirt being adapted to help maintain negative pressure below said movable underbody.

An eleventh aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, wherein said movable underbody includes an adjustable aerodynamic surface, said motor vehicle further including an adjustable aerodynamic surface actuator adapted to move said adjustable aerodynamic surface during travel of said motor vehicle.

A twelfth aspect of the invention is the motor vehicle in accordance with the first aspect of the invention, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to promote the generation of downforce.

A thirteenth aspect of the invention is a motor vehicle including a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising: a pair of front wheels, and a pair of rear wheels, wherein said set of wheels defines a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body, a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a movable underbody height-adjustment means for varying the height and/or orientation of said movable underbody with respect to the roadway during travel of said motor vehicle.

A fourteenth aspect of the invention is the motor vehicle in accordance with the thirteenth aspect of the invention, further comprising a movable underbody height-adjustment control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said movable underbody height-adjustment means.

A fifteenth aspect of the invention is the motor vehicle in accordance with the thirteenth aspect of the invention, further comprising one or more sensors, and a movable underbody height-adjustment control means which is responsive to said one or more sensors and/or a driver of said motor vehicle, and operatively connected to said movable underbody height-adjustment means.

A sixteenth aspect of the invention is a motor vehicle including a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels defines a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body, a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a stabilization linkage means adapted to limit the horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

A seventeenth aspect of the invention is the motor vehicle in accordance with the sixteenth aspect of the invention, wherein said suspension-mounted support means includes a support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each support linkage being adapted to at least constrain in the downward direction, through tension thereon, movement of the movable underbody.

An eighteenth aspect of the invention is a motor vehicle, including a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor

vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels defines a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, a movable underbody adapted to reduce aerodynamic drag, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body, a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a retraction means for elevating and lowering said movable underbody relative to said body wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.

A nineteenth aspect of the invention is the motor vehicle in accordance with the eighteenth aspect of the invention, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to reduce aerodynamic drag.

A twentieth aspect of the invention is the motor vehicle in accordance with the eighteenth aspect of the invention, further including at least one wheel fairing attached to said movable underbody.

A twenty-first aspect of the invention is a motor vehicle including a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels defines a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension

system being adapted to permit relative displacement between said wheels and said body, a movable underbody adapted to produce downforce, wherein said movable underbody is not fixed to said body, body-mounted movable underbody height-adjustment actuators adapted to support and move said movable underbody thereby allowing said movable underbody to maintain a more constant distance and orientation above a roadway being traversed than maintained by said body, ride-height sensors adapted to produce output pertaining to the ride height and orientation of said movable underbody, and a body-mounted movable underbody height-adjustment electronic control unit which is responsive to said output from said ride-height sensors and adapted to generate output to said body-mounted movable underbody height-adjustment actuators such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body.

A twenty-second aspect of the invention is the motor vehicle according to the twenty-first aspect of the invention further including a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

A twenty-third aspect of the invention is a method of using a vehicle having a body, a motor adapted to propel said motor vehicle along a roadway, and a movable underbody adapted to be moved, in response to an action of a driver of the vehicle, between a deployed condition and a retracted condition, and adapted to produce aerodynamic downforce when in a deployed condition, the method comprising causing said movable underbody to move from the retracted condition to the deployed condition while said motor vehicle is traversing a roadway, thereby producing aerodynamic downforce.

A twenty-fourth aspect of the invention is a method of using a vehicle having a body, a motor adapted to propel said motor vehicle along a roadway, and a movable underbody adapted to be moved, in response to an action of a driver of the vehicle,

between a deployed condition and a retracted condition, and adapted to produce aerodynamic downforce when in the deployed condition and adapted to provide greater ground clearance when in the retracted condition, the method comprising causing the movable underbody to move from the deployed condition to the retracted condition while said motor vehicle is traversing a roadway, thereby providing greater ground clearance.

A twenty-fifth aspect of the invention is a movable underbody adapted for use in conjunction with a motor vehicle, a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels define a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, said movable underbody being adapted to produce downforce, said movable underbody including a corresponding set of corner areas, and said movable underbody not being fixed to said body.

A twenty-sixth aspect of the invention is a movable underbody in accordance with the twenty-fifth aspect of the invention, wherein said motor vehicle further includes a suspension-mounted support means for dynamically supporting said movable underbody, such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a retraction means for elevating and lowering said movable underbody relative to said body wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.

A twenty-seventh aspect of the invention is a movable underbody in accordance with the twenty-fifth aspect of the invention, wherein said motor vehicle further includes a suspension-mounted support means for dynamically supporting said movable

underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a movable underbody height-adjustment means for varying the height and/or orientation of said movable underbody with respect to the roadway during travel of said motor vehicle.

A twenty-eighth aspect of the invention is a movable underbody in accordance with the twenty-fifth aspect of the invention, wherein said motor vehicle further includes a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

A twenty-ninth aspect of the invention is a movable underbody in accordance with the twenty-fifth aspect of the invention, wherein said motor vehicle further includes body-mounted movable underbody height-adjustment actuators adapted to support and move said movable underbody thereby allowing said movable underbody to maintain a more constant distance and orientation above a roadway being traversed than maintained by said body, ride-height sensors adapted to produce output pertaining to the ride height and orientation of said movable underbody, and a body-mounted movable underbody height-adjustment electronic control unit which is responsive to said output from said ride-height sensors and adapted to generate output to said body-mounted movable underbody height-adjustment actuators such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body.

A thirtieth aspect of the invention is a movable underbody adapted for use in conjunction with a motor vehicle, a body, a motor adapted to propel said motor vehicle, a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising a pair of front wheels and a pair of rear wheels, wherein said set of wheels

define a set of corner areas of said motor vehicle, a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body, said movable underbody being adapted to reduce aerodynamic drag, said movable underbody including a corresponding set of corner areas, and said movable underbody not being fixed to said body.

A thirty-first aspect of the invention is a movable underbody in accordance with the twenty-sixth aspect of the invention, wherein the motor vehicle further includes a suspension-mounted support means for dynamically supporting said movable underbody, such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and a retraction means for elevating and lowering said movable underbody relative to said body, wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.

DRAWINGS – Figures

In the following discussion of the figures, any particular label which does not appear in a particular figure of immediate discussion is nevertheless present elsewhere in the figures. Accordingly, the figures should be considered as a whole.

Figs. 1A-B are elevation views of the basic embodiment of the present invention with movable underbody **101** deployed (1A) and retracted (1B).

Figs. 2A-B are cross-sectional views of the basic embodiment of the present invention with movable underbody **101** deployed (2A) and retracted (2B). These views are in accordance with line 2A – 2A of Fig. 1A.

Fig. 3A is a perspective rear three-quarter view of a movable underbody of the basic embodiment of the present invention apart from the rest of the vehicle.

Fig. 3B is a perspective rear three-quarter view of a movable underbody of an additional embodiment of the present invention apart from the rest of the vehicle.

Figs. 4A-B are perspective front three-quarter views from below of a vehicle fitted with the basic embodiment of the present invention (4A) and with movable underbody **101** removed (4B).

Figs. 5A-D are underside views of the basic embodiment **108f**, **108r** (5A-B) and an additional embodiment **208f**, **208r** (5C-D) of the front and rear stabilization linkages.

Figs. 6A-C are cross-sectional (6A), exploded (6B), and perspective front three-quarter (6C) views of the basic embodiment of a ball joint **107f** that attaches to the front stabilization linkage **108f**.

Figs. 6D-F are cross-sectional (6D), exploded (6E), and perspective front three-quarter (6F) views of the basic embodiment of a ball joint **107r** and sliding mechanism **106** that attach to the rear stabilization linkage **108r**.

Figs. 7A-I are views of the basic embodiment **104c** (7A) and additional embodiments (7B-I), including **204c**, **304c**, **404c**, **504c**, **604c** of support linkages.

Fig. 8A is a perspective left side view and Fig. 8B is an exploded view of the left rear upper control arm **121c** with a basic upper support bracket **103c** showing means of attachment to a roller chain support linkage **104c**.

Fig. 8C is a perspective left side view and Fig. 8D an exploded view of the left rear upper control arm **121c** with a bellcrank upper support bracket **603c** and height-adjustment actuator **167c**.

Fig. 8E is a perspective left side view of the left rear upper control arm **121c** with an upper support bracket with bellcrank **603c**, strain gauge **171c**, and height-adjustment actuator **167c**.

Fig. 8F is an exploded perspective left side view of a portion of the left rear upper control arm **121c** with a basic upper support bracket **103c** and attachment system to a cable support linkage **204c**.

Fig. 8G is a perspective left side view of a portion of the left rear upper control arm **121c** with a basic upper support bracket **103c** attached to a Kevlar webbing support linkage **304c**.

Figs. 9A-B are perspective right side exploded views of an attachment means for the inlet **114** (9B), movable underbody diffuser **116** (9A), and lower support brackets **105b, 105d**.

Figs. 9C-H are elevation views of three different diffuser embodiments **216, 116**, and **316** (9C-E) and three different inlet embodiments **114, 214**, and **314** (9F-H) without inlet fence or diffuser fence shown.

Figs. 10A-D are cross-sectional views of a vehicle fitted with the basic embodiment of the present invention at different body positions, in accordance with cross-sectional line 2A – 2A of Fig. 1A.

Figs. 11A-B are elevation views of two vehicles fitted either with the basic embodiment of the present invention (11A) or an embodiment with a minimal inlet **214** (11B) showing the path of airflow under the vehicle body **158**.

Figs. 12A-I are elevation views of the front of three vehicles fitted without a movable underbody (12A-C), with a rigidly supported movable underbody **101** (12D-F), and fitted with a movable underbody **101** supported by tensile support linkages, exemplified by **104b** (12G-I).

Figs. 13A-C are elevation views (13A-B) and a cross-section view (13C) of a vehicle fitted with the basic embodiment of the present invention showing relative movement of the movable underbody **101**. The view of Fig. 13C is in accordance with cross-sectional line 2A – 2A of Fig. 1A.

Fig. 14A is an elevation view of a front telescoping stabilization linkage **308f** and movable underbody **101**.

Figs. 14B-E are transverse cross-sectional (14B) and elevation views (14C-E) of a rear telescoping stabilization linkage **308r**, sliding mechanism **106**, and movable underbody **101**.

Figs. 15A-C are elevation views (15A-B) and a perspective view (15C) of a front pantographic stabilization linkage **408f**.

Figs. 15D-E are elevation (15D) and front (15E) views of a rear pantographic stabilization linkage **408r** with sliding mechanism **106**.

Figs. 16A-B are elevation views of vehicles fitted with either front and rear telescoping stabilization linkages **308f – 308r** (16A) or front and rear pantographic stabilization linkages **408f – 408r** (16B).

Figs. 17A-C are perspective front three-quarter views from below (17A and C) and an exploded view (17B) of a front universal joint **207f** attached to a front stabilization linkage **108f**.

Figs. 18A-B are perspective front three-quarter views from below of a rear universal joint with integral slider **207r** attached to a rear stabilization linkage **108r**.

Fig. 19A is a rear view of a basic left rear lower support bracket **105c**.

Figs. 19B-D are a cross-sectional (19B), perspective (19C), and exploded (19D) views of a left rear adjustable lower support bracket **205c**.

Fig. 19E is an elevation view of a left rear adjustable lower support bracket with retraction linkage attachment point **305c**.

Figs. 20A-B are rear views of a left rear lower control arm **122c** with free upper support bracket **203c** and free lower support bracket **405c** in engaged, deployed position (20A) and separated, retracted position (20B).

Fig. 20C is a rear view of a left rear lower control arm **122c** with free upper support bracket for roller **303c** and free lower support bracket with roller **505c** in engaged, deployed position.

Fig. 20D is a cross-sectional view of the left rear suspension showing an upright-mounted free upper support bracket for roller **503c** and a free lower support bracket with roller **505c** in engaged, deployed position.

Figs. 20E-F are rear views of a left rear upper control arm **121c** with free upper support bracket **403c** and free lower support bracket **605c** in engaged, deployed position (20E) and separated, retracted position (20F).

Fig. 21A is a perspective left side view of a left rear lower control arm **122c** with free upper support bracket **203c** and free lower support bracket **405c** in separated, retracted position.

Fig. 21B is a cross-sectional rear view of the left rear suspension with support linkage **104c** directly attached to the movable underbody **101**. The view in Fig. 21B is in accordance with line 2A – 2A in Fig. 1A.

Fig. 21C is a perspective left side view of a left rear lower control arm **122c** with free upper support bracket for roller **303c** and free lower support bracket with roller **505c** in separated, retracted position.

Fig. 21D is an exploded view of a left rear free lower support bracket with roller **505c** (shown in Fig. 21C).

Fig. 21E is a perspective left side view of a left rear upper control arm **121c** with free upper support bracket **403c** and free lower support bracket **605c** in separated, retracted position.

Figs. 22A-B are cross-sectional rear views of the left rear suspension of two vehicles with left rear upper support bracket with sprocket **703c** (22A) and left rear upper support bracket with pulley **803c** (22B). The direction of sight in these two Figures is in accordance with the direction of sight indicated by cross-sectional line 2A – 2A of Fig. 1A.

Figs. 23A-C are elevation views of a vehicle with a movable underbody **101** with downforce distributions to the wheels at neutral (23A), forward pitch (23B), and rear pitch (23C) orientations.

Figs. 24A-B are block diagrams of a movable underbody height-adjustment control means (24A) and a movable underbody retraction control means (24B).

Fig. 25 is a flowchart for a movable underbody height-adjustment electronic control unit (“ECU”) **173**.

Fig. 26A is a perspective left side view of a left rear upper control arm **121c** with an upper support bracket with basal bellcrank **903c** and pushrod **179c**.

Fig. 26B is a perspective rear three-quarter view of a movable underbody device of a third alternative embodiment in accordance with the present invention.

Figs. 27A-D are cross-sectional views of a vehicle fitted with an upper support bracket with basal bellcrank **903c** and pushrod **179c** at different body positions. The direction of sight in these two Figures is in accordance with the direction of sight indicated by cross-sectional line 2A – 2A of Fig. 1A.

Fig. 28A is a perspective rear three-quarter view of a movable underbody **101** with adjustable lower support brackets with retraction linkage attachment points **305a – 305d** and associated retraction linkages **211a – 211d** and retraction actuators **210a – 210d**.

Fig. 28B is a perspective rear three-quarter view of a movable underbody **501** with side, front, and rear extensions, as well as support braces **188a – 188b**, and rigid aerodynamic fences **290**.

Fig. 29 is a flowchart for a movable underbody retraction ECU **184**.

Figs. 30A-E are plan views of several movable underbody embodiments.

Figs. 31A-B are perspective rear three-quarter views of a movable underbody **801** with adjustable inlet and adjustable diffuser (31A) and a movable underbody with tunnels **601** (31B).

Figs. 32A-C are perspective rear three-quarter views (32A-B) and exploded view (32C) of an articulating two-element movable underbody **701**.

Fig. 33A is a cross-sectional view of a left sliding skirt **119a** in deployed position.

Fig. 33B is a perspective rear three-quarter view of a portion of a movable underbody **101** with left sliding skirt **119a** in deployed position.

Fig. 33C is a cross-sectional view of a left hinged skirt **219a** in deployed position and in accordance with line 33C – 33C of Fig. 33F.

Fig. 33D is a cross-sectional view of a left hinged skirt **219a** in deployed position and in accordance with line 33D – 33D of Fig. 33F.

Fig. 33E is a cross-sectional view of a left hinged skirt **219a** in retracted position against the lower surface of a vehicle body **158**. The view is in accordance with line 33D – 33D in Fig. 33F.

Fig. 33F is a perspective rear three-quarter view of a portion of a movable underbody **101** with left hinged skirt **219a** in deployed position.

Figs. 34A-B are cross-sectional views of the lower surface of a vehicle body **158** with folding aerodynamic fences **190** and a movable underbody **101** in a deployed position (34A) and in a retracted position (34B). The views in these Figures are in accordance with line 34A – 34A of Fig. 23A

Figs. 34C-L are plan views of a movable underbody **501** with side, front, and rear extensions, and with various arrangements of folding aerodynamic fences **190** (34C, E-H) and with the same arrangements of folding aerodynamic fences **190** showing airflow patterns (34D, I-L).

Fig. 35A is an elevation view of a vehicle fitted with the first alternative embodiment in accordance with the present invention.

Fig. 35B is an elevation view of a vehicle fitted with the second alternative embodiment in accordance with the present invention.

Fig. 36A is a rear three-quarter view of a movable underbody device of the first alternative embodiment in accordance with the present invention.

Fig. 36B is a rear three-quarter view of a vacuum plate device of the second alternative embodiment in accordance with the present invention. The lower end of the vacuum hose **2400** is partially removed to show the vacuum plate orifice **2300**.

Fig. 37 is a block diagram of a body-mounted movable underbody height-adjustment and retraction control means.

Fig. 38 is a flowchart for a body-mounted movable underbody height-adjustment ECU **3200**.

Fig. 39A is a perspective rear three-quarter view of a slotted movable underbody **901**.

Fig. 39B is a longitudinal section of a portion of a slotted movable underbody **901** showing the shape of a slot **4000** and intervening spaces.

Fig. 39C-E are elevation views of additional inlet embodiments.

Fig. 39F is an elevation view of a movable underbody spoiler **516**.

Fig. 40A is a perspective front three-quarter view of a vehicle's wheels **124a** – **124d** at full suspension compression.

Fig. 40B is a perspective front three-quarter view of a vehicle's wheels **124a** – **124d** at example positions as they rest upon a roadway **199**.

Fig. 40C is a perspective front three-quarter view of a vehicle's wheels **124a** – **124d** at the example positions shown in Fig. 40B, along with body-mounted height-adjustment actuators **3100a** – **3100d**.

Fig. 41A is a perspective rear three-quarter view of a winged movable underbody **10001**.

Fig. 41B is a perspective rear three-quarter view of a frame-like movable underbody **20001**.

Fig. 41C is a perspective rear three-quarter view of a movable underbody **501** with side, front, and rear extensions, and a pair of complete front wheel fairings, **9000a** – **9000b**.

DRAWINGS – Reference Numerals

- 101 movable underbody
- 102 movable underbody plate
- 103a – 103d upper support brackets
- 104a – 104d roller chain support linkages
- 105a – 105d lower support brackets
- 106 sliding mechanism
- 107f front ball joint
- 107r rear ball joint
- 108f front stabilization linkage
- 108r rear stabilization linkage
- 109f front stabilization hinge
- 109r rear stabilization hinge
- 110 retraction actuator
- 111 retraction linkage
- 112 retraction linkage fitting
- 113 inlet depression
- 114 inlet
- 115a left inlet fence
- 115b right inlet fence
- 116 movable underbody diffuser
- 117a left movable underbody diffuser fence
- 117b right movable underbody diffuser fence

118a	left skirt groove
118b	right skirt groove
119a	left sliding skirt
119b	right sliding skirt
120	cushioning pad
121a – 121d	upper control arms
122c – 122d	lower control arms
123c – 123d	suspension uprights
124a – 124d	vehicle wheels
125	vehicle body diffuser
126f	recess of the front stabilization linkage
126r	recess of the rear stabilization linkage
127f	ball of front ball joint
127r	ball of rear ball joint
128f	socket of front ball joint
128r	socket of rear ball joint
129	mounting plate of front ball joint
130	sliding ball base of sliding mechanism
131	mounting track of sliding mechanism
132f	inlet mounting bracket
132r	diffuser mounting bracket
133	bushing of the lower support bracket
134f	cylinder of front telescoping stabilization linkage
134r	cylinder of rear telescoping stabilization linkage
135f	piston of front telescoping stabilization linkage
135r	piston of rear telescoping stabilization linkage
136f	base plate of front pantographic stabilization linkage
136r	base plate of rear pantographic stabilization linkage
137f	ball plate of front pantographic stabilization linkage
137r	ball plate of rear pantographic stabilization linkage
138f	folding support rods of front pantographic stabilization linkage

138r	folding support rods of rear pantographic stabilization linkage
139f	support rod hinge of front pantographic stabilization linkage
139r	support rod hinge of rear pantographic stabilization linkage
140f	support rod slider of front pantographic stabilization linkage
140r	support rod slider of rear pantographic stabilization linkage
141f	base of front universal joint
141r	base of rear universal joint
142f	first bracket of front universal joint
142r	first bracket of rear universal joint
143f	second bracket of front universal joint
143r	second bracket of rear universal joint
144f	support rod of front universal joint
144r	support rod of rear universal joint
145f	spider of front universal joint
145r	spider of rear universal joint
146f	hinge of front universal joint
146r	hinge of rear universal joint
147c	upper arm of left rear articulating support linkage
148c	lower arm of left rear articulating support linkage
149c	stop of lower arm of left rear articulating support linkage
150c	cylinder of left rear telescoping support linkage
151c	piston of left rear telescoping support linkage
152	rod end bearing of support linkage
153c	inner bracket piece of left rear adjustable lower support bracket
154c	outer bracket piece of left rear adjustable lower support bracket
155c	spring of left rear adjustable lower support bracket
156c	adjustment bolt of left rear adjustable lower support bracket
157c	washer of left rear adjustable lower support bracket
158	vehicle body
159c – 159d	left rear and right rear support linkage tensioner springs
160	retraction linkage tensioner spring

161c load bearing surface of the left rear free lower support bracket
162c load bearing surface of the left rear free upper support bracket
163c wheel fork of left rear lower support bracket with roller
164c bearing axle of left rear lower support bracket with roller
165c bearing wheel of left rear lower support bracket with roller
166c left rear upper support bracket pushrod
167c left rear movable underbody height-adjustment actuator
168c mounting bracket of left rear upper support bracket with bellcrank
169c crank of left rear upper support bracket with bellcrank
170c crank mounting pivot bolt of left rear upper support bracket with bellcrank
171c left rear downforce-measuring strain gauge
172 two-axis accelerometer sensor
173 movable underbody height-adjustment ECU
174 movable underbody height-adjustment on/off switch
175 movable underbody position sensor
176a – 176d suspension position sensors
177c crank of left rear basal upper support bracket with bellcrank
178c mounting bracket of left rear basal upper support bracket with bellcrank
179c – 179d pushrods of left rear and right rear basal upper support brackets with bellcrank
180c – 180d pushrod mounts of left rear and right rear basal upper support brackets with bellcrank
181a left articular cylinder
181b right articular cylinder
182 peg
183 hinged skirt lever
184 movable underbody retraction ECU
185 electronic stability control system
186 retraction switch
187f front access panel
187m middle access panel

187r	rear access panel
188a	left support brace
188b	right support brace
189a	left support brace groove
189b	right support brace groove
190	folding aerodynamic fence
191f	front hinge of movable underbody
191r	rear hinge of movable underbody
192f	pushrod of adjustable inlet
192r	pushrod of adjustable diffuser
193f	control horn of adjustable inlet
193r	control horn of adjustable diffuser
194	articular rod
195	retention band
196a	left skirt hinge
197f	adjustable inlet actuator
197r	adjustable diffuser actuator
198f	front pylon
198r	rear pylon
199	roadway
201	movable underbody with minimal inlet and diffuser
203c	left rear free upper support bracket for lower control arm
204c	left rear cable support linkage
205a – 205d	adjustable lower support brackets
207f	front universal joint
207r	rear universal joint with integral slider
208f	front T-shaped stabilization linkage
208r	rear T-shaped stabilization linkage
210a – 210d	corner retraction actuators
211a – 211d	corner retraction linkages

214	upturned minimal inlet
216	minimal movable underbody diffuser
219a	left hinged skirt
219b	right hinged skirt
253c linkage	inner bracket piece of left rear lower support bracket with retraction
254c linkage	outer bracket piece of left rear lower support bracket with retraction
260a – 260d	corner retraction linkage tensioner springs
290	Rigid aerodynamic fence
301	movable underbody with front side cutouts
303c	left rear free upper support bracket for roller
304c	left rear Kevlar webbing support linkage
305a – 305d	adjustable lower support brackets with retraction linkage point
308f	front telescoping stabilization linkage
308r	rear telescoping stabilization linkage
314	symmetrical minimal inlet
316	two-element movable underbody diffuser
401	movable underbody with side extensions
403c	left rear free upper support bracket for upper control arm
404c	left rear articulating support linkage
405c	left rear free lower support bracket
408f	front pantographic stabilization linkage
408r	rear pantographic stabilization linkage
414	adjustable inlet
416	adjustable diffuser
501	movable underbody with side, front, and rear extensions
503c	left rear upright-mounted free upper support bracket

504c	left rear telescoping support linkage
505c	left rear free lower support bracket with roller
514	downturned minimal inlet
516	movable underbody spoiler
601	movable underbody with tunnels
603c	left rear upper support bracket with bellcrank
604c	left rear rigid support linkage
605c	left rear free lower support bracket for upper control arm
614	downturned minimal inlet with brush
701	two-element movable underbody
703c	left rear upper support bracket with sprocket
704c	left rear elongated roller chain support linkage
705a – 705d	support linkage fittings
714	two-element inlet
801	adjustable movable underbody
803c	left rear upper support bracket with pulley
804c	left rear elongated cable support linkage
805c – 805d	medially situated lower support brackets
901	slotted movable underbody
903c – 903d	left rear and right rear upper support brackets with basal bellcrank
1100	electric fan
1200	mounting pylon for electric fan
2100	vacuum plate
2200	vacuum skirt
2300	vacuum plate orifice

2400	vacuum hose
2500	vacuum generator
3100a – 3100d	body-mounted height-adjustment actuators
3200	body-mounted movable underbody height-adjustment ECU
3300a – 3300d	laser sensors
3400	driver-operated retraction switch
3500	reference plane
3510a – 3510d	wheel support points at full suspension compression
3520	reference plane origin
3530	X-axis of reference plane
3540	Y-axis of reference plane
3550	Z-axis orthogonal to reference plane
3600	estimated support plane
3610a – 3610d	wheel support points relative to reference plane
3620	Z-intercept of longitudinal and transverse lines of estimated support plane
3630	longitudinal line of estimated support plane that intercepts Z-axis
3640	transverse line of estimated support plane that intercepts Z-axis
3650a – 3650d	estimated actuator ride heights
4000	movable underbody slot
5000	pivot bolt
5010	large pivot bolt for Kevlar webbing support linkage
6000	master link
7000	side plate
8000	retaining clip
9000a	left front complete wheel fairing
9000b	right front complete wheel fairing
10001	winged movable underbody
10010f	front movable underbody wing

10010r	rear movable underbody wing
10015a	left winglet of rear movable underbody wing
10015b	right winglet of rear movable underbody wing
10020a	left connecting rod
10020b	right connecting rod
20001	frame-like movable underbody
20002	motor

DETAILED DESCRIPTION - FIGS. 1, 2, 3A, 4, 5A-B, 6, 7A, 8A-B, 9A-B, D, F, 12G, 30A, 33A-B - BASIC EMBODIMENT

The basic embodiment of the present invention includes a movable underbody **101** (Fig. 1A) below a body **158** (Fig. 1A) of a vehicle with four wheels **124a – 124d** (Fig. 30A) and a motor **20002** (Fig. 2A) adapted to propel the vehicle. Fig. 1A is an elevation view of the left side of the basic embodiment of a vehicle with a movable underbody **101** in its deployed position, in accordance with the present invention. Fig. 1B shows the vehicle with the movable underbody **101** in its retracted position. As shown in Fig. 1A, the movable underbody **101** is connected to the vehicle body **158** through a pair of stabilization linkages, front **108f** and rear **108r**. The movable underbody **101** is suspended below the vehicle body **158** by four support linkages **104a - 104d**, each associated with a corresponding vehicle wheel **124a – 124d** and attached near or on a corresponding one of the four corner areas of the movable underbody **101**. The support linkages **104a – 104d** (see Fig. 3A) are comprised of a left front support linkage **104a** associated with the left front wheel **124a**, a right front support linkage **104b** associated with the right front wheel **124b** (see Fig. 12G), a left rear support linkage **104c** associated with the left rear wheel **124c**, and a right rear support linkage **104d** associated with the right rear wheel **124d** (see Fig. 2A). For purposes of this disclosure, the four corner areas of the vehicle and four corner areas of the movable underbody **101**, refer to portions of these components located near the four wheels **124a – 124d** of the vehicle. In this disclosure, components that are located in the four corner areas of embodiments of the present invention are designated with the following suffixes: “a” for one in the left front corner area, “b” for one in the right front corner area, “c” for one in

the left rear corner area, and the suffix “d” for one in the right rear corner area. Throughout much of this disclosure, only the left rear suspension of the vehicle, left rear corner area of the vehicle body **158**, and left rear corner area of the movable underbody **101** and associated structures of the present invention are shown. The other corner areas of the present invention not shown have the same form as the left rear corner area shown, except that the components are reversed on the right side of the vehicle from that shown for the left rear corner area of the vehicle.

Each of the four support linkages **104a - 104d** (see Fig. 3A) is attached via a corresponding upper support bracket **103a - 103d** (see Fig. 3A), designated left front **103a**, right front **103b**, left rear **103c**, and right rear **103d**, to the corresponding end of one of the vehicle's four upper control arms **121a - 121d** (see Figs. 1A, 2A, and 12G), designated left front **121a**, right front **121b**, left rear **121c**, and right rear **121d**. Each support linkage **104a - 104d** (see Fig. 3A) extends downward from the corresponding upper support bracket **103a - 103d** (see Fig. 3A) to a lower support bracket **105a - 105d** (see Fig. 3A), designated left front **105a**, right front **105b**, left rear **105c**, and right rear **105d**, attached to the corresponding corner area of the movable underbody **101**.

Although the lower support brackets **105a - 105d** (or their variations) are herein described separately from the movable underbody **101**, they are each effectively a part of the corresponding corner area of the movable underbody **101** (or its variations). A vehicle with double wishbone suspension is shown throughout this disclosure, but it is in accordance with the present invention to mount the device of the present invention to vehicles fitted with other types of suspension system, including McPherson/Chapman strut suspensions (see below under additional embodiments of the upper support brackets).

Both the front stabilization linkage **108f** and rear stabilization linkage **108r** are articulated with the vehicle body **158** through a ball joint, labeled **107f** for the front ball joint and **107r** for the rear ball joint. The ball joint **107r** connected to the rear stabilization linkage **108r** is attached through a longitudinally oriented sliding mechanism **106** (or “slider”) to the undersurface of the vehicle body **158**. At the opposite end of both the front stabilization linkage **108f** and rear stabilization linkage **108r** is a divided, transversely oriented hinge, labeled **109f** (see Fig. 3A) for the front

hinge and **109r** (see Fig. 3A) for the rear hinge. The front hinge **109f** and rear hinge **109r** are each articulated to the upper side of the movable underbody **101**.

Near its midpoint the movable underbody **101** is connected via a fitting **112** to a retraction linkage **111** that extends to a retraction actuator **110** within the vehicle body **158**. A retraction tensioner spring **160** extends from the retraction linkage **111** to the vehicle body **158**. The retraction actuator **110** may be one of several different types, including, for example, an electric, pneumatic, or hydraulic actuator. The retraction linkage **111**, retraction actuator **110**, and retraction tensioner spring **160** are components of an exemplary “retraction means.” Other embodiments of the retraction means are disclosed herein and may be used instead.

The front portion of the movable underbody **101** is curved upward to form an underbody inlet **114** that is accommodated by an inlet depression **113** on the vehicle body **158**. The rear portion of the movable underbody **101** is gradually bent upward to form a movable underbody diffuser **116** (see Fig. 1B) that is accommodated by a corresponding vehicle body diffuser **125** at the rear of the vehicle body **158**. Other embodiments of a movable underbody inlet **114** and movable underbody diffuser **116** are disclosed herein and may be used instead. Between the inlet **114** and underbody diffuser **116** is the movable underbody plate **102** (see Fig. 3A). The inlet **114**, movable underbody plate **102**, and movable underbody diffuser **116** (Fig. 1B) comprise the movable underbody **101**. While the movable underbody **101** is herein described as comprising three parts (viz. inlet **114**, movable underbody plate **102**, and movable underbody diffuser **116**), the movable underbody **101** may be considered and constructed as one indivisible structure or as a structure with alternative subdivisions. For example, the inlet **114** and/or movable underbody diffuser **116** may be completely continuous with the rest of the movable underbody **101**. Because the lower support brackets **105a – 105d** (Fig. 3A) are rigidly fixed to the movable underbody **101**, they may also be constructed as integral, inseparable parts of the movable underbody **101**.

For purposes of this disclosure, the vehicle body **158** includes all of the fully-sprung components of the vehicle that are isolated from the movements of the wheels **124a – 124d** and end of the suspension by the shock-damping system of the vehicle’s suspension system. For purposes of this disclosure, “suspension system” refers to

those components of the vehicle that connect each of the wheels **124a – 124d** to the fully-sprung body **158** and that permit relative vertical displacement of the wheel **124a – 124d** and the vehicle body **158**. The unsprung components of the vehicle's suspension are those components of the suspension that substantially reciprocate with one or more of the wheels **124a – 124d** of the vehicle.

Fig. 2A is a cross-sectional rear view immediately behind the rear wheels **124c – 124d** of the basic embodiment of a vehicle in accordance with the present invention and in accordance with line 2A – 2A of Fig. 1A. The rear wheels **124c – 124d** and the suspension of the vehicle are shown in Fig. 2A, along with the movable underbody **101** in its deployed position. Fig. 2B shows the same, with the movable underbody **101** in its retracted position. In addition to the elements illustrated in Fig. 1A and listed in the preceding paragraphs, Figs. 2A and 2B show the rear support linkage tensioner springs **159c** and **159d**. Also shown are several components of the vehicle's suspension system, including lower control arms **122c** and **122d**, upper control arms **121c** and **121d**, and suspension uprights **123c** and **123d** of the rear suspension of the vehicle. Not shown are the front support linkage tensioner springs, front lower control arms, front upper control arms, and front suspension uprights. Other suspension components of the vehicle, including springs, dampers, toe links, steering arms, and driveshafts, are not shown. Additionally, the upper portion of the vehicle body **158** is not shown and the rear wheels **124c – 124d** are shown only in outline rather than cross-section. The same convention is maintained in all cross-sectional rear views taken from immediately behind the rear wheels **124c – 124d** in accordance with line 2A – 2A of Fig. 1A.

The sides of the movable underbody **101** bear abrasion-resistant aerodynamic skirts, designated **119a** for the left sliding skirt and **119b** for the right sliding skirt. The aerodynamic skirts **119a – 119b** are slidably recessed into corresponding skirt grooves, left **118a** and right **118b**, at the sides of the movable underbody **101**. Fig. 33B is a perspective rear three-quarter view from above of the left side portion of a movable underbody **101** with a left sliding skirt **119a** in deployed position. Fig. 33A is a cross-sectional view of a left sliding skirt **119a** in deployed position in accordance with line 33A – 33A of Fig. 33B. The sliding skirts **119a – 119b** may be constructed from a low friction, abrasion-resistant material, such as, for example, glass-reinforced plastic

(“GRP”) strips. Alternatively, the sliding skirts **119a** – **119b** may be deleted altogether from the design.

Another embodiment of an aerodynamic skirt is disclosed herein and may be used instead. For purposes of clarity, the aerodynamic skirts are not shown in Figs. 1A and 1B and in the other side views of the vehicle. Additionally, aerodynamic fences **190**, as described under additional embodiments of the movable underbody and appearing, for example, in Figs. 34A through 34L, are not shown in any side views of the vehicle.

Fig. 3A is a perspective rear three-quarter view of the basic embodiment of a movable underbody **101** in accordance with the present invention, without the body, wheels, and suspension components of the vehicle shown. In addition to the elements illustrated in Fig. 1A and listed above, Fig. 3A shows recesses, front **126f** and rear **126r**, for the stabilization linkages **108f** and **108r** in the upper surface of the movable underbody **101** and the divided hinges, front **109f** and rear **109r**, connecting the stabilization linkages **108f** and **108r** to the movable underbody **101**. In this basic embodiment, the movable underbody **101** is of substantially planar form with a raised inlet **114** and a raised diffuser **116**, with the inlet **114** bounded on each side by a vertically-oriented lateral inlet fence, left **115a** (shown in Fig. 4A) and right **115b**, and the movable underbody diffuser **116** bounded on each side by a vertically-oriented lateral diffuser fence, left **117a** and right **117b**. Other embodiments of the movable underbody inlet **114** and movable underbody diffuser **116** are disclosed herein and may be used instead. For purposes of clarity, the lateral inlet fences **115a** – **115b** and lateral diffuser fences **117a** – **117b** are not shown in Figs. 1A and 1B and in other side views of the vehicle. The lateral inlet fences **115a** – **115b** and lateral diffuser fences **117a** – **117b** may also be omitted from the design of a movable underbody.

Fig. 30A is a plan view of the basic embodiment of a movable underbody **101** in accordance with the present invention, showing the relative position between the movable underbody **101** and the four wheels **124a** – **124d** of the vehicle. Fig. 4A is a perspective front three-quarter view from below of the basic embodiment of a movable underbody **101** in accordance with the present invention. Fig. 4A shows the movable underbody **101** in its deployed position. This figure also shows the relative position

between the movable underbody **101** and four wheels **124a – 124d** (see Fig. 30A) of the vehicle. Fig. 4B is the same view as Fig. 4A, but with the movable underbody **101** removed to show the mounting hardware connecting the movable underbody **101** to the vehicle. In this basic embodiment, the movable underbody **101** is rectangular and occupies most of the area between the four wheels **124a – 124d** (see Fig. 30A) of the vehicle. The movable underbody **101** may be constructed from a material that is both light and very stiff, such as honeycomb aluminum or a stressed-skin panel of carbon fiber laminate. Other materials may also be suitable. Other embodiments of the movable underbody **101** are disclosed herein and may be used instead.

Figs. 5A and 5B are underside views of the basic embodiment of the front and rear stabilization linkages **108f** and **108r** in accordance with the present invention. In this embodiment, the stabilization linkages **108f** and **108r** are V-shaped and equal in size. Fig. 5A shows the front stabilization linkage **108f**, which is attached at its front end to a ball joint **107f** that articulates directly to the undersurface of the vehicle body **158** (see Fig. 1A). The base of the front stabilization linkage **108f** is attached to a divided hinge **109f** that articulates through a transverse axis with the movable underbody **101** (see Fig. 1A). Fig. 5B shows the rear stabilization linkage **108r** that is attached at its front end to a ball joint **107r** that is mounted on a sliding mechanism **106** that attaches to the undersurface of the vehicle body **158** (see Fig. 1A). The base of the rear stabilization linkage **108r** is attached to a divided hinge **109r** that articulates through a transverse axis with the movable underbody **101** (see Fig. 1A). The stabilization linkages **108f** and **108r** may be made from any sufficiently rigid, preferably light material, such as aluminum or carbon fiber composite. Other materials may also be suitable. Other embodiments of stabilization linkages, such as those shown in Figs. 5C and 5D, are discussed hereinbelow and may be used instead.

Fig. 6A is a cross-sectional view in accordance with line 6A – 6A of Fig. 6C of a front ball joint **107f** in accordance with the present invention. Fig. 6B is an exploded view of the front ball joint **107f** in accordance with the present invention. The front ball joint **107f** is connected to the front stabilization linkage **108f**. The front ball joint **107f** includes a ball **127f** and socket **128f**, and is attached to a mounting plate **129** that attaches to the undersurface of the vehicle body **158** (Fig. 1A). Fig. 6C is a perspective

three-quarter front view of the front ball joint **107f** and a portion of the front stabilization linkage **108f**. Fig. 6D is a cross-sectional view in accordance with line 6D – 6D of Fig. 6F of the sliding mechanism **106** and rear ball joint **107r** in accordance with the present invention. Fig. 6E is an exploded view of the sliding mechanism **106** and rear ball joint **107r**. The sliding mechanism **106** is comprised of a sliding ball base **130** that moves longitudinally within a mounting track **131**. The rear ball joint is comprised of a ball **127r** attached to the sliding ball base **130**, and a socket **128r** attached to the front end of the rear stabilization linkage **108r**. Fig. 6F is a perspective three-quarter front view of the sliding mechanism **106**, ball joint **107r**, and a portion of the rear stabilization linkage **108r**. Other embodiments of front and rear ball joints and sliding mechanisms are disclosed herein and may be used instead.

Fig. 7A is a rear view of the basic embodiment of a left rear support linkage **104c** in accordance with the present invention with associated left rear upper support bracket **103c** and left rear lower support bracket **105c**. This basic embodiment of the support linkage **104c** includes a length of roller chain. The other support linkages of this embodiment, **104a**, **104b**, and **104d** (see Fig. 3A), are identical. Other embodiments of the support linkages are disclosed herein and may be used instead.

Fig. 8A is a side perspective view of the basic embodiment of a left rear upper support bracket **103c** mounted to the rear side of the free end of the left rear upper control arm **121c** along with the left rear support linkage **104c**. Fig. 8B is an exploded view of the same showing how the support linkage **104c** may simply link to the upper support bracket **103c** using normal roller chain link hardware consisting of a master link **6000**, side plate **7000**, and retaining clip **8000**.

The left and right front upper support brackets **103a** and **103b** (shown in Fig. 3A), may be positioned on the front upper control arms **121a** and **121b** (Fig. 1A) opposite to the steering arms of the front suspension uprights. Such a mounting point allows the front support linkages **104a** and **104b** (Fig. 3A) that hang from the front upper support brackets **103a** and **103b** (Fig. 3A) to not interfere with the movements of the vehicle's steering arms. Other mounting points and embodiments of the upper support brackets **103a – 103d** are in accordance with the invention, including those disclosed elsewhere herein, and may be used instead. The upper support brackets **103a – 103d** may be of a

sufficiently strong, durable material, such as chromoly steel. Other materials may be used instead. For secure attachment they may be welded to the upper control arms **121a – 121d** (Fig. 1A, 2A, and 12G) or completely integrated into the design of the upper control arms **121a – 121d** (Fig. 1A, 2A, and 12G).

Fig. 9A is a side perspective view of the basic embodiment of a right rear lower support bracket **105d** in accordance with the present invention and an example of how the bracket may be secured to the movable underbody **101** (Fig. 1A). Fig. 9A also shows how the movable underbody diffuser **116** may be secured to the rear edge of the movable underbody plate **102** through a diffuser mounting bracket **132r**. Fig. 9B is a side perspective view of the basic embodiment of a right front lower support bracket **105b** in accordance with the present invention. This figure illustrates an example of how the bracket **105b** may be secured to the movable underbody plate **102** and how the inlet **114** may be attached to the front edge of the movable underbody plate **102** with an inlet mounting bracket **132f**. The rubber bushings **133** that may be included with the lower support bracket mountings provide a slight amount of cushioning to the movable underbody **101** (Fig. 1A) against vehicle suspension vibrations. There are many other ways that such cushioning may be provided including a small spring and damper unit situated between either a) the lower support brackets **105a – 105d** (Fig. 3A) and corresponding support linkages **104a – 104d** (Fig. 3A) or b) between the upper support brackets **103a – 103d** (Fig. 3A) and corresponding support linkages **104a – 104d** (Fig. 3A). Alternatively, no cushioning may be provided between the movable underbody **101** (Fig. 1A) and suspension system. Other embodiments of the lower support brackets **105a – 105d** (Fig. 3A) are disclosed herein and may be used instead. The lower support brackets may be constructed from various materials, including a carbon fiber layup or chromoly steel.

Operation – Figs. 1-2, and 10-13

In its deployed position, as shown in side view in Fig. 1A and rear cross-sectional view in Fig. 2A, the movable underbody **101** is supported below the vehicle body **158** by the four support linkages **104a – 104d** (Fig. 3A), each of which is connected to a corresponding end of one of the four upper control arms **121a – 121d** (Fig. 1A, 2A, 12G)

in a vehicle with double wishbone suspension. When deployed, the support linkages **104a – 104d** (Fig. 3A) are pulled taut by the weight and generated downforce of the movable underbody **101** (Fig. 1A). Because the end of each upper control arm **121a – 121d** substantially maintains a constant distance above the roadway **199**, the movable underbody **101** in its deployed position correspondingly maintains a substantially constant positional relationship with respect to the roadway **199**, regardless of the height and orientation of the vehicle body **158** above the roadway **199** (Fig. 10A).

Figs. 10A-D are cross-sectional views immediately behind the rear wheels of the basic embodiment of a vehicle in accordance with the present invention, in accordance with line 2A – 2A of Fig. 1A. Figs. 10A-C show the vehicle body **158** at normal, lowered, and elevated positions, respectively. As can be seen, there is a constant positional relationship between the movable underbody **101** and roadway **199** in these figures. Fig. 10D shows the vehicle body **158** during body roll. Again, the same positional relationship between the movable underbody **101** and roadway **199** exists here as well. The two stabilization linkages **108f** (Fig. 1A) and **108r** (Fig. 1A) serve to stabilize the position of the movable underbody **101** throughout its range of motion so that the movable underbody **101** may not swing back and forth from its points of support on the suspension of the vehicle.

Fig. 11A is an elevation view of the basic embodiment of a vehicle in accordance with the present invention with a movable underbody **101** in its deployed position. This figure indicates the path of airflow under the vehicle as the vehicle travels. The movable underbody **101** forms a venturi duct with the roadway **199** when the movable underbody **101** is deployed. As the vehicle travels, the airstream below the movable underbody **101** is accelerated in the narrow venturi throat that is formed by much of the area of the movable underbody **101**. This accelerated air exhibits decreased pressure, creating downforce that is applied directly to the ends of the suspension through the support linkages **104a – 104d** (Fig. 3A). The production of downforce in this way may be termed aerodynamic ground effect. Because this airflow is at least partially isolated from the undersurface of the vehicle body **158** and may be partially isolated from the space surrounding the vehicle suspension and vehicle wheels **124a – 124d** (Fig. 30A), it may also generate less aerodynamic drag than is generated by the corresponding

airflow in a vehicle not equipped with a movable underbody in accordance with the present invention.

The movable underbody **101** is retracted by activation of the retraction actuator **110** (Fig. 1A). When activated, the retraction actuator **110** pulls on the retraction linkage **111** (Fig. 1A) and, through that linkage, lifts the movable underbody **101** to the vehicle body **158**. The movable underbody **101** is shown in its retracted position in side view in Fig. 1B and rear cross-sectional view in Fig. 2B. In the retracted position, the movable underbody **101** and stabilization linkages **108f** and **108r** are folded flat against the undersurface of the vehicle body **158** with the stabilization linkages **108f** and **108r** (Fig. 1A) recessed within their corresponding stabilization linkage recesses **126f** and **126r** (Fig. 3A). When in the retracted position, the movable underbody **101** no longer moves with the suspension, but is instead fixed against the undersurface of the vehicle by the retraction linkage **111** and stabilization linkages **108f** and **108r** (Fig. 1A). Cushioning pads **120** (shown in Fig. 2A) mounted to the undersurface of the vehicle body **158** cushion the movable underbody **101** in its retracted position against the vehicle body **158**.

The support linkages **104a – 104d** (Fig. 3A) serve both to control the orientation of the movable underbody **101** and to support and transfer the vertical load from the movable underbody **101** to the suspension of the vehicle when the movable underbody **101** is deployed. By using roller chain for the support linkages **104a – 104d**, the linkages may transmit substantial force only through tension. When subjected to a compressive force, a roller chain linkage **104a – 104d** simply goes slack and becomes unable to transfer substantial force. Any support linkage that is compliant to compression in this way is herein termed a “tensile” support linkage. A tensile support linkage may be adapted to provide some degree of resistance to compression as long as that force of resistance is low enough to allow the movable underbody **101** to be retracted without substantial resistance and to move independently with respect to the vehicle wheels **124a-124d** (Fig. 30A). In Fig. 1B, the support linkages, exemplified by **104a** and **104c**, are shown bent to the rear for illustrative purposes. Similarly, in Fig. 12H the support linkage, exemplified by **104b**, is shown bent to the front for illustrative purposes. As shown in Fig. 2B, in the basic embodiment the support linkages are

actually pulled toward the center of the vehicle by the support linkage tensioner springs, exemplified by **159c** and **159d**.

By using tensile support linkages **104a – 104d** (Fig. 3A), retraction of the movable underbody **101** by a separate retraction means functionally disengages the movable underbody **101** from the suspension by unloading and compressing the four support linkages **104a – 104d**. When retracted, the movable underbody **101** does not pull down on the suspension and does not influence suspension movements. In contrast, if retraction of the movable underbody **101** were to be achieved by elevation through the support linkages **104a – 104d**, there would be no functional disengagement of the movable underbody **101** from the vehicle's suspension (see additional embodiments of the retraction means). The ability to both retract and functionally disengage the movable underbody from the vehicle's suspension is a very significant advantage of the present invention over the prior art.

The ability to retract the movable underbody **101** allows ground clearance to be raised when the characteristics of the roadway **199** do not allow for the passage of a low-ground-clearance vehicle. Additionally, the movable underbody **101** may remain retracted when high levels of downforce are not required, as in most everyday driving. For example, deployment of the movable underbody **101** may be reserved for when the vehicle is to be driven at higher speeds on a closed-course racetrack. For regular road travel, the movable underbody **101** may be deployed only when high levels of downforce are needed for purposes of safety, as during emergency braking or for when a loss of vehicle traction is detected, as may occur when the roadway **199** becomes slippery with rain, snow, ice, oil, or other substances that may decrease vehicle traction.

Deployment of the movable underbody **101** is accomplished by reversing the retraction actuator **110** (Fig. 1A), thereby undoing the tension in the retraction linkage **111** (Fig. 1A). When the movable underbody **101** is deployed, slack in the retraction linkage **111** (Fig. 1A) is taken up by the retraction linkage tensioner spring **160** (Fig. 1A). Upon deployment, the movable underbody **101** comes to rest upon the support linkages **104a – 104d** (Fig. 3A), functionally reengaging the movable underbody **101** with the suspension. The force of gravity and aerodynamic forces may deploy the movable underbody **101** into its deployed position. An actuator system may also be included to

push the movable underbody **101** into its deployed position and to potentially transfer load from the vehicle body **158** to the movable underbody **101**.

Using tensile support linkages **104a – 104d**, the mass of the movable underbody **101** and associated structures is not fixed to the unsprung mass of the vehicle. This benefits vehicle handling because it allows the suspension to more rapidly adjust to irregularities in the roadway **199**. The use of tensile support linkages **104a – 104d** also has the benefit in that it makes the movable underbody **101** compliant upon impact with the roadway **199** or objects thereon.

Figs. 12A-I are elevation views of the right side of the front of three different vehicles as they travel over a depression in the roadway **199** (Fig. 10A). Typically, such depressions are merely slight negative undulations in the roadway **199** (Fig. 10A). Figs. 12A-C show a vehicle that is not fitted with a movable underbody. Figs. 12D-F show a vehicle that is fitted with a movable underbody **101** supported by an incompressible support linkage **604b** (see Fig. 7I and additional embodiments of the support linkages below). Figs. 12G-I show a vehicle that is fitted with the basic embodiment of the present invention that includes a movable underbody **101** supported by a tensile support linkage **104b**.

As shown in Fig. 12H, when a wheel **124b** (Fig. 12G) of a vehicle fitted with a movable underbody **101** supported by tensile support linkages, as exemplified by **104b** (Fig. 12G), travels over a depression in the roadway **199**, the wheel (front right wheel **124b** shown) may drop to contact the surface of that depression without simultaneously dropping the movable underbody **101**. This is because a tensile support linkage, as exemplified by **104b**, is only capable of transmitting a downward pull from the movable underbody **101** to the vehicle suspension. That is, such a linkage arrangement cannot apply a compressive force to the vehicle suspension. As a result, the downward movement of the wheel **124b** is unhindered by the mass and aerodynamic resistance of the movable underbody **101**. This decoupling leads to greater contact between the wheel **124b** (Fig. 12G) and the roadway **199** compared with the movement of a wheel **124b** (Fig. 12G) of a vehicle fitted with a movable underbody **101** that is supported by a rigid, incompressible support linkage, exemplified by **604b** (Fig. 12D). As shown in Fig. 12E, when such a wheel travels over a depression, the mass and vertical air resistance

of the movable underbody **101** resist the downward movement of the wheel **124b** (Fig. 12D), leading to less contact between the wheel **124b** and the roadway **199**. A physical separation between the wheel **124b** and roadway **199** is shown in Fig. 12E for illustrative purposes. Under normal conditions, the wheel **124b** is merely unweighted as the vehicle travels over depressions on the roadway **199**. The point is that the wheel **124b** of a vehicle equipped with a movable underbody **101** supported by freely--compressible support linkages **104a – 104d** (Fig. 3A) experiences less unweighting than the wheel **124b** of a vehicle equipped with a movable underbody **101** supported by rigid support linkages, exemplified by **604b** (Fig. 12D), traveling over the same depression.

Returning attention to the vehicle fitted with the tensile support linkage **104b**, when the vehicle suspension subsequently compresses after the depression is passed, as shown in Fig. 12I, the movable underbody **101**, through its connection to the suspension via the tensile support linkage **104b**, helps to suppress excessive wheel jounce. This contrasts with a vehicle that is not fitted with a movable underbody **101** supported from the vehicle's suspension, such as shown in Fig. 12C. In Fig. 12C, the wheel **124b** loses contact with the roadway due to excessive wheel jounce. While a physical separation between the wheel **124b** and the roadway **199** is shown in Fig. 12C, the wheel **124b** would normally be merely unweighted as the vehicle travels past a depression in the roadway **199**. The point is that the wheel **124b** of a vehicle equipped with a movable underbody **101** supported by tensile support linkages **104a – 104d** experiences less unweighting than the wheel **124b** of a vehicle without a movable underbody.

The resistance to upward movement of the wheel **124b** mentioned above is a consequence of more than simply the downforce generated aerodynamically by the movable underbody **101**. It is also a consequence of the inertia of the movable underbody **101** and, importantly, the physical resistance of the system to changes in the separation distance between the movable underbody **101** and the roadway **199** (Fig. 10A) (i.e. the ride height of the movable underbody). Changes in this separation distance translate to changes in the volume of air between the movable underbody **101** and the roadway **199**. When the movable underbody **101** moves away from the

roadway **199** there is an increase in that volume of air, which forces air to rush in from the perimeter of the movable underbody **101**. In a sense, the movable underbody **101** acts like an expansive diaphragm resisting changes in ride height from the roadway **199**. Given the time scale associated with most suspension movements and the low ride height at which the movable underbody **101** may be supported, the airflow from the perimeter of the movable underbody **101** is severely limited, particularly airflow entering from the sides of the movable underbody **101** when sliding **119a – 119b** (Fig. 2A) or hinged aerodynamic skirts **219a – 219b** (Figs. 33C and 34A) are employed. In particular, hinged aerodynamic skirts allow air to escape from under the movable underbody **101**, but prevent air from entering that space. The result is that the force generated by the movable underbody **101** that resists an upward movement of the movable underbody **101** above its set ride height is greater than the sum of its inertia and the aerodynamic downforce generated by the structure. This means that, while the wheels of the vehicle may move downward without resistance to contact the roadway **199**, there is considerable resistance generated against an upward movement away from the roadway **199**. The wheels of the vehicle are effectively sandwiched between the roadway **199** below and the movable underbody **101** above. The advantage for a vehicle equipped in accordance with the basic embodiment of the present invention over the other vehicles shown in Figs. 12A-F is increased contact between the tires and roadway **199** during vehicle travel. This increase in what is termed “mechanical grip” is in addition to the increased “aerodynamic grip” brought about by the generated downforce of the ground effect movable underbody **101** and is a further, significant advantage of the present invention over the prior art. Additionally, because upward movement of the wheels above the roadway **199** is counteracted by the movable underbody **101**, there is less road bumpiness and vibration transmitted through the vehicle’s suspension to the vehicle body **158**, resulting in a somewhat smoother ride for the occupants of the vehicle when the movable underbody **101** is deployed.

The front and rear stabilization linkages **108f** and **108r** (Fig. 1A) serve to limit the movable underbody **101** to a single path of movement. For any given vertical position and orientation about a horizontal axis, the two stabilization linkages **108f** and **108r** fix the movable underbody **101** in terms of its longitudinal and lateral positions, as well as

prevent rotation of the movable underbody **101** about a vertical axis (yaw). More specifically, longitudinal movements of the movable underbody **101** are prevented by the front stabilization linkage **108f** because that linkage is connected to the vehicle body **158** at a fixed point, unlike the rear stabilization linkage **108r** that connects to the vehicle body **158** through a sliding mechanism **106** (Fig. 1A). Lateral movements of the movable underbody **101** are prevented by the strength of the front and rear stabilization linkages **108f** and **108r**, in addition to the strength of the corresponding stabilization hinges **109f** and **109r** (Fig. 3A). Rotation of the movable underbody **101** about a vertical axis (yaw) is prevented by the physical separation between the two stabilization linkages **108f** and **108r**. The rear stabilization linkage **108r** primarily serves to prevent such rotation of the movable underbody **101** about a vertical axis.

Figs. 13A and 13B are elevation views of the basic embodiment of a vehicle in accordance with the present invention. Fig. 13C is a cross-sectional view immediately behind the rear wheels of the basic embodiment of a vehicle, in accordance with line 2A – 2A of Fig. 1A. The degrees of freedom of movement of the movable underbody **101** relative to the vehicle body **158** are shown. While the stabilization linkages **108f** and **108r** fix the movement of the movable underbody **101**, as described above, they allow the movable underbody **101** to move freely in several ways. As shown in Fig. 13A, the articulations (ball joints **107f** and **107r** shown, hinges **109f** and **109r** (Fig. 3A)) of the stabilization linkages **108f** and **108r** allow the movable underbody **101** to be raised and lowered relative to the vehicle body **158**. This allows the movable underbody **101** to conform to changes in vehicle ride height (heave) during travel. This vertical movement is not perfectly linear, but describes a shallow curve with a radius equal to the length of the front stabilization linkage **108f** because that linkage is not attached to a sliding mechanism. The absence of a sliding mechanism in the front is different from the configuration in the rear. Specifically, the rear stabilization linkage **108r** is attached to sliding mechanism **106**. As shown in Fig. 13B, the sliding mechanism **106** and articulations (ball joints **107f** and **107r** shown, hinges **109f** and **109r** shown in Fig. 3A) of the stabilization linkages **108f** and **108r** allow the movable underbody **101** to rotate about a transverse axis relative to the vehicle body **158**. This allows the movable underbody **101** to conform to changes in vehicle pitch during travel. As shown in Fig.

13C, the ball joints **107f** and **107r** connected to the stabilization linkages **108f** and **108r** allow the movable underbody **101** to rotate about a longitudinal axis relative to the vehicle body **158**. This allows the movable underbody **101** to conform to changes in vehicle roll during travel. The combination of these separate freedoms of movement (heave, pitch, and roll) allows the movable underbody **101** to follow any change in the positional relationship between the vehicle body **158** and roadway **199** during vehicle travel.

Additional Embodiments

Additional embodiments of certain components are described below.

Figs. 5C-D, 14-16 – Additional Embodiments of the Stabilization Linkages

Figs. 5C-D are underside views of a first additional embodiment of the front and rear stabilization linkages in accordance with the present invention. These stabilization linkages, front **208f** and rear **208r**, are T-shaped rather than V-shaped. Both linkages are attached to an apical ball joint, front **107f** and rear **107r**, and a basal hinge, front **109f** and rear **109r**, the same as described for the basic embodiment. The ball joint **107r** attached to the rear stabilization linkage **208r** is coupled with a sliding mechanism **106** like that described for the basic embodiment. Both T-shaped **208f** and **208r** and V-shaped **108f** and **108r** (Figs. 5A and 5B) stabilization linkages allow for a comparatively wide hinge articulation with the movable underbody **101** (Fig. 1A) that helps resist the horizontal loads caused by the acceleration, deceleration, and lateral acceleration of the vehicle. The stabilization linkages may be of other sizes and shapes and of unequal size and shape without departing from the present invention.

The front and rear stabilization linkages **108f** and **108r** (Figs. 5A and 5B) of the basic embodiment and first additional embodiment **208f** and **208r** described above extend rearward and downward from their attachment points on the vehicle body **158** (Fig. 1A) to attach across the midline of the movable underbody **101**. With this arrangement, the movable underbody **101** moves up and away relative to the vehicle body **158** upon forward impact with the roadway **199** (Fig. 10A) or objects thereon. It is

also possible for the stabilization linkages to be mounted such that they extend forward from the vehicle body **158** to the movable underbody **101**.

There are other arrangements of stabilization linkages that will achieve a similar result of substantially fixing the horizontal position of the movable underbody **101** (Fig. 1A) while allowing the movable underbody **101** to freely move vertically and orient about any horizontal axis. A single linkage may be used, but this arrangement does not well resist rotation of the movable underbody **101** about a vertical axis. More than two linkages may be used if they are aligned or nearly so. The linkages may also be located away from the midline of the movable underbody **101**, even upon the base of the suspension, and aligned along other than a longitudinal axis. None of these variants, however, is as simple or effective as those of the embodiments described above. Additionally, the linkages may be reversed in orientation so that the stabilization hinges **109f** and **109r** are mounted on the vehicle body **158** (Fig. 1A) and the ball joints **107f** and **107r** mounted on the vehicle underbody **101**. Fig. 3B shows this latter arrangement using T-shaped stabilization linkages **208f** and **208r**.

In addition to the various possible shapes and arrangements of simple stabilization linkages just discussed, additional, but somewhat more complex linkage embodiments in accordance with the present invention are illustrated in Figs. 14 - 16. Fig. 14A is an elevation view of a front telescoping stabilization linkage **308f** and movable underbody **101**. The front telescoping stabilization linkage **308f** is shown in its fully retracted position and attached to the movable underbody **101**. The linkage consists of a front cylinder **134f** that slidably accommodates a front piston **135f**. The front piston **135f** is attached to a front ball joint **107f**, as described for the preferred stabilization linkage embodiment, comprising a front ball **127f** that articulates with a front socket **128f**. The front socket **128f** is attached within the movable underbody **101**.

Fig. 14B shows a transverse cross-sectional view of a vertically oriented rear telescoping stabilization linkage **308r** taken along line 14B – 14B of Fig. 14E. The rear telescoping stabilization linkage **308r** is shown in partially extended position. The linkage comprises a front cylinder **134r** that slidably accommodates a rear piston **135r**. The front and rear pistons **135f** (Fig. 14A) and **135r** (Fig. 14B) include appropriately sized air holes on their upper surfaces (not shown) to allow air to freely move within the

telescoping stabilization linkages **308f** (Fig. 14A) and **308r** (Fig. 14B). The rear piston **135r** is attached to a rear ball joint **107r**, as described for the preferred stabilization linkage embodiment, comprising a rear ball **127r** that articulates with a rear socket **128r**. The rear socket **128r** is connected to a sliding mechanism **106** as described for the preferred sliding mechanism embodiment, comprising a ball base **130** that slides longitudinally within a mounting track **131**. The sliding mechanism **106** is attached within the movable underbody **101**. Fig. 16A is an elevation view of the left side of a vehicle fitted with a movable underbody **101** and telescoping stabilization linkages **308f** and **308r**.

Figs. 14C-E are elevation views of the rear telescoping stabilization linkage **308r** showing the freedoms of movement of the movable underbody **101**. Fig. 14C shows rotation of the movable underbody **101** about a transverse axis. Fig. 14D shows elevation and depression of the movable underbody **101**. Fig. 14E shows fore-and-aft motion of the movable underbody **101**. Rotation of the movable underbody **101** about a longitudinal axis (not shown) is the same as shown in Fig. 14C, but as seen from frontal view. With respect to the front telescoping stabilization linkage **308f**, the freedoms of movement of the movable underbody **101** are the same, except that there is no fore-and-aft freedom of movement.

Figs. 15A-E show front and rear stabilization linkages of a pantographic design in accordance with the present invention. Fig. 15A is an elevation view and Fig. 15C is a perspective three-quarter view of a front pantographic stabilization linkage **408f** in an extended position. The front pantographic stabilization linkage **408f** comprises a front base plate **136f** and front ball plate **137f** connected by two sets of front folding support rods **138f**. One end of each front folding support rod is articulated through a front support rod hinge **139f** to either the front base plate **136f** or front ball plate **137f** while the other end of each front folding support rod is attached to either the base plate or ball plate through a front support rod slider **140f**. The front ball plate **137f** is attached to a front ball joint **107f** (Fig. 1A) as described for the basic embodiment with the ball **127f** of the front ball joint **107f** (Fig. 1A) shown in Figs. 15A-C and the ball **127r** of the rear ball joint **107r** (Fig. 1A) shown in Figs. 15D-E. Fig. 15B is an elevation view of a front pantographic stabilization linkage **408f** in its fully elevated position. Fig. 15D is an

elevation view and Fig. 15E a front view of a rear pantographic stabilization linkage **408r** in an extended position. The rear pantographic stabilization linkage **408r** includes equivalent components to those described for the front pantographic stabilization linkage **408f**, viz. rear base plate **136r**, rear ball plate **137r**, rear folding support rods **138r**, rear support rod hinges **139r**, and rear support rod sliders **140r**, interconnected in the same way as described above for the pantographic front stabilization linkage **408f**. The rear ball plate **137r** of the rear pantographic stabilization linkage **408r** is attached to a sliding mechanism **106** as described with reference to the above-disclosed basic embodiment comprising a mounting track **131** and sliding ball base **130**. The sliding ball base **130** is attached to a rear ball joint **107r** (Fig. 1A) as described for the basic embodiment with the ball **127r** of the rear ball joint **107r** (Fig. 1A) shown in Figs. 15D-E. Alternatively, the ball **127r** of the rear ball joint **107r** (Fig. 1A) may be directly attached to the rear ball plate **137r** and the sliding mechanism **106** attached to the movable underbody **101**, as described above for the rear telescoping stabilization linkage **308r** (Fig. 14B). Fig. 16B is an elevation view of the left side of a vehicle fitted with a movable underbody **101** and pantographic stabilization linkages, **408f** and **408r**.

Stabilization linkages of both telescoping and pantographic design allow the movable underbody **101** to have a linear, vertical path of movement.

The foregoing disclosure of stabilization linkage embodiments and alternative arrangements should be read as illustrative of stabilization linkage means only and should not be construed as limiting. It is possible, though not desirable, to eliminate the stabilization linkage means altogether from a design of a movable underbody device in accordance with the present invention. Without such a stabilization linkage means, however, the movable underbody **101** will tend to swing from its support linkage attachment points on the vehicle's suspension. It is possible to design an alternative system for stabilizing the horizontal position of the movable underbody **101** that involves components extending between the suspension system and the movable underbody **101**. Such an alternative stabilization system would, however, tend to increase the unsprung mass of the vehicle.

Figs. 17-18 – Additional Embodiments of the Stabilization linkage ball joints and sliding mechanism

In any embodiment of the front or rear stabilization linkages, the ball joint **107f** (Fig. 1A) or **107r** (Fig. 1A) may be reversed so that the ball **127f** (Fig. 6A) or **127r** (Fig. 6E) is on the end of the stabilization linkage, rather than the socket **128f** (Fig. 6A) or **128r** (Fig. 6E). Likewise, in any embodiment of a front or rear stabilization linkage, the orientation of the stabilization linkages may be reversed so that the hinge **109f** (Fig. 3A) or **109r** (Fig. 3A) and ball joint **107f** or **107r** on the ends of the stabilization linkages are correspondingly reversed. That is, the hinges **109f** and **109r** may be located on the vehicle body **158** (Fig. 1A) and the ball joints **107f** and **107r** located on the movable underbody **101**, as shown in Fig. 3B. Switching the orientations of the stabilization linkages, and thus the articulations, results only in a minor difference in the geometry of the movement of the movable underbody **101**. Additionally, the sliding mechanism **106** may be positioned at the base of either ball joint **107f** or **107r** or, much less optimally, at the base of either hinge **109f** or **109r** if the hinge is made narrow enough. Rod end couplings and similar coupling devices are functionally equivalent to ball joints.

Fig. 17A and 17C are perspective front three-quarter views from below of a universal joint **207f** in accordance with the present invention. In the context of the presently disclosed subject matter, a universal joint of this type is functionally equivalent to a ball joint. The front universal joint **207f** is connected to the end of the front stabilization linkage **108f**. Fig. 17B is an exploded view of the front universal joint **207f**, which comprises a front universal joint base **141f** that bears a front first bracket **142f** and front second bracket **143f** that between them support a front support rod **144f**. On the front support rod **144f** articulates a front spider **145f** that is free to rotate about a longitudinal axis relative to the base of the front universal joint **141f**. On the front spider **145f** is a transversely oriented front hinge **146f** connected to the front end of the front stabilization linkage **108f**. The front hinge allows the front stabilization linkage **108f** to rotate about a transverse axis relative to the front spider **145f**. Fig. 17C shows these freedoms of movement of the front stabilization linkage **108f** relative to the front universal joint base **141f**. These freedoms of movement are rotation through a transverse axis between front spider **145f** and the end of the front stabilization linkage

108f and rotation through a longitudinal axis between the front spider **145f** and the base of the front universal joint **141f**. These two axes of rotation allow the front stabilization linkage **108f** to assume any position required so that the movable underbody **101** may conform to any position of the roadway **199** (Fig. 10A) relative to the vehicle body **158** (Fig. 1A).

Figs. 18A-B are perspective front three-quarter views from below of a universal joint **207r** in accordance with the present invention. For purposes of the presently disclosed subject matter, a universal joint of this type is functionally equivalent to a ball joint mounted on a sliding mechanism. This rear universal joint with integral slider **207r** is connected to the front end of the rear stabilization linkage **108r**. As shown in Fig. 18A, the rear universal joint with integral slider **207r** comprises a rear universal joint base **141r**, a rear first bracket **142r** and rear second bracket **143r** between which is connected a rear support rod **144r**. On the rear support rod **144r** articulates a rear spider **145r** that is free to rotate about a longitudinal axis and to move back-and-forth longitudinally along the rear support rod **144r** relative to the rear universal joint base **141r**. On the rear spider **145r** is a transversely oriented rear hinge **146r** connected to the front end of the rear stabilization linkage **108r**. The rear universal joint with integral slider **207r** is identical to the front universal joint **207f** (Fig. 17A) except that the separation between the first and second brackets **142r** and **143r** is greater and the rear support rod **144r** is longer. This allows the rear spider **145r** to move back-and-forth longitudinally relative to the rear universal joint base **141r**, as shown in Fig. 18B.

Fig. 3B is a perspective rear three-quarter view of a movable underbody with minimal inlet and diffuser **201** (see additional embodiments of the movable underbody below) with a front universal joint **207f** and rear universal joint with integral slider **207r** mounted on pylons **198f** and **198r**, and with T-shaped stabilization linkages **208f** and **208r** in reversed orientation.

There are other arrangements that will perform the same function as the sliding mechanisms herein described. For example, a stabilization linkage, such as **208r**, may incorporate a telescoping section at some point along its length or a stabilization linkage may be composed of a pair of arms that may articulate about a transverse axis. Both

these alternatives effectively include the function of a sliding mechanism in the structure of a stabilization linkage.

In accordance with the spirit and scope of the present invention, the foregoing disclosure of ball joint embodiments, universal joint embodiments, and sliding mechanism embodiments should be read as illustrative and should not be construed as limiting the invention to these specific devices.

Figs. 7B-I and 8F-G – Additional Embodiments of the Support Linkages

Figs. 7B-H show additional embodiments of tensile support linkages in accordance with the present invention. Fig. 7B shows a cable support linkage, exemplified by **204c** (the corresponding cable support linkages of the other three corners are identical), and Fig. 7C shows a Kevlar webbing support linkage, exemplified by **304c** (the corresponding Kevlar webbing support linkages of the other three corners are identical). Both cable support linkages, such as **204c**, and Kevlar webbing support linkages, such as **304c**, may be attached along their lengths to a thin flat spring adapted to bend the support linkages toward the vehicle body **158** when not under tensile load so that support linkage tensioner springs, exemplified by **159c – 159d** (Fig. 2A), are not required. Kevlar webbing support linkages, exemplified by **304c**, may be light, extremely strong for their weight, and resistant to breakage. Of course, Kevlar rope may also be used for this purpose. Fig. 8F is an exploded view of a left rear upper support bracket **103c** (Fig. 3A) mounted on a left rear upper control arm **121c** (Fig. 2A) and a cable support linkage **204c** showing how the cable support linkage **204c** may be secured to the upper support bracket **103c** using a pivot bolt **5000**. The same system may be used to attach the lower end of the cable support linkage **204c** to the lower support bracket **105c** (Fig. 3A). Fig. 8G shows a perspective left side view of the apical end of the left rear upper control arm **121c** (Fig. 2A) and upper support bracket **103c** (Fig. 3A) attached to a Kevlar webbing support linkage **304c** using a large pivot bolt **5010**.

Fig. 7D is a perspective view and Fig. 7E is a frontal view of an additional embodiment of a tensile support linkage, exemplified by **404c**, comprising an articulating pair of arms. This articulating support linkage **404c** (the corresponding

articulating support linkages of the other three corners are identical) comprises an upper arm **147c** and lower arm **148c**. The lower arm **148c** bears a stop **149c** that prevents full extension of the articulating pair of arms **404c** so that the linkage will fold consistently and always in the same direction. Fig. 7E shows the extended and compressed positions of the articulating support linkage **404c**. Fig. 7F is an elevation view of a fully-extended telescoping support linkage, exemplified by **504c**, with a frontal cross-sectional view of the same shown in Fig. 7G taken along the line 7G – 7G in Fig. 7F, and a frontal view of the same in fully-compressed conformation shown in Fig. 7H. This telescoping support linkage, exemplified by **504c** (the corresponding telescoping support linkages of the other three corners are identical), comprises an outer cylinder **150c** and an inner piston **151c**. The lower end of the piston **151c** bears appropriately-sized air holes to allow air to move within the telescoping support linkage **504c**.

Support linkages that are composed of articulating pairs of arms, such as **404c**, or telescoping rods, such as **504c**, may be articulated to the upper support brackets **103a – 103d** and lower support brackets **105a – 105d** through rod-end bearings **152**. This will impart the necessary freedom of movement to allow the support linkages to freely align with axial forces between the upper support brackets **103a – 103d** and lower support brackets **105a – 105d**. A pivot bolt of appropriate size may be used to attach support linkage embodiments that include rod end bearings **152** to the upper support brackets **103a – 103d** (Fig. 3A). A pivot bolt may also be used to attach the lower end of support linkage embodiments that include a rod end bearing **152** to the lower support brackets **105a – 105d**. Rod-end bearings **152** are generally not necessary when using support linkages composed of roller chain **104a – 104d** (Fig. 3A), cable, exemplified by **204c**, and Kevlar webbing, exemplified by **304c**, because of the inherent flexibility of such linkages. With any of these embodiments, more than a single support linkage may be used at each corner area of the vehicle to provide a failsafe should a support linkage break.

Figs. 8F-G show a portion of the left rear support linkage of two embodiments and how these linkage embodiments may be attached to the left rear upper support bracket **103c**. The means of attachment are identical for the support linkages at the other corners of the vehicle to the corresponding upper support brackets not shown

(**103a – 103b** and **103d**, shown in Fig. 3A). These support linkages may all be fastened to the upper support brackets **103a – 103d** (Fig. 3A) with pivot bolts of various dimensions.

All of the above listed support linkage embodiments may exhibit sufficient tensile strength and the ability to be freely compressed in length. They represent just some examples of tensile support linkage systems. Tensile support linkages that provide a degree of resistance to compression (through the use of integral springs, for example) are also possible. The foregoing disclosure of tensile support linkage systems should be read as illustrative and should not be construed as limiting.

Fig. 7I shows a rigid support linkage, exemplified by **604c** (the corresponding rigid support linkages of the other three corners are identical). The ends of rigid support linkages, exemplified by **604c**, may be attached to the upper support brackets **103a – 103d** (Fig. 3A) and lower support brackets **105a – 105d** (Fig. 3A) through rod-end bearings **152** and appropriately-sized pivot bolts to allow the linkage to align with axial forces between the movable underbody **101** and attachment point on the vehicle's suspension. The rigid support linkages, exemplified by **604c**, do not, in themselves, allow the movable underbody **101** (Fig. 1A) to be retracted and disengaged from the suspension through elevation of the movable underbody **101**. If rigid support linkages, exemplified by **604c**, are to be used and if the movable underbody **101** is to be made retractable and capable of being disengaged from the suspension, then alternative systems to disengage the movable underbody **101** from the suspension must be provided. Effectively rigid support linkages that allow compression under comparatively high compressive loads are also possible. Indeed, a continuum of support linkage embodiments is possible, from perfectly rigid to freely compressible. It is also possible to use support linkage embodiments capable of a degree of extension under load.

All of the foregoing examples of support linkage embodiments described should be read as illustrative of support linkage systems only and not construed as limiting. As discussed below under additional embodiments of the lower support brackets, it is possible to eliminate the support linkage system from a design of a movable underbody device that is still in accordance with the present invention. Without such a support

linkage system, the movable underbody **101** (Fig. 1A) is supported from the vehicle's suspension by directly opposing the lower and upper support brackets (see below).

Figs. 8C-E, 22-23, 24A, 25, 26A, 27 – Additional Embodiments of the Upper Support Brackets

The upper support brackets **103a – 103d** (Fig. 3A) may be attached as near to the apical ends of the suspension as possible. This may be at or near the ends of either the upper control arms **121a – 121d** (Fig. 1A, 2A, 12G) or lower control arms, exemplified by **122c – 122d** (Fig. 2A), in vehicles fitted with double-wishbone suspension systems. In vehicles fitted with a McPherson/Chapman strut suspension system the bracket may be situated at or near the end of the control arm. It is also possible to mount the upper support brackets **103a – 103d** on the suspension uprights, exemplified by **123c – 123d** (Fig. 2A), taking into account that the front suspension uprights rotate with the vehicle's steering movements. Regardless of suspension type, however, any portion of the vehicle's suspension that reciprocates to some degree with the corresponding wheel **124a – 124d** (Fig. 30A) may potentially serve as a mounting point for the corresponding upper support bracket **103a – 103d**.

As previously noted and shown in Figs. 10A-D, the movable underbody **101** moves substantially with the roadway **199** (Fig. 10A) relative to the vehicle body **158** when the upper support brackets **103a – 103d** (Fig. 3A) are mounted at or near the apical ends of the suspension control arms. The vertical load generated by the movable underbody **101** is also substantially applied directly to the unsprung portions of the vehicle's suspension and therefore more directly to the vehicle wheels **124a – 124d** (Fig. 30A). If more basal positions on the suspension control arms are chosen for the mounting points of the upper support brackets **103a – 103d** (or positions on other portions of the vehicle's suspension that reciprocate less perfectly with the corresponding vehicle wheels **124a – 124d** than the ends of the suspension control arms), the movable underbody **101** (Fig. 1A) will move more substantially relative to the roadway **199** with the vehicle's suspension movements. The vertical load generated by the movable underbody **101** will also be less directly applied to the unsprung components of the vehicle's suspension and thus less directly to the vehicle wheels

124a – 124d. Mounting the upper support brackets **103a – 103d** more basally on the upper control arms **121a – 121d** (Fig. 1A, 2A, and 12G) or lower control arms, exemplified by **122c – 122d** (Fig. 2A) (or on other portions of the vehicle's suspension that reciprocate less perfectly with the corresponding wheels **124A – 124D** than the ends of the suspension control arms), at least has the benefit of making the movable underbody **101** maintain a more constant distance and orientation above the roadway being traversed than maintained by the vehicle body **158**.

Fig. 26 is a perspective side view of the left rear upper control arm **121c** with an additional embodiment of the upper support bracket consisting of a basal upper support bracket with bellcrank **903c**. The purpose of this additional embodiment of the upper support bracket is to allow the movable underbody **101** to move more substantially in unison with the vehicle wheels **124a – 124d** while, at the same time, mounting the upper support brackets, exemplified by **903c**, away from the ends of the upper control arms, exemplified by **121c**. The same would apply for corresponding mounting positions on the lower control arms, exemplified by **122c**, and the control arms of Chapman/McPherson strut suspension systems.

The basal upper support bracket with bellcrank, exemplified by **903c**, consists of a crank **177c**, attached and articulated to a mounting bracket **178c**, with a pivot bolt **170c**. The basal upper support bracket with bellcrank, exemplified by **903c**, is attached to a pushrod **179c**, that is itself attached to a pushrod mount **180c**, attached at an appropriate point on the vehicle body **158** between the upper control arm **121c**, and lower control arm **122c**. The basal end of the pushrod, exemplified by **179c**, is secured to the pushrod mount **180c**, by a clevis, while the apical end of the pushrod **179c**, is attached by a clevis to the lower end of the crank **177c**. The upper, medial end of the crank, exemplified by **177c**, is attached to the upper end of the support linkage **104c**, the lower end of which attaches to a medially situated lower support bracket **805c**. When the upper control arm, exemplified by **121c**, moves upward as part of the vehicle's suspension movements, the pushrod **179c**, pulls on the crank **177c**, causing the crank **177c** to rotate such that the inner end of the crank is elevated above the point of attachment between the crank **177c**, and upper control arm **121c**. This compensates for the reduced movement of the upper attachment point of the support linkage,

exemplified by **104c**, at this more basal position on the upper control arm **121c**. If the linkage were to be attached directly to a simple upper support bracket **103c** at this position, movement of the upper attachment point of the support linkage, and thus movement of the movable underbody **101** relative to the vehicle body **158**, would be noticeably less than the movement of the vehicle wheels **124a – 124d** relative to the vehicle body **158**. Such an arrangement, while still in accordance with the present invention, is typically less ideal than mounting the upper support brackets nearer the end of the suspension, as described for the basic embodiment.

Figs. 27A-D are rear cross-sectional views immediately behind the rear wheels **124c – 124d** of a vehicle equipped with basal upper support brackets with bellcrank, exemplified by **903c – 903d**, in accordance with the present invention. Also shown in Figs. 27A-D are the corresponding pushrods, exemplified by **179c – 179d**, pushrod mounts, exemplified by **180c – 180d**, and medially-situated lower support brackets, exemplified by **805c – 805d**. The direction of sight in these Figures is in accordance with the direction of sight indicated by cross-sectional line 2A – 2A of Fig. 1A. As shown in Figs. 27A-C, the movable underbody **101** moves correctly when right and left suspension components move together, as when the vehicle heaves or pitches. However, it does not position the movable underbody **101** correctly when the vehicle rolls, as shown in Fig. 27D. To maintain a near constant positional relationship between the movable underbody **101** and roadway **199** for all orientations of the vehicle body **158** relative to the roadway **199**, a simple solution is to mount the upper support brackets **103a – 103d** near the apical free ends of the vehicle's upper control arms **121a – 121d** (as in the basic embodiment), lower control arms, exemplified by **122c – 122d**, or suspension uprights, exemplified by **123c – 123d** (Fig. 2A).

Several additional embodiments of an upper support bracket are now described. Fig. 8C is a perspective side view and Fig. 8D is an exploded view of the left rear upper control arm **121c** with an alternative embodiment to a simple upper support bracket in accordance with the present invention. In this embodiment, the upper support bracket incorporates a bellcrank mechanism. The upper support bracket with bellcrank, exemplified by **603c**, redirects the tension from the support linkage, exemplified by **104c**, via a pushrod, exemplified by **166c**, to a movable underbody height-adjustment

actuator, exemplified by **167c**, mounted at the base of the suspension. The bellcrank mechanism, exemplified by **603c**, comprises a mounting bracket **168c**, crank **169c**, and crank mounting bolt **170c**. The purpose of this arrangement is to allow the ride height of the movable underbody **101** (Fig. 1A) to be adjusted by height-adjustment actuators, exemplified by **167c**, (see below) while driving. The height-adjustment actuators, exemplified by **167c**, may be mounted toward the base of the vehicle's suspension as shown or, alternatively, within the vehicle body **158** (Fig. 1A). If the height-adjustment actuators, exemplified by **167c**, are to be mounted within the vehicle body **158**, the pushrods, one of which is exemplified by **166c**, should attach to the corresponding height-adjustment actuators, exemplified by **167c**, or a bellcrank arrangement (or similar) attached thereto, at a point along the axis of rotation of the upper control arms **121a – 121d** (Fig. 1A, 2A, and 12G) with the vehicle body **158**. This ensures that there is no significant movement of the pushrods caused by suspension movements. The same is true if elongate cable, exemplified by **804c** (Fig. 22B) or elongate roller chain support linkages, one of which is exemplified by **704c** (Fig. 22A), are used. That is, the basal portion of each cable or roller chain support linkage should pass through a point along the axis of rotation of the upper control arms **121a – 121d** with the vehicle body **158**. This may be accomplished through use of an appropriate sprocket for an elongate roller chain support linkage, exemplified by **704c**, or an appropriate pulley for an elongate cable support linkage, exemplified by **804c**. The height-adjustment actuators, exemplified by **167c**, may be of various types, including, for example, electric, pneumatic, or hydraulic actuators and be of sufficient strength to deal with the vertical loads generated by the movable underbody **101**.

Between the pushrods (e.g., **166c**) and movable underbody height-adjustment actuators, exemplified by **167c**, may be placed downforce-measuring strain gauges, one of which is exemplified by **171c** in Fig. 8E. The downforce-measuring strain gauges, exemplified by **171c**, are used to measure the load on the support linkages **104a – 104d** (Fig. 3A). Because the support linkages **104a – 104d** are vertically oriented (or nearly so), the amount of load measured by the downforce-measuring strain gauges, exemplified by **171c**, gives close to a direct measure of downforce generated by the movable underbody **101**. This is because horizontal loads imparted by the

movable underbody **101** to the rest of the vehicle are dealt with by the stabilization linkages **108f** and **108r** (Fig. 1A). Further, because the support linkages **104a – 104d** are situated toward the corner areas of the movable underbody **101**, differences in measured load between the four downforce-measuring strain gauges may give a direct measure of the downforce distribution, front-to-rear and side-to-side, that is generated by the movable underbody **101**. The ability to directly measure downforce load and the distribution of that load to the four wheels **124a – 124d** (Fig. 30A) is an advantage of the present invention over the prior art.

Using a computer processor, microcontroller, analog circuitry, or the like (“computer processor”) the measured loads at each of the four wheels **124a – 124d** (Fig. 30A), along with position and motion data from the vehicle’s suspension, if desired, may be used to estimate instantaneous tire adhesion levels at each wheel **124a – 124d** while driving. These estimated tire adhesion or grip levels may then be compared by the computer processor with the horizontal loads sensed by a two-axis accelerometer sensor. The difference between instantaneous horizontal loads and instantaneous grip levels may then be output to the driver through appropriate visual or auditory output systems, such as lights, display screens, and/or speakers. When horizontal loads approach or exceed estimated grip levels, for example, a warning signal may be conveyed to the driver.

Fig. 22A is a rear view of the left rear suspension of a vehicle with an alternative embodiment for redirecting the tension of a roller chain support linkage to the base of the vehicle’s suspension, in accordance with the present invention. The direction of sight in Fig. 22A is in accordance with the direction of sight indicated by cross-sectional line 2A – 2A of Fig. 1A. This embodiment comprises an upper support bracket with sprocket, exemplified by **703c**, that supports and redirects the tension of an elongated roller chain support linkage, exemplified by **704c**, to a basally-mounted movable underbody height-adjustment actuator, exemplified by **167c**. Fig. 22B shows a comparable mechanism for use with an elongated cable support linkage, exemplified by **804c**, comprising an upper support bracket with pulley, exemplified by **803c**, that supports and redirects the tension of an elongated cable support linkage, exemplified by **804c**, to a basally-mounted movable underbody height-adjustment actuator, exemplified by

by **167c**. The direction of sight in Fig. 22B is in accordance with the direction of sight indicated by cross-sectional line 2A – 2A of Fig. 1A.

Mounting the movable underbody height-adjustment actuators, exemplified by **167c** (Fig. 8E), and/or downforce-measuring strain gauges, exemplified by **171c** (Fig. 8E), basally on the suspension provides more room for these components than if such components were to be mounted more apically on the vehicle's suspension. A basal mounting position on the vehicle's suspension also separates these components from the most severe suspension vibrations at the end of the control arms and from the heat generated by the vehicle's brakes. Additionally, when mounted basally on the vehicle's suspension or on the vehicle body **158**, the mass of the movable underbody height-adjustment actuators, exemplified by **167c**, and downforce-measuring strain gauges (e.g., **171c**) contributes less to the unsprung mass of the vehicle. Less unsprung mass generally benefits vehicle handling.

The ride height and orientation of the movable underbody **101** (Fig. 1A) may be changed while driving by using the four movable underbody height-adjustment actuators, exemplified by **167c** (Fig. 8C). The movable underbody **101** may be raised and lowered by all four movable underbody height-adjustment actuators, exemplified by **167c**, working in unison to either lift or lower the corresponding support linkages **104a** – **104d** (Fig. 3A). If the height-adjustment actuators, exemplified by **167c**, are adapted to produce sufficient throw, they may substantially lift the movable underbody **101** to the vehicle body **158** (Fig. 1A) and thus serve to retract the movable underbody **101** without disengaging the structure from the vehicle's suspension (see additional embodiments of the retraction means, below). Change in the fore-and-aft pitch or left-and-right roll of the movable underbody **101** may be accomplished through the differential lowering and raising of the appropriate support linkages **104a** – **104d** by the movable underbody height-adjustment actuators, exemplified by **167c**. For example, the movable underbody **101** may be pitched forward by lowering the two front support linkages **104a** and **104b**, and raising the two rear support linkages **104c** and **104d**. All of the appropriate inputs to the movable underbody height-adjustment actuators, exemplified by **167c**, may be coordinated by a computer processor to translate inputs from the driver and/or from one or more sensors. Such sensors may include, for example, the

downforce-measuring strain gauges, exemplified by **171c** (Fig. 8E), and a body-mounted two-axis accelerometer sensor **172** (Fig. 24A). The ability to readily change the ride height and orientation of the movable underbody **101** while driving is enabled by the novel suspension-mounted support means of the movable underbody **101** of the basic embodiment of the present invention. Further, it is an advantage of the present invention over the prior art.

Fig. 24A is a block diagram of an example of a movable underbody height-adjustment control means in accordance with the present invention. In this example, the four movable underbody height-adjustment actuators **167a – 167d** are controlled by a movable underbody height-adjustment electronic control unit (“ECU”) **173** that is responsive to a driver-operated movable underbody height-adjustment on/off switch **174**, a body-mounted two-axis accelerometer sensor **172**, a movable underbody position sensor **175**, and suspension position sensors **176a – 176d** at each corner of the vehicle.

The foregoing movable underbody height-adjustment control means is just one example of possible movable underbody height-adjustment means pursuant to the present invention. The potential uses of such a movable underbody height-adjustment control means are now described.

In its deployed position, the movable underbody **101** (Fig. 1A) may be set below the vehicle body **158** (Fig. 1A) at its lowest position at maximal vehicle suspension compression or jounce. This ensures that the vehicle body **158** will not impact the movable underbody **101** during the vehicle’s suspension movements. With a movable underbody height-adjustment control means like that described above, however, the movable underbody **101** may be set at a higher position and the movable underbody height-adjustment control means programmed to lower the movable underbody **101** when the vehicle body **158** would otherwise contact the movable underbody **101** during suspension compression. The movable underbody height-adjustment control means may then restore the normal movable underbody **101** position as the vehicle suspension reassumes a less compressed state. Imminent contact between the vehicle body **158** and the movable underbody **101** may be calculated by the movable underbody height-adjustment ECU **173** (Fig. 24A) using input from the suspension position sensors **176a**

– 176d (Fig. 24A). Alternatively or additionally, portions of the movable underbody 101 may be made from flexible material to accommodate contact with portions of the vehicle body 158 or suspension components such as the lower control arms exemplified by 122c and 122d (Fig. 2A).

Because the movable underbody 101 (Fig. 1A) works in ground effect, its ride height and orientation relative to the roadway 199 (Fig. 1A) may have a significant effect on overall levels of generated downforce. These parameters may be varied to select a particular downforce level at a given time. On a closed-course racetrack, for example, a high-downforce configuration may be selected during a turn or in a braking zone, and a low-downforce configuration selected while on a straight. A high-downforce configuration might, for example, be characterized by a slightly pitched forward, comparatively low movable underbody 101 ride height. On the other hand, a low-downforce configuration might, for example, be characterized by a markedly pitched rearward, comparatively high movable underbody 101 ride height. The movable underbody height-adjustment control means described above may use input from the two-axis accelerometer sensor 172 (Fig. 24A) to determine the downforce configuration required at any particular time. Variation in movable underbody ride height and orientation may be combined with changes to the angle of an adjustable underbody diffuser and/or adjustable inlet for enhanced aerodynamic effect (see additional movable underbody embodiments below).

In addition to affecting the overall level of downforce generated by the movable underbody 101 (Fig. 1A), a change in movable underbody orientation relative to the roadway 199 (Fig. 1A) may shift the center of aerodynamic pressure generated by the movable underbody 101, and thus downforce, forward or back. Figs. 23A-C are elevation views of the left side of a vehicle in accordance with the present invention. These figures show the effect of changes in the orientation of the movable underbody 101 to the distribution of downforce to the front and rear wheels (F_f and F_r). A slightly pitched-forward movable underbody orientation tends to apply more downforce to the front wheels 124a – 124b (Fig. 23B, F_f), while a slightly pitched-rearward movable underbody orientation tends to apply more downforce to the rear wheels 124c – 124d (Fig. 23C, F_r) when compared with a more neutral movable underbody orientation (Fig.

23A). This effect may be used to change the distribution of downforce between the front wheels **124a – 124b** (Fig. 30A) and rear wheels **124c – 124d** (Fig. 30A) to best match downforce requirements during different vehicle maneuvers, such as vehicle braking, accelerating, or turning. Shifting downforce load to the rear wheels **124c – 124d**, for example, is desirable during braking because it counteracts the natural forward shift in weight that occurs at that time and leads to a more equal distribution in tire grip. Side-to-side changes in movable underbody orientation may be used to counter differential tire compression during a turn.

With a movable underbody height-adjustment control means, such as described above, the height and orientation of the movable underbody **101** (Fig. 1A) may be automatically adjusted to a preset, low-downforce configuration. This might occur, for example, when input from a two-axis accelerometer sensor **172** (Fig. 24A) is below a certain preset level, indicating that the vehicle is not experiencing high accelerative forces. When input from the two-axis accelerometer sensor **172** exceeds that preset level, the height and orientation of the movable underbody **101** may be adjusted to a preset, high-downforce configuration. Further, when accelerative forces exceed such a preset level, the direction of acceleration may be used to determine whether the movable underbody is to be adjusted to one of: a) a neutral configuration, b) a configuration with downforce biased to the front wheels **124a – 124b** (Fig. 30A), or c) a configuration with downforce biased to the rear wheels **124c – 124d** (Fig. 30A). In this example of a movable underbody height-adjustment control means, the driver may override the movable underbody height-adjustment by turning the system off with the driver-operated on/off switch **174** (Fig. 24A). Of course, a more complex system may be designed. Such a system might give the driver direct control of overall generated downforce levels and the distribution of that downforce to the front and rear wheels, while driving. This is comparable to how many race cars are fitted with a mechanism that allows the driver to continuously vary the brake bias between the front and rear wheels during driving.

Fig. 25 is a flowchart of an example of a process that may be performed by a movable underbody height-adjustment ECU **173** (Fig. 24A) to produce the functions described in the preceding paragraph. The first step in the process, Step **1000**, is

detecting the movable underbody position through input from the movable underbody position sensor **175** (Fig. 24A) to the movable underbody height-adjustment ECU **173** (Fig. 24A). The process then proceeds to Step **1001** where the position of the movable underbody **101** (Fig. 1A), as detected in Step **1000**, is used to determine if a series of steps will be performed. If the movable underbody **101** is deployed then a series of steps beginning with Step **1002** is performed. On the other hand, if the movable underbody is not deployed, then the process proceeds back to Step **1000**, which is described above. The purpose of Step **1000** and Step **1001** is simply to ensure that the movable underbody height-adjustment control means may be activated only when the movable underbody **101** is deployed.

In Step **1002** the position of the driver-operated height-adjustment control means on/off switch **174** (Fig. 24A) is detected through input to the movable underbody height-adjustment ECU **173** (Fig. 24A). The process then proceeds to Step **1003** where the switch position detected in Step **1002** is used to determine which further steps will be performed. If the switch is detected to be in the on position, then the process proceeds to Step **1004**. Otherwise, the process proceeds back to Step **1000**, which is described above.

In Step **1004** the absolute acceleration level is detected through input to the movable underbody height-adjustment ECU **173** (Fig. 24A) from the two-axis accelerometer sensor **172** (Fig. 24A). The absolute acceleration level may be categorized as a) not exceeding a preset threshold level stored in the movable underbody height-adjustment ECU **173** or b) exceeding that preset threshold level. The process then proceeds to Step **1005**. In Step **1005**, the result from Step **1004** is used to determine which further steps will be performed. If the absolute acceleration level does not exceed the preset threshold level, then the process proceeds to Step **1006**. On the other hand, if the absolute acceleration level exceeds the preset threshold level, then the process proceeds to Step **1007**.

In Step **1006**, the movable underbody **101** (Fig. 1A) is positioned in a preprogrammed low-downforce configuration using preprogrammed positional data stored in the movable underbody height-adjustment ECU **173** (Fig. 24A) for each of the

four movable underbody height-adjustment actuators **167a – 167d** (Fig. 24A). The process then proceeds back to Step **1000**, which is described above.

In Step **1007**, the direction of acceleration is detected through input to the movable underbody height-adjustment ECU **173** (Fig. 24A) from the two-axis accelerometer sensor **172** (Fig. 24A). The direction of acceleration may be categorized as a) being within a preset threshold of rearward acceleration, b) being within a preset threshold of forward acceleration, or c) not being within either the rearward or forward acceleration thresholds. The process then proceeds to Step **1008**, where the direction of acceleration, as detected in Step **1007**, is used to determine which further steps will be performed. If the direction of acceleration is categorized as being within the preset threshold of rearward acceleration (i.e. hard braking), then the process proceeds to Step **1009**. Otherwise, the process proceeds to Step **1010**.

In Step **1009**, the movable underbody **101** (Fig. 1A) is positioned in a preprogrammed high-downforce, rearward bias configuration using preprogrammed positional data stored in the movable underbody height-adjustment ECU **173** (Fig. 24A) for each of the four movable underbody height-adjustment actuators **167a – 167d** (Fig. 24A). The process then proceeds back to Step **1000**, which is described above.

In Step **1010**, the direction of acceleration as detected in Step **1007** is used to determine which further steps will be performed. If the direction of acceleration is categorized as being within the preset threshold of forward acceleration, then the process proceeds to Step **1011**. Otherwise, the process proceeds to Step **1012**.

In Step **1011**, the movable underbody **101** (Fig. 1A) is positioned in a preprogrammed high-downforce, forward bias configuration using preprogrammed positional data stored in the movable underbody height-adjustment ECU **173** (Fig. 24A) for each of the four movable underbody height-adjustment actuators **167a – 167d** (Fig. 24A). The process then proceeds back to Step **1000**, which is described above.

In Step **1012**, the movable underbody **101** (Fig. 1A) is positioned in a preprogrammed high-downforce, neutral configuration using preprogrammed positional data stored in the movable underbody height-adjustment ECU **173** (Fig. 24A) for each of the four movable underbody height-adjustment actuators **167a – 167d** (Fig. 24A). The process then proceeds back to Step **1000**, which is described above.

Figs. 19B-E, 20-21 – Additional Embodiments of the Lower Support Brackets

Figs. 19B-D show a left rear adjustable lower support bracket **205c** that is in accordance with the present invention. The adjustable lower support brackets in the three other corner areas of the vehicle are identical to that shown for the left rear corner area. Fig. 19C is a rear perspective view of the left rear adjustable lower support bracket **205c**, while Fig. 19B is a cross-sectional view, in accordance with line 19B – 19B of Fig. 19C, and Fig. 19D is an exploded view of the same bracket. The left rear adjustable lower support bracket **205c** comprises an inner bracket piece **153c** that may slide up and down within an outer bracket piece **154c**. The two pieces of the adjustable lower support bracket are held together with an adjustment bolt **156c**, along with a spring **155c** and washer **157c**. The vertical length of the adjustable lower support bracket, exemplified by **205c**, is finely adjustable from below by turning the adjustment bolt **156c**, moving the inner bracket piece **153c** up and down within the outer bracket piece **154c**. This mechanism allows for precise control of the ride height and orientation of the movable underbody **101** (Fig. 1A) from an easily accessed location. The adjustment bolt **156c** may be unscrewed completely to free the outer bracket piece **154c** from the inner bracket piece **153c**, thereby separating the left rear corner of the movable underbody **101** from the suspension of the vehicle. This process may be repeated in the three other corners to remove the movable underbody **101** from the vehicle's suspension system. To remove the movable underbody **101** completely from the vehicle, it is necessary to also unbolt the mounting plate of the front ball joint **129** (Fig. 4B), unbolt the mounting track of the sliding mechanism **131** (Fig. 4B), and disconnect the fitting **112** (Fig. 1A) that holds the retraction linkage **111** (Fig. 1A). These three structures are accessed through three small access panels on the movable underbody **101** (see additional embodiments of the movable underbody).

Fig. 19E shows an adjustable left rear lower support bracket **305c** that is in accordance with the present invention and that is of substantially the same design as the adjustable lower support bracket **205c** (Fig. 19C) described above. The difference, however, is that this lower support bracket embodiment **305c** bears at the top of the inner bracket piece **253c** an attachment point for one of the retraction linkages **211c**

(see additional retraction means embodiments below). Also shown in Fig. 19E is the outer bracket piece **254c** and left rear support linkage **104c**.

The lower support brackets may be of other shapes and designs than as described above. As shown in Fig. 21B, the support linkages exemplified by **104c**, may alternatively mount directly to the movable underbody **101** via minimal fittings, exemplified by **705c**, in accordance with the present invention. The view in Fig. 21B is in accordance with line 2A – 2A of Fig. 1A.

Figs. 20A-B are rear views of an alternative embodiment of a lower support bracket **405c** of the left rear corner of the vehicle, in accordance with the present invention. This alternative embodiment does not attach to a support linkage **104c** (Fig. 2A). When the movable underbody **101** is deployed, this left rear free lower support bracket **405c** rests directly upon a left rear free upper support bracket **203c** attached at or near the end of the left rear lower control arm **122c** of the vehicle's suspension, with no intervening support linkage **104c**. This provides an alternative mechanism for supporting the movable underbody **101**, based upon a normal force acting between the upper and lower support brackets, not a tensile force. Fig. 20A shows the left rear free lower support bracket **405c** in direct contact with the left rear free upper support bracket **203c** on the left rear lower control arm **122c**. This is the relative position of the free support brackets when the movable underbody **101** is deployed and engaged with the suspension. Fig. 20B shows the left rear free lower support bracket **405c** elevated above the left rear free upper support bracket **203c**. This is the relative position of the free support brackets when the movable underbody **101** is retracted. Fig. 21A shows the same in perspective left side view. Contact between the left rear free lower support bracket **405c** and left rear free upper support bracket **203c** is through the opposing load-bearing surface of the left rear free lower support bracket **161c** and load-bearing surface of the left rear free upper support bracket **162c**. The free lower support brackets are of the same form in the other three corner areas of the vehicle, as are the corresponding free upper support brackets of the other three corner areas of the vehicle.

The upper and/or lower load bearing surfaces, exemplified by **161c** (Fig. 21A) and/or **162c** (Fig. 21A), may be alternatively connected to the rest of the upper and/or

lower free support brackets, exemplified by **203c** (Fig. 21A) and/or **405c** (Fig. 21A), through very compact shock-damping mechanisms. Such compact shock-damping mechanisms may include a spring and damper to absorb some suspension movements that would otherwise be directly transmitted to the movable underbody **101** (Fig. 1A). It is also possible to mount the load-bearing surface of the upper support bracket, exemplified by **162c**, (less optimally the load-bearing surface of the lower support bracket, exemplified by **161c**) on the end of a compact actuator, particularly a hydraulic actuator, to enable changes in the height of the load-bearing surface. This, in turn, would cause corresponding changes to the ride height and/or orientation of the movable underbody **101** during vehicle travel.

Like the use of tensile support linkages, the arrangement described above allows for the elevation and disengagement of the movable underbody **101** from the suspension.

Fig. 20C is a rear view, Fig. 21C is a perspective side view, and Fig. 21D is an exploded view of an additional embodiment of the left rear lower support bracket, in accordance with the present invention. In this embodiment, the left rear lower support bracket **505c** bears a roller bearing that helps accommodate positional changes between the left rear free lower support bracket with roller **505c** and corresponding left rear free upper support bracket for roller **303c** that occur during the vehicle's suspension movements. This left rear free lower support bracket with roller **505c** includes a left rear bearing wheel fork **163c** (Fig. 21D), a left rear bearing axle **164c** (Fig. 21D), and a left rear bearing wheel **165c** (Fig. 21D) that may be of metal or other strong, hard material. The free lower support brackets with roller are of the same form in the other three corner areas of the vehicle as are the corresponding free upper support brackets for roller of the other three corner areas of the vehicle. As with the upper and lower free support brackets, exemplified by **203c** (Fig. 21A) and **405c** (Fig. 21A), a compact shock-damping mechanism may be incorporated as part of the design of a free lower support bracket with roller, exemplified by **505c** (Fig. 21C), and/or free upper support bracket for roller, exemplified by **303c** (Fig. 21C). The position of the bearing surface of the free upper support bracket for roller, exemplified by **303c**, may also be

made adjustable by use of an actuator, particularly a hydraulic actuator, to change the ride height and/or orientation of the movable underbody **101** (Fig. 1A) during travel.

Fig. 20E shows a rear view of a left rear free lower support bracket for upper control arm **605c** and left rear free upper support bracket for upper control arm **403c** that are in accordance with the present invention. Fig. 20E shows the left rear free lower support bracket for upper control arm **605c** and left rear free upper support bracket for upper control arm **403c** coupled as they are when the movable underbody **101** is deployed. The elongate form of both brackets is required when the distal portion of the upper control arm of the vehicle's suspension is used for a mounting point for a free upper support bracket. Fig. 20F is a rear view of the left rear free lower support bracket for upper control arm **605c** decoupled from the left rear free upper support bracket for upper control arm **403c**. Fig. 21E is the same in perspective side view. The free lower support brackets for upper control arm are of the same form in the other three corner areas of the vehicle as are the corresponding free upper support brackets for upper control arm of the other three corner areas of the vehicle.

In the rear of the vehicle, the rear free upper support brackets may be placed at some location on the suspension uprights **123c** – **123d** (Fig. 2A) instead of the end of the lower control arms **122c** and **122d** (Fig. 2A). Fig. 20D shows this latter arrangement with a left rear upright-mounted free upper support bracket **503c** supporting a left rear free lower support bracket with roller **505c**. The right rear upright-mounted free upper support bracket and right rear free lower support bracket with roller are of the same form. Because the front suspension uprights swivel with the steering movements of the vehicle, they are not as suitable for attachment points for free support brackets. If done, such an upright-mounted free upper support bracket may be mounted as close as practical to the steering axis of the corresponding front suspension upright.

It is possible to support the movable underbody **101** (Fig. 1A) from the vehicle's suspension without a discrete support bracket. This can be done by directly resting a part of the lower support bracket, or even just a portion of the movable underbody itself, on part of the vehicle's suspension.

The foregoing disclosure of the suspension-mounted support means embodiments, viz. upper support bracket embodiments, lower support bracket

embodiments, and support linkage embodiments, should be read as illustrative of suspension-mounted support means only and should not be construed as limiting. Any functioning combination of support linkage embodiment, upper support bracket embodiment, and lower support bracket embodiment, including those embodiments where the support linkage is absent and/or an upper and/or a lower support bracket is minimized or absent, that may support the movable underbody from the vehicle's suspension, represents a suspension-mounted support means for the movable underbody that is in accordance with the present invention.

Figs. 19E, 24B, 28A, 29 – Additional Embodiments of the Retraction Means

Like the support linkages **104a – 104d** (Fig. 3A), the retraction linkage **111** (Fig. 1A) may be formed of chains, cables, Kevlar webbing, or the like, working in tension to lift the movable underbody **101** (Fig. 1A) to the undersurface of the vehicle body **158** (Fig. 1A). Such retraction linkage embodiments are in accordance with the present invention. Use of such a tensile retraction linkage allows the movable underbody **101** to move vertically without restriction when the movable underbody **101** is deployed. A manually operated crank may be used instead of a retraction actuator **110** (Fig. 1A) to retract the movable underbody **101**.

Fig. 28A shows an additional embodiment of the movable underbody retraction means in accordance with the present invention. This embodiment includes four retraction actuators **210a – 210d** that attach to four corresponding retraction linkages **211a – 211d** that extend to the four corner areas of the movable underbody **101**. The four retraction linkages **211a – 211d** attach to the same lower support brackets **305a – 305d** to which the support linkages **104a – 104d** attach (see Fig. 19E and additional embodiments of the lower support brackets above). The four retraction linkages **211a – 211d** are tensioned by four corresponding tensioner springs **260a – 260d** that extend to attachment points on the vehicle body **158**. The purpose of this arrangement over the use of a single retraction linkage **111** (Fig. 1A) and retraction actuator **110** (Fig. 1A), as in the basic embodiment, is to allow control over the orientation of the movable underbody **101** during the processes of retraction and deployment of the movable underbody **101**. Many other arrangements involving more than a single retraction

actuator are possible. A retraction actuator or actuators may alternatively operate to lift the movable underbody **101** to the body of the vehicle **158** (Fig. 1A) by operating through one or both of the stabilization linkages **108f** or **108r** (Fig. 1A). If the stabilization linkages **108f** and **108r** of the basic embodiment are used for this purpose, for example, the stabilization linkages **108f** and **108r** may be reversed so that the hinged end of each stabilization linkage is mounted to the vehicle body **158**. This arrangement more easily allows for a control horn that extends into the vehicle body **158** to be attached to the base of either stabilization linkage **108f** or **108r** for operation by a retraction actuator.

Retraction of the movable underbody **101** (Fig. 1A) may be alternatively accomplished through use of a vacuum pump. Such a retraction means would require a sufficiently loose-fitting airtight shroud to span the gap between the movable underbody **101** and vehicle body **158** (Fig. 1A) and to enclose a portion of the upper surface of the movable underbody **101** and lower surface of the vehicle body **158**. Retraction of the movable underbody **101** would be accomplished through operation of the vacuum pump to evacuate the volume of air enclosed by the shroud. Deployment of the movable underbody **101** would be accomplished through reverse operation of the vacuum pump to partially fill the volume of air that may be enclosed by the shroud.

A retraction means may also be additionally designed to partially unweight the movable underbody **101** (Fig. 1A) rather than lift the movable underbody **101** to the vehicle body **158** (Fig. 1A). This allows some of the downforce load generated by the movable underbody **101** to be transferred from the ends of the vehicle suspension to the vehicle body **158**. A retraction means may also be designed to transfer load from the vehicle body **158** to the movable underbody **101**.

Retraction of the movable underbody **101** (Fig. 1A) to the vehicle body **158** (Fig. 1A) may be alternatively accomplished through the movable underbody height-adjustment actuators, exemplified by **167c** (Fig. 8C), operating to elevate the lower support brackets **105a – 105d** (Fig. 3A) to the upper support brackets **103a – 103d** (Fig. 3A) through elevation of the support linkages **104a – 104d** (Fig. 3A). Unlike the previously mentioned movable underbody retraction means, however, there is no disengagement of the movable underbody **101** from the suspension of the vehicle. This

means that the movable underbody **101** will continue to move with the wheels **124a** – **124d** (Fig. 30A) of the vehicle when in the retracted position. Such a movable underbody retraction means is discussed above as additional embodiments of the upper support brackets.

The preceding descriptions of retraction means are examples only and should not be understood as limiting. Other embodiments of the retraction means in accordance with the spirit and scope of the present invention are possible.

In alternative embodiments of the invention, the retraction means may be made operable by a retraction control means that may be incorporated as part of the vehicle's electronic stability control system. Fig. 24B is a block diagram of an example of a retraction control means. In this example, the retraction actuator **110** is a servo motor controlled by a movable underbody retraction ECU (Electronic Control Unit) **184** that is responsive to the vehicle electronic stability control system **185**, driver-operated retraction switch **186**, movable underbody position sensor **175**, and suspension position sensors **176a** – **176d** at the four corners of the vehicle. The suspension position sensors may be linear potentiometers, for example, that extend from the vehicle body **158** (Fig. 1A) to distal positions on the lower control arms, exemplified by **122c** – **122d** (Fig. 2A), of the suspension. This is just one example of a retraction control means in accordance with the present invention. In other embodiments, a retraction control means could be responsive to just the vehicle electronic stability control system **185**, the driver-operated retraction switch **186**, the movable underbody position sensor **175**, or the suspension position sensors **176a** – **176d**, or a chosen combination thereof.

With the retraction control means described above, the movable underbody **101** (Fig. 1A) may be held in its retracted position until a loss of traction is detected by the vehicle's electronic stability control system **185**. At that time, the movable underbody **101** may be deployed by the movable underbody retraction ECU **184**. The movable underbody **101** may also be deployed when the driver so chooses and the movable underbody retraction ECU **184** determines that the roadway **199** (Fig. 1A) is appropriate for deployment of the movable underbody **101**. Additionally, the movable underbody retraction ECU **184** may be designed to retract the movable underbody **101** when the

roadway **199** is not appropriate for deployment of the movable underbody **101**. The latter may occur, for example, when the vehicle leaves a paved road surface.

Fig. 29 is a flowchart of an example of a process that may be performed by a movable underbody retraction ECU **184** (Fig. 24B) to produce the functions described in the preceding paragraph. The first step, Step **2000**, is detecting the movable underbody position through input from the movable underbody position sensor **175** (Fig. 24B) to the movable underbody retraction ECU **184** (Fig. 24B). The process then proceeds to Step **2001**, where the position of the movable underbody **101**, as detected in Step **2000**, is used to determine which further steps will be performed. If the movable underbody **101** (Fig. 1A) is deployed, then the process proceeds to Step **2002**. If the movable underbody **101** is not deployed, then the process proceeds to Step **2010**.

In Step **2002**, the roughness of the roadway **199** (Fig. 1A) is detected through input to the movable underbody retraction ECU **184** (Fig. 24B) from the four vehicle suspension position sensors **176a – 176d** (Fig. 24B). Roadway **199** roughness may be categorized by the movable underbody retraction ECU **184** as either rough or not rough by comparing the amplitude and speed of suspension movements to preprogrammed threshold levels stored in the movable underbody retraction ECU **184**. The process then proceeds to Step **2003**, where the condition of the roadway **199** as either rough or not rough, as detected in Step **2002**, is used to determine which further steps will be performed. If the roadway **199** is rough then the process proceeds to Step **2004**. If the roadway **199** is not rough, then the process proceeds to Step **2005**.

In Step **2004**, the movable underbody **101** (Fig. 1A) is retracted by the retraction actuator **110** (Fig. 1A). This occurs when the movable underbody **101** is in its deployed position and the roadway **199** (Fig. 1A) is determined to be rough. The process then proceeds back to Step **2000**, which is described above.

In Step **2005**, the status of the vehicle's electronic stability control system **185** (Fig. 24B) is detected through input from the vehicle's electronic stability control system **185** to the movable underbody retraction ECU **184** (Fig. 24B). The process then proceeds to Step **2006** where the status of the vehicle's electronic stability control system **185** as either activated or not activated, as detected in Step **2005**, is used to determine which further steps will be performed. For purposes of the example flowchart

of Fig. 29, the vehicle's electronic stability control system **185** may be considered activated only when the vehicle's electronic stability control system **185** provides output for the deployment of the movable underbody **101** (Fig. 1A). If the vehicle's electronic stability control system **185** is activated, then the process proceeds back to Step **2000**. This occurs when the movable underbody **101** is in its deployed position, the roadway **199** (Fig. 1A) is not rough, and the vehicle's electronic stability control system **185** is activated. If the vehicle's electronic stability control system **185** is not activated, then the process proceeds to Step **2007**.

In Step **2007**, the driving mode selected by the driver is detected through input from the driver-operated retraction switch **186** (Fig. 24B) to the movable underbody retraction ECU **184** (Fig. 24B). The process then proceeds to Step **2008**, where the driving mode selected by the driver as either deployed or not deployed, as detected in Step **2007**, is used to determine which further steps will be performed. If the driver selected driving mode is the deployed mode then the process proceeds back to Step **2000**. This occurs when the movable underbody **101** (Fig. 1A) is in its deployed position, the roadway **199** (Fig. 1A) is determined to be not rough, the vehicle's electronic stability control system **185** (Fig. 24B) is not activated, and the driver has selected the deployed mode. If the driver selected driving mode is not the deployed mode then the process proceeds to Step **2009**.

In Step **2009**, the movable underbody **101** (Fig. 1A) is retracted by the retraction actuator **110** (Fig. 1A). This occurs when the movable underbody **101** is in its deployed position, the roadway **199** (Fig. 1A) is determined to be not rough, the vehicle's electronic stability control system **185** (Fig. 24B) is not activated, and the driver has selected the not deployed mode. The process then proceeds back to Step **2000**.

In Step **2010**, the roughness of the roadway **199** (Fig. 1A) is detected and categorized as rough or not rough in the same way as described above for Step **2002**. The process then proceeds to Step **2011** where the condition of the roadway **199** as either rough or not rough, as detected in Step **2010**, is used to determine which further steps will be performed. If the roadway **199** is rough, then the process proceeds back to Step **2000**. This occurs when the movable underbody **101** (Fig. 1A) is not in the

deployed position and the roadway **199** is rough. If the roadway **199** is not rough then the process proceeds to Step **2012**.

In Step **2012**, the driving mode selected by the driver is detected through input from the driver-operated retraction switch **186** (Fig. 24B) to the movable underbody retraction ECU **184** (Fig. 24B). The process then proceeds to Step **2013**, where the driving mode selected by the driver as either the deployed mode or not deployed mode, as detected in Step **2012**, is used to determine which further steps will be performed. If the driver selected driving mode is the deployed mode, then the process moves to Step **2014**. If the driver selected driving mode is not the deployed mode, then the process proceeds to Step **2015**.

In Step **2014** the movable underbody **101** (Fig. 1A) is deployed by reverse operation of the retraction actuator **110** (Fig. 1A). This occurs when the movable underbody **101** is not in its deployed position, the roadway **199** (Fig. 1A) is not rough, and the driver has selected the deployed mode. The process then proceeds back to Step **2000**.

In Step **2015**, the status of the vehicle's electronic stability control system **185** (Fig. 24B) is detected through input from the vehicle's electronic stability control system **185** to the movable underbody retraction ECU **184** (Fig. 24B). The process then proceeds to Step **2016** where the status of the vehicle's electronic stability control system **185** as either activated or not activated, as detected in Step **2015**, is used to determine which further steps will be performed. If the vehicle's electronic stability control system **185** is activated, then the process proceeds to Step **2017**. If the vehicle's electronic stability control system **185** is not activated, then the process proceeds back to Step **2000**.

In Step **2017**, the movable underbody **101** (Fig. 1A) is deployed by reverse operation of the retraction actuator **110** (Fig. 1A). This occurs when the movable underbody **101** is not in its deployed position, the roadway **199** (Fig. 1A) is not rough, the driver has not selected the deployed mode, and the vehicle's electronic stability control system **185** (Fig. 24B) is activated. The process then proceeds back to Step **2000**.

Figs. 4, 9C, E, G-H, 28B, 30B-E, 31, 32, 39— Additional Embodiments of the Movable Underbody

Figs. 30B-E are plan views of additional embodiments of the movable underbody in accordance with the present invention. Fig. 30B shows a simple rectangular embodiment of the movable underbody **201** with minimal inlet and minimal diffuser (see below), along with adjustable lower support brackets **205a – 205d** (labeled in Fig. 30A) positioned near the corners of the movable underbody **201**. This embodiment is also shown in perspective rear three-quarter view in Fig. 3B with different lower support brackets and a different stabilization linkage arrangement. In the embodiment shown in Fig. 3B, the front stabilization linkage **208f** is mounted on a front pylon **198f** and the rear stabilization linkage **208r** is mounted on a rear pylon **198r**. The pylons **198f** and **198r** decrease aerodynamic drag because they allow the stabilization linkages **208f** and **208r** to be recessed within the undersurface of the vehicle body **158**.

Fig. 30C shows a third embodiment of the movable underbody **301** with side cutouts in the front to accommodate steering movements of the front wheels **124a – 124b** (Fig. 30A). Fig. 30D shows a fourth embodiment of the movable underbody **401** with side extensions well to the sides of the mounting points of the adjustable lower support brackets **205a – 205d** (labeled in Fig. 30A). Fig. 30E shows a fifth embodiment of the movable underbody **501** with side, front, and rear extensions of the movable underbody significantly beyond the mounting points of the adjustable lower support brackets **205a – 205d** (Fig. 30A). This embodiment is also shown in perspective rear three-quarter view in Fig. 28B.

Embodiments of the movable underbody may be built to withstand the comparatively high loads that may be generated with ground effect. This is especially the case because the points of vertical support are located in the four corner areas of the movable underbody. Movable underbody embodiments may be structurally rigid both in longitudinal and transverse directions, but not necessarily torsionally rigid (see below). Because it may be situated so close to the roadway **199** (Fig. 1A) in the deployed position, even small amounts of flex in the movable underbody, when subjected to significant vertical load, may significantly change the dimensions of the venturi duct that it defines with the roadway **199**. Greater movable underbody thickness

may increase movable underbody stiffness. A thicker movable underbody, however, may decrease vehicle ground clearance. This may be addressed with the addition of movable underbody support braces (see below) on the upper surface of the movable underbody. Such support braces may allow for a stiff movable underbody, yet one that is thin where it needs to be in order to maximize ground clearance. In particular, embodiments of the movable underbody may be of minimal thickness in the areas corresponding with the lowest parts of the vehicle body **158** (Fig. 1A), such as the engine sump.

Fig. 28B shows a perspective rear three-quarter view of a movable underbody **501** with side, front, and rear extensions, and with two longitudinally oriented support braces on the upper surface. The left support brace **188a** and right support brace **188b** increase the stiffness of the movable underbody so that the movable underbody may be built thin to maximize ground clearance when in the retracted position. These support braces **188a – 188b** may be designed to fit into corresponding grooves on the underside of the vehicle body **158** (Fig. 1A). Fig. 4B is a perspective front three-quarter view from below of a vehicle in accordance with the present invention. The movable underbody **101** (Fig. 1A) is removed to expose the lower surface of the vehicle body **158** (Fig. 1A), showing a left support brace groove **189a** near the left sill of the vehicle and a right support brace groove **189b** near the right sill of the vehicle. Support braces may also serve as aerodynamic fences (see below) to help regulate the flow of air through the space between embodiments of the movable underbody and the vehicle body **158** (see below). It is also possible to have a folding support brace that will fold against embodiments of the movable underbody when the movable underbody is retracted against the vehicle body **158**.

Embodiments of the movable underbody may be designed to be capable of a degree of torsional flex to better comply with the changing contours of the roadway **199** (Fig. 1A). If a more torsionally flexible movable underbody embodiment is desired, then diagonal support braces may be excluded because such support braces tend to decrease torsional flexibility. On the other hand, longitudinally oriented and transversely oriented support braces may impart longitudinal and transverse rigidity, while allowing for torsional flex.

To maximize torsional flex, embodiments of the movable underbody may be composed of more than a single element. Fig. 32A is a perspective rear three-quarter view of a medially-divided, two-element movable underbody **701** in accordance with the present invention. Fig. 32B is similar, but shows relative movement in the two halves of the two-element movable underbody **701**. Fig. 32C shows an exploded view of the two-element movable underbody **701** showing the articular rod **194** that is received by a left articular cylinder **181a** and a right articular cylinder **181b** and about which the two halves of the two-element movable underbody **701** articulate. Fig. 32C also shows the retention bands **195** made from a suitable elastomeric material that serve to hold the two halves of the two-element movable underbody **701** together and that are secured by short pegs **182**. Alternatively, it is possible to have a two-element movable underbody articulate about a longitudinal axis, rather than the transverse axis of articulation of the movable underbody embodiment shown.

Figs. 9F-H are side views of three embodiments of a movable underbody inlet in accordance with the present invention. The basic embodiment is shown in Fig. 9F. Fig. 9G and Fig. 3B show an upturned minimal inlet **214** that does not require a corresponding inlet depression **113** (Fig. 1A) on the vehicle body **158** (Fig. 1A). Fig. 9H shows a symmetrical minimal inlet **314**. As shown in Fig. 11B, the upturned minimal inlet **214** (as well as the symmetrical minimal inlet **314**) allows a considerable amount of airflow to enter between the vehicle body **158** and embodiments of the movable underbody compared with the basic embodiment shown in Fig. 11A. In the basic embodiment shown in Fig. 11A, essentially all of the airflow travels below the movable underbody **101**. All of these inlet embodiments have varying degrees of an upturned leading edge that, beyond functioning as a venturi inlet, tends to make embodiments of the movable underbody ride over any object or debris that may be encountered on the roadway **199** (Fig. 1A).

Figs. 39C-E are side views of three additional embodiments of a movable underbody inlet in accordance with the present invention. Unlike the preceding inlet embodiments that are designed to concentrate the flow of air entering the venturi duct defined by the movable underbody, the embodiments shown in Figs. 39C-E are designed to limit or exclude the flow of air entering the space below the movable

underbody. The purpose of this is to allow negative pressure that is formed at the rear of the movable underbody during vehicle travel to extend forward without being equalized by a flow of air from the front of the movable underbody. That negative pressure at the rear of the movable underbody, by the way, may be enhanced by use of a movable underbody spoiler **516** (Fig. 39F) (see below). For this purpose it is very useful to have some form of aerodynamic skirt **119a – 119b** (Fig. 2A) or **219a – 219b** (Fig. 34A) included at the sides of the movable underbody. Fig. 39C is a simple downturned minimal inlet **514**. Fig. 39D is a downturned minimal inlet with brush **614** that may scrape along the roadway **199** (Fig. 1A). Fig. 39E is a downturned, two-element inlet **714**. The front element, or slat, of the downturned two-element inlet **714** is designed to draw off air that would otherwise enter the space below the movable underbody. The front element of the downturned two-element inlet **714** may be attached to the rear element of the downturned two-element inlet **714** through posts or aerodynamic fences that extend between the two elements of the inlet. Inlet shapes other than those described may, of course, be used.

Figs. 9C-E are elevation views of three embodiments of a movable underbody diffuser in accordance with the present invention. The basic embodiment is shown in Fig. 9D. Fig. 9C and Fig. 3B show a minimal movable underbody diffuser **216** that does not need to be accommodated by a vehicle body diffuser **125** when the movable underbody is retracted. Fig. 9E shows a two-element movable underbody diffuser **316**. The upper element of the two-element underbody diffuser **316** may be attached to the lower element of the two-element underbody diffuser **316** through posts or aerodynamic fences that extend between the two elements of the movable underbody diffuser.

Fig. 39F is an elevation view of an additional embodiment of a movable underbody diffuser in accordance with the present invention. This movable underbody spoiler **516** incorporates an abrupt and prominent upturn that is designed to create drag at the back of the movable underbody. The purpose of that is to increase the amount of negative pressure at the rear of the movable underbody that may then extend forward under the movable underbody to enhance downforce. The movable underbody spoiler **516** may be usefully combined with the several embodiments of downturned minimal inlets described above, as well as other inlet shapes.

The movable underbody inlet and diffuser mounting systems shown in Figs. 9A-B allow the various movable underbody inlets and diffusers to be easily switched out, facilitating experimentation between different inlet and diffuser embodiments. Such experimentation is particularly enabled by fitting the vehicle with downforce-measuring strain gauges, exemplified by **171c** (Fig. 8E), and a suitable data logging system adapted to record downforce levels and other parameters. A system of downforce-measuring strain gauges, exemplified by **171c**, and a suitable data logger may also be used to compare the effect of changes to movable underbody ride height and pitch on downforce levels and distribution to the wheels **124a – 124d** (Fig. 30A).

Fig. 31A is a perspective rear three-quarter view of another embodiment of a movable underbody that is in accordance with the present invention. This adjustable movable underbody **801** has an adjustable inlet **414** articulated to the front of the movable underbody plate **102** through a front hinge of the movable underbody **191f** and an adjustable diffuser **416** articulated to the rear of the movable underbody plate **102** through a rear hinge of the movable underbody **191r**. The adjustable inlet **414** is moved by an adjustable inlet actuator **197f**. The adjustable inlet actuator **197f** moves a pushrod of the adjustable inlet **192f** that is connected through a clevis to a control horn of the adjustable inlet **193f** that is attached to the adjustable inlet **414**. Similarly, the adjustable diffuser **416** is moved by an adjustable diffuser actuator **197r**. The adjustable diffuser actuator **197r** moves a pushrod of the adjustable diffuser **192r** that is connected through a clevis to a control horn of the adjustable diffuser **193r** that is attached to the adjustable diffuser **416**. If the adjustable inlet actuator **197f** and adjustable diffuser actuator **197r**, both of which are “adjustable aerodynamic surface actuators,” are made operable by the driver or by an automatic control system, the position of the adjustable inlet **414** and adjustable diffuser **416** may be changed during vehicle travel to affect the performance of the adjustable movable underbody **801**. These surfaces may also be moved downward when the adjustable movable underbody **801** is retracted to allow the adjustable movable underbody **801** to fit compactly against the vehicle body **158** (Fig. 1A). The movable underbody may also incorporate other articulating panels that fold flat against the vehicle body **158** when the movable underbody is retracted.

The adjustable inlet **414** (Fig. 31A) and adjustable diffuser **416** (Fig. 31A) are just two examples of adjustable aerodynamic surface embodiments that may be included in the design of a movable underbody. Movable underbody embodiments involving only one or the other adjustable aerodynamic surface, or more complex arrangements involving additional or alternative adjustable aerodynamic surfaces or bending aerodynamic surfaces, may be readily envisioned. The foregoing disclosure of these two adjustable aerodynamic surface embodiments should be read as illustrative only and should not be construed as limiting. An actuator that is adapted to move any such adjustable aerodynamic surface is also herein referred to as an adjustable aerodynamic surface actuator.

Fig. 39A is a further embodiment of a movable underbody **901**. This embodiment includes transversely oriented slots **4000** that extend from the upper surface of the slotted movable underbody **901** to the lower surface of the structure. The function of the slots **4000** is to draw air from below the slotted movable underbody **901**. This, in turn, decreases air pressure below the slotted movable underbody **901**. This aerodynamic effect depends upon the flow of air above the slotted movable underbody **901**. Accordingly, this design may incorporate a downturned minimal inlet **514** or other inlet designs that promote the flow of air above the slotted movable underbody **901**. Aerodynamic fences (see below) may also be used to concentrate and speed the flow of air above the slotted movable underbody **901**. Fig. 39B is a cross section of the leading portion of the slotted movable underbody **901** in accordance with line 39B – 39B of Fig. 39A. Fig. 39B shows the orientation of the slots **4000** with their openings on the upper surface of the slotted movable underbody **901** behind the corresponding lower openings. Also apparent in Fig. 39B is the airfoil shape of each area between adjacent slots **4000**. The slotted movable underbody **901** may be provided with longitudinally oriented strips or regions free of slots **4000** for longitudinal support. Longitudinally oriented support braces **188a – 188b** may also be usefully employed for support with a slotted movable underbody **901**.

Some movable underbody slots **4000** may be positioned so that they line up with corresponding openings on the undersurface of the vehicle body **158** to provide cooling air to components of the vehicle when the slotted movable underbody **901** is retracted.

An arrangement of such cooling slots or other openings may be added to other embodiments of the movable underbody described herein. Such slots may also be adapted to open when the movable underbody is retracted and close when the movable underbody is deployed.

A single prominent movable underbody slot **4000** may be positioned toward the front of the movable underbody to form a front movable underbody diffuser in addition to the rear movable underbody diffuser **116**. This is similar to the arrangement seen on the vehicle body undersurface of Le Mans Prototype race cars (“LMP”).

The preceding arrangements of movable underbody slots **4000** are only examples of the many movable underbody slot arrangements that may be used. For example, movable underbody slots may be alternatively arranged to direct high-speed air from the space above the movable underbody to the space below the movable underbody for the purpose of decreasing air pressure below the movable underbody.

Fig. 41A is a further embodiment of a movable underbody **10001**. This winged movable underbody **10001** is reduced to a front movable underbody wing **10010f** and a rear movable underbody wing **10010r** connected by a left connecting rod **10020a** and a right connecting rod **10020b**. While the connecting rods **10020a** – **10020b** do not generate downforce, they serve to maintain the orientation of the front and rear wings, **10010f** and **10010r**, of the winged movable underbody **10001**. The wings, **10010f** and **10010r**, may be placed between the wheels or they may be situated before or behind the wheels. Many other arrangements of such movable underbody wings, including arrangements involving more than two wings or a single wing may be envisioned. Wings with two or more elements and wings with movable aerodynamic surfaces are also possible. The rear movable underbody wing **10010r** is shown in Fig. 41A with left and right winglets, **10015a** and **10015b**, that may improve the aerodynamic efficiency of the wing. When positioned between the vehicle wheels **124a** – **124d** (Fig. 30A), the winged movable underbody **10001** does not need to be built to withstand significant bending forces along its length. Thus the connecting rods **10020a** – **10020b** do not need to be constructed to resist significant bending forces. Even a single lightly built connecting rod may be sufficient. However, the front and rear wings, **10010f** and

10010r, should be rigid enough to withstand significant bending forces across their spans.

Fig. 41B is a further embodiment of a movable underbody **20001**. This frame-like movable underbody **20001** is reduced to a mere frame that serves for the attachment of the aerodynamic skirts **119a – 119b** and/or aerodynamic fences **190** or fairings that extend between the frame-like movable underbody **20001** and the undersurface of the vehicle body **158** (Fig. 1A) (see an additional embodiment of the aerodynamic skirts and embodiments of aerodynamic fences that span the gap between the movable underbody and vehicle body, below). To decrease drag, portions of the frame-like movable underbody **20001** may be recessed within the lower surface of the vehicle body **158**. Additionally or alternatively, portions of the frame-like movable underbody **20001** may be designed to pass through openings in the vehicle body **158** and be completely concealed. Such a frame-like movable underbody **20001** may generate downforce through the enhancement or smoothing of the flow of air under the vehicle body **158**. This, for example, may be by limiting the cross flow of air from the sides of the vehicle and/or the flow of air from around the wheel wells. This may help maintain a lower aerodynamic pressure below the vehicle body **158** and thus generate downforce. The smoothing of the flow of air under the vehicle body **158** and/or around the wheels **124a – 124d** (Fig. 30A) that may result from the use of a frame-like movable underbody **20001** may also serve to reduce overall vehicle aerodynamic drag. Unlike most other embodiments of the movable underbody, the frame-like movable underbody **20001** does not necessarily need to be built to withstand significant longitudinal bending forces or significant transverse bending forces.

Both the frame-like movable underbody **20001** (Fig. 41B) and winged movable underbody **10001** (Fig. 41A) may be retracted using corner retraction actuators **210a – 210d** (see Fig. 28A), operating through corresponding corner retraction linkages **211a – 211d** (see Fig. 28A) and appropriate lower support brackets with retraction linkage attachment points, such as **305a – 305d** (Fig. 28A). Alternatively, other retraction means may be used, as well as other arrangements of a frame-like movable underbody.

Embodiments of the movable underbody may be fitted with access panels that may be used to facilitate removal of the movable underbody from the rest of the vehicle.

Fig. 4A is a perspective front three-quarter view from below of the basic embodiment of the movable underbody **101** in accordance with the present invention. Fig. 4A shows a front access panel **187f** that allows access to the mounting plate of the front ball joint **129**, a middle access panel **187m** that allows access to the retraction linkage fitting **112** (Fig. 1A), and a rear access panel **187r** that allows access to the mounting track of the sliding mechanism **131**. Through these three access panels, **187f**, **187m**, and **187r**, the mounting hardware that connects the movable underbody **101** to the vehicle body **158** (Fig. 1A) may be disconnected. The movable underbody **101** may then be easily disconnected from the vehicle's suspension by unscrewing the adjustment bolts, exemplified by **156c** (Fig. 19D), of the adjustable lower support brackets **205a – 205d** (Fig. 30A) (see additional embodiments of the lower support brackets, above).

Embodiments of the movable underbody may be designed to serve as one very large access panel that may be removed for access to all parts of the vehicle from below. In this case, the undersurface of the vehicle body **158** (Fig. 1A) may be designed to be largely open from below so that there is obtained easy access to many components of the vehicle when the movable underbody is removed. Additional access panels may be built into the movable underbody to facilitate access to different vehicle components, such as the engine and transmission. Small access panels on the movable underbody may be made for jacking points on the vehicle chassis if it is desired to lift the vehicle body **158** with or without lifting the movable underbody. These access panels may be built as hard points to serve as jacking points if the vehicle body **158** and underbody are to be lifted together.

Like the leading portion of the movable underbody, the lateral edges of the movable underbody may be upturned to produce downforce in case the vehicle loses control and travels sideways over the roadway **199** (Fig. 1A). Additionally, upturned sides may be better able to glide over the roadway **199**. This may be advantageous in situations when the vehicle spins and leaves the road, causing the vehicle to travel sideways over a loose roadway **199**.

The undersurface of the movable underbody may be flat. If so, thin skins of differing aerodynamic profiles may be applied to the undersurface to change the aerodynamic characteristics of the movable underbody. For example, the lengthwise

profile of the undersurface of the movable underbody may be changed by changing the aerodynamic skin. Alternatively, the undersurface of the movable underbody may be of a more complex profile, such as shown in Fig. 31B. Fig. 31B shows a movable underbody with tunnels **601**. The movable underbody with tunnels **601** may bear appropriately designed openings for the passage of suspension components, such as the lower control arms. The movable underbody with tunnels **601**, as well as other movable underbody embodiments, may include flexible regions to allow the movable underbody to conform to the lower surface of the vehicle body and/or components of the vehicle's suspension, particularly when the movable underbody is retracted. Longitudinal strakes may be fitted to the underside of embodiments of the movable underbody for aerodynamic reasons. Other aerodynamic structures may, of course, be added to embodiments of the movable underbody. Skids or small wheels may be fitted to help protect embodiments of the movable underbody from any abrasion that may result from contact with the roadway **199** (Fig. 1A).

Many combinations of the foregoing embodiments and other variations are possible. The foregoing disclosure of movable underbody embodiments and variations should be read as illustrative and should not be construed as limiting.

Figs. 33-34 – An additional embodiment of the Aerodynamic Skirts and Embodiments of Aerodynamic Fences that Span the Gap between the Movable Underbody and Vehicle Body

Fig. 33F is a perspective rear three-quarter view from above of the left side portion of a movable underbody **101** with an alternative skirt embodiment in deployed position. Instead of sliding within skirt grooves **118a** – **118b** (Fig. 1A), this left hinged skirt **219a** (right hinged skirt **219b** shown in Fig. 34A), is hinged through a left skirt hinge **196a** (right hinged skirt is articulated in the same way), to the side of the movable underbody **101**. At intervals along their length, the hinged skirts **219a** – **219b** are expanded into hinged skirt levers **183**. Fig. 33C is a cross-sectional view of the left hinged skirt **219a** in accordance with line 33C – 33C of Fig. 33F. Fig. 33D is a cross-sectional view of the left hinged skirt **219a** in accordance with line 33D – 33D of Fig. 33F. Fig. 33E is the same view as Fig. 33D, except with the left hinged skirt **219a** in

retracted position against the lower surface of the vehicle body **158**. When retracted against the vehicle body **158** (Fig. 1A), the hinged skirt levers **183** cause the hinged skirts **219a – 219b** to rotate up and out of the way. A similar retraction mechanism involving levers may be adapted for use with sliding skirts **119a – 119b** (Fig. 2A).

Fig. 34A is a cross-section behind the front stabilization linkage **108f**, in accordance with line 34A – 34A of Fig. 23A, showing only the lower portion of the vehicle body **158** (Fig. 1A). In Fig. 34A the movable underbody **101** is deployed with the lower edges of the hinged skirts **219a – 219b** resting upon or supported just above the roadway **199**. Fig. 34B shows the same view (taken along line 34A – 34A of Fig 23A), except with the movable underbody **101** retracted against the vehicle body **158**. The hinged skirts **219a – 219b** may be made from an appropriate abrasion-resistant material, such as strips of glass reinforced plastic (“GRP”). Further, each hinged skirt **219a – 219b** may bear a brush strip along its lower edge to help conform to the roadway **199**. Hinged skirts **219a – 219b** of this design must be situated at the sides of the movable underbody **101**. It is possible, however, to articulate hinged skirts of other designs to the lower surface of the movable underbody **101** and thus away from the sides of the movable underbody **101**. Similarly, it is also possible to mount sliding skirts **119a – 119b** (Fig. 2A) away from the side of the movable underbody **101**. It is also possible to mount more than one skirt of either design to each side of the movable underbody **101**. Alternatively, the movable underbody **101** may be fitted without aerodynamic skirts.

As shown in Fig. 34A, a folding aerodynamic fence **190** may extend between the movable underbody **101** and vehicle body **158**. The region between the movable underbody **101** and vehicle body **158** is hereinbelow termed the “interspace”. The folding aerodynamic fence **190** may partially or completely seal off the interspace. A folding aerodynamic fence **190** may be made from any suitably strong yet flexible sheet material, such as, for example, thick Mylar. The folding aerodynamic fence **190** may be secured to the underside of the vehicle body **158** and upper side of the movable underbody **101** with hook and loop fasteners, such as Velcro. Hook and loop fasteners may allow easier access to the interspace than other fasteners for a folding aerodynamic fence **190**. Alternatively, a rigid aerodynamic fence **290** (Fig. 28B) may be

fitted, similar or identical in form to the support braces **188a – 188b** (Fig. 28B) described above. Such rigid aerodynamic fences **290** are shown in Fig. 28B positioned to deflect the air stream from before the vehicle's front wheels **124a – 124b** (Fig. 30A). A rigid aerodynamic fence **290** may need to be accommodated by a corresponding depression on the undersurface of the vehicle body **158** to allow the movable underbody **101** to be fully retracted.

Figs. 34C, E-H are plan views of a movable underbody **501** with side, front, and rear extensions. These figures show various arrangements of folding aerodynamic fence **190**. Figs. 34D and 34I-L show corresponding diagrams of the effects of such aerodynamic fences **190** on airflow through the interspace. As shown in Fig. 34D, aerodynamic fences **190** may serve to smooth the flow of air in the interspace so that the interspace may function as a very large air duct. This is useful for cooling the engine, as well as other components located in the engine compartment such as an intercooler. This is particularly true for mid-engined and rear-engined vehicles where the engine compartment is exposed to less airflow at the back of the vehicle. Enhanced airflow in the interspace is also useful for improving the effectiveness of the movable underbody diffuser **116** (Fig. 1A) by increasing the level of airflow above the trailing edge of the movable underbody diffuser **116**. Fig. 34J shows another arrangement of aerodynamic fences designed to concentrate airflow in the interspace for the same purposes.

As shown in Figs. 34I and L, folding aerodynamic fences **190** may be arranged to deflect the airstream before the wheels **124a – 124d** (Fig. 30A), in order to decrease aerodynamic drag produced by the wheels **124a – 124d**. Aerodynamic fences **190** may also be designed to encircle the wheel wells as much as practical to isolate the air volume around the wheels **124a – 124d** from that below the vehicle body **158** (Fig. 1A) for the purpose of decreasing drag. To that end, the movable underbody **101** (Fig. 1A) may be made to conform as closely as possible to the wheels to better enclose the wheel wells from below. Such wheel enclosure areas may be constructed of a flexible material if needed to accommodate full suspension extension when the movable underbody **101** is in its retracted position.

As shown in Fig. 34K, a folding aerodynamic fence may also be used to exclude fast flowing air from the interspace. In all of these embodiments, a folding aerodynamic fence **190** may be replaced with a rigid aerodynamic fence **290** (Fig. 28B). Rigid aerodynamic fences **290** provide the potential to define more streamlined aerodynamic fence shapes than the necessarily straight folding aerodynamic fences **190** would allow. Rigid aerodynamic fences **190** may be optimized, for example, as streamlined fairings before the wheels and other structures on the underside of the vehicle. It is possible to expand such a wheel fairing to enclose the wheel from above. Such a complete wheel fairing may, itself, be enclosed by the vehicle body **158** (Fig. 1A) or be partially or entirely exposed and not covered by the vehicle body **158**. A complete wheel fairing must include appropriate openings for the passage of components of the suspension.

Fig. 41C shows a left front complete wheel fairing **9000a** for a left front wheel **124a** (Fig. 30A) and a right front complete wheel fairing **9000b** for a right front wheel **124b** (Fig. 30B) installed on a movable underbody **501** with side, front, and rear extensions. The advantage of a complete wheel fairing, as exemplified by **9000a** – **9000b**, over a conventional wheel fender attached to the vehicle body **158** (Fig. 1A) is that it may be designed to much more closely conform to the corresponding wheel when the movable underbody is in the deployed position. This is because a complete wheel fairing, as exemplified by **9000a** – **9000b**, attached to a movable underbody, moves vertically with the corresponding wheel when the movable underbody is deployed. Therefore, such a complete wheel fairing, as exemplified by **9000a** – **9000b**, need not accommodate vertical movement of the corresponding wheel, unlike a conventional wheel fender. When the movable underbody is deployed, such a complete wheel fairing, as exemplified by **9000a** – **9000b**, may decrease overall vehicle drag by both decreasing the frontal area of the vehicle and by decreasing the volume of air surrounding the rotating wheel. Like conventional wheel fenders, such wheel fairings may also serve to contain the spray of water, mud, and other material that may occur with vehicle travel. If conventional wheel fenders are not also to be included in a vehicle design, such wheel fairings may be necessary to conform to specific governmental and racing regulations. It is also in accordance with the present invention to enclose other components of the vehicle, including parts of the vehicle body **158**, with fairings

attached to the movable underbody. Other embodiments of the present invention would include surrounding the entire vehicle body **158** with an expanded fairing attached to the movable underbody.

Figs. 35A and 36A - First Alternative Embodiment

Fig. 35A is an elevation view of the left side and Fig. 36A a perspective rear three-quarter view of a first alternative embodiment in accordance with the present invention. This first alternative embodiment is identical to the basic embodiment described above except for the addition of electric fans **1100** at the rear of the movable underbody **101**. Each electric fan **1100** is mounted on a fan pylon **1200** attached to the lower surface of the movable underbody diffuser **116**. The fans **1100** must be positioned so that they are at least partially elevated above the roadway **199** when the movable underbody **101** is deployed. When operated, the electric fans **1100** are adapted to draw air from below the movable underbody **101**. The electric fans **1100** may be operated whenever the movable underbody **101** is deployed. Alternatively, they may be operated by the driver through a driver-operated on/off switch and/or operated as part of a vehicle's stability assist system. Although not illustrated as such, the electric fans **1100** may be in the form of ducted fans. The ducting around such ducted electric fans **1100** may be continuous and there may be a skirt that spans the gap between the ducting and the roadway **199** so that airflow is substantially restricted to the fan ducts.

The electric fans **1100** serve to accelerate the flow of air below the movable underbody **101**, thereby decreasing the air pressure below the movable underbody **101** and increasing downforce. This fan-induced "active" aerodynamic ground effect may be contrasted with "passive" aerodynamic ground effect that is generated solely through travel of the vehicle, as with the basic embodiment of the present invention. Such active aerodynamic ground effect allows increased levels of downforce to be achieved at lower vehicle speeds, where the amount of downforce generated through passive aerodynamic ground effect may be comparatively low. By use of such electric fans **1100**, active aerodynamic ground effect may be used to generate downforce at comparatively lower vehicle speeds (even when the vehicle is stopped, as prior to

forward launch) and passive aerodynamic ground effect used to generate downforce at comparatively higher vehicle speeds.

The electric fans **1100** may be mounted so that they are retractable above the lower surface of the movable underbody **101**. For example, the electric fans **1100** may be mounted on the undersurface of a plank articulated to the rear of the movable underbody **101** that may rotate upward relative to the rest of the movable underbody. Retraction of the electric fans **1100** may promote the flow of air below the movable underbody **101** when the electric fans **1100** are not in use.

Electric fans **1100** may be combined with many combinations of additional component embodiments listed above. Electric fans **1100** may also be mounted at other positions on the movable underbody and similarly adapted to speed the flow of air under the movable underbody. The electric fans **1100** may, for example, be located behind the movable underbody and adapted to draw air from both below and above the movable underbody. The electric fans **1100** may be located at the front of the movable underbody and adapted to propel air below the movable underbody. The electric fans **1100** may be located at the sides of the movable underbody and adapted to either propel air below the movable underbody or draw air from below the movable underbody. Finally, the electric fans may be located within one or more openings in the movable underbody and adapted to speed the flow of air both below and above the movable underbody. Although much less practical, it is also possible to use gasoline or other liquid fuel powered fans or even miniature turbines in place of the electric fans **1100**. It is also possible to use a flow of compressed air below the movable underbody to create downforce.

By use of an appropriate skirt system around the perimeter of the movable underbody, including use of a downturned inlet with brush **614** (Fig. 39D) at the front of the movable underbody, for example, the electric fans **1100** may, alternatively, generate downforce through decrease in the static pressure below the movable underbody by the direct evacuation of air below the movable underbody.

Figs. 35B and 36B - Second Alternative Embodiment

Fig. 35B is an elevation view of the left side and Fig. 36B is a perspective rear three-quarter view of a second alternative embodiment in accordance with the present invention. This second alternative embodiment is similar to the basic embodiment described above with the following exceptions: the movable underbody is in the form of a vacuum plate **2100** with a centrally-located vacuum plate orifice **2300** to which is attached a vacuum hose **2400**. Additionally, there is a vacuum generator **2500** that may be mounted within the vehicle body **158**. The upper end of the vacuum hose **2400** attaches to the vacuum generator **2500**. The perimeter of the vacuum plate **2100** is completely surrounded by a vacuum skirt **2200** that may be in the form of a brush, flexible abrasion-resistant material, or the like, capable of forming at least a partial seal with the roadway **199**.

The vacuum generator **2500** serves to generate a negative pressure that is transmitted by the vacuum hose **2400** and vacuum plate orifice **2300** to the undersurface of the vacuum plate **2100**. This creates downforce when the vacuum plate **2100** is deployed and the vacuum generator **2500** is activated. Unlike the other embodiments herein described in which downforce is generated through a decrease in the dynamic pressure below the plate (except for the last variant of the first alternative embodiment described above), the second alternative embodiment generates downforce through a decrease in the static pressure below the plate. The former means of downforce generation may be termed “aerodynamic ground effect” while the latter means of downforce generation may be termed “aerostatic ground effect”. As described for the first alternative embodiment, aerodynamic ground effect may be further divided into passive aerodynamic ground effect and active aerodynamic ground effect.

The vacuum skirt **2200** serves to enclose the space below the vacuum plate **2100**. This facilitates the decrease of pressure below the vacuum plate **2100** and thus increases the level of downforce generated. The vacuum generator **2500** may be automatically operated whenever the vacuum plate **2100** is deployed or may be independently operated. The vacuum generator **2500** may be alternatively mounted at some point on the vacuum plate **2100** and the vacuum hose **2400** made correspondingly short or eliminated. If the vacuum plate **2100** is positioned close

enough to the roadway **199** (Fig. 1A), a useful amount of negative pressure may be generated below the vacuum plate **2100** by the operation of a sufficiently powerful vacuum generator **2500**, even without a vacuum skirt **2200** installed.

The vacuum plate orifice **2300** may be situated at other positions besides the center of the vacuum plate **2100** and may be replaced with a plurality of orifices connected to the vacuum generator **2500** with an appropriate vacuum hose system. The vacuum generator **2500** may also be replaced with a plurality of vacuum generators.

Both the first and second alternative embodiments of the present invention allow for the generation of high levels of downforce regardless of vehicle speed. This means increased tire grip even at low vehicle speeds where conventional methods of generating downforce are relatively ineffectual. This, for example, allows a vehicle equipped in accordance with either the first or second alternative embodiments of the present invention to attain higher speeds through tight, low-speed turns, and improved acceleration from a standstill.

As a further alternative embodiment, the vacuum skirt **2200** may be eliminated from the front and rear of the vacuum plate **2100** and negative pressure applied to the undersurface of the vacuum plate **2100** for the purpose of drawing off a portion of the aerodynamic boundary layer to enhance the flow of air below the plate and thus enhance the generation of downforce produced through aerodynamic ground effect. This contrasts with the generation of downforce through aerostatic ground effect, as described in the immediately preceding paragraphs.

Figs. 26B, 37, 38 - Third Alternative Embodiment

Fig. 26B is a perspective rear three-quarter view of a third alternative embodiment in accordance with the present invention. This third alternative embodiment is similar to the basic embodiment described above except that the four support linkages **104a – 104d** attach to minimal fittings **705a – 705d** on the movable underbody **101** and extend directly to corresponding body-mounted height-adjustment actuators **3100a – 3100d** located in the vehicle body **158**. There are also four laser sensors **3300a – 3300d** located on the movable underbody **101**. The four laser sensors

3300a – 3300d are adapted for sensing the ride height of the movable underbody **101** at their respective points of mounting. Each laser sensor **3300a – 3300d** is substantially coincident with a corresponding fitting **705a – 705d** that is attached to a corresponding support linkage **104a – 104d**. The body-mounted height-adjustment actuators **3100a – 3100d** and laser sensors **3300a – 3300d** are distributed toward the corner areas of the movable underbody **101**. Unlike all other embodiments described herein, including the basic embodiment, there is no connection between the movable underbody support system and the suspension of the vehicle. Further, there is no force transfer through the suspension of the vehicle in this third alternative embodiment of the present invention.

Fig. 37 is a block diagram of a body-mounted movable underbody height-adjustment and retraction control means that may be used with the third alternative embodiment described above. The four body-mounted height-adjustment actuators **3100a – 3100d** are each controlled by output from a body-mounted movable underbody height-adjustment ECU (Electronic Control Unit) **3200**. As shown in Fig. 37, the body-mounted movable underbody height-adjustment ECU (hereinafter the “ECU”) **3200** may also be made responsive to a driver-operated retraction switch **3400**, movable underbody position sensor **175**, and the vehicle electronic stability control system **185**, in addition to the laser sensors **3300a – 3300d**, for determining the movable underbody ride height, as described above. The ECU **3200** may follow the same process as described for the movable underbody retraction ECU **184** and as shown in Fig. 29, to produce the same functionality as that described for the movable underbody retraction ECU **184**, in terms of movable underbody **101** deployment and retraction.

The laser sensors **3300a – 3300d** provide output to the ECU **3200**. Based upon ride-height data input from the laser sensors **3300a – 3300d**, the ECU **3200** provides appropriate output to the four body-mounted height-adjustment actuators **3100a – 3100d** to maintain an approximately constant positional relationship between the movable underbody **101** (Fig. 1A) and the roadway **199** (Fig. 1A). For example, if the measured ride-height output from one of the laser sensors **3300a – 3300d** is below a preprogrammed movable underbody lower ride-height limit value stored in the ECU **3200**, the ECU **3200** may send output to the corresponding body-mounted height-adjustment actuator **3100a – 3100d** to raise the movable underbody **101** at that position

by the difference in ride height between the preprogrammed lower limit value stored in the ECU **3200** and that measured by the laser sensor **3300a – 3300d**. If the measured ride-height output from the same laser sensor **3300a – 3300d** is, instead, above a preprogrammed movable underbody upper ride-height limit value stored in the ECU **3200**, the ECU **3200** may send output to the corresponding body-mounted height-adjustment actuator **3100a – 3100d** to lower the movable underbody **101** at that position by the difference in ride height between the preprogrammed upper limit value stored in the ECU **3200** and that measured by the laser sensor **3300a – 3300d**. The same process is performed by the ECU **3200** using input from all four laser movable underbody ride-height sensors **3300a – 3300d** to produce appropriate output for all four body-mounted height-adjustment actuators **3100a – 3100d**. This ensures that the orientation and ride height of the movable underbody **101** above the roadway **199** varies minimally from the upper and lower ride-height limit values stored in ECU **3200**.

The ECU **3200** also provides output to the four body-mounted height-adjustment actuators **3100a – 3100d** for the alternate retraction and deployment of the movable underbody **101** (Fig. 1A). This operation is based upon preprogrammed positional data stored in the ECU **3200** for the retracted position of the movable underbody **101**. Unlike all other embodiments of the present invention, including the basic embodiment, there is no separate retraction system in this embodiment.

More than four body-mounted height-adjustment actuators and a corresponding number of laser sensors may be used to support and move the movable underbody **101** (Fig. 1A) directly from the vehicle body **158** (Fig. 1A). Also, there may be as few as three body-mounted height-adjustment actuators and a corresponding number of laser sensors employed. Unlike the other embodiments of the present invention described herein, use of body-mounted height-adjustment actuators to support a movable underbody allows such a movable underbody to be of a design that does not include four corner areas near the four wheels **124a – 124d** (Fig. 30A) of the vehicle.

It is possible to obtain the appropriate output from the ECU **3200** to the body-mounted height-adjustment actuators **3100a – 3100d** by measuring ride height of the vehicle body **158** (Fig. 1A), such as that from suspension position sensors **176a – 176d** (Fig. 24A). This is an alternative to directly measuring the ride height of the movable

underbody **101** (Fig. 1A), as described above. In this case, several steps must be performed by the ECU **3200** to convert ride-height data input from vehicle body ride-height sensors into appropriate output to the body-mounted height-adjustment actuators **3100a – 3100d** in order to maintain the movable underbody **101** near a set ride height above the roadway **199** (Fig. 1A). This is because the body-mounted height-adjustment actuators **3100a – 3100d** cannot be easily made coincident with the point on the vehicle where vehicle body ride height is measured. This is because such measurement must be made to the side, front, or rear of the movable underbody **101**, due to the blocking effect of the movable underbody **101**. For example, laser sensors for detecting ride height that are mounted to the vehicle body **158**, rather than the movable underbody **101**, will be blocked by the movable underbody **101**, unless appropriately sized holes are made in the movable underbody **101** to allow for the passage of the laser beams.

It is in accordance with the invention to use suspension position sensors **176a – 176d** (Fig. 24A) for the purpose of measuring body ride height. When suspension position sensors **176a – 176d** are employed for this purpose, ride height is effectively measured at the four wheels **124a – 124d** (Fig. 30A) and those points are not coincident with the mounting positions of the body-mounted height-adjustment actuators **3100a – 3100d**.

Fig. 38 shows an example of a process that may be performed by the ECU **3200** (Fig. 37) to produce the desired output to the body-mounted height-adjustment actuators **3100a – 3100d** (Fig. 37) to maintain the movable underbody **101** (Fig. 1) at or near a preprogrammed ride height above the roadway **199** (Fig. 1) using input from suspension position sensors **176a – 176d** (Fig. 24A).

In Step **3001** output from the four suspension position sensors **176a – 176d** (Fig. 24A) is detected. The process then proceeds to Step **3002**.

In Step **3002** the ride height at each wheel is calculated from the input from the four suspension position sensors **176a – 176d** (Fig. 24A). Depending upon how the suspension position sensors **176a – 176d** are connected and oriented relative to the suspension of the vehicle, there may be a simple linear relationship between the positional data input from each of the suspension position sensors **176a – 176d** and the ride height at each corresponding wheel **124a – 124d** (Fig. 30A). The ECU **3200** (Fig.

37) is preprogrammed with either a table to convert suspension position sensor values to ride height at the wheel values or the ECU **3200** is programmed with an appropriate mathematical equation to convert suspension position sensor output values to corresponding ride height at the wheels values. The process then proceeds to Step **3003**.

In Step **3003** the ride height at the wheel values generated in Step **3002** are used to generate an equation that describes the plane of the roadway **199** (Fig. 1A). To do this it is useful to first define a reference plane **3500** (Fig. 40A) from which the estimated support plane **3600** (Fig. 40B) may be measured. The reference plane **3500** may be defined, for example, as the plane that intercepts the points of support of the four wheels **124a – 124d** (Fig. 30A) with the roadway **199** when the vehicle's suspension is at full suspension compression or jounce. Fig. 40A is a perspective front three-quarter view of the four wheels **124a – 124d** of a vehicle at full suspension compression. Fig. 40A also shows a reference plane **3500** defined as described above with the four wheel support points at full suspension compression labeled **3510a – 3510d**. Other reference planes may be defined instead. The origin **3520** on the reference plane **3500** may be defined as the point on the reference plane **3500** exactly between these four points **3510a – 3510d**. As shown in Fig. 40A, a longitudinally oriented X-axis **3530** (increasing values forward) and a transversely oriented Y-axis **3540** (increasing values to the right) may be defined as being on that reference plane. The Z-axis **3550** (increasing values downward) is orthogonal to the reference plane and represents height below the reference plane **3500**. All three axes go through the origin.

Fig. 40B is a perspective front three-quarter view of the four wheels **124a – 124d**, as labeled in Fig. 40A, of a vehicle as the wheels rest upon the roadway **199** at representative positions below the reference plane **3500**. These wheel positions may be assumed by the four wheels **124a – 124d**, for example, during vehicle travel. The position of each of the four wheel support points relative to the reference plane **3500** is defined in terms of the three coordinates (X, Y, Z). Thus, the front left wheel **124a** may have the coordinates of its support point relative to the reference plane designated (X_a, Y_a, Z_a) **3610a**. Likewise, the support point of the front right wheel **124b** is designated (X_b, Y_b, Z_b) **3610b**. Further, the support point of the left rear wheel **124c** is designated

(X_c, Y_c, Z_c) **3610c**. Finally, the support point of the right rear wheel **124d** is designated (X_d, Y_d, Z_d) **3610d**. The estimated support plane **3600** intercepts these four wheel support points **3610a – 3610d**. The estimated support plane **3600** is represented by an equation in the form of a dependent Z variable (height) in terms of an independent X variable (longitudinal position) and independent Y variable (transverse position). With such an equation, the distance between the reference plane **3500** and the estimated support plane **3600** may be determined for any horizontal position on the vehicle, as defined by the X and Y coordinate of the position.

Because the actual roadway **199** is rarely, if ever, totally flat, a mathematical equation for the estimated support plane **3600** that best fits the ride-height data must be generated by the ECU **3200**. There are different ways that this may be done. One method is to have the ECU **3200** perform an ordinary least squares calculation using the coordinate data for the four measured wheel support points, (X_a, Y_a, Z_a) **3610a**, (X_b, Y_b, Z_b) **3610b**, (X_c, Y_c, Z_c) **3610c**, and (X_d, Y_d, Z_d) **3610d**, to derive an equation for the mathematical plane that best fits those four points. This method is particularly appropriate if data from more than four ride-height points is available. Alternatively, the average slope (T) of a transverse line **3640** on the estimated support plane **3600**, along with the average slope (L) of a longitudinal line **3630** on the estimated support plane **3600**, and average height from the reference plane (D) **3620** may be calculated for the estimated support plane **3600** from the four wheel support points **3610a – 3610d**. These may then be combined, as described below, to derive an equation for the mathematical plane that well fits those four points **3610a – 3610d**.

The slope (T) of the transversely oriented line **3640** on the estimated support plane **3600** is calculated by averaging the slope of a line connecting the support points of the two front wheels ($T_1 = (Z_a - Z_b)/(Y_a - Y_b)$) with the slope of a line connecting the support points of the two rear wheels ($T_2 = (Z_c - Z_d)/(Y_c - Y_d)$). Thus, the transverse slope (T) of the estimated support plane **3600** is $(T_1 + T_2)/2$. The slope (L) of the longitudinally oriented line **3630** on the estimated support plane **3600** is calculated by averaging the slope of a line connecting the support points of the two left wheels ($L_1 = (Z_a - Z_c)/(X_a - X_c)$) with the slope of a line connecting the support points of the two right wheels ($L_2 = (Z_b - Z_d)/(X_b - X_d)$). Thus, the longitudinal slope (L) of the

estimated support plane **3600** is $(L1 + L2)/2$. The Z-intercept (D) of both transverse and longitudinal lines, **3640** and **3630**, is the average of the height below the reference plane for the four wheel support points sensed by the suspension position sensors **176a** – **176d** (Fig. 24A). The Z-intercept (D), or estimated ride height at the origin **3620**, is therefore given by $(Za + Zb + Zc + Zd)/4$. Thus, the height below the reference plane (Z) to any point on the estimated support plane **3600** may be determined by the following equation: $Z = TX + LY + D$, where X and Y are the transverse and longitudinal coordinates of any point of interest relative to the origin. The points that are of interest in the following step, Step **3004**, are the longitudinal (Y) and transverse (X) positions of each of the body-mounted height-adjustment actuators **3100a** – **3100d** (Fig. 40C). The process then proceeds to Step **3004**.

In Step **3004**, the foregoing equation $Z = TX + LY + D$ is used by the ECU **3200** to calculate the estimated ride height at all four of the movable underbody height-adjustment actuators **3100a** – **3100d** (Fig. 40C). Fig. 40C shows these estimated actuator ride heights **3650a** – **3650d** for the example wheel positions of Fig. 40B. For each of the body-mounted height-adjustment actuators **3100a** – **3100d** this calculation is based upon the transverse (X) and longitudinal (Y) coordinates specific to that body-mounted height-adjustment actuator **3100a** – **3100d**, along with the transverse slope (T), longitudinal slope (L), and average height above the reference plane (D) values calculated by the ECU **3200** (Fig. 37) in Step **3003**. The transverse (X) and longitudinal (Y) coordinates of each of the body-mounted height-adjustment actuators **3100a** – **3100d** are preset constants preprogrammed into the ECU **3200** based upon the exact position relative to the origin on the reference plane **3500** (Fig. 40A) of each of the height-adjustment actuators **3100a** – **3100d** mounted on the vehicle body **158** (Fig. 1A). The process then proceeds to Step **3005**.

In Step **3005**, the desired movable underbody ride height is subtracted from the ride heights determined in Step **3004** for all four of the body-mounted height-adjustment actuators **3100a** – **3100d** by the ECU **3200** (Fig. 37) to derive correct output values for the four body-mounted height-adjustment actuators **3100a** – **3100d**. This assumes that the body-mounted height-adjustment actuators **3100a** – **3100d** include a system that provides the ECU **3200** with feedback on current actuator output positions. The

movable underbody ride height may be a preset value permanently stored in the ECU **3200** or a system may be provided to change that value based upon input from the driver or a computer processor. Additionally, movable underbody pitch values representing differences in the ride height at the front and rear of the movable underbody **101** (Fig. 1A) may be preprogrammed into the ECU **3200** and either added or subtracted to the front body-mounted height-adjustment actuators **3100a – 3100b** and either subtracted or added to the rear body-mounted height-adjustment actuators **3100c – 3100d**. The process then proceeds to Step **3006**.

In Step **3006**, the correct output to the body-mounted height-adjustment actuators **3100a – 3100d**, calculated in Step **3005**, is output by the ECU **3200** (Fig. 37) to the body-mounted height-adjustment actuators **3100a – 3100d**. The process then proceeds back to Step **3001**.

The foregoing method allows the body-mounted movable underbody height-adjustment actuators **3100a – 3100d** to be positioned at points well away from the vehicle wheels **124a – 124d** (Fig. 30A). This method also allows three or five or more body-mounted movable underbody height-adjustment actuators to be used instead of the arrangement of four body-mounted movable underbody height-adjustment actuators **3100a – 3100d** described above. Other suitable means for measuring vehicle body ride height, of course, may be used with the preceding method.

Advantages

The present invention has a number of important advantages over the prior art. These advantages are identified in the preceding description of the basic and additional embodiments. To summarize, these advantages have the following features:

(a) The movable underbody device is retractable. As described in the detailed description, the movable underbody of the present invention may be retracted or deployed by the driver and/or a retraction control means. This is a very significant advantage of the present invention because it allows a vehicle so equipped to have both a high-ride-height, low-downforce configuration and a low-ride-height, high-downforce configuration. This greatly increases the practicality of the movable underbody because

it may remain in a retracted position for driving on public roads and only be deployed when the vehicle is to be driven on a closed-course racetrack or in emergency situations requiring increased tire grip.

(b) The movable underbody may be physically or functionally disengaged from the suspension. This is a further very important advantage of the present invention over the prior art. Physical or functional disengagement of the movable underbody from the suspension allows the movable underbody to be securely held against the vehicle body in the retracted position. Among other advantages, this means that there is less chance of physical damage to the movable underbody and cooperating systems when not in use. It is only when the movable underbody is deployed that it is engaged or coupled with the vehicle's suspension, such that it both moves with, and transfers downforce load directly to, the vehicle's suspension.

(c) The presently disclosed movable underbody may be largely or completely hidden from normal view when retracted.

(d) The movable underbody of the present invention is compliant upon impact with the roadway or objects thereon. This is because the suspension-mounted support means of the movable underbody may be adapted to transfer significant load only in tension.

(e) The movable underbody contributes only minimally to the unsprung mass of the vehicle because it is only the comparatively small and light upper support bracket and associated components of the movable underbody support system that are fixed to the unsprung portion of the vehicle's suspension. This may mean improved tire grip and vehicle handling in a vehicle equipped with a device in accordance with the present invention.

(f) The movable underbody is finely adjustable in both ride height and orientation during vehicle travel when, for example, the upper support bracket is made adjustable, as described in relation to the additional embodiments. This allows precise ground clearance to be controlled. It also may allow overall levels and distribution of downforce to be varied during travel.

(g) The movable underbody allows downforce to be measured directly using strain gauges attached to the support linkage system. This advantage is a result of the

unique support system of the present invention where the horizontal loads generated by the movable underbody may be borne separately by one or more stabilization linkages and only vertical loads borne by the support linkage system.

(h) The movable underbody of the present invention may decrease the drag generated by the vehicle wheels. This advantage is a result of the aerodynamic fences that may be fitted between the movable underbody and the vehicle body or the wheel fairings that may be fitted to enclose the wheels. These structures may be arranged to both deflect the air stream before the vehicle wheels and isolate the volume of air around the wheels. The result is a decrease in the considerable drag often associated with the rotating wheels of a motor vehicle. The preceding means of drag reduction is in addition to both a) the drag reduction that is a result of low levels of induced drag generated in ground effect, and b) the effectiveness of the movable underbody for generating downforce that allows the body of a vehicle to be better optimized for minimized drag. Taken together, these advantages in drag reduction result in a motor vehicle that may produce markedly less drag than a comparable motor vehicle that is not fitted with a device in accordance with the present invention. Thus, not only may a motor vehicle equipped with a device in accordance with the present invention be driven more rapidly around a road course than a comparable vehicle not so equipped, a motor vehicle equipped with a device in accordance with the present invention may have better gas mileage and a higher maximum straight line speed than a comparable motor vehicle not so equipped.

(i) The present device may influence the flow of air between the vehicle body and movable underbody for potentially useful purposes. Such purposes include engine cooling, intercooler cooling, and the enhancement of ground effect through interaction with airflow below the movable underbody at the rear of the structure or through slots cut in the surface of the movable underbody.

(j) The first and second alternative embodiments of the present invention may generate high levels of downforce at low vehicle speeds or when the vehicle is stopped. Thus, a vehicle equipped in accordance with either the first or second alternative embodiments of the present invention may have higher performance at low vehicle speeds than a comparable vehicle not so equipped. The former may also have the

potential to accelerate faster from a standstill than a comparable vehicle not so equipped.

The movable underbody described herein may also be fitted to other road vehicles besides sports cars and passenger cars. Although the detailed description above contains many specifics, these should not be construed as limiting the scope of the embodiments. Instead, the detailed description should be read as merely providing illustrations of some of the presently preferred embodiments. The scope of the disclosed subject matter should, therefore, be determined by the appended claims and their legal equivalents, rather than by the examples given above.

CLAIMS

1. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,
 - (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and
 - a pair of rear wheels;

wherein said set of wheels defines a set of corner areas of said motor vehicle,

 - (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
 - (e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
 - (f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and
 - (g) a retraction means for elevating and lowering said movable underbody relative to said body, wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.
2. The motor vehicle of claim 1, further comprising a retraction control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said retraction means.

3. The motor vehicle of claim 1, further comprising:
 - a retraction control means, comprising
 - sensor means for sensing one or more of the following inputs: (a) current position of said movable underbody, (b) current movements of said suspension system, (c) a state of a vehicle electronic stability control system, and (d) a signal from a driver-operated retraction switch; and
 - a retraction actuator adapted to activate said retraction means responsive to said sensor means
4. The motor vehicle of claim 1, wherein said suspension-mounted support means includes a tensile support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each said tensile support linkage being adapted to constrain in the downward direction, through tension thereon, movement of the movable underbody.
5. The motor vehicle of claim 1, wherein said suspension-mounted support means includes a portion of each of said corner areas of said movable underbody, or a structure attached to each of said corner areas of said movable underbody, said portion or structure being adapted to press upon a portion of said suspension system, or a structure attached to said suspension system, such that movement of said movable underbody is constrained in the downward direction.
6. The motor vehicle of claim 1, further including a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.
7. The motor vehicle of claim 1, further including a movable underbody height-adjustment means for varying the height and/or orientation of said movable underbody when said movable underbody is supported by said suspension-mounted support means.

8. The motor vehicle of claim 1, further including at least one fan mounted to said movable underbody, said at least one fan being adapted to accelerate or evacuate air below said movable underbody.
9. The motor vehicle of claim 1, wherein said movable underbody includes a lower surface having an orifice, said motor vehicle further including:
 - a vacuum generator adapted to generate negative pressure, and
 - a vacuum hose connected to transmit negative pressure generated by said vacuum generator to said orifice, whereby negative pressure is transmitted to said lower surface of said movable underbody.
10. The motor vehicle of claim 9, further including a skirt extending about and depending from a periphery of said movable underbody, said skirt being adapted to help maintain negative pressure below said movable underbody.
11. The motor vehicle of claim 1, wherein said movable underbody includes an adjustable aerodynamic surface, said motor vehicle further including an adjustable aerodynamic surface actuator adapted to move said adjustable aerodynamic surface during travel of said motor vehicle.
12. The motor vehicle of claim 1, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to promote the generation of downforce.
13. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,
 - (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and

a pair of rear wheels;
 wherein said set of wheels defines a set of corner areas of said motor vehicle,
(d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
(e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
(f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and
(g) a movable underbody height-adjustment means for varying the height and/or orientation of said movable underbody with respect to the roadway during travel of said motor vehicle.

14. The motor vehicle of claim 13, further comprising a movable underbody height-adjustment control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said movable underbody height-adjustment means.

15. The motor vehicle of claim 13, further comprising:
 one or more sensors; and
 a movable underbody height-adjustment control means which is responsive to said one or more sensors and/or a driver of said motor vehicle, and operatively connected to said movable underbody height-adjustment means.

16. A motor vehicle, including:
(a) a body,
(b) a motor adapted to propel said motor vehicle,

(c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:

 a pair of front wheels; and

 a pair of rear wheels;

wherein said set of wheels defines a set of corner areas of said motor vehicle,

(d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,

(e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,

(f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and

(g) a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

17. The motor vehicle of claim 16, wherein said suspension-mounted support means includes a support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each said support linkage being adapted to at least constrain in the downward direction, through tension thereon, movement of the movable underbody.

18. A motor vehicle, including:

(a) a body,

(b) a motor adapted to propel said motor vehicle,

(c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:

 a pair of front wheels; and

a pair of rear wheels;

wherein said set of wheels defines a set of corner areas of said motor vehicle,

(d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,

(e) a movable underbody adapted to reduce aerodynamic drag, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,

(f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and

(g) a retraction means for elevating and lowering said movable underbody relative to said body, wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody is no longer supported from said suspension-mounted support means and does not substantially displace vertically with said set of wheels relative to said body.

19. The motor vehicle of claim 18, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to reduce aerodynamic drag.
20. The motor vehicle of claim 18, further including at least one wheel fairing attached to said movable underbody.
21. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,

(c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:

 a pair of front wheels; and

 a pair of rear wheels;

wherein said set of wheels defines a set of corner areas of said motor vehicle,

(d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,

(e) a movable underbody adapted to produce downforce, wherein said movable underbody is not fixed to said body,

(f) body-mounted movable underbody height-adjustment actuators adapted to support and move said movable underbody thereby allowing said movable underbody to maintain a more constant distance and orientation above a roadway being traversed than maintained by said body,

(g) ride-height sensors adapted to produce output pertaining to the ride height and orientation of said movable underbody, and

(h) a body-mounted movable underbody height-adjustment electronic control unit which is responsive to said output from said ride-height sensors and adapted to generate output to said body-mounted movable underbody height-adjustment actuators such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body.

22. The motor vehicle of claim 21, further including a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.
23. A method of using a vehicle having:
 - a body,
 - a motor adapted to propel said motor vehicle along a roadway, and
 - a movable underbody adapted to be moved, in response to an action of a driver of the vehicle, between a deployed condition and a retracted

condition, and adapted to produce aerodynamic downforce when in a deployed condition,

the method comprising:

causing said movable underbody to move from to the retracted condition to the deployed condition while said vehicle is traversing a roadway, thereby producing aerodynamic downforce.

24. A method of using a vehicle having:

a body,
a motor adapted to propel said motor vehicle along a roadway, and
a movable underbody adapted to be moved, in response to an action of a driver of the vehicle, between a deployed condition and a retracted condition, and adapted to produce aerodynamic downforce when in the deployed condition and adapted to provide greater ground clearance when in the retracted condition,

the method comprising:

causing the movable underbody to move from the deployed condition to the retracted condition while said vehicle is traversing a roadway, thereby providing greater ground clearance.

AMENDED CLAIMS
received by the International Bureau on
9 August 2013 (09.08.2013)

1. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,
 - (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and
 - a pair of rear wheels;wherein said set of wheels defines a set of corner areas of said motor vehicle,
 - (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
 - (e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
 - (f) a retraction means for elevating and lowering said movable underbody relative to said body,
 - wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody does not substantially displace vertically with said set of wheels relative to said body, and
 - wherein lowering of said movable underbody away from said body functionally engages said movable underbody with said suspension system so that said movable underbody displaces vertically and substantially relative to said body with said set of wheels, and
 - (g) a suspension-mounted support means for dynamically supporting said movable underbody when said movable underbody is engaged with said suspension system, said support means being adapted so that said

movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body when said movable underbody is engaged with said suspension system.

2. The motor vehicle of claim 1, further including a retraction control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said retraction means.
3. The motor vehicle of claim 1, further including:
 - a retraction control means, comprising
 - sensor means for sensing one or more of the following inputs: (a) current position of said movable underbody, (b) current movements of said suspension system, (c) a state of a vehicle electronic stability control system, and (d) a signal from a driver-operated retraction switch; and
 - a retraction actuator adapted to activate said retraction means responsive to said sensor means.
4. The motor vehicle of claim 1, wherein said suspension-mounted support means includes a tensile support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each said tensile support linkage being adapted to constrain in the downward direction, through tension thereon, and not to substantially constrain in the upward direction, movement of the movable underbody.
5. The motor vehicle of claim 1, wherein said suspension-mounted support means includes a portion of each of said corner areas of said movable underbody, or a structure attached to each of said corner areas of said movable underbody, said portion or structure being adapted to press upon a portion of said suspension system, or a structure attached to said

suspension system, such that movement of said movable underbody is constrained in the downward direction and not substantially constrained in the upward direction.

6. The motor vehicle of claim 1, further including a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body and to not substantially limit vertical movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.
7. The motor vehicle of claim 1, further including a movable underbody height-adjustment means for varying the height of at least one of said corner areas of said movable underbody with respect to the roadway during travel of said motor vehicle when said movable underbody is supported by said suspension-mounted support means.
8. The motor vehicle of claim 1, further including at least one fan mounted to said movable underbody, said at least one fan being adapted to accelerate or evacuate air below said movable underbody.
9. The motor vehicle of claim 1, wherein said movable underbody includes a lower surface having an orifice, said motor vehicle further including:
 - a vacuum generator adapted to generate negative pressure, and
 - a vacuum connection adapted to transmit negative pressure generated by said vacuum generator to said orifice, whereby negative pressure is transmitted to said lower surface of said movable underbody.
10. The motor vehicle of claim 9, further including a skirt extending about and depending from a periphery of said movable underbody, said skirt being

adapted to help maintain negative pressure below said movable underbody.

11. The motor vehicle of claim 1, wherein said movable underbody includes an adjustable aerodynamic surface, said motor vehicle further including an adjustable aerodynamic surface actuator adapted to move said adjustable aerodynamic surface during travel of said motor vehicle.
12. The motor vehicle of claim 1, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to promote the generation of downforce.
13. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,
 - (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and
 - a pair of rear wheels;wherein said set of wheels defines a set of corner areas of said motor vehicle,
 - (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
 - (e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
 - (f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more

constant distance and orientation above a roadway being traversed than maintained by said body, and

(g) a movable underbody height-adjustment means for varying the height of at least one of said corner areas of said movable underbody with respect to the roadway during travel of said motor vehicle, said movable underbody height-adjustment means including an element connected to said suspension system.

14. The motor vehicle of claim 13, further including a movable underbody height-adjustment control means adapted to be actuated by a driver of said motor vehicle and operatively connected to said movable underbody height-adjustment means.

15. The motor vehicle of claim 13, further including:

- one or more sensors; and
- a movable underbody height-adjustment control means which is responsive to a signal sent from said one or more sensors, said movable underbody height-adjustment control means being operatively connected to said movable underbody height-adjustment means.

16. A motor vehicle, including:

- (a) a body,
- (b) a motor adapted to propel said motor vehicle,
- (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:

- a pair of front wheels; and
- a pair of rear wheels;

wherein said set of wheels defines a set of corner areas of said motor vehicle,

- (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
- (e) a movable underbody adapted to produce downforce, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
- (f) a suspension-mounted support means for dynamically supporting said movable underbody such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and
- (g) a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body and to not substantially limit vertical movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

17. The motor vehicle of claim 16, wherein said suspension-mounted support means includes a support linkage extending between said suspension system and said movable underbody at each of said corner areas of said motor vehicle, each said support linkage being adapted to at least constrain in the downward direction, through tension thereon, movement of the movable underbody.

18. A motor vehicle, including:

- (a) a body,
- (b) a motor adapted to propel said motor vehicle,
- (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and
 - a pair of rear wheels;wherein said set of wheels defines a set of corner areas of said motor vehicle,

- (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
- (e) a movable underbody adapted to reduce aerodynamic drag, said movable underbody including a corresponding set of corner areas, wherein said movable underbody is not fixed to said body,
- (f) a retraction means for elevating and lowering said movable underbody relative to said body,
 - wherein elevation of said movable underbody to said body functionally disengages said movable underbody from said suspension system so that said movable underbody does not substantially displace vertically with said set of wheels relative to said body, and
 - wherein lowering of said movable underbody away from said body functionally engages said movable underbody with said suspension system so that said movable underbody displaces vertically and substantially relative to said body with said set of wheels, and
- (g) a suspension-mounted support means for dynamically supporting said movable underbody when said movable underbody is engaged with said suspension system, said support means being adapted so that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body when said movable underbody is engaged with said suspension system.

19. The motor vehicle of claim 18, further including at least one aerodynamic fence attached to said movable underbody and located between said movable underbody and said body, thereby influencing the airflow between and around said movable underbody and said body to reduce aerodynamic drag.

20. The motor vehicle of claim 18, further including at least one wheel fairing attached to said movable underbody.
21. A motor vehicle, including:
 - (a) a body,
 - (b) a motor adapted to propel said motor vehicle,
 - (c) a set of wheels for supporting said motor vehicle on a roadway, said set of wheels comprising:
 - a pair of front wheels; and
 - a pair of rear wheels;wherein said set of wheels defines a set of corner areas of said motor vehicle,
 - (d) a suspension system connecting said body with each of said wheels, said suspension system being adapted to permit relative displacement between said wheels and said body,
 - (e) a movable underbody adapted to produce downforce, wherein said movable underbody is not fixed to said body,
 - (f) body-mounted movable underbody height-adjustment actuators adapted to support and move said movable underbody thereby allowing said movable underbody to maintain a more constant distance and orientation above a roadway being traversed than maintained by said body,
 - (g) ride-height sensors adapted to produce output pertaining to the ride height and orientation of said movable underbody,
 - (h) a body-mounted movable underbody height-adjustment electronic control unit which is responsive to said output from said ride-height sensors and adapted to generate output to said body-mounted movable underbody height-adjustment actuators such that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body, and

(i) a stabilization linkage means adapted to limit horizontal movements of said movable underbody relative to said body and to not substantially limit vertical movements of said movable underbody relative to said body as said motor vehicle traverses a roadway.

22. (This claim is canceled.)

23. A method of using a vehicle having:
a body,
a motor adapted to propel said vehicle along a roadway,
a movable underbody adapted to be moved, in response to an action of a driver of the vehicle, between a deployed condition and a retracted condition, and adapted to produce aerodynamic downforce when in a deployed condition,
a set of wheels for supporting said vehicle on a roadway,
a suspension system connecting said body with said set of wheels, said suspension system being adapted to permit relative displacement between said set of wheels and said body, and a suspension-mounted support means for dynamically supporting said movable underbody when said movable underbody is deployed, said support means being adapted so that said movable underbody maintains a more constant distance and orientation above a roadway being traversed than maintained by said body when said movable underbody is deployed,
the method comprising:
causing said movable underbody to move from the retracted condition to the deployed condition while said vehicle is traversing a roadway, thereby producing aerodynamic downforce.

24. A method of using a vehicle having:
a body,

a motor adapted to propel said vehicle along a roadway,
a movable underbody adapted to be moved, in response to an
action of a driver of the vehicle, between a deployed condition and
a retracted condition, and adapted to produce aerodynamic
downforce when in the deployed condition and adapted to provide
greater ground clearance when in the retracted condition,
a set of wheels for supporting said vehicle on a roadway,
a suspension system connecting said body with said set of wheels,
said suspension system being adapted to permit relative
displacement between said set of wheels and said body, and
a suspension-mounted support means for dynamically supporting
said movable underbody when said movable underbody is
deployed, said support means being adapted so that said movable
underbody maintains a more constant distance and orientation
above a roadway being traversed than maintained by said body
when said movable underbody is deployed,

the method comprising:

causing the movable underbody to move from the deployed
condition to the retracted condition while said vehicle is traversing a
roadway, thereby providing greater ground clearance.

1/41

Fig. 1A

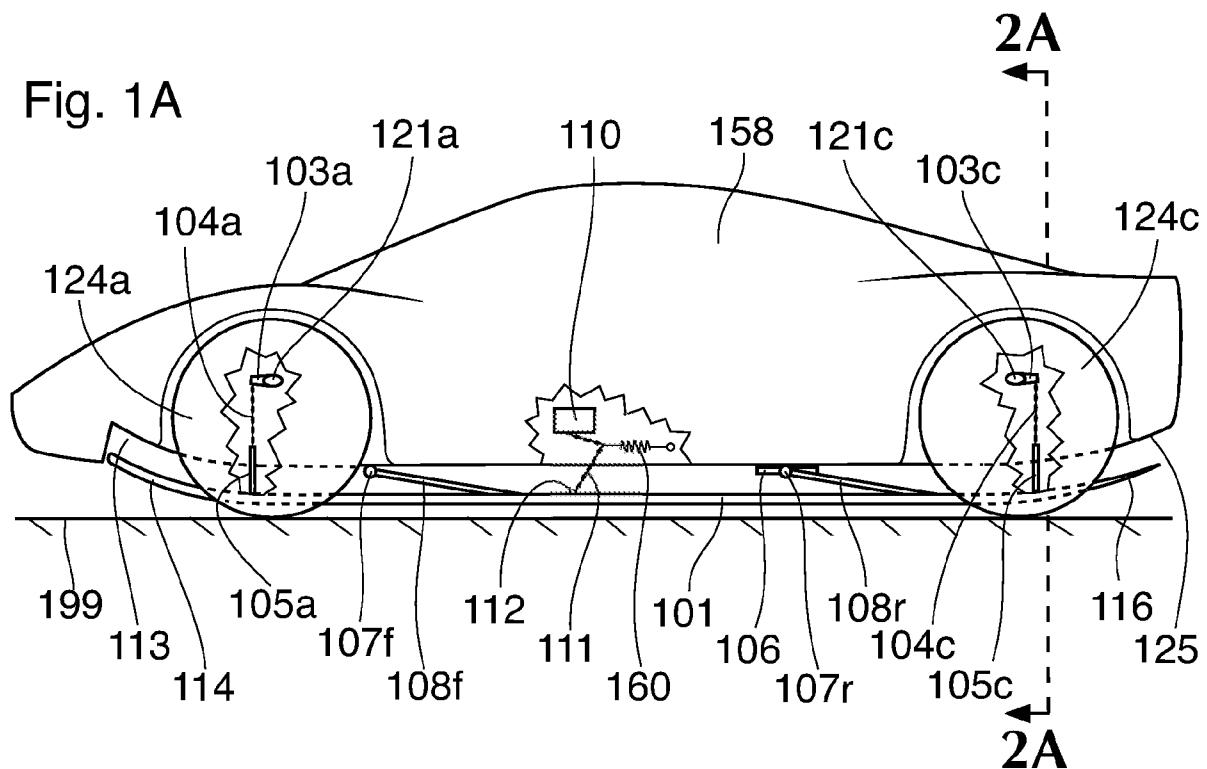
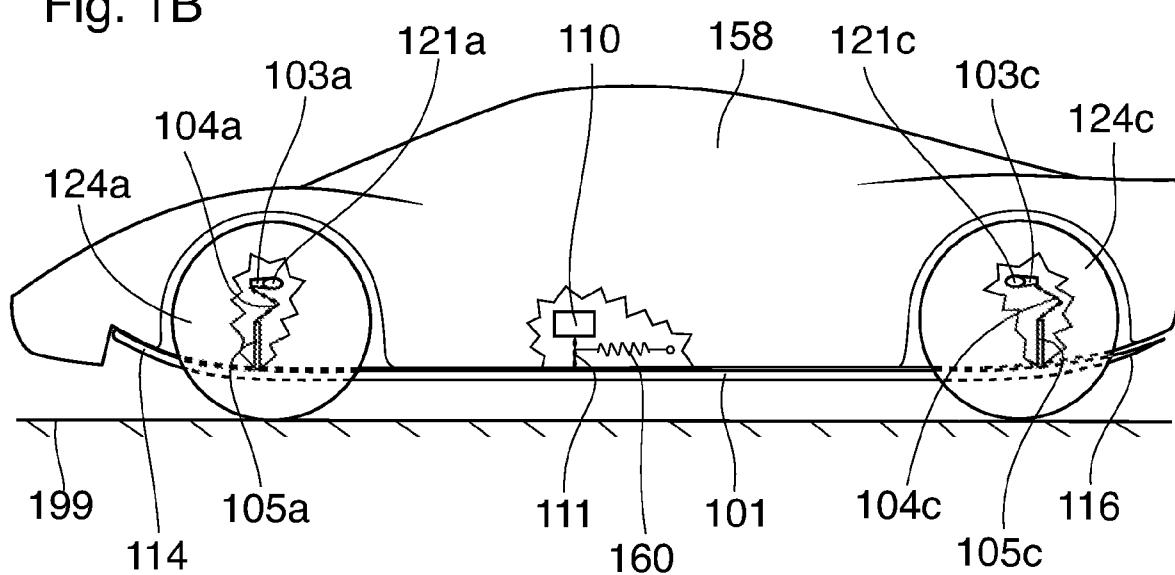



Fig. 1B

2/41

Fig. 2A

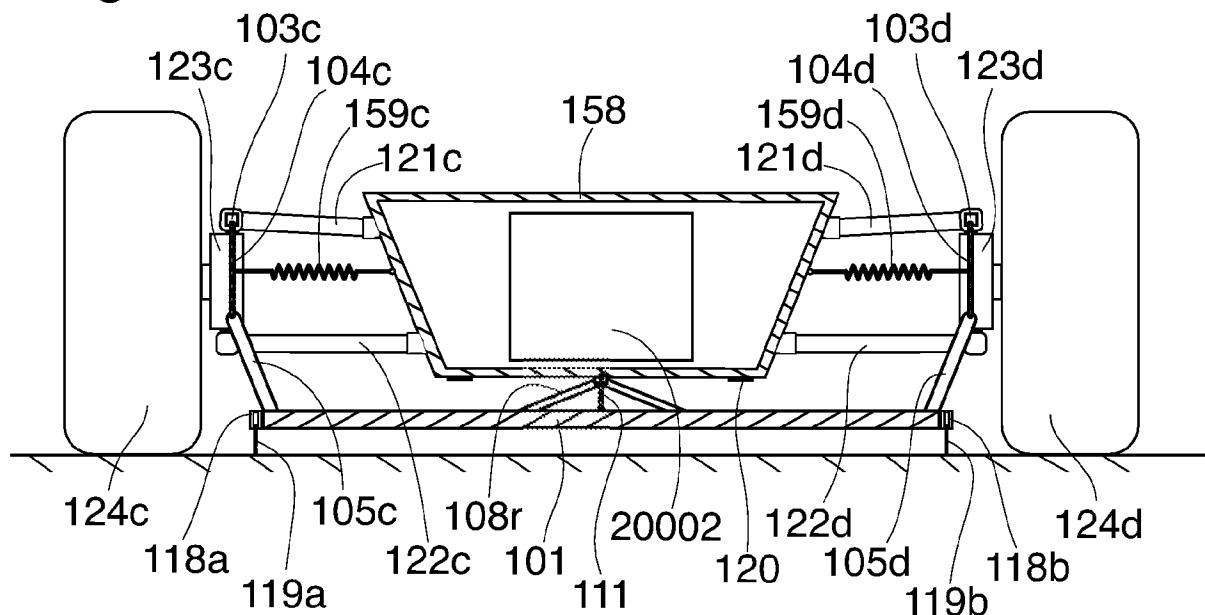
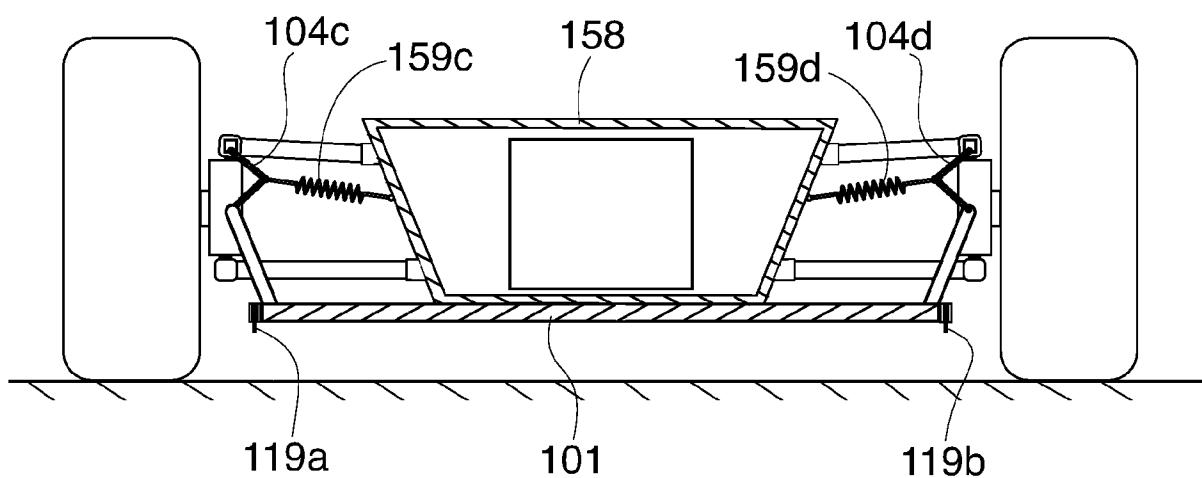



Fig. 2B

3/41

Fig. 3A

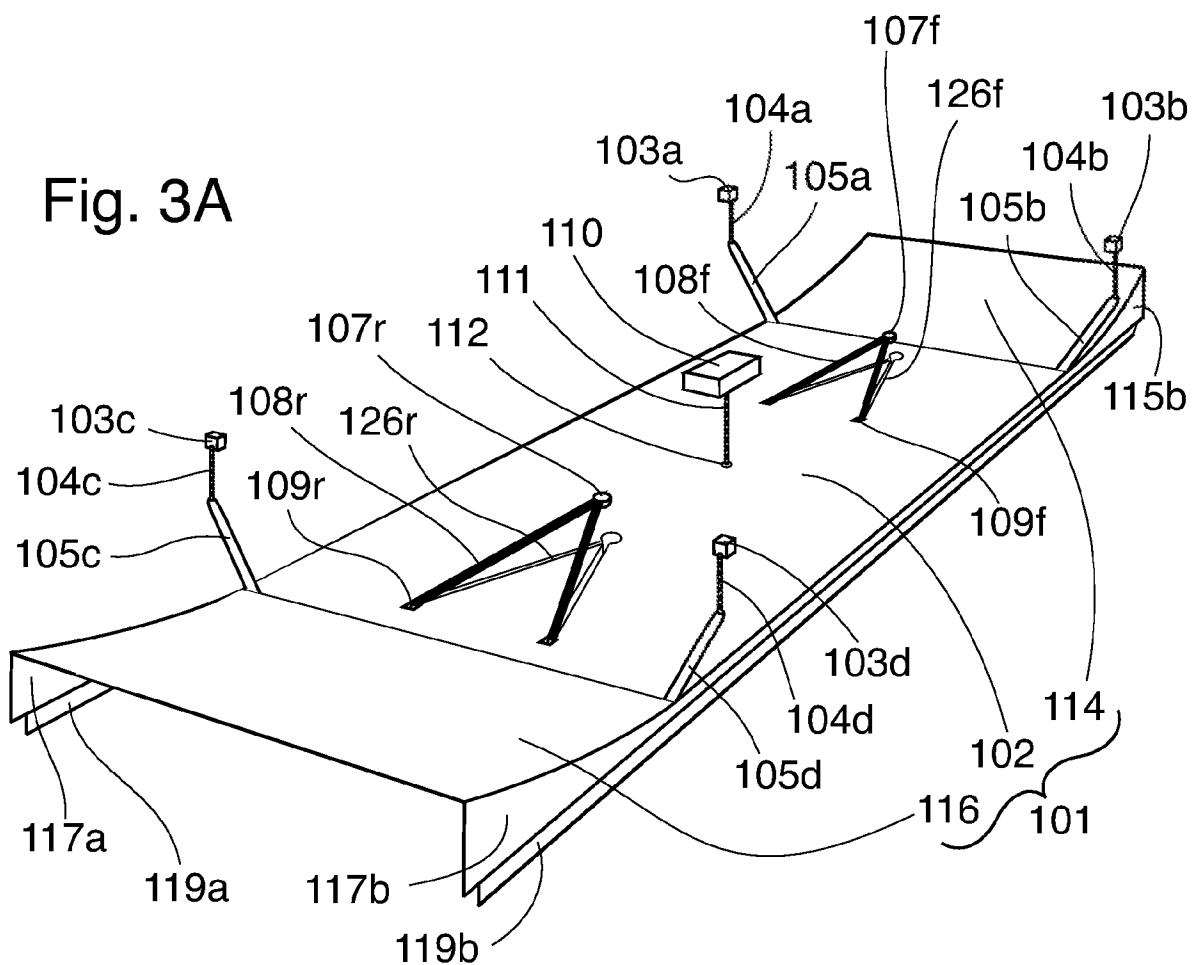
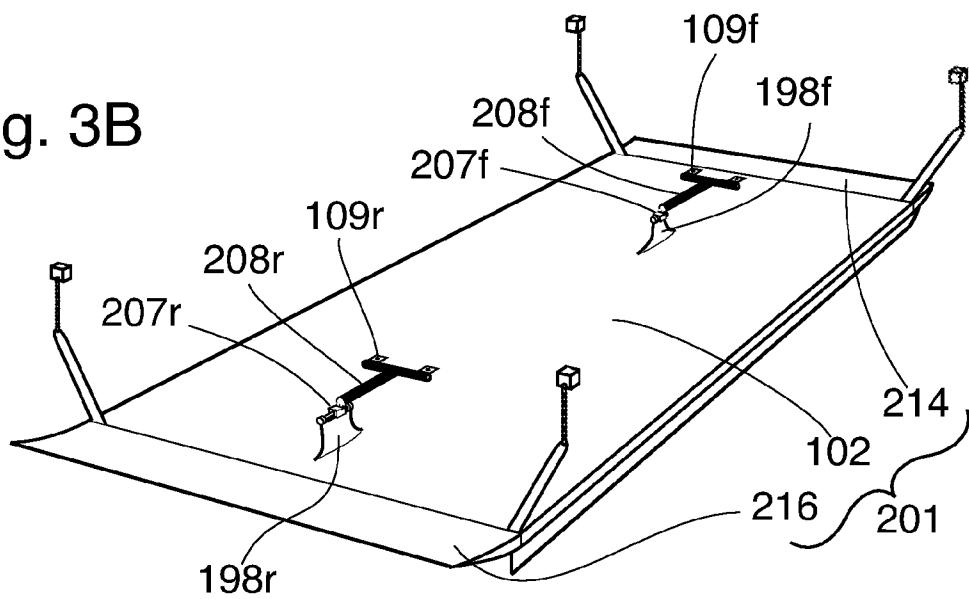



Fig. 3B

4/41

Fig. 4A

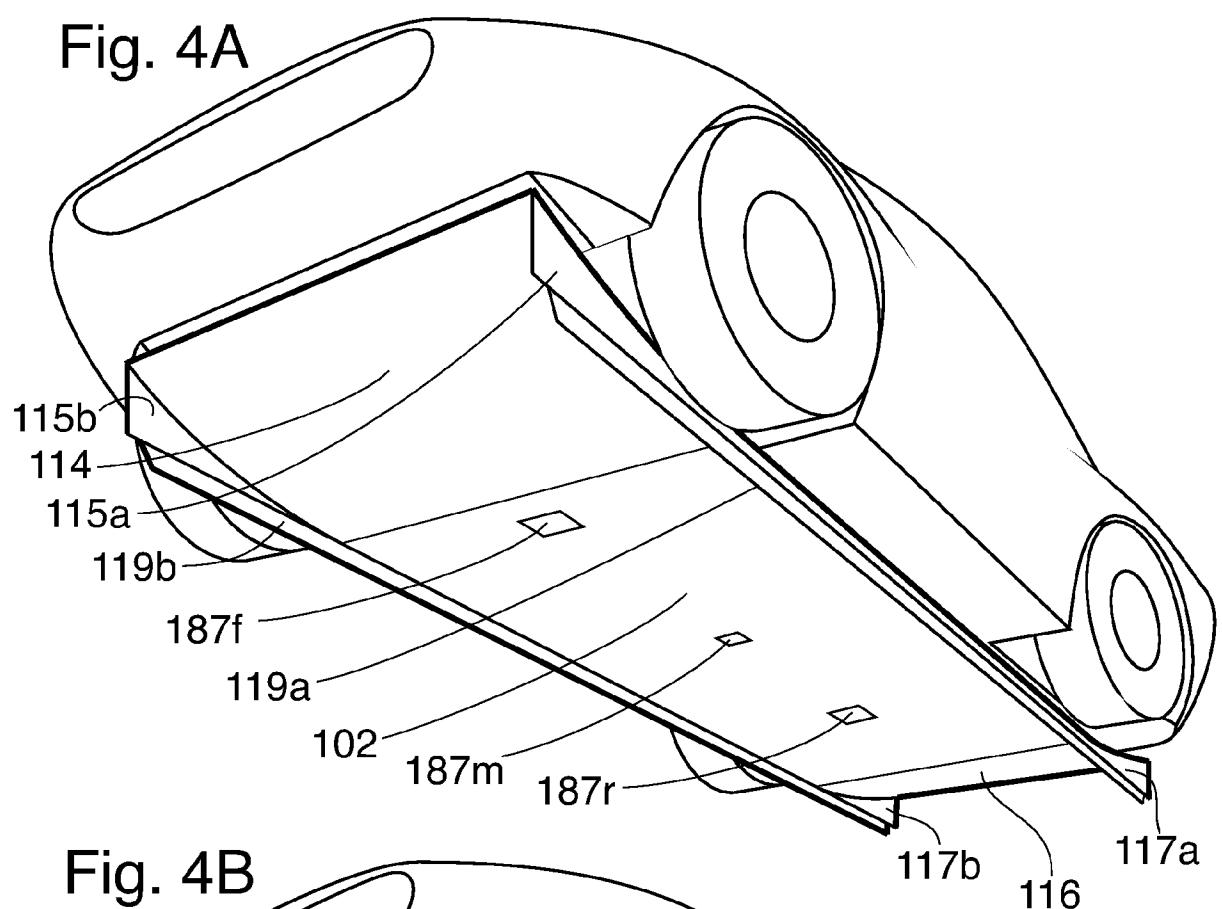
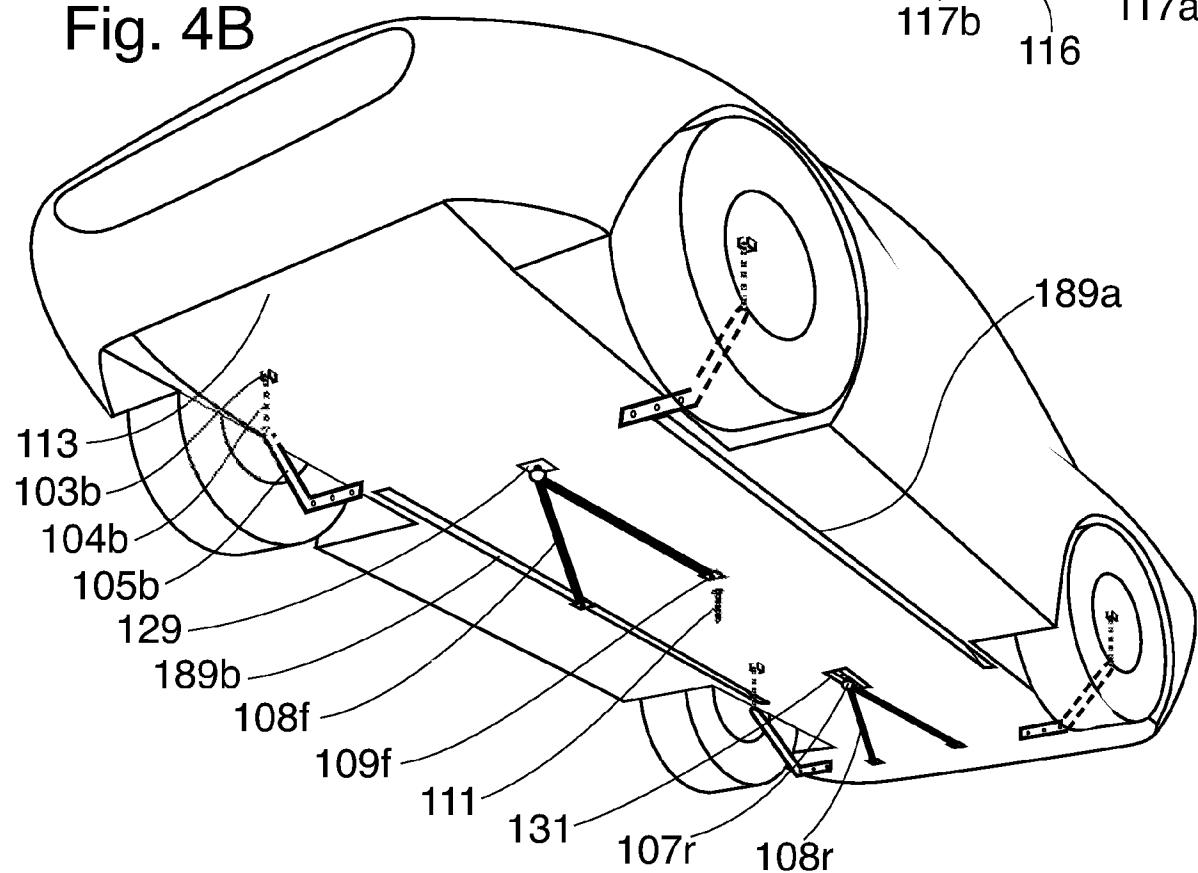



Fig. 4B

5/41

Fig. 5A

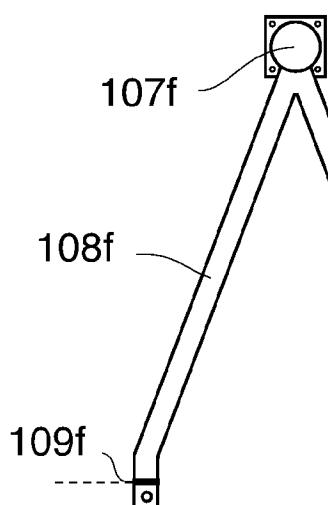


Fig. 5B

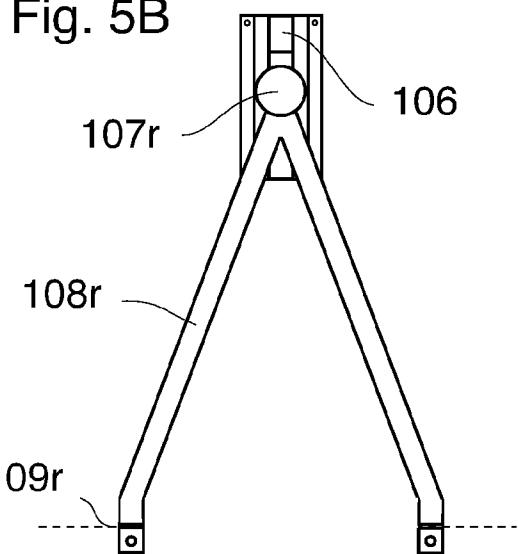


Fig. 5C

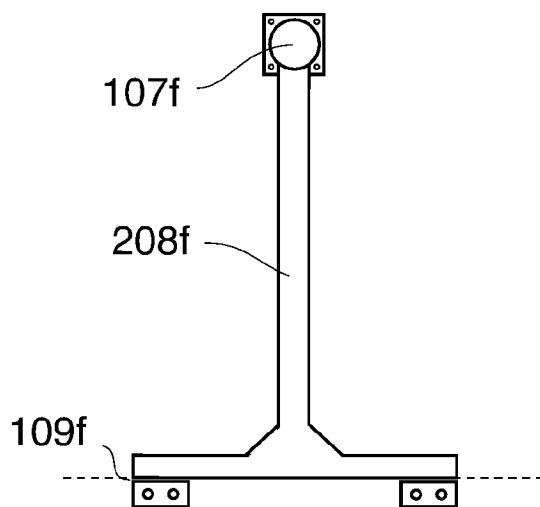
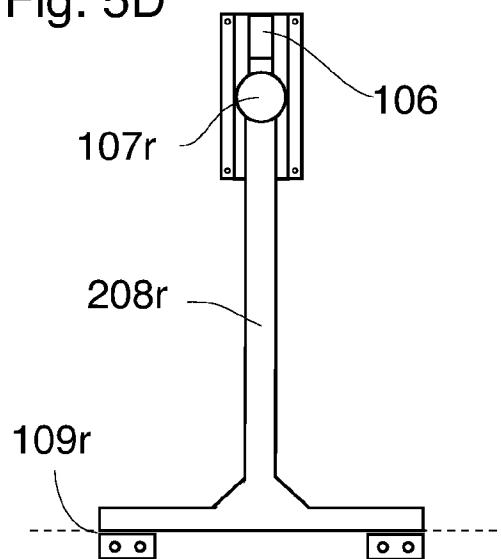



Fig. 5D

6/41

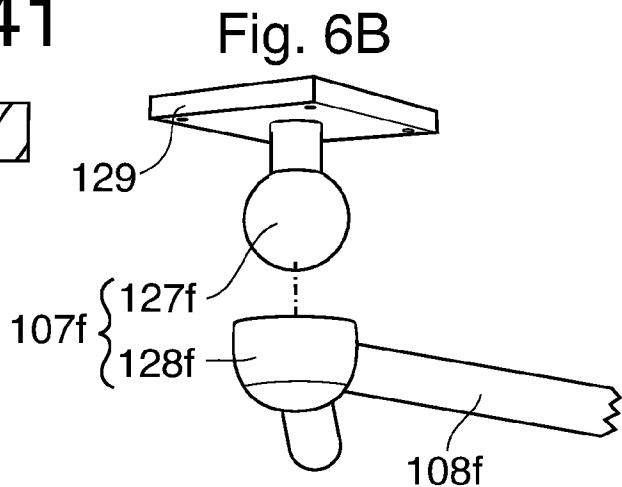
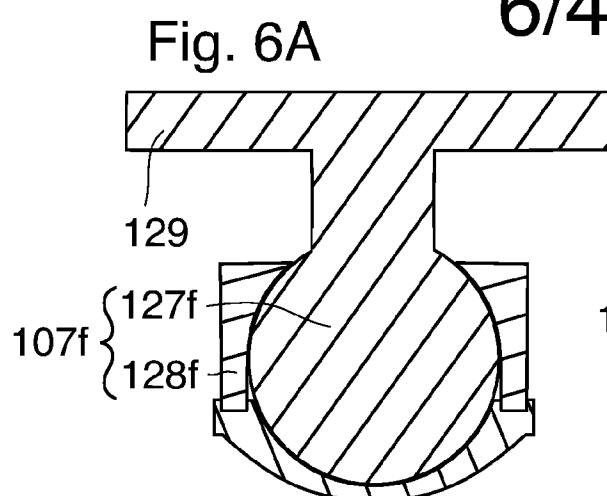



Fig. 6C

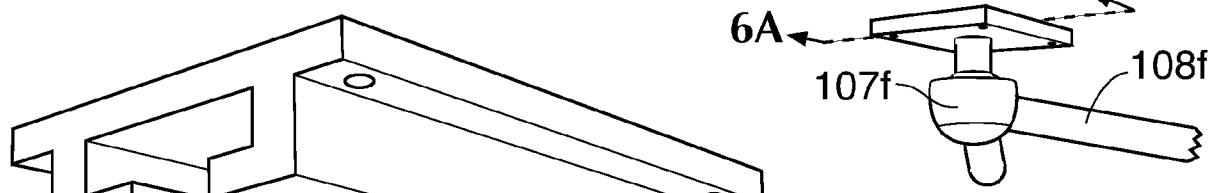
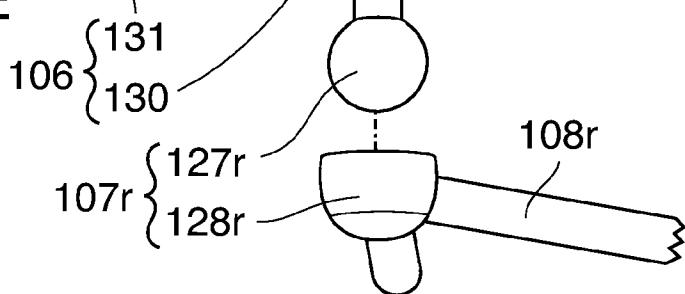


Fig. 6E



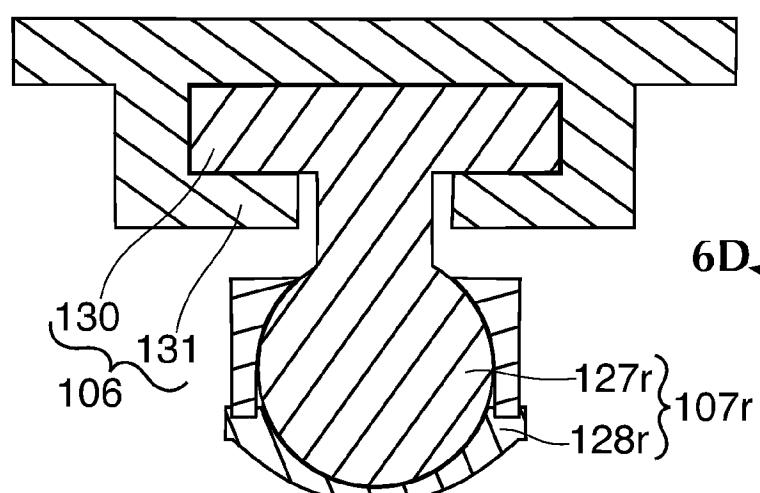


Fig. 6D

7/41

Fig. 7A

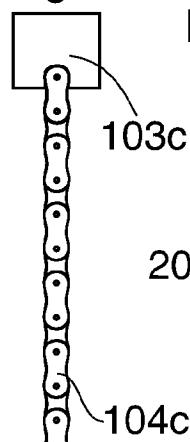


Fig. 7B

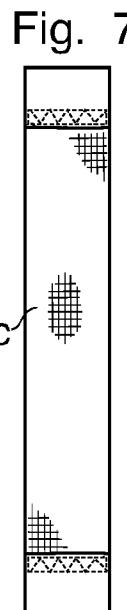


Fig. 7D

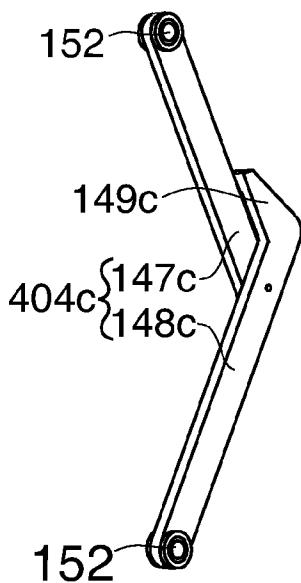
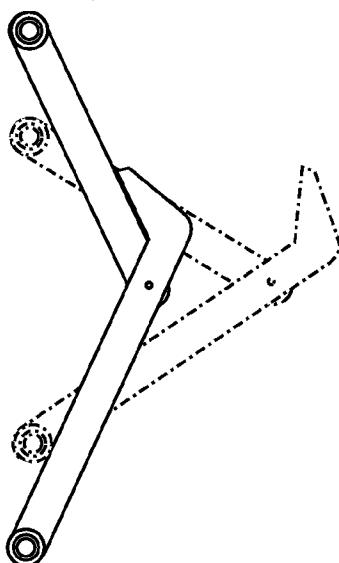
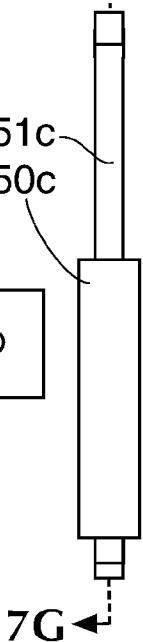



Fig. 7E



105c

Fig. 7F

7G

152

7G

Fig. 7H

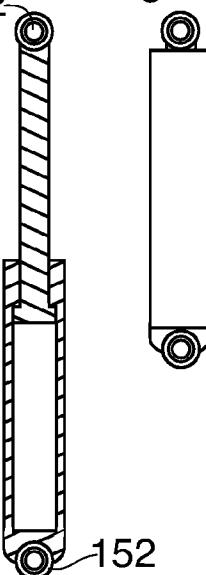


Fig. 7G

Fig. 7I

604c

152

Fig. 7I

8/41

Fig. 8A

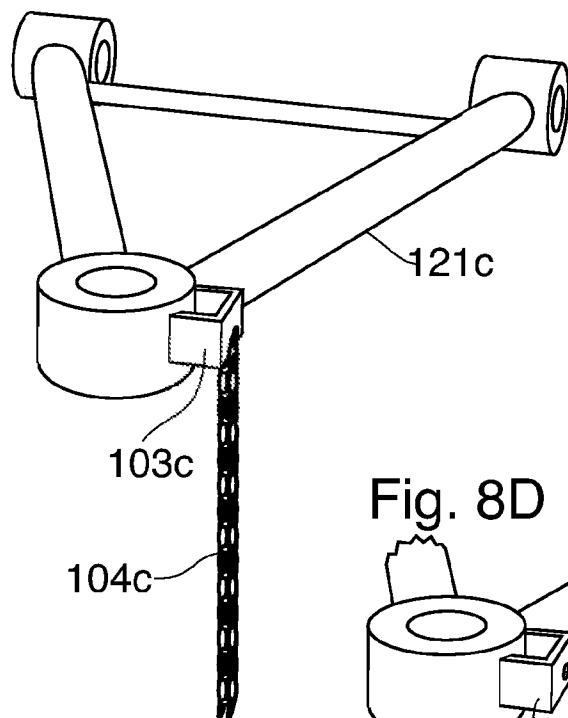


Fig. 8C

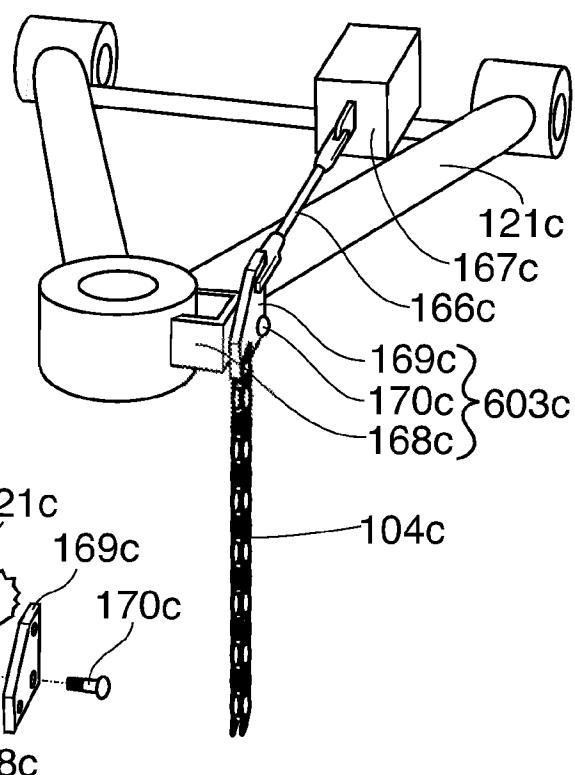


Fig. 8D

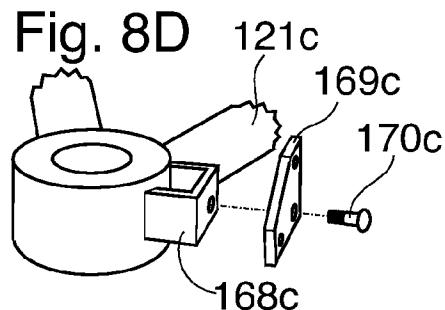


Fig. 8B

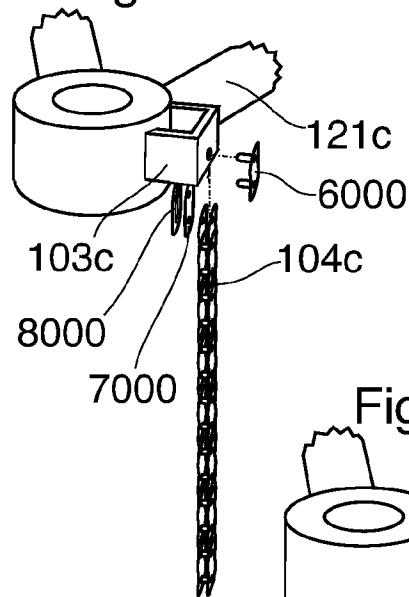


Fig. 8E

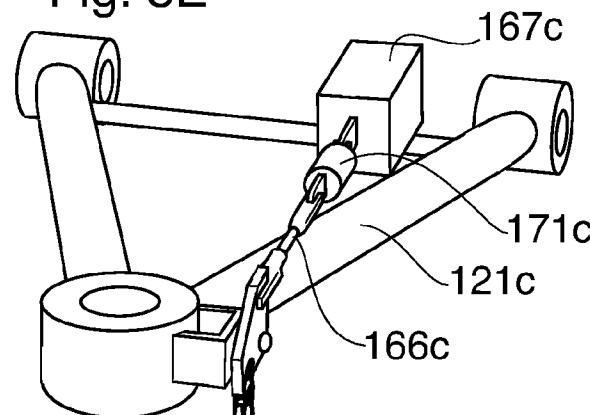


Fig. 8F

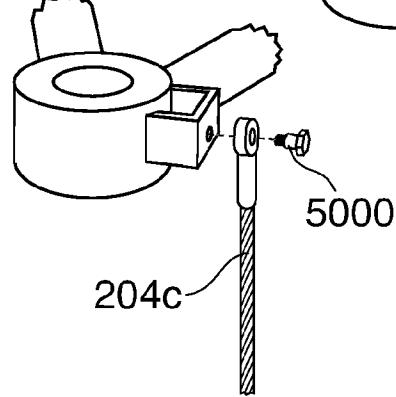
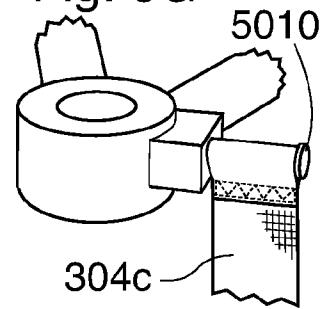



Fig. 8G

9/41

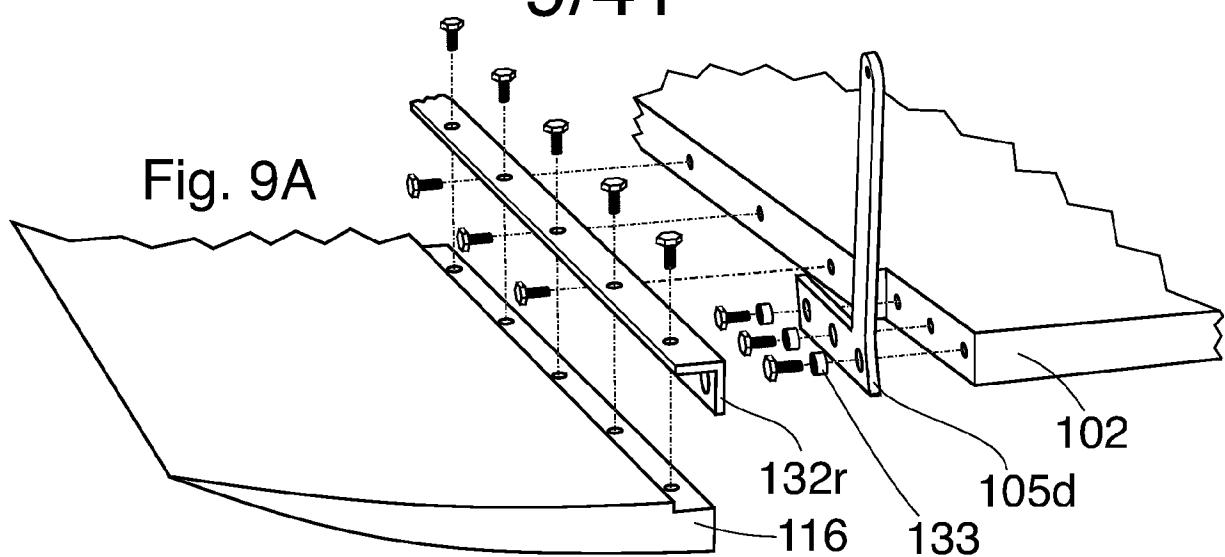


Fig. 9B

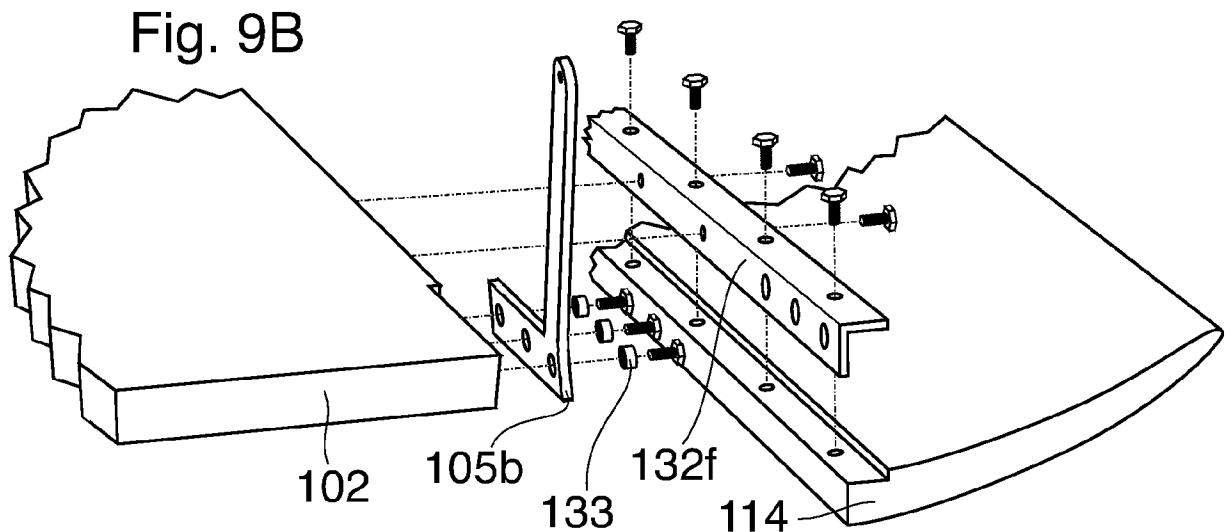


Fig. 9C

Fig. 9F

Fig. 9D



Fig. 9G

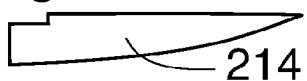


Fig. 9E

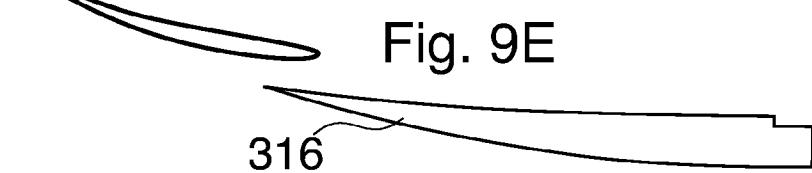


Fig. 9H

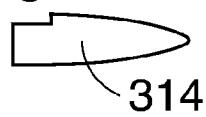


Fig. 10A

10/41

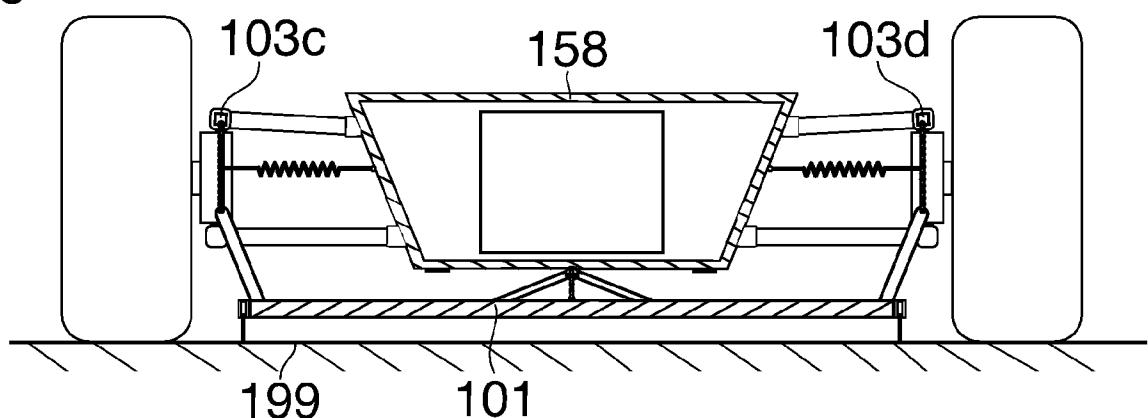


Fig. 10B

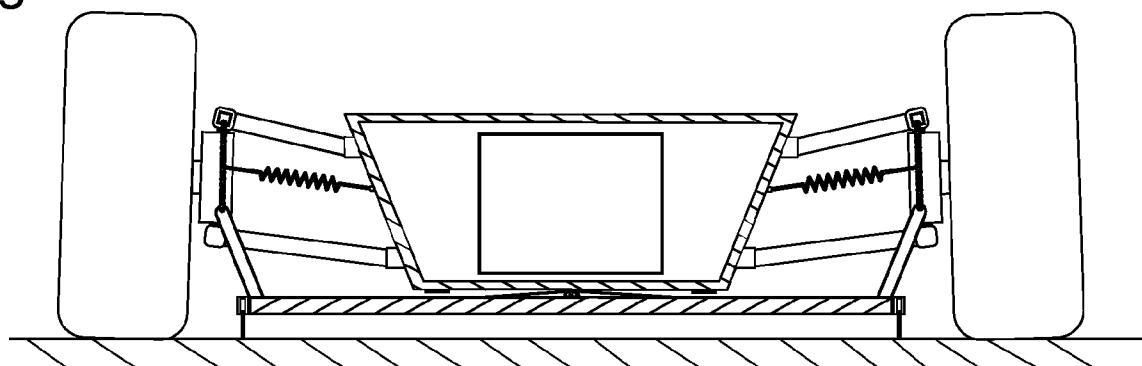


Fig. 10C

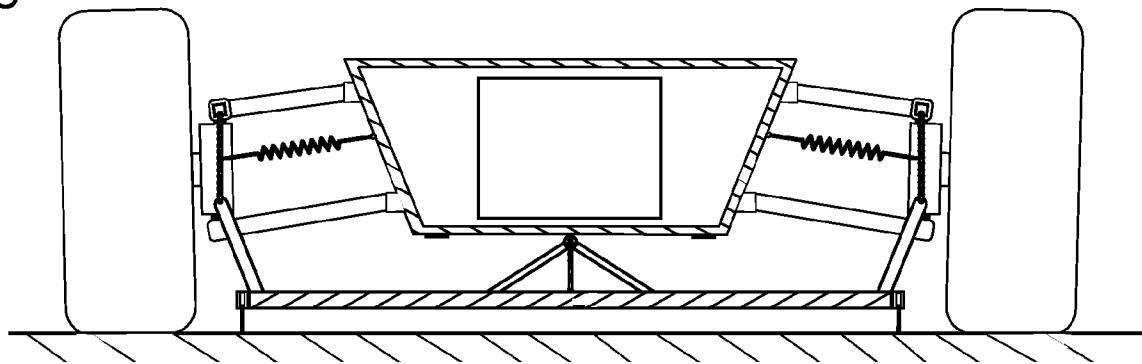
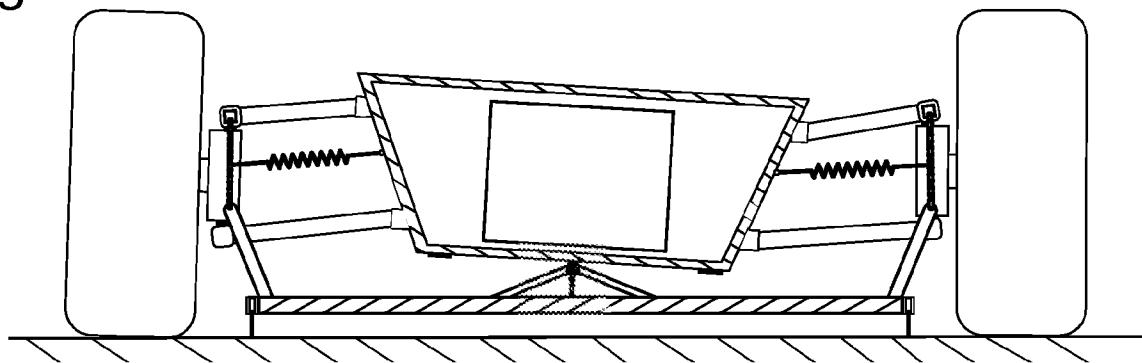



Fig. 10D

11/41

Fig. 11A

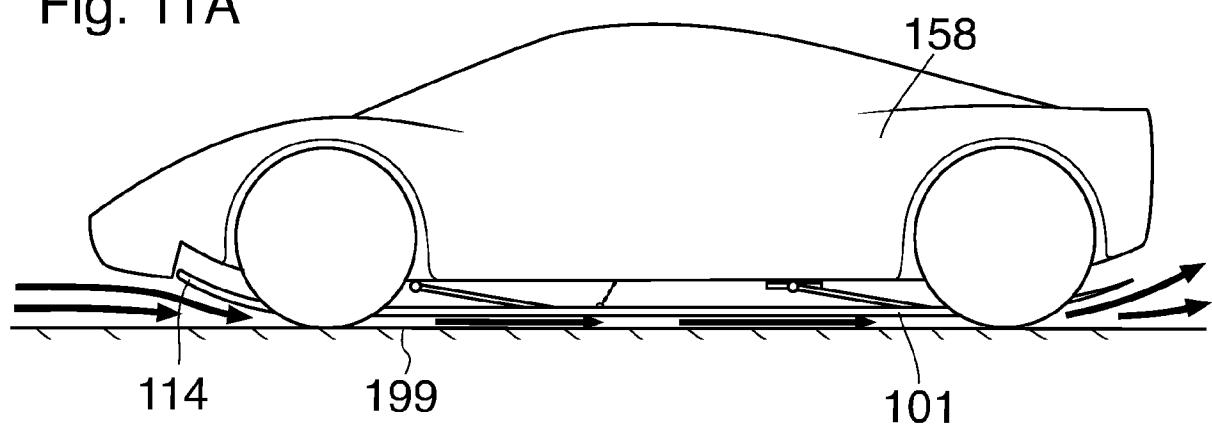
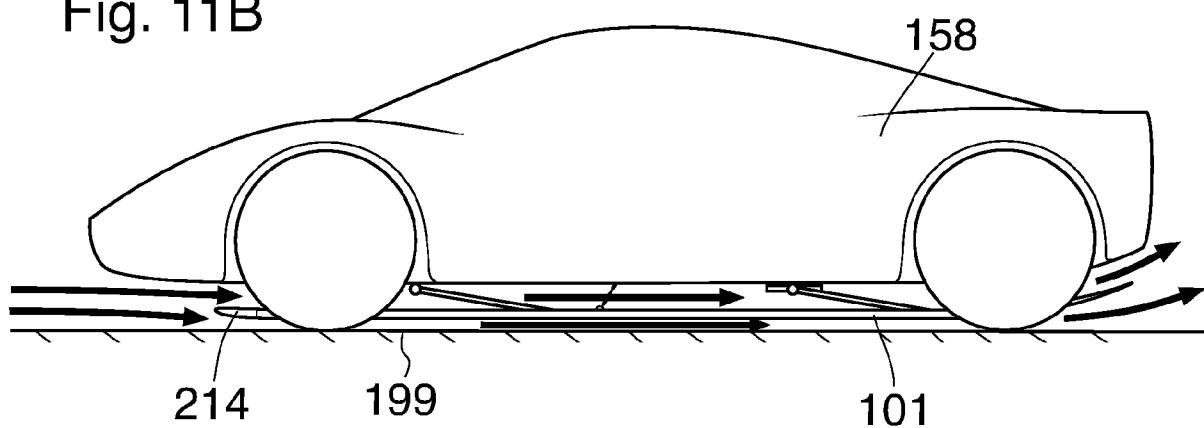
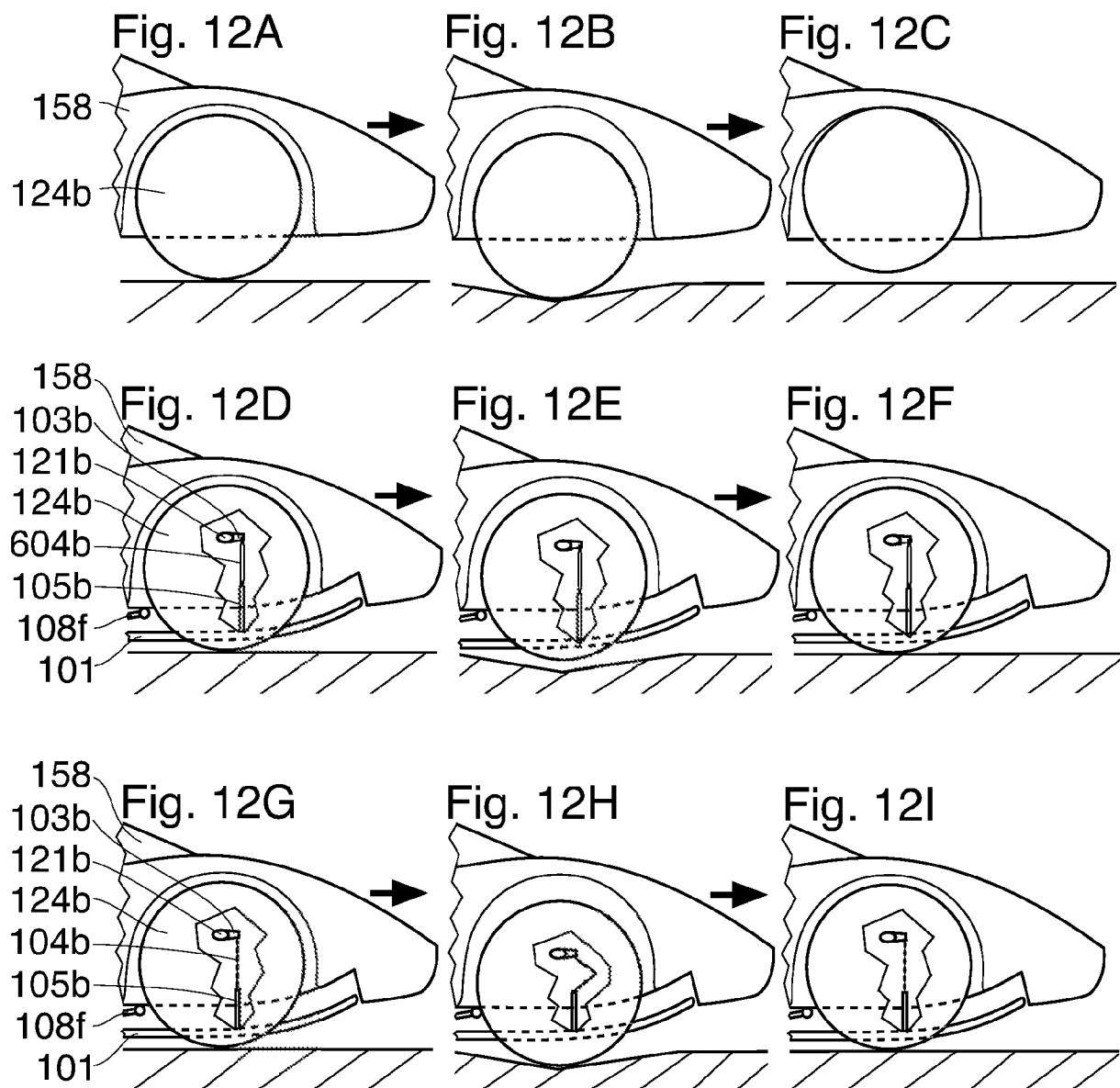




Fig. 11B

12/41

13/41

Fig. 13A

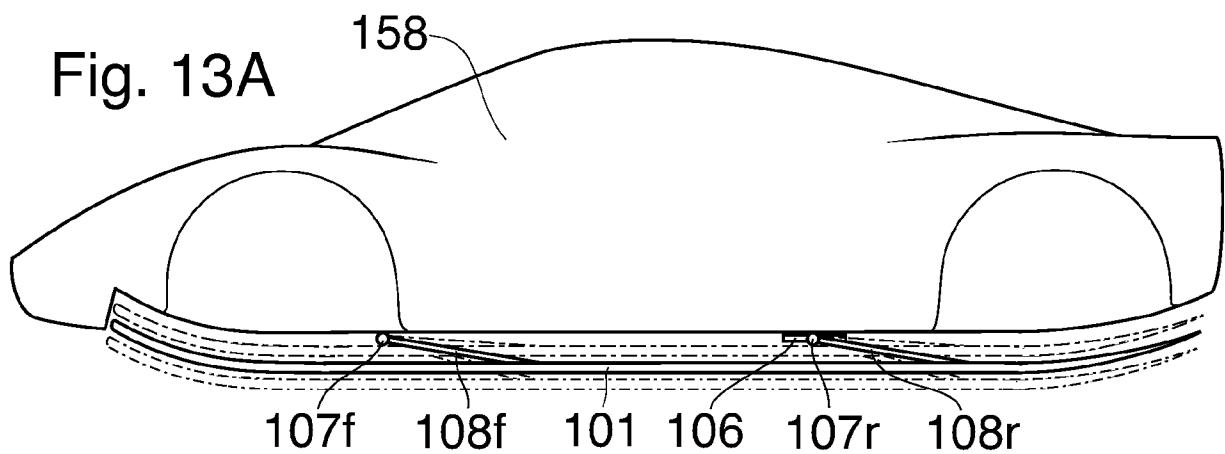


Fig. 13B

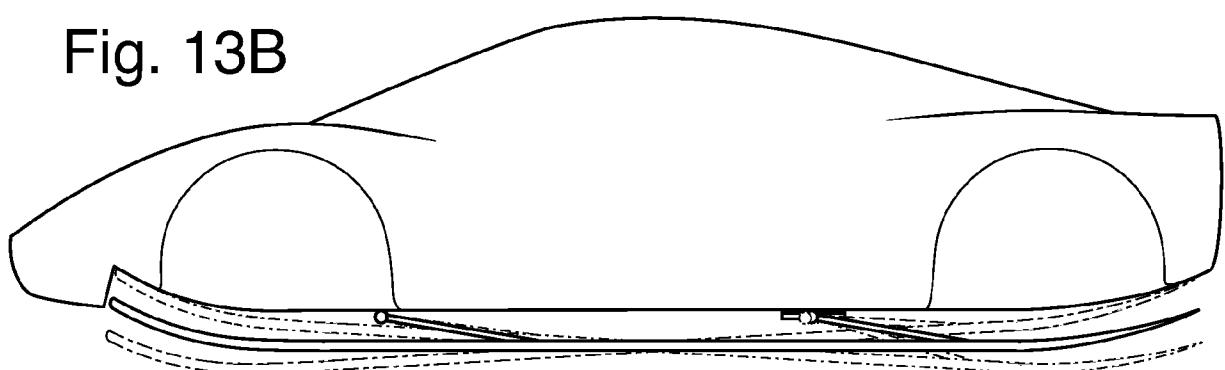
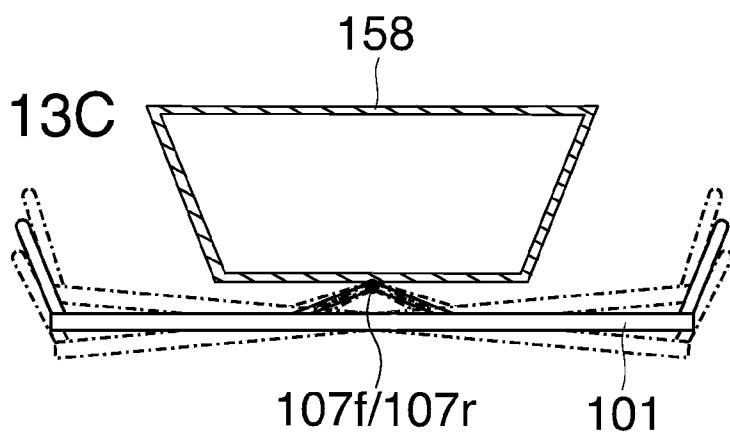
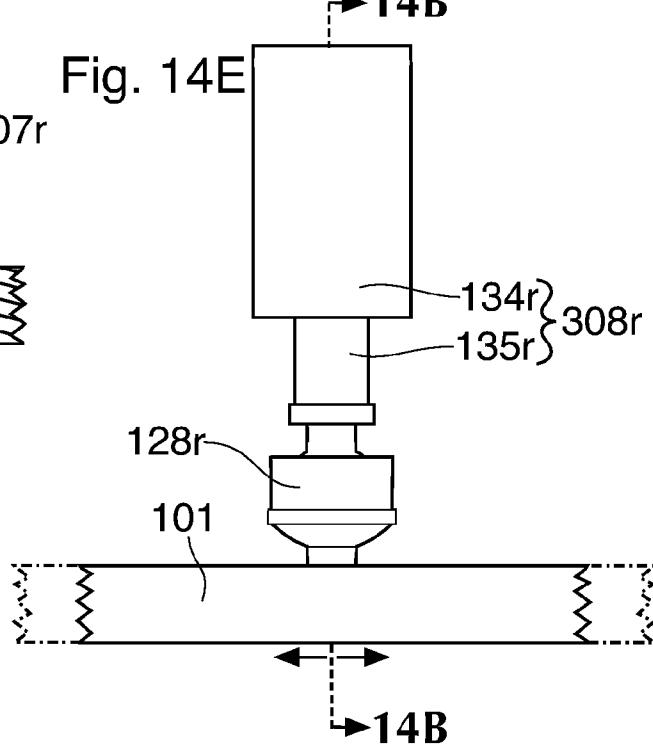
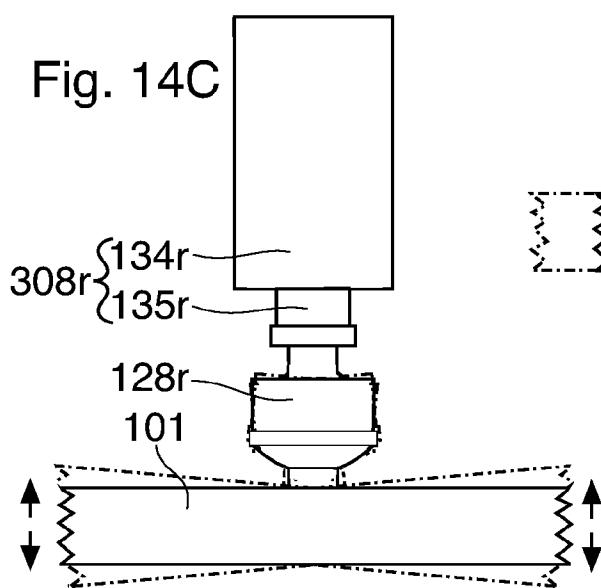
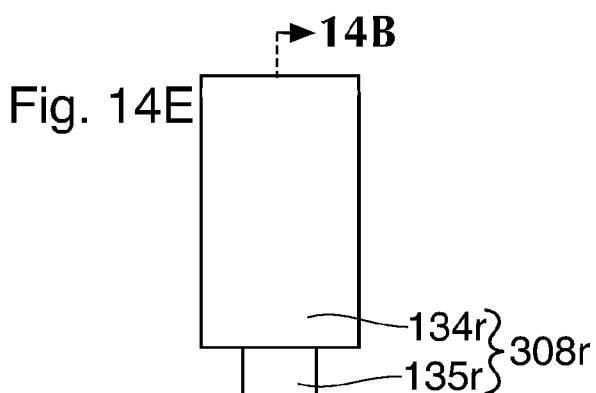
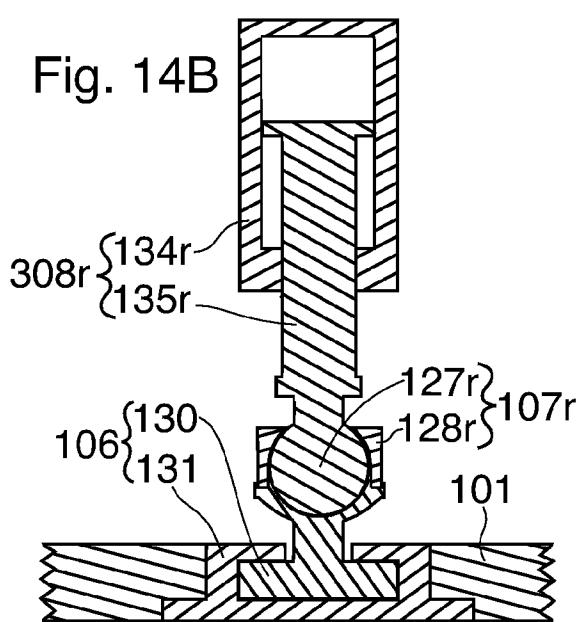
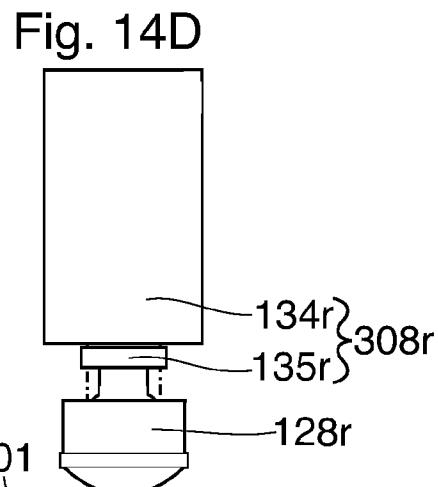
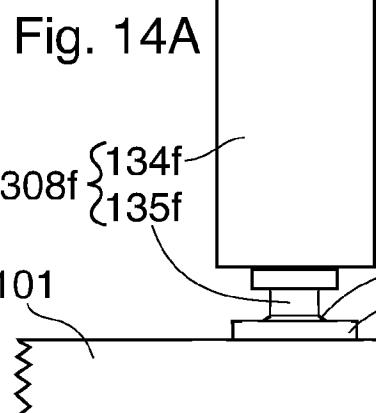









Fig. 13C

14/41

15/41

Fig. 15A

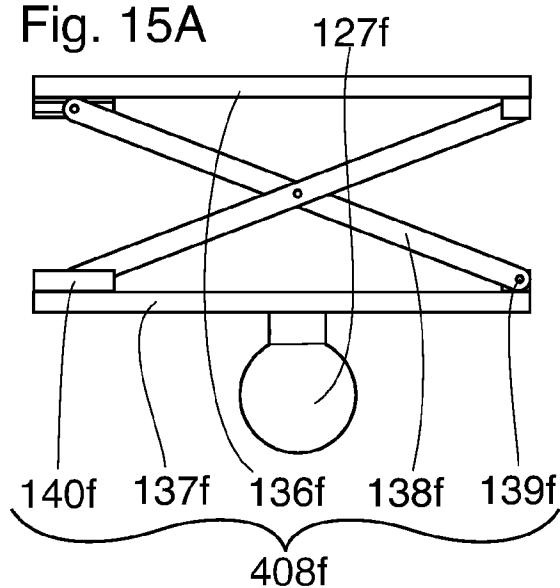


Fig. 15D

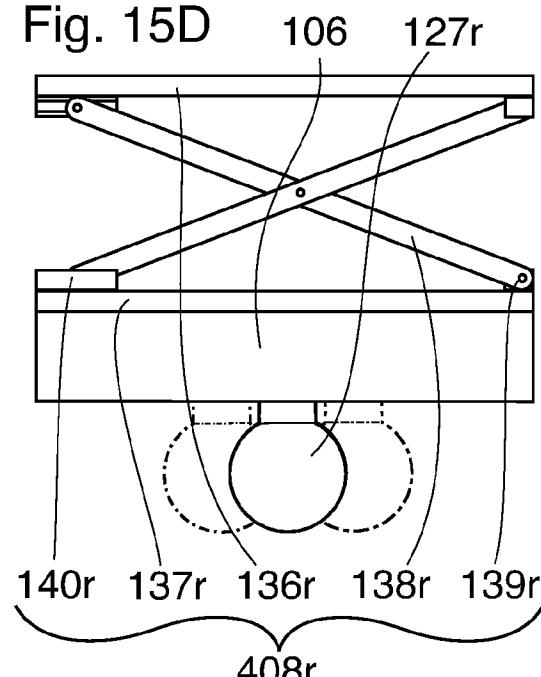


Fig. 15B

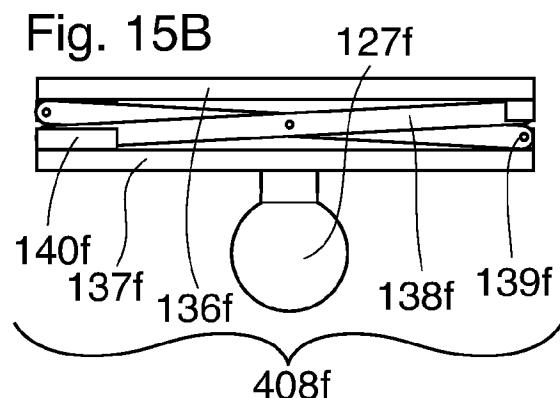
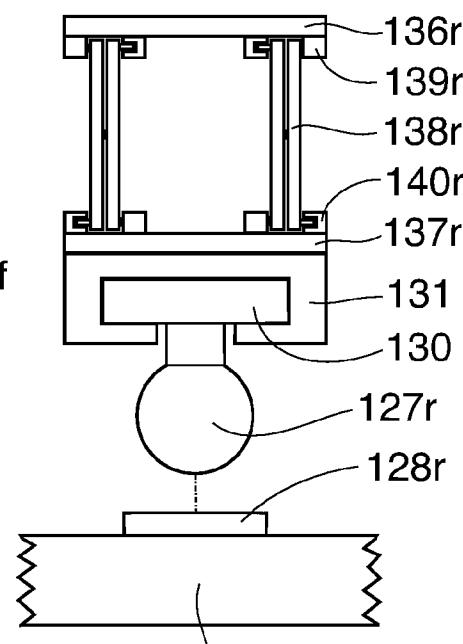
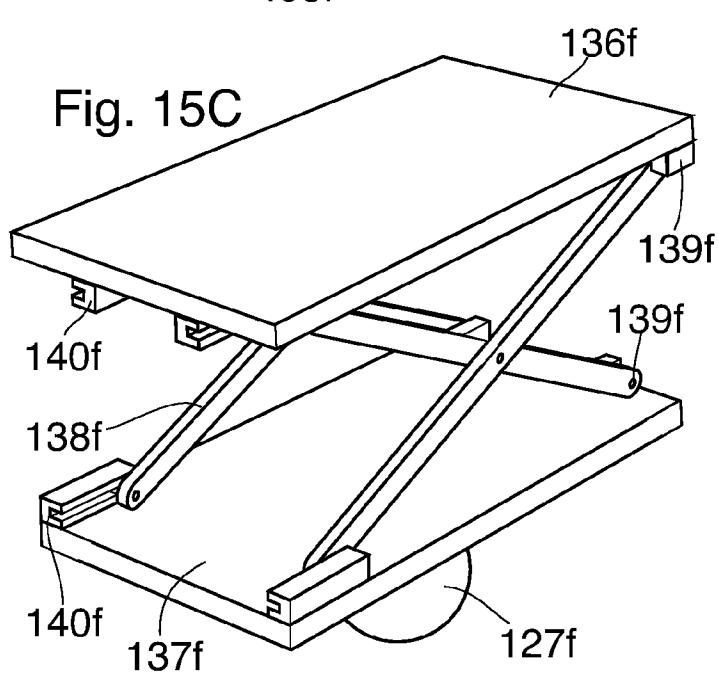




Fig. 15E

16/41

Fig. 16A

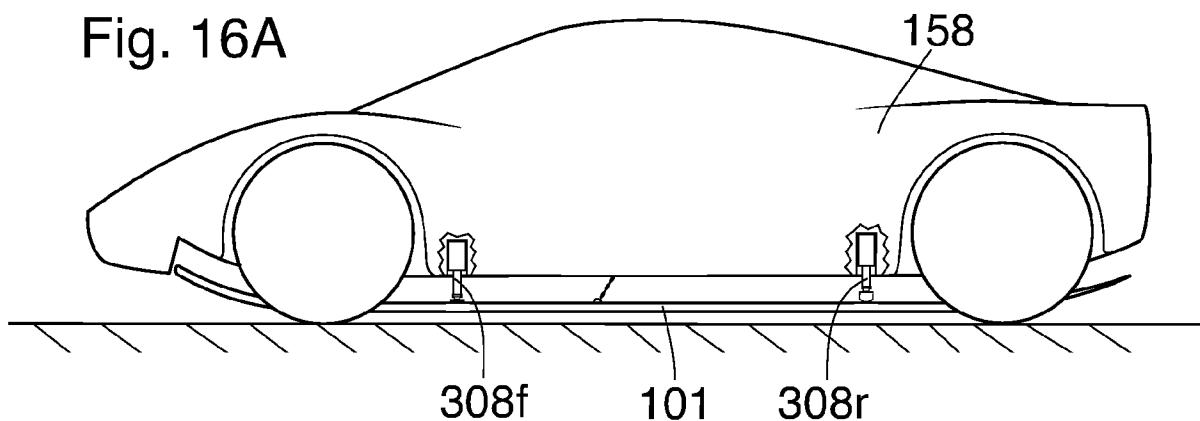
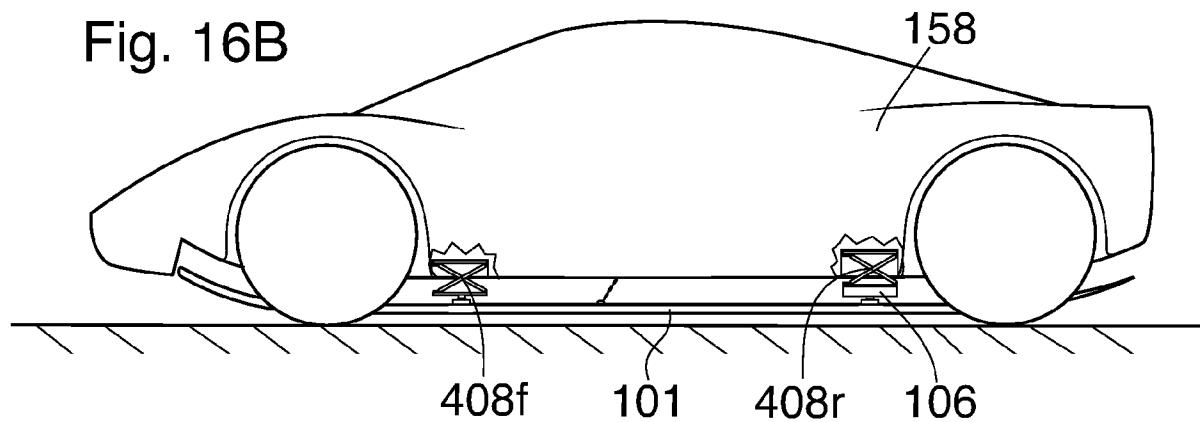



Fig. 16B

17/41

Fig. 17A

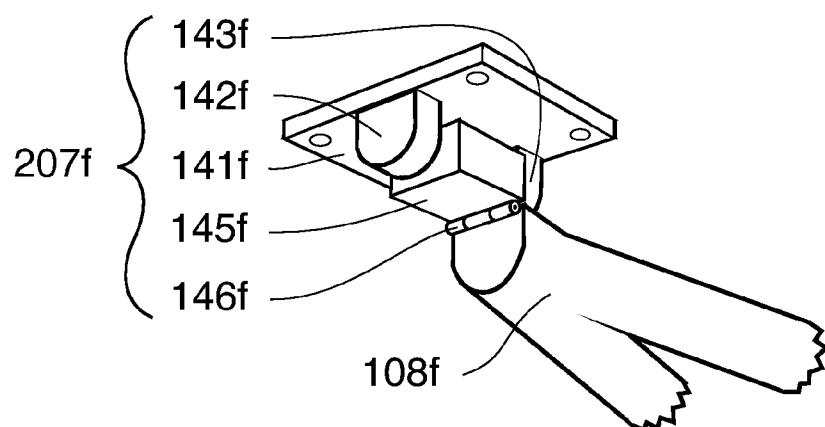


Fig. 17B

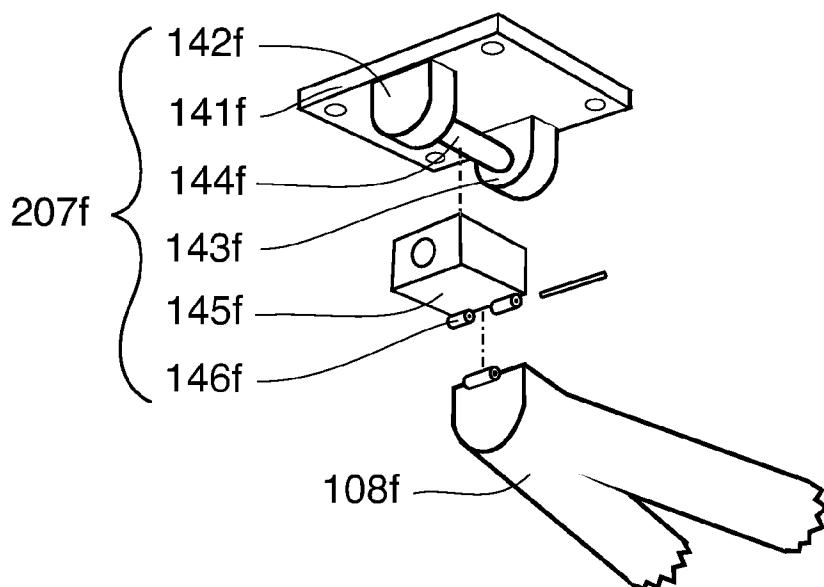
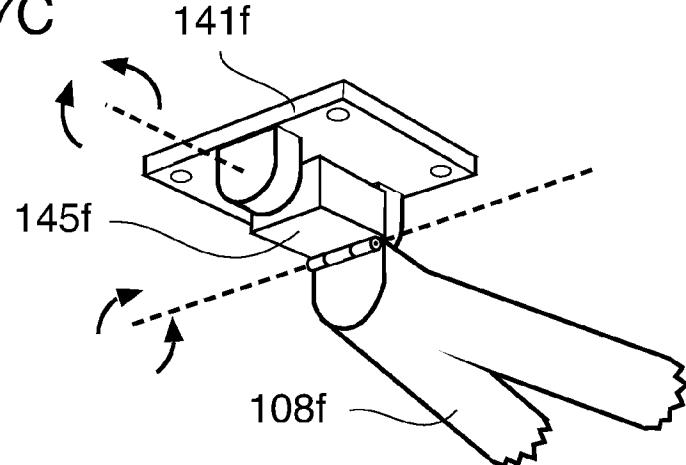



Fig. 17C

18/41

Fig. 18A

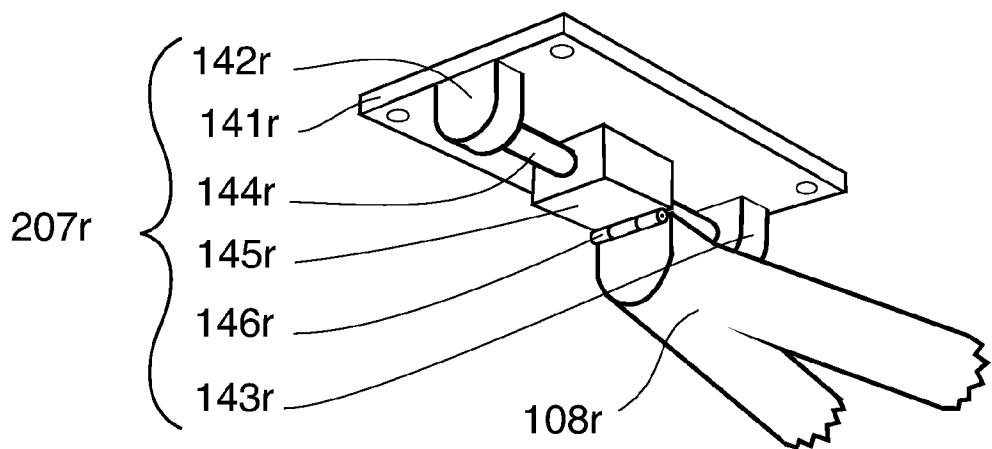
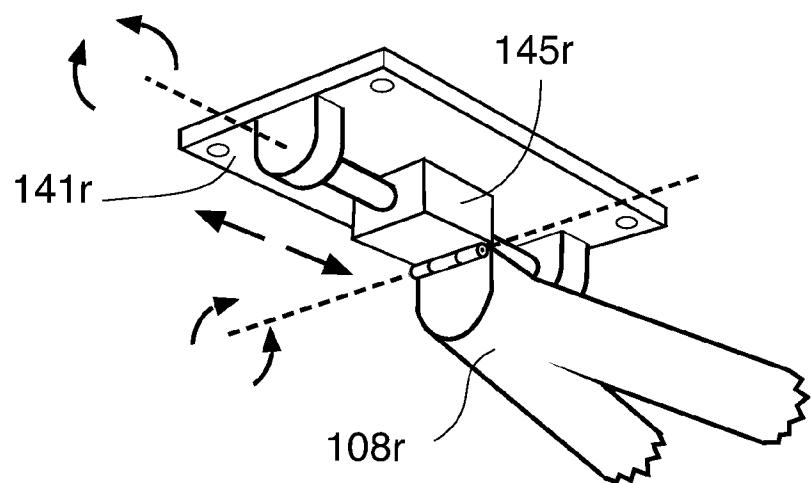



Fig. 18B

19/41

Fig. 19A

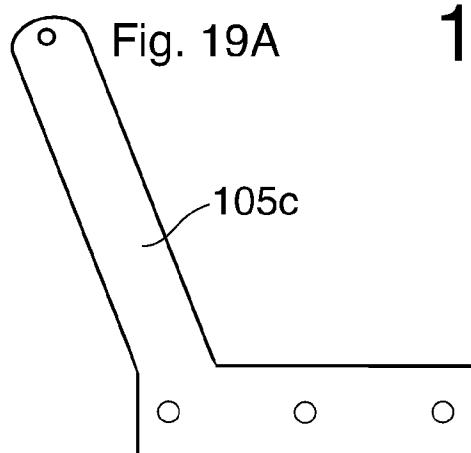


Fig. 19B

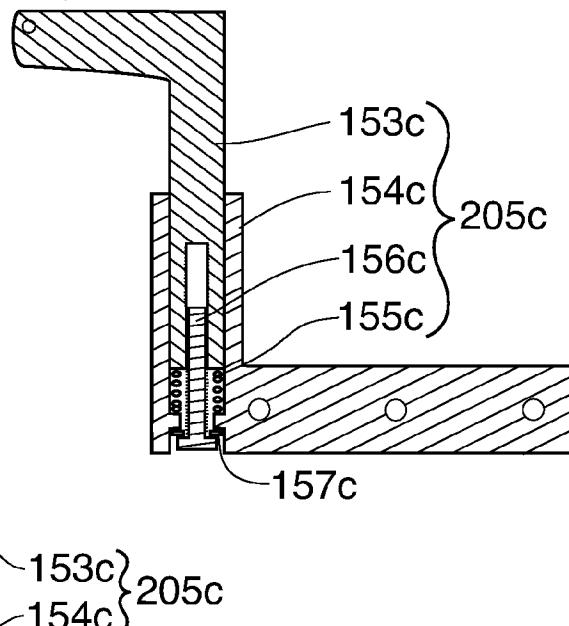


Fig. 19C

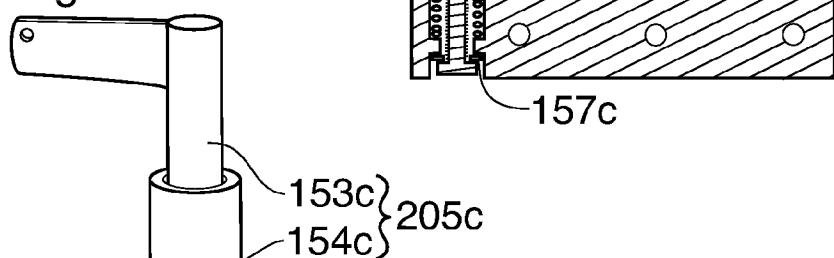


Fig. 19D

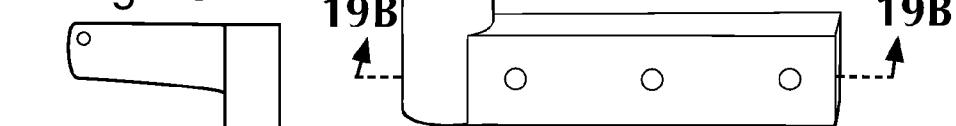
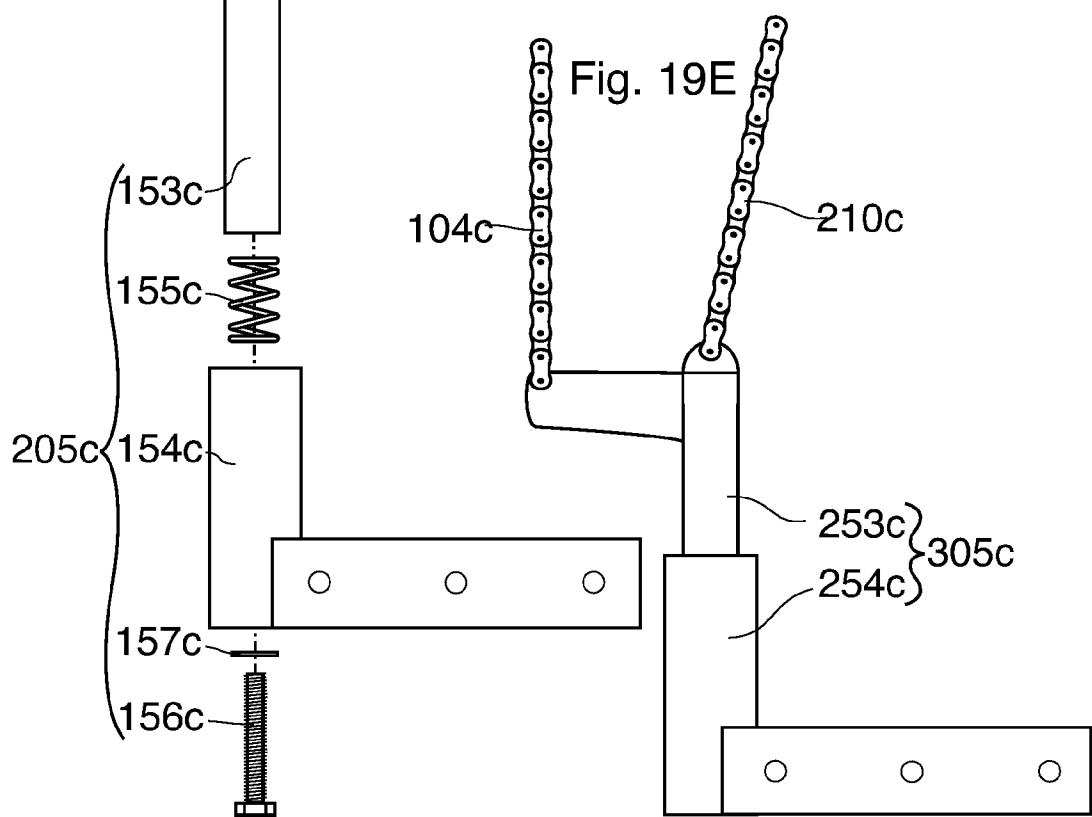



Fig. 19E

20/41

Fig. 20A

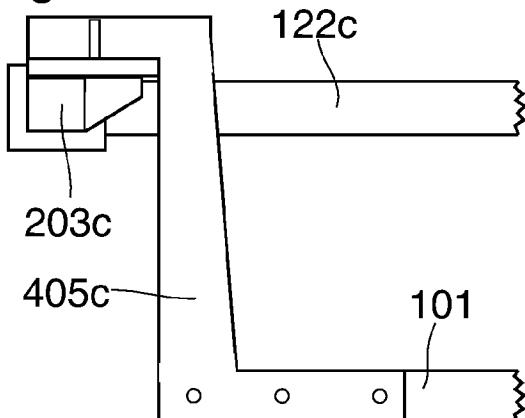


Fig. 20B

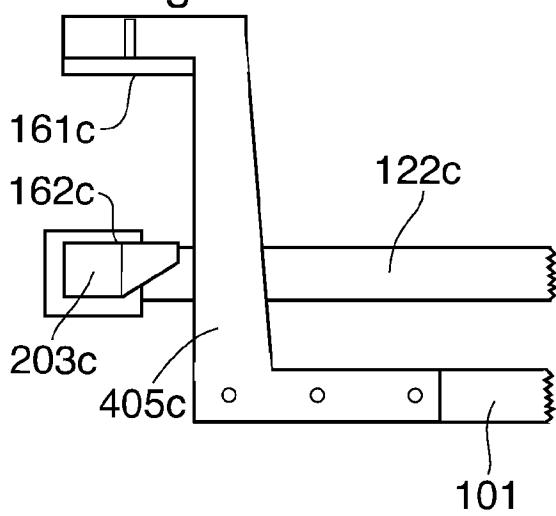


Fig. 20C

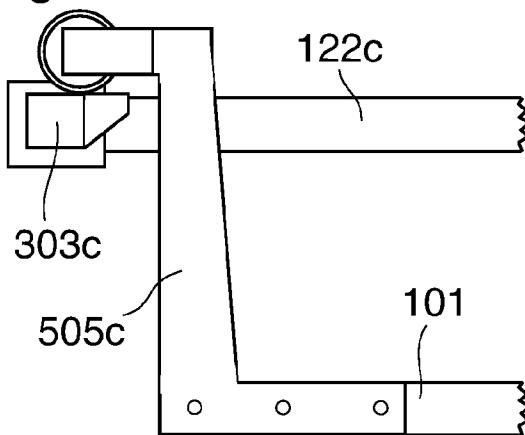


Fig. 20D

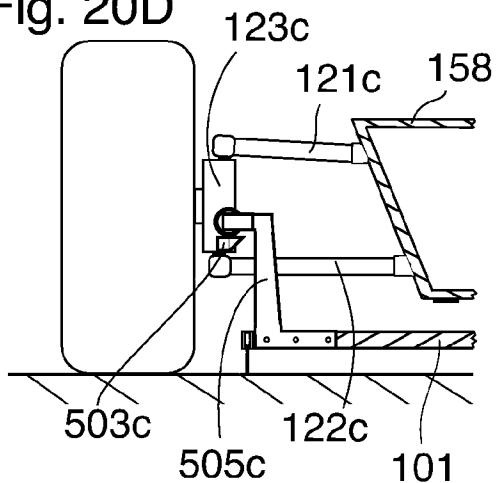


Fig. 20E

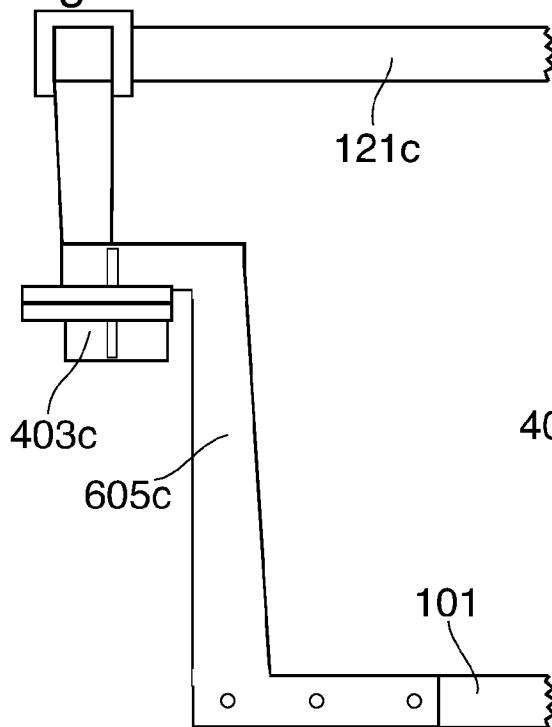
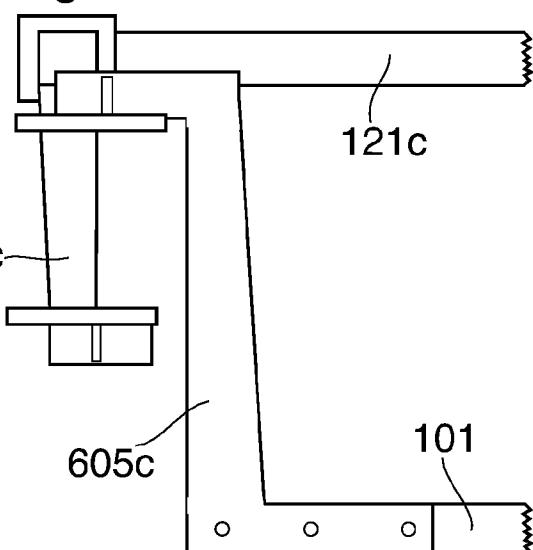



Fig. 20F

21/41

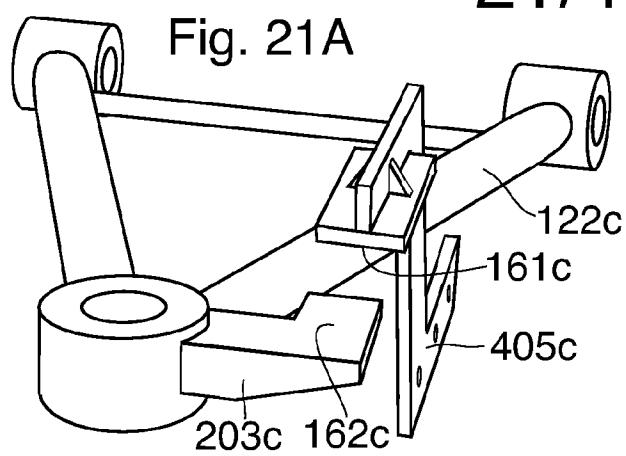


Fig. 21B

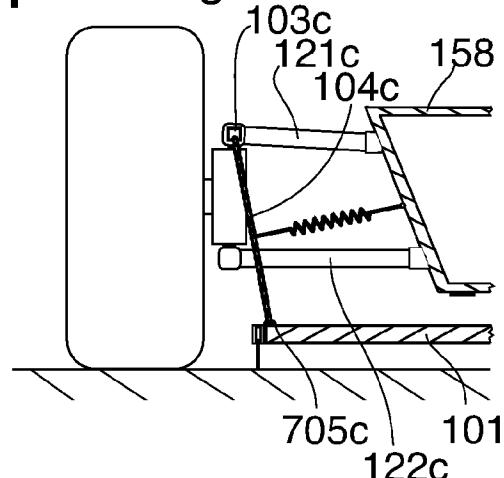


Fig. 21C

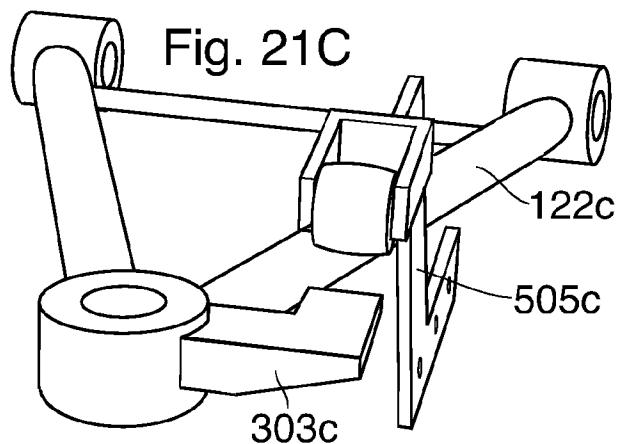


Fig. 21D

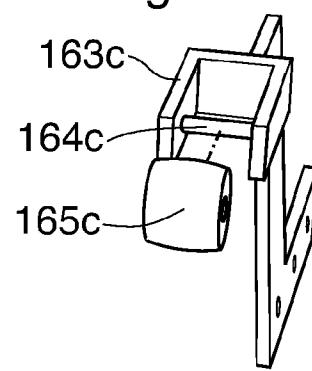
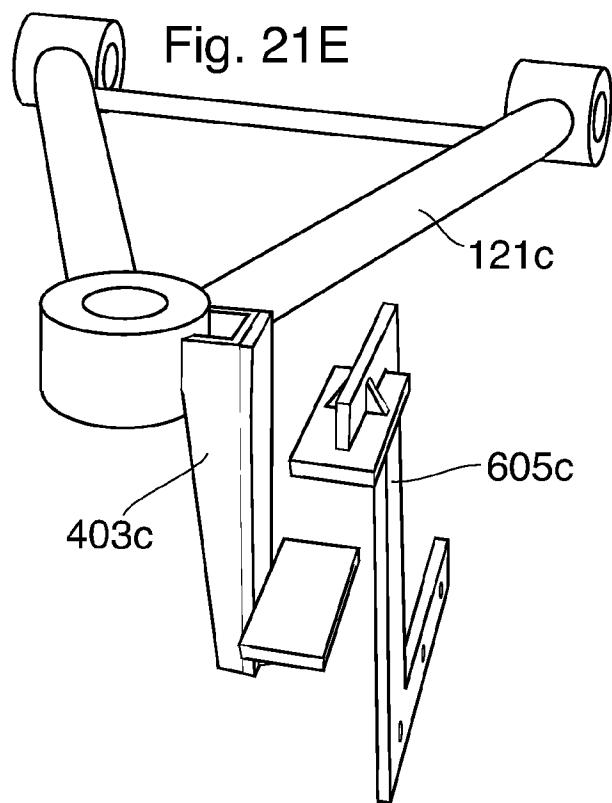



Fig. 21E

22/41

Fig. 22A

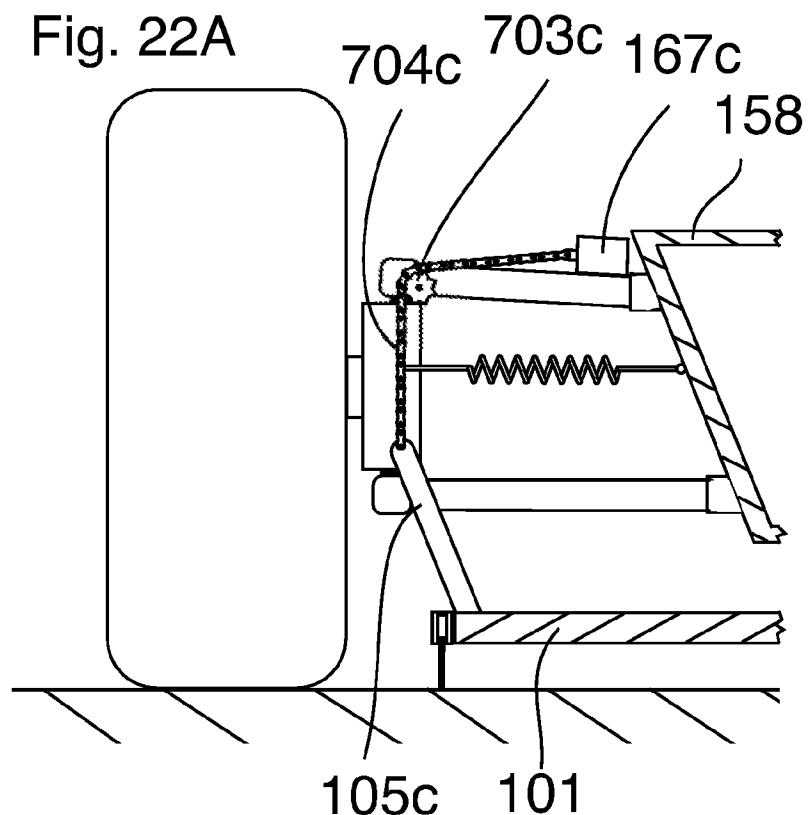
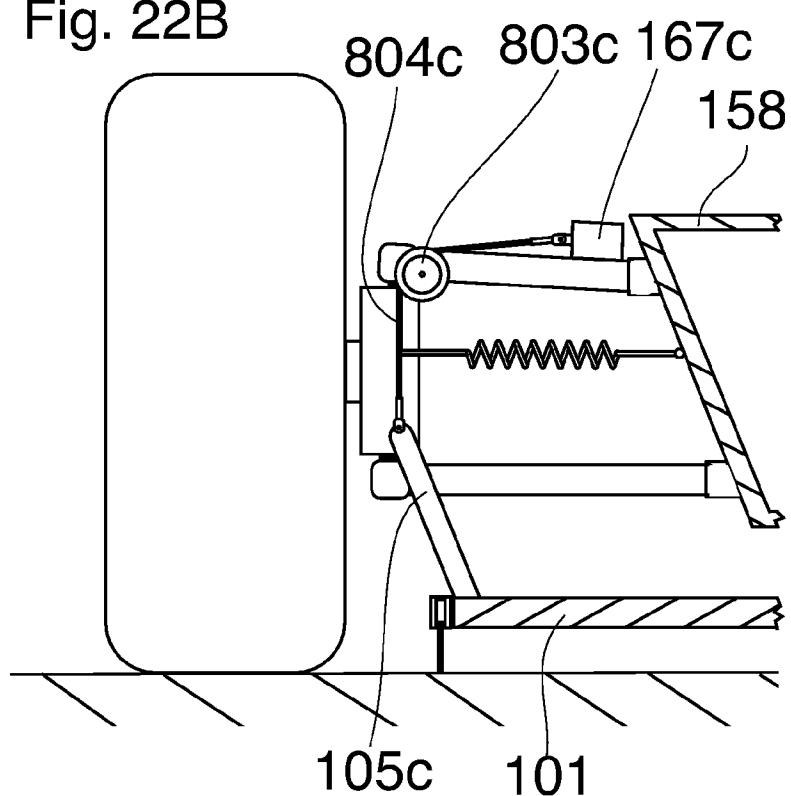



Fig. 22B

23/41

34A

Fig. 23A

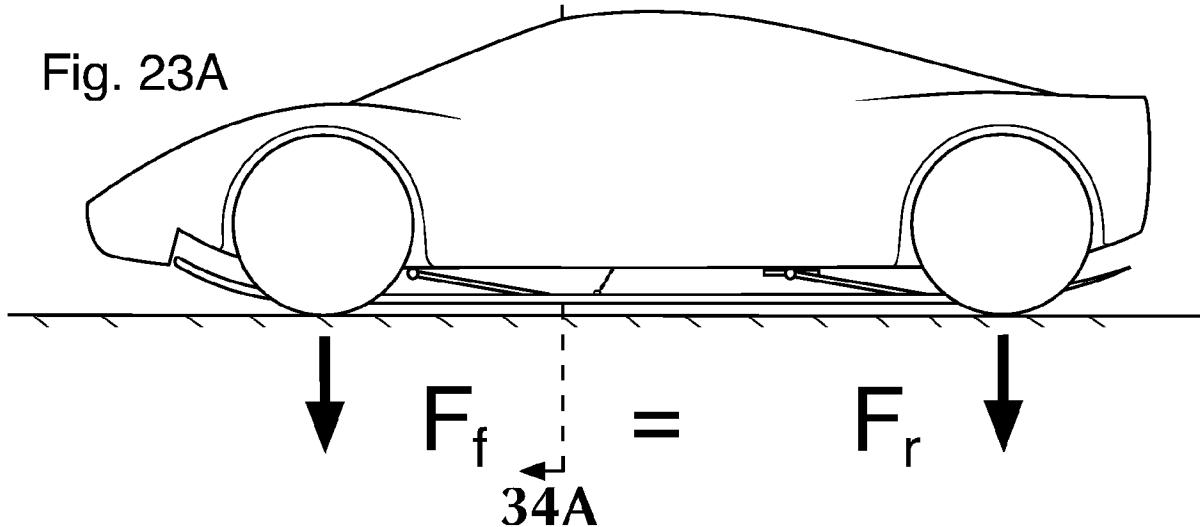


Fig. 23B

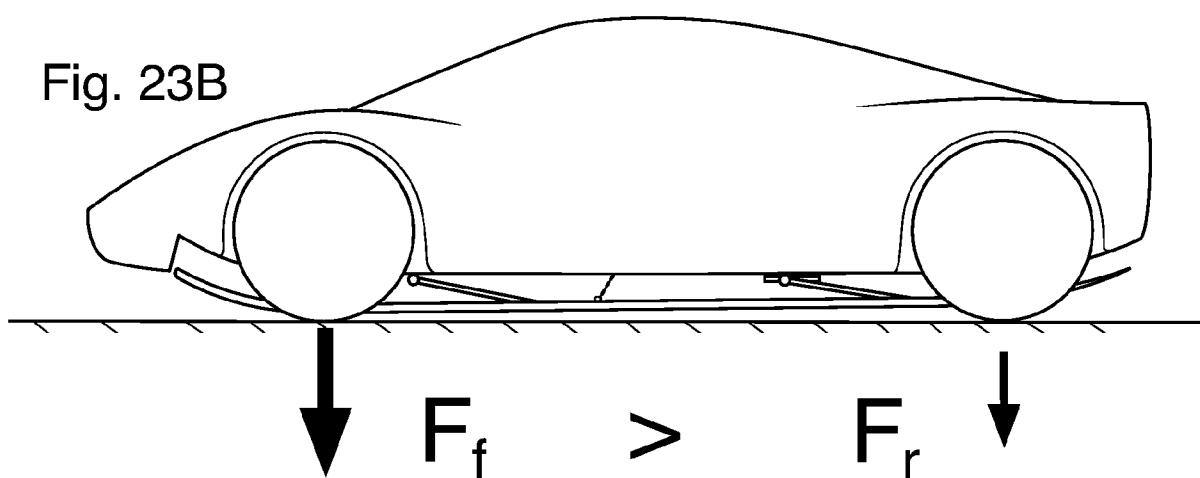
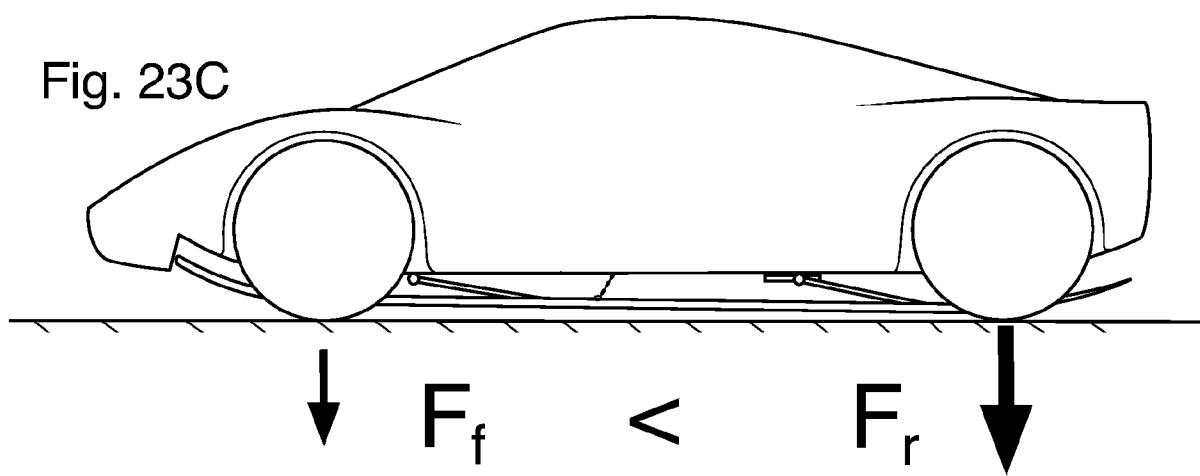
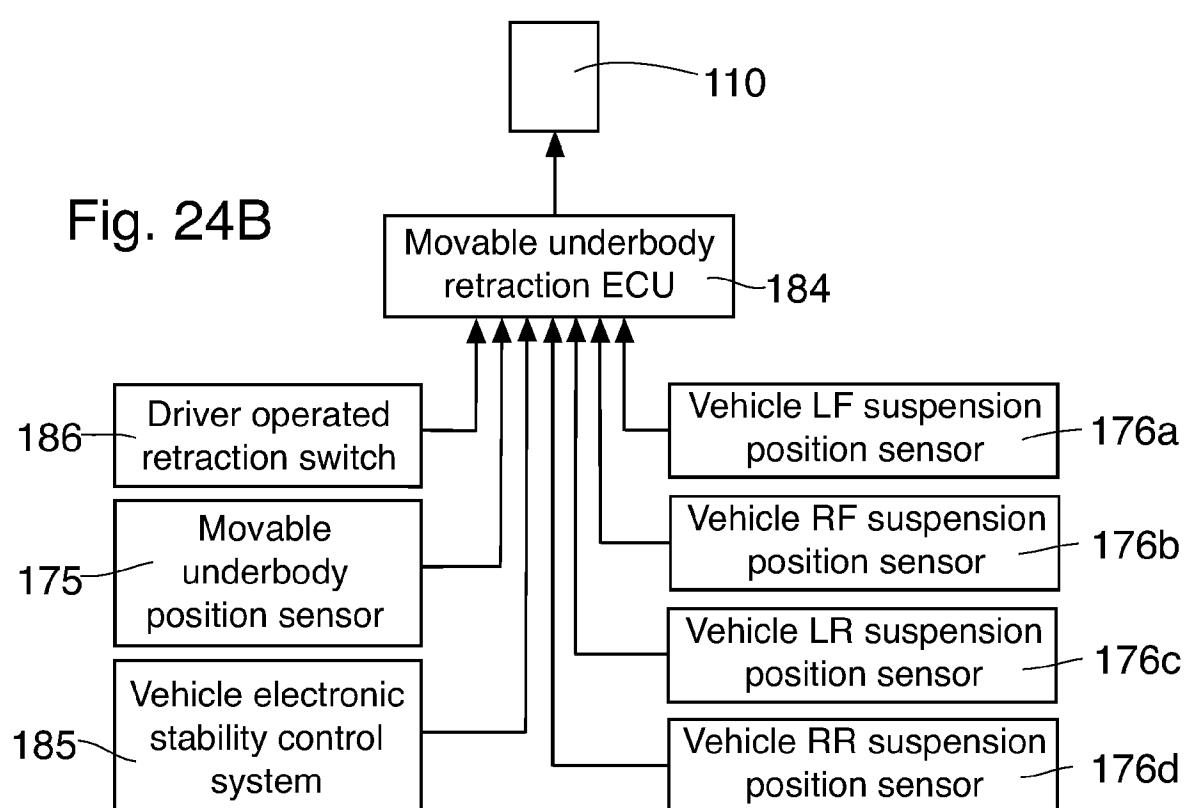
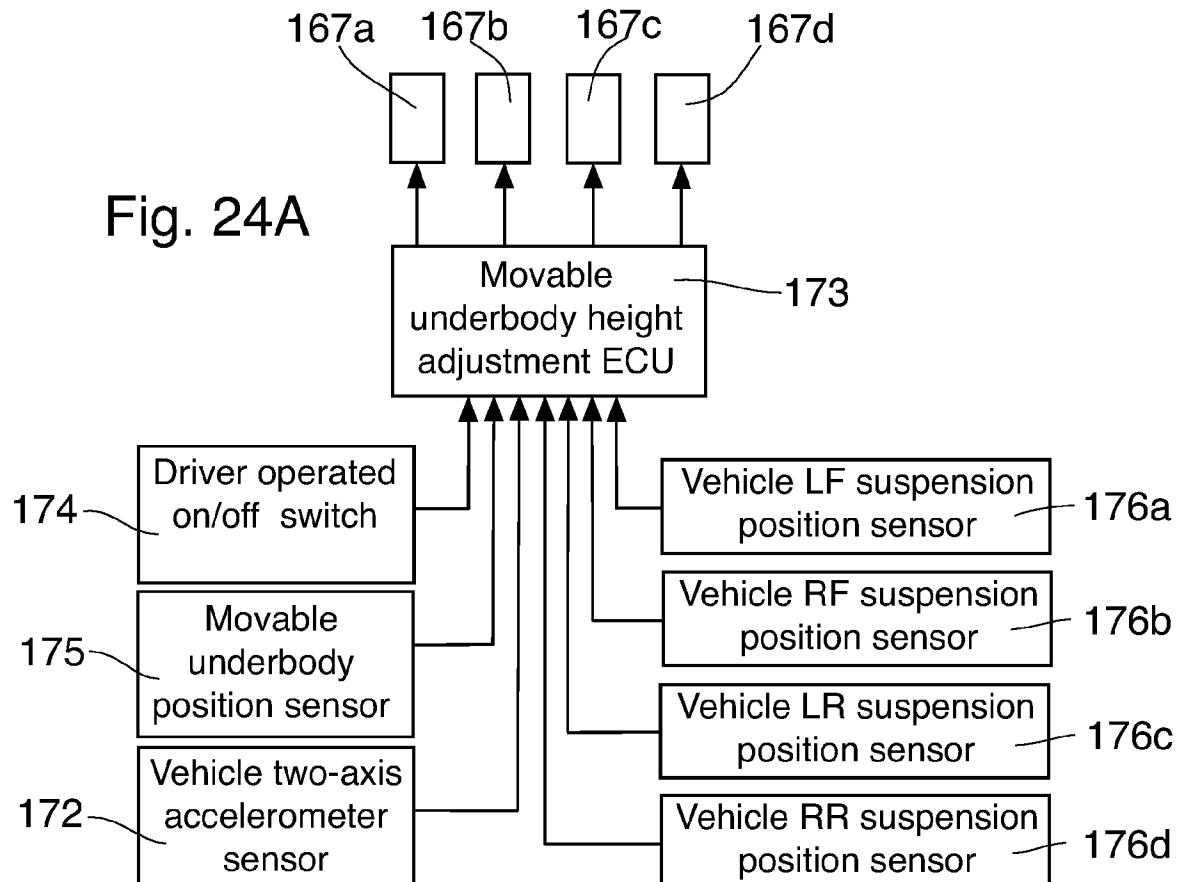
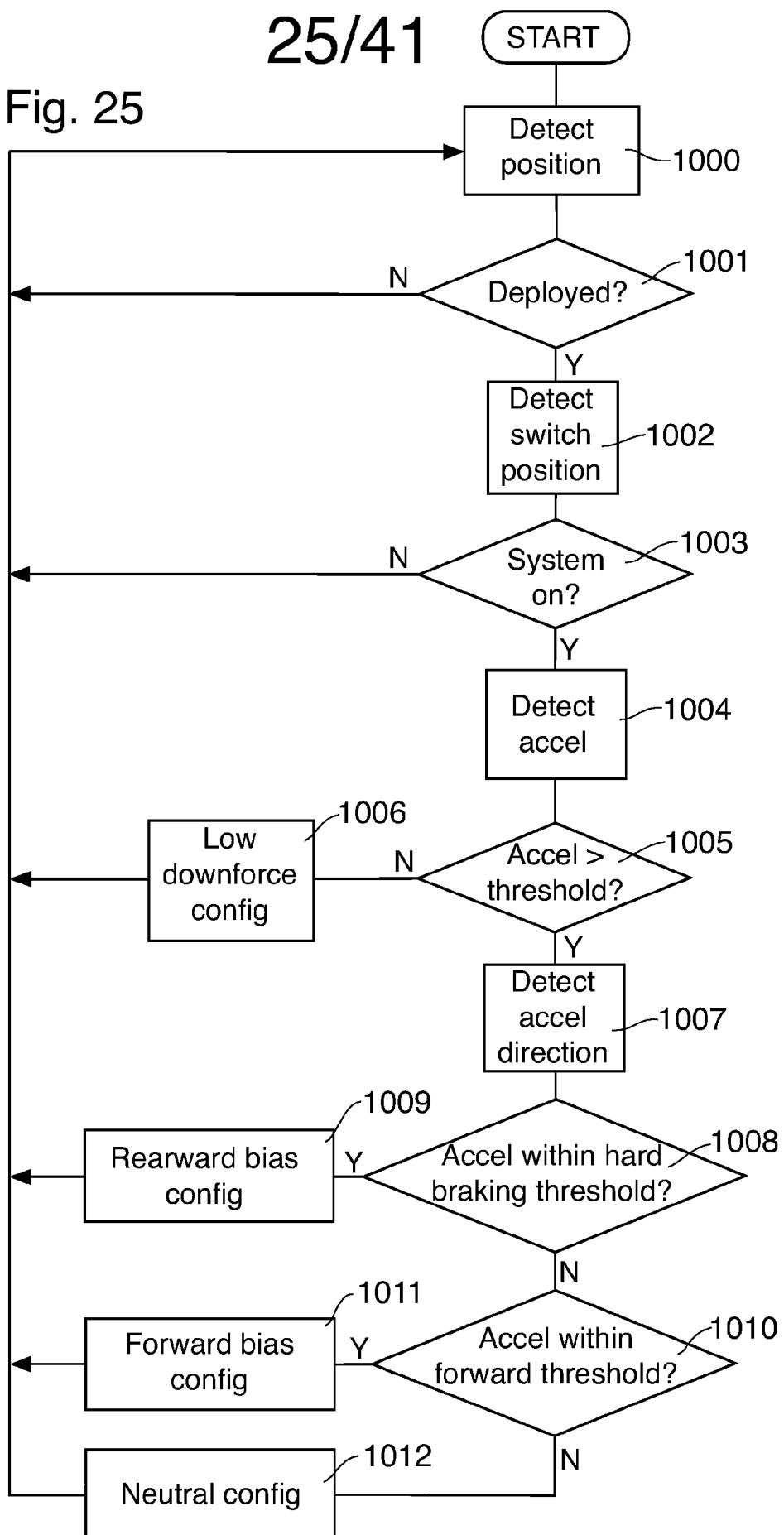





Fig. 23C



24/41

25/41

Fig. 25

26/41

Fig. 26A

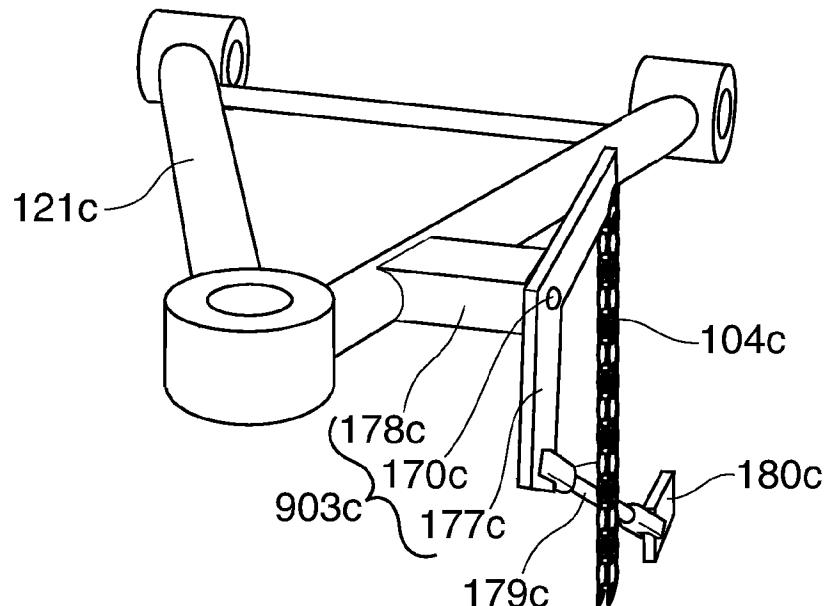


Fig. 26B

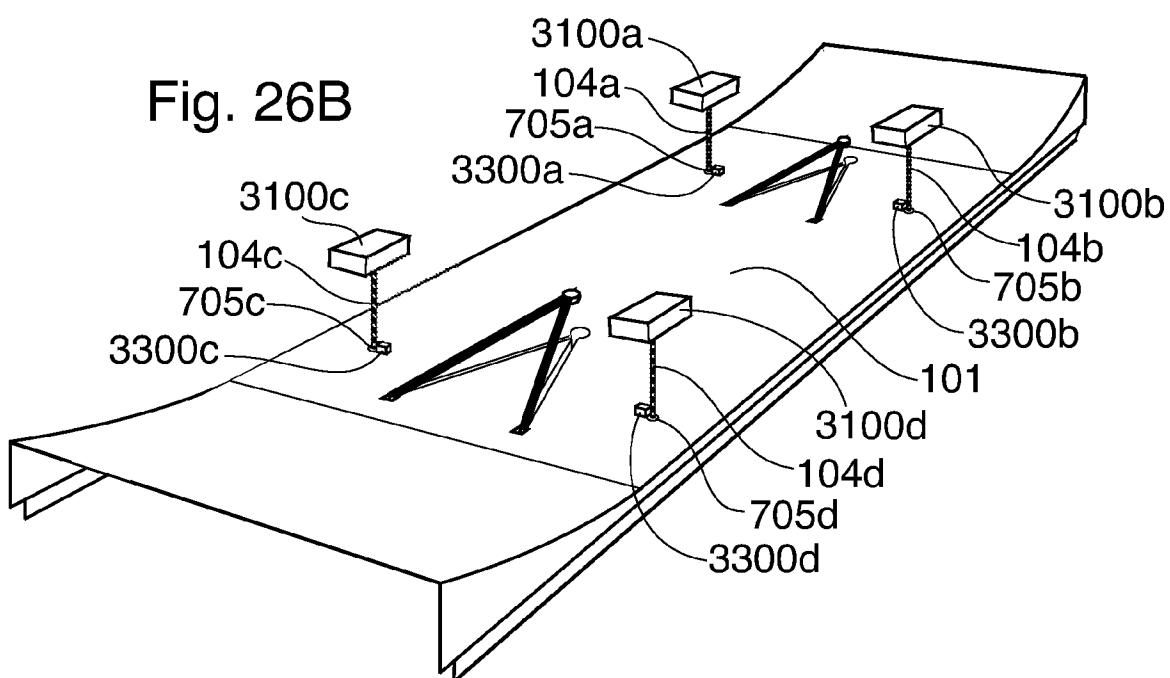


Fig. 27A

27/41

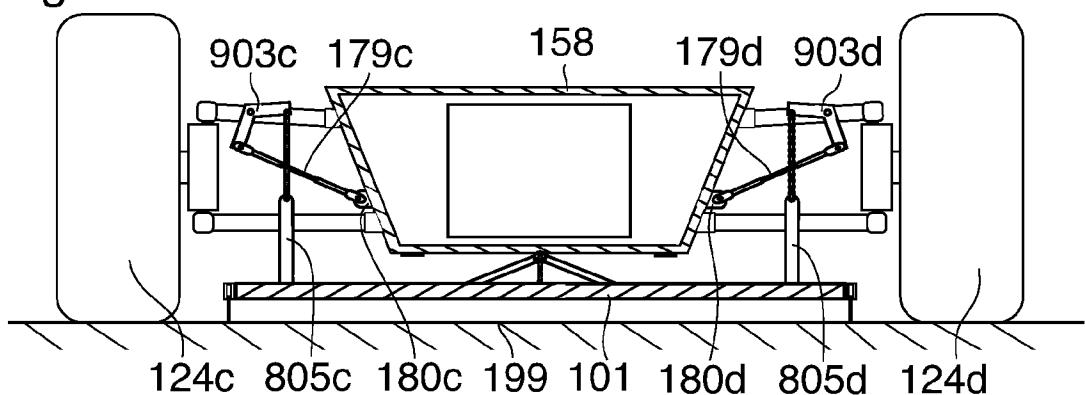


Fig. 27B

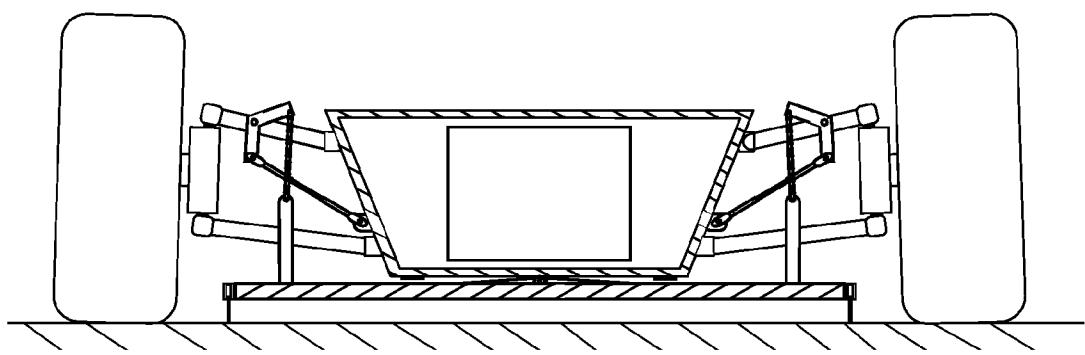


Fig. 27C

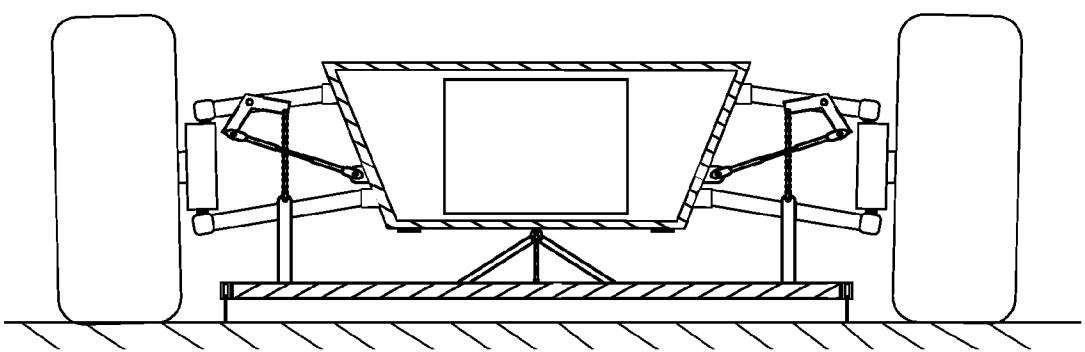
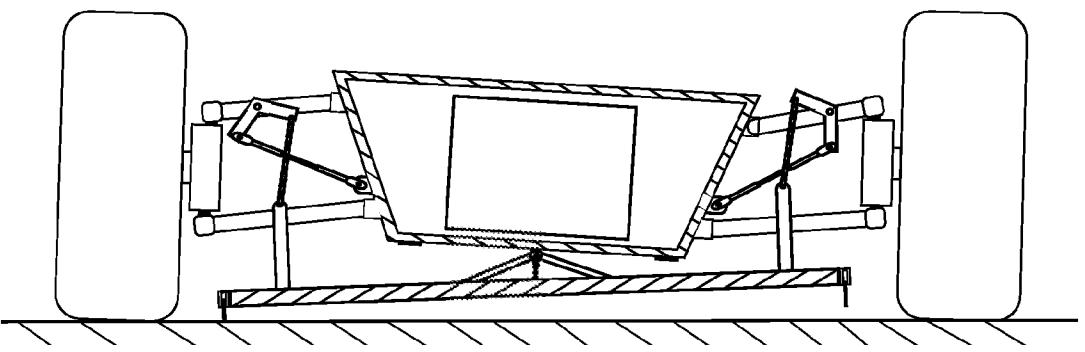



Fig. 27D

28/41

Fig. 28A

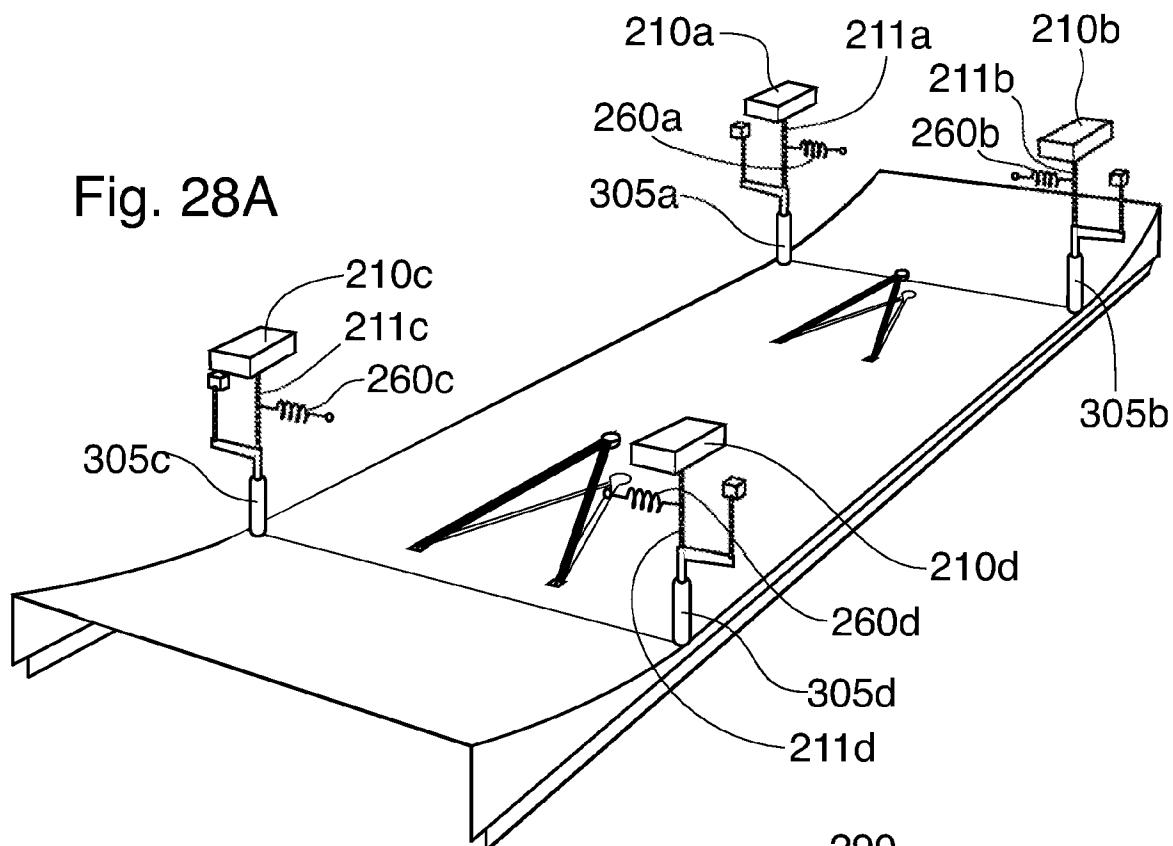
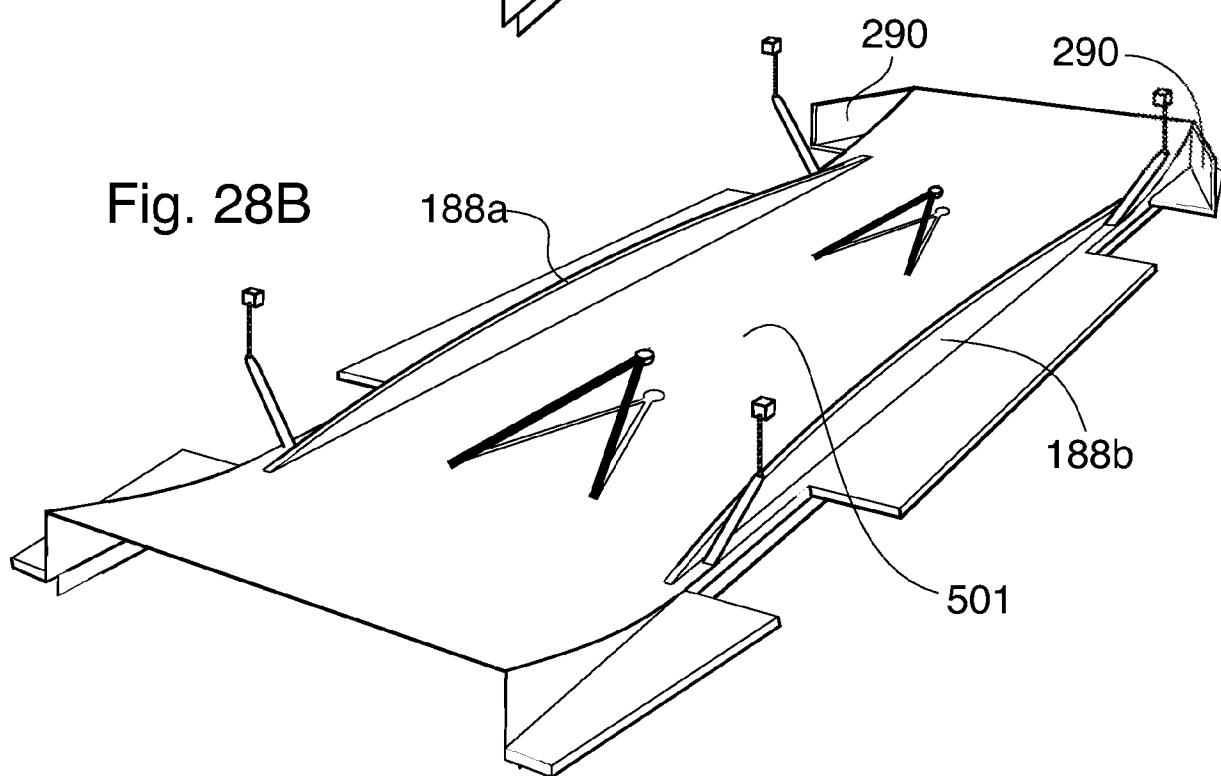
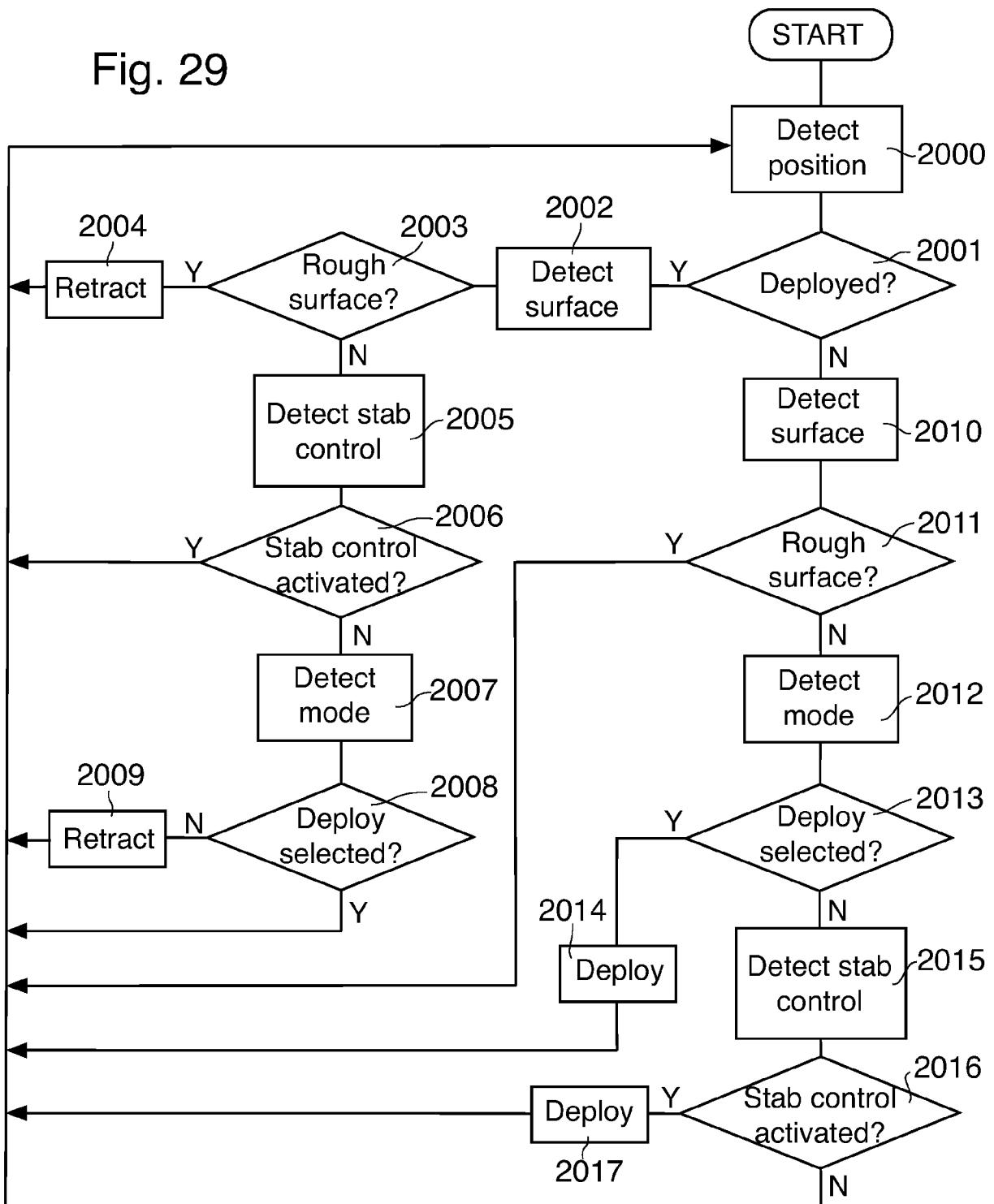
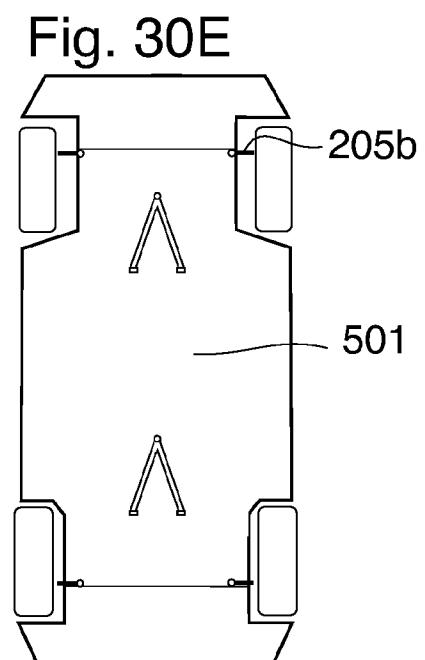
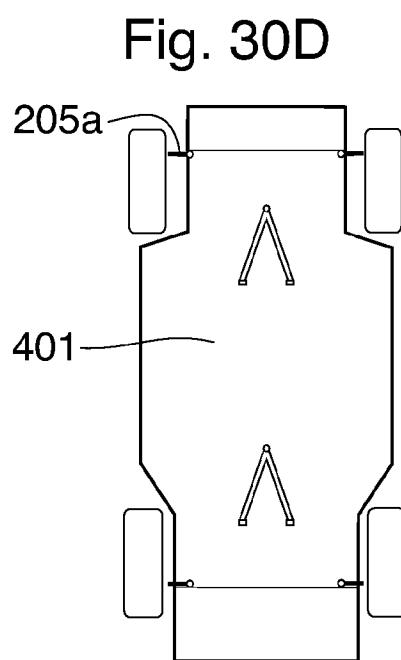
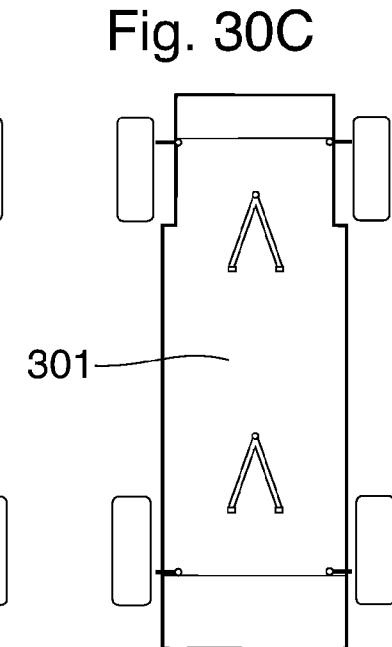
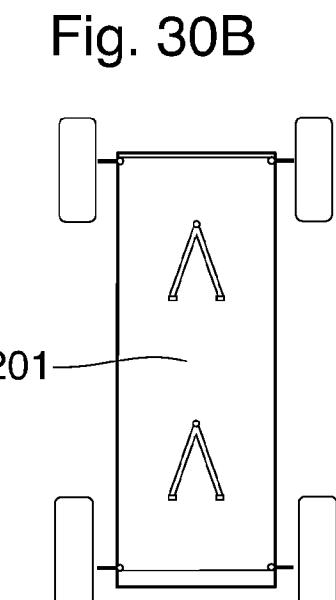
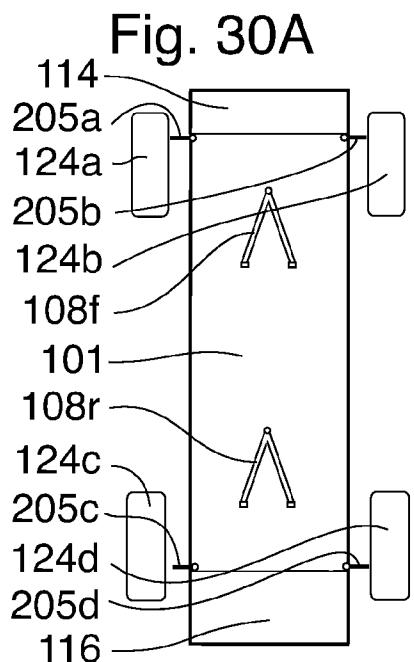




Fig. 28B

29/41

Fig. 29

30/41

31/41

Fig. 31A

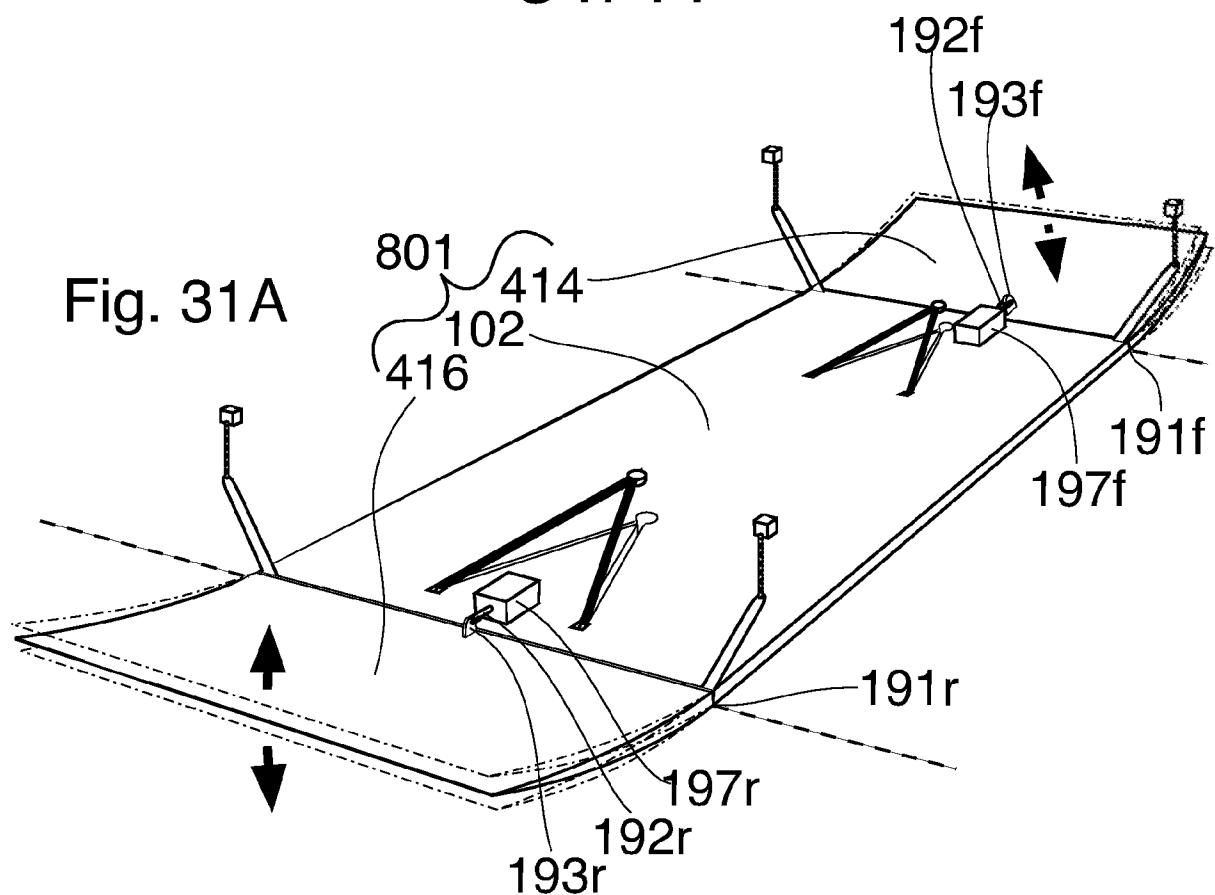
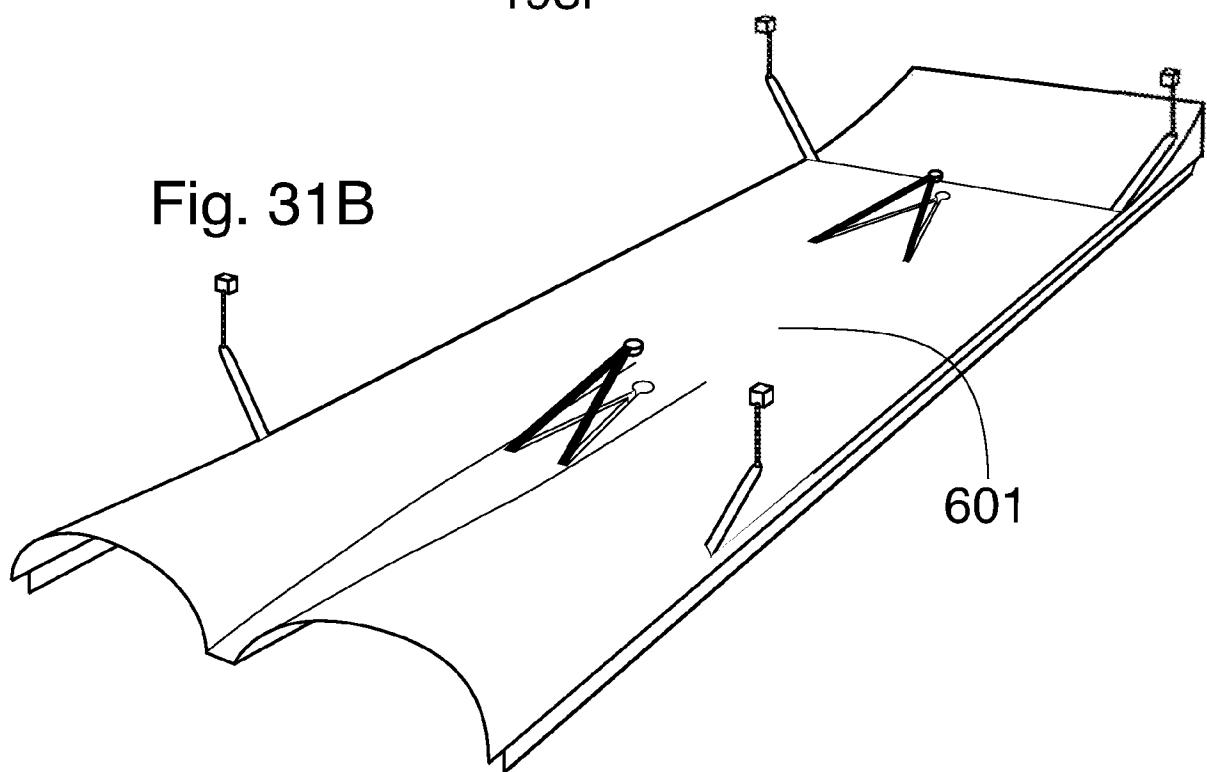



Fig. 31B

32/41

Fig. 32A

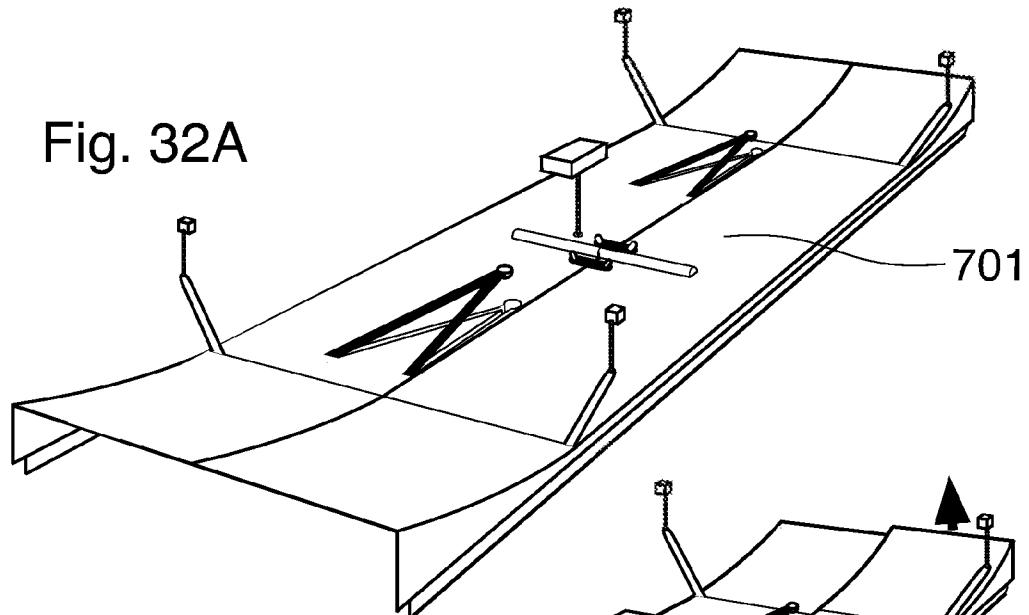


Fig. 32B

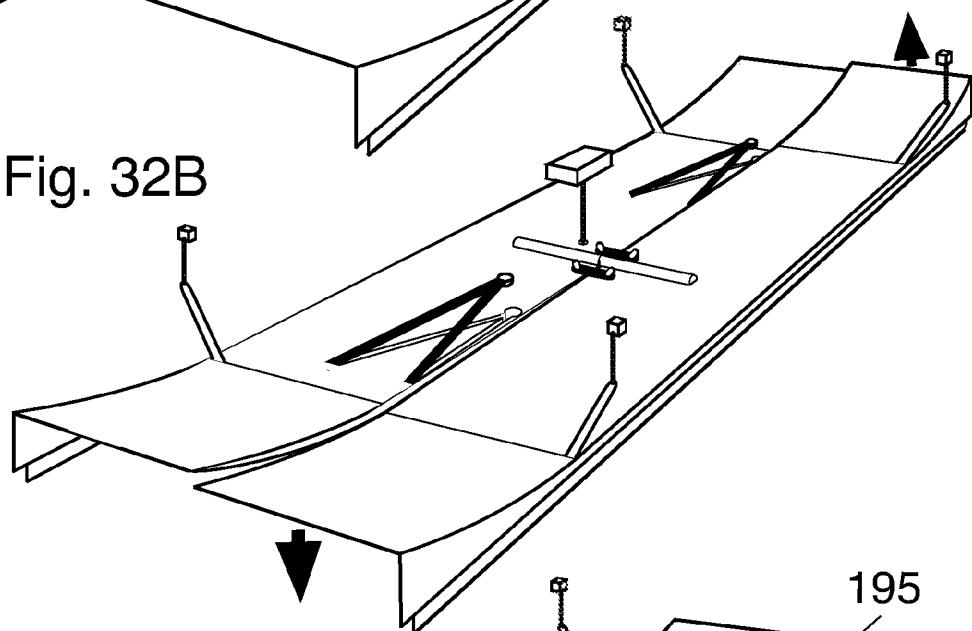
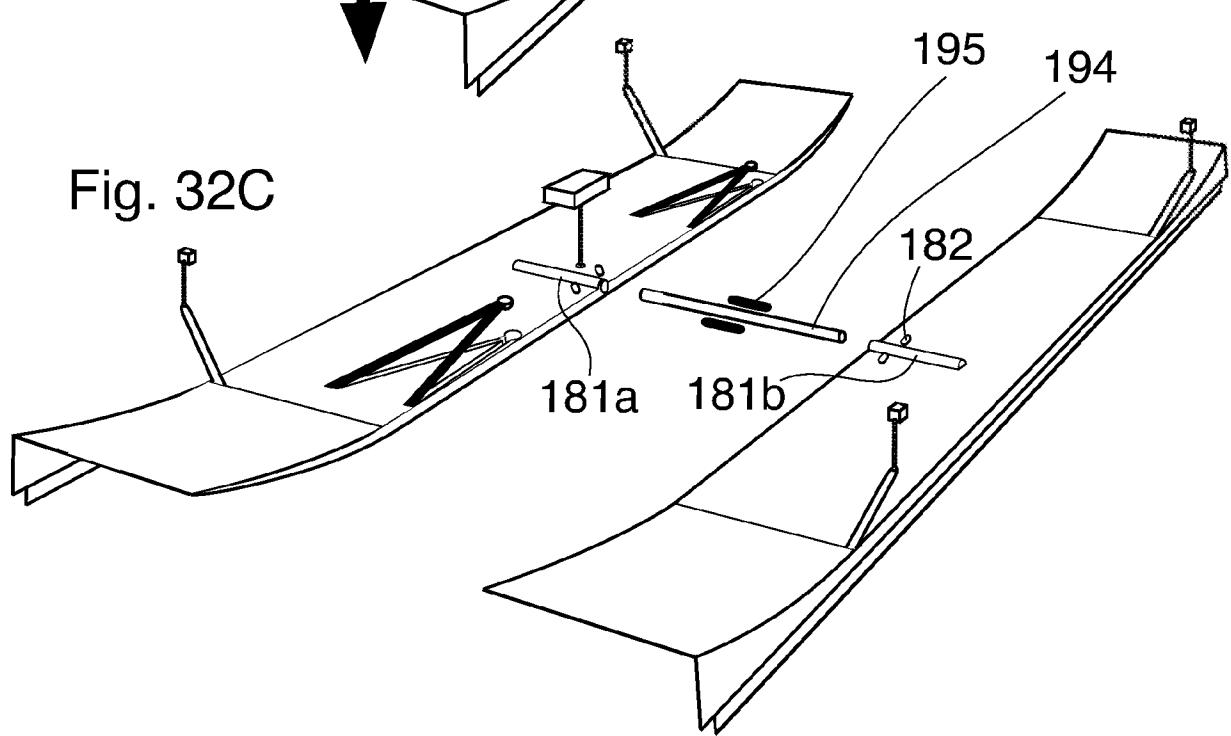



Fig. 32C

33/41

Fig. 33A



Fig. 33B

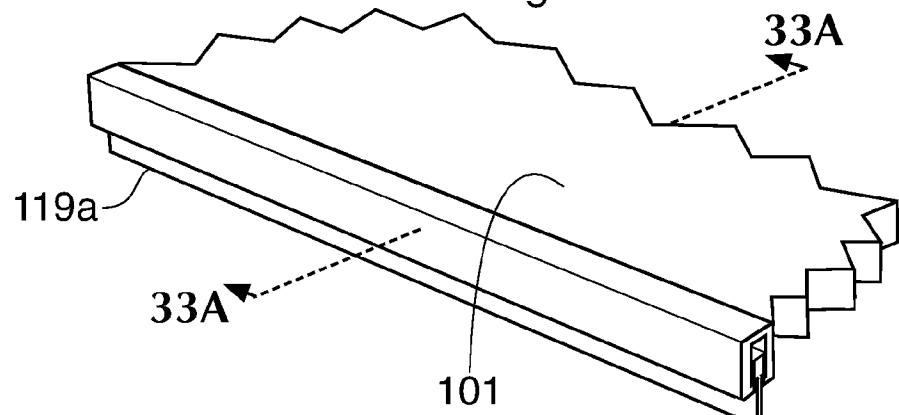


Fig. 33C

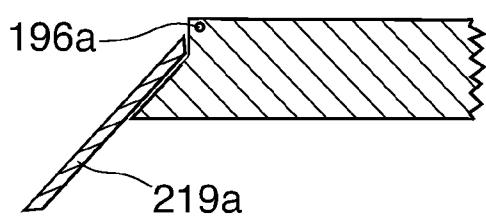


Fig. 33E



Fig. 33D

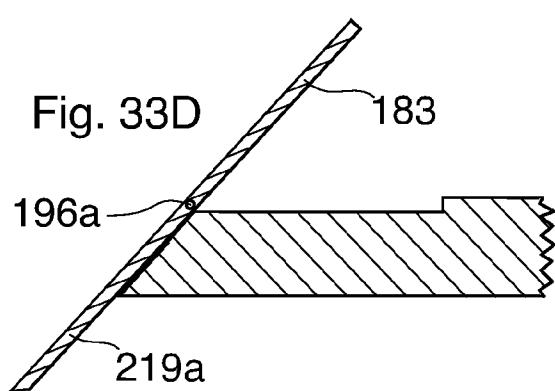
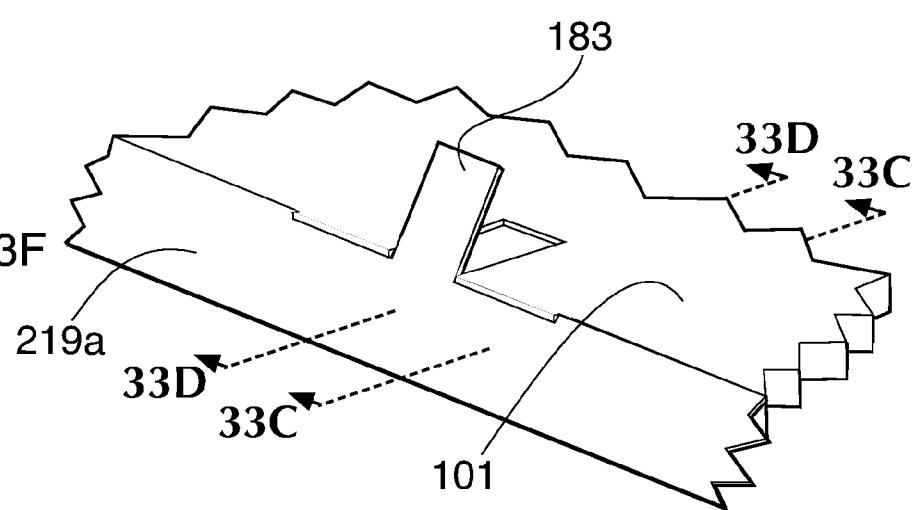



Fig. 33F

34/41

Fig. 34A

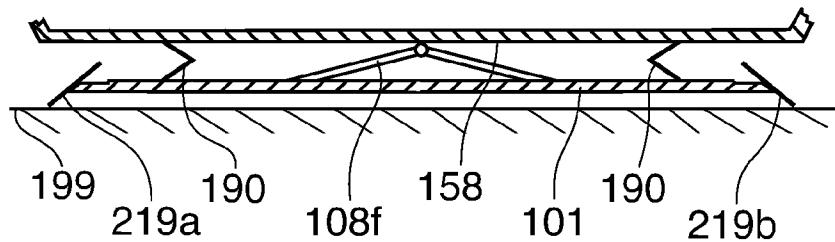


Fig. 34B

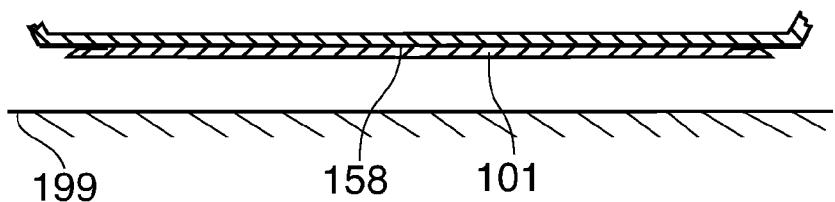


Fig. 34C

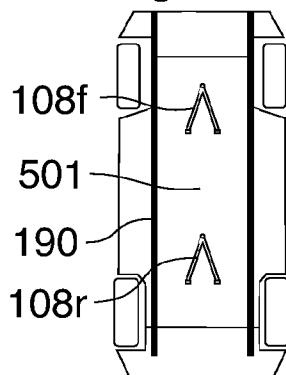


Fig. 34D

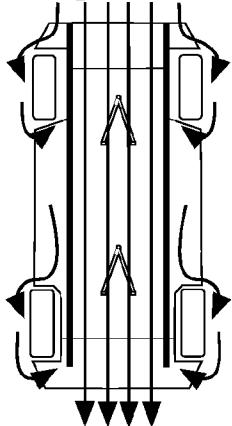


Fig. 34E

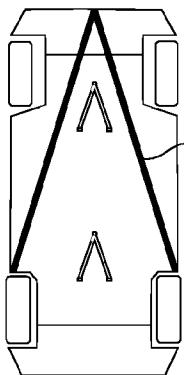


Fig. 34F

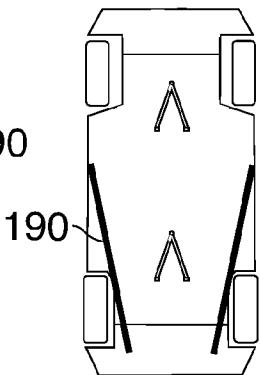


Fig. 34G

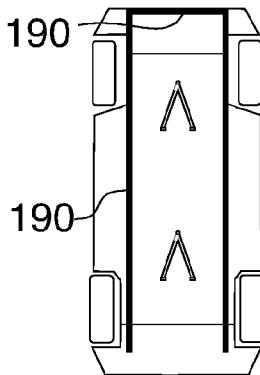


Fig. 34H



Fig. 34I

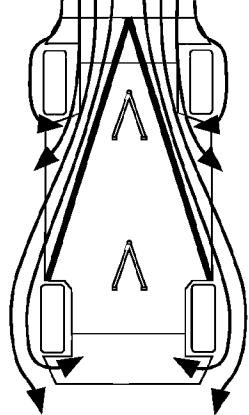


Fig. 34J

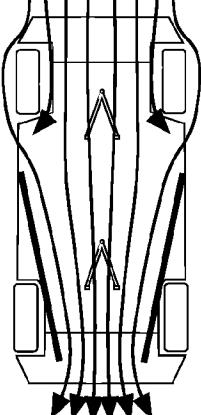


Fig. 34K

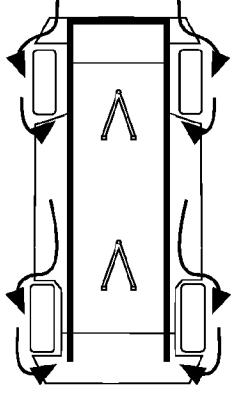
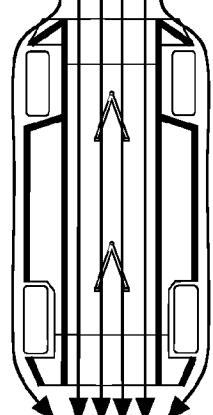



Fig. 34L

35/41

Fig. 35A

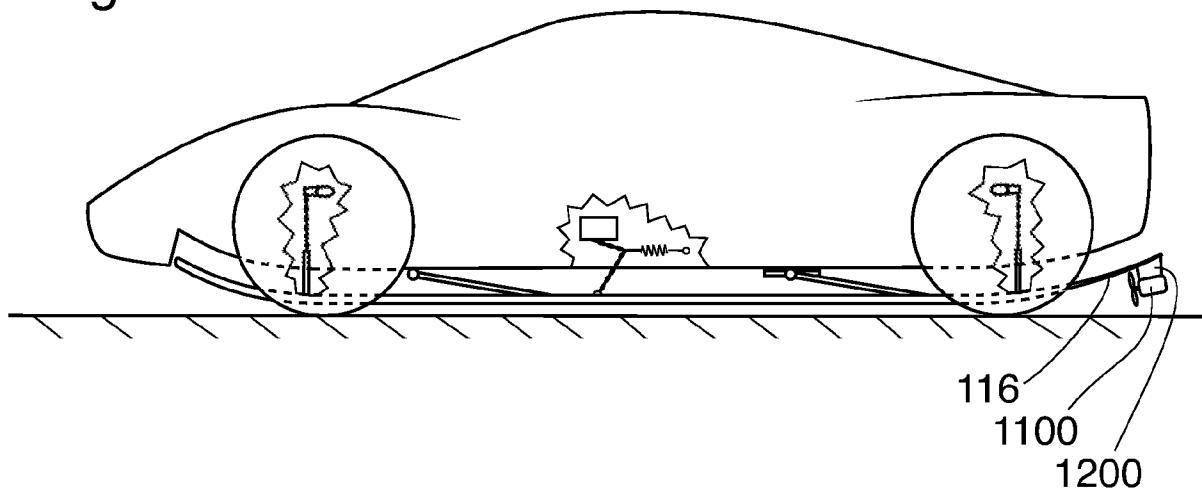
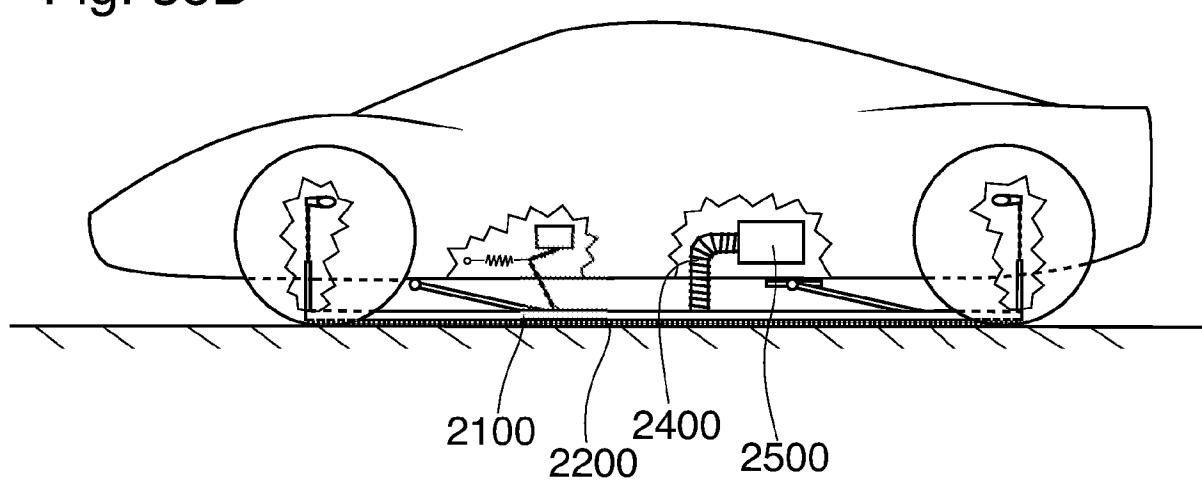



Fig. 35B

36/41

Fig.36A

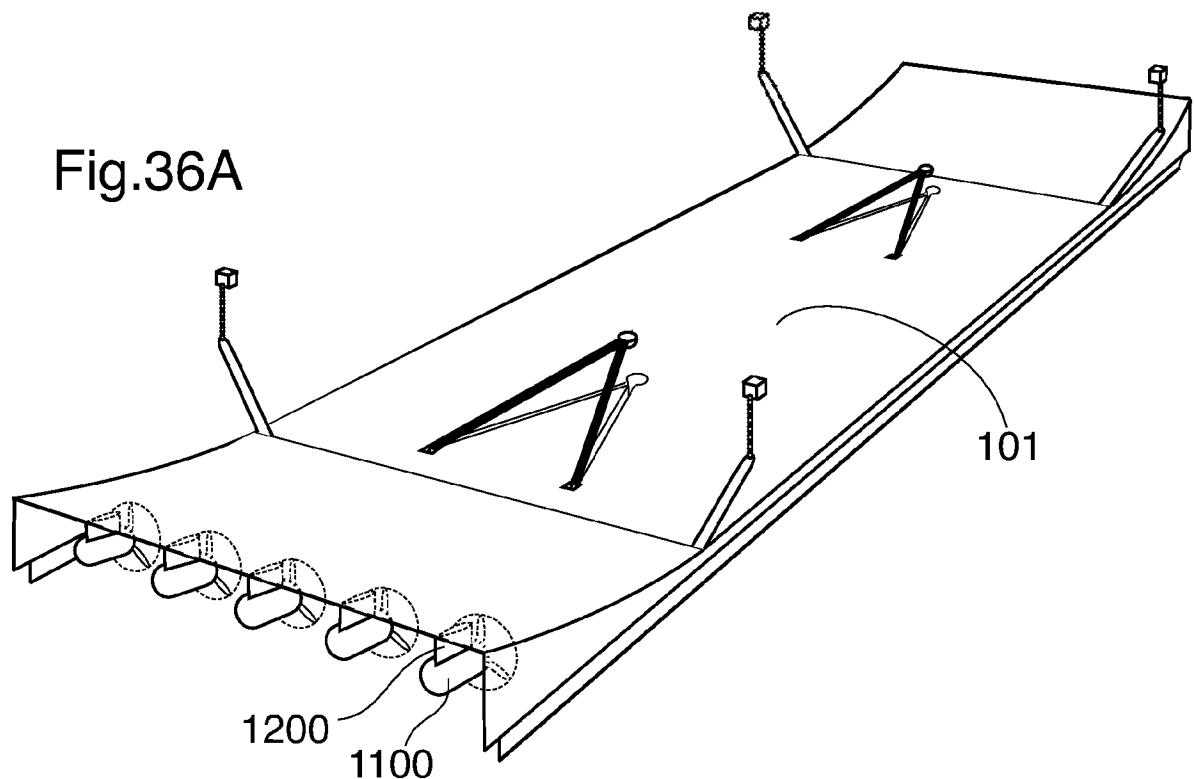
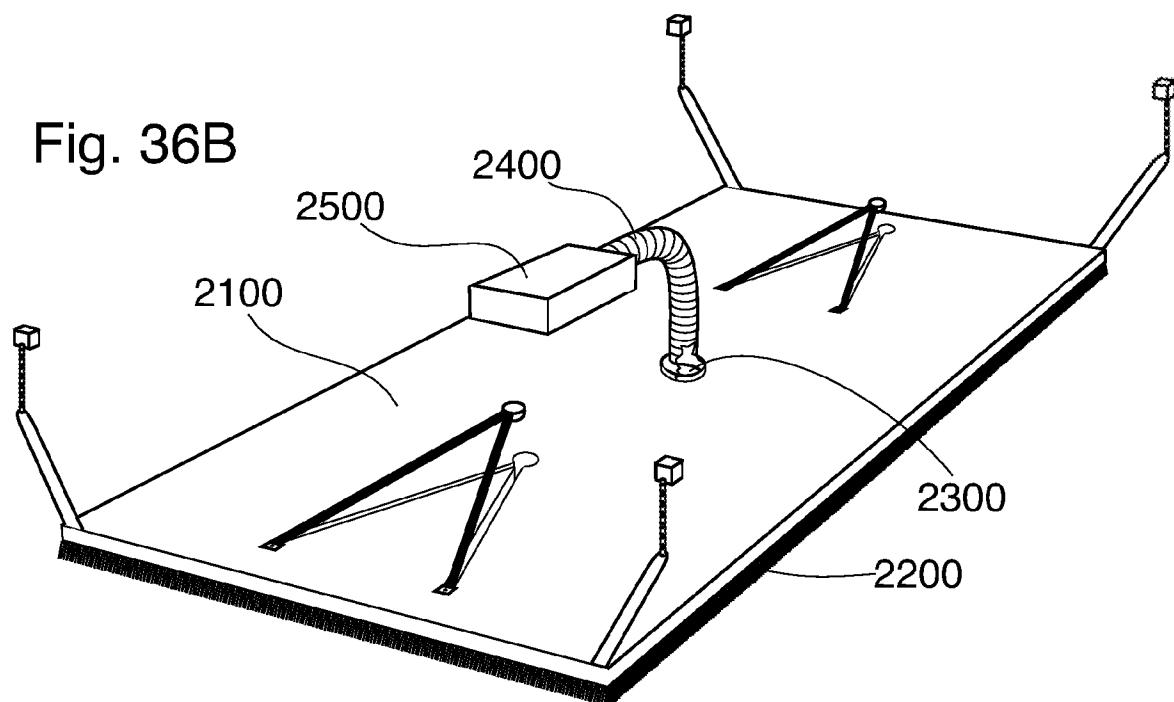
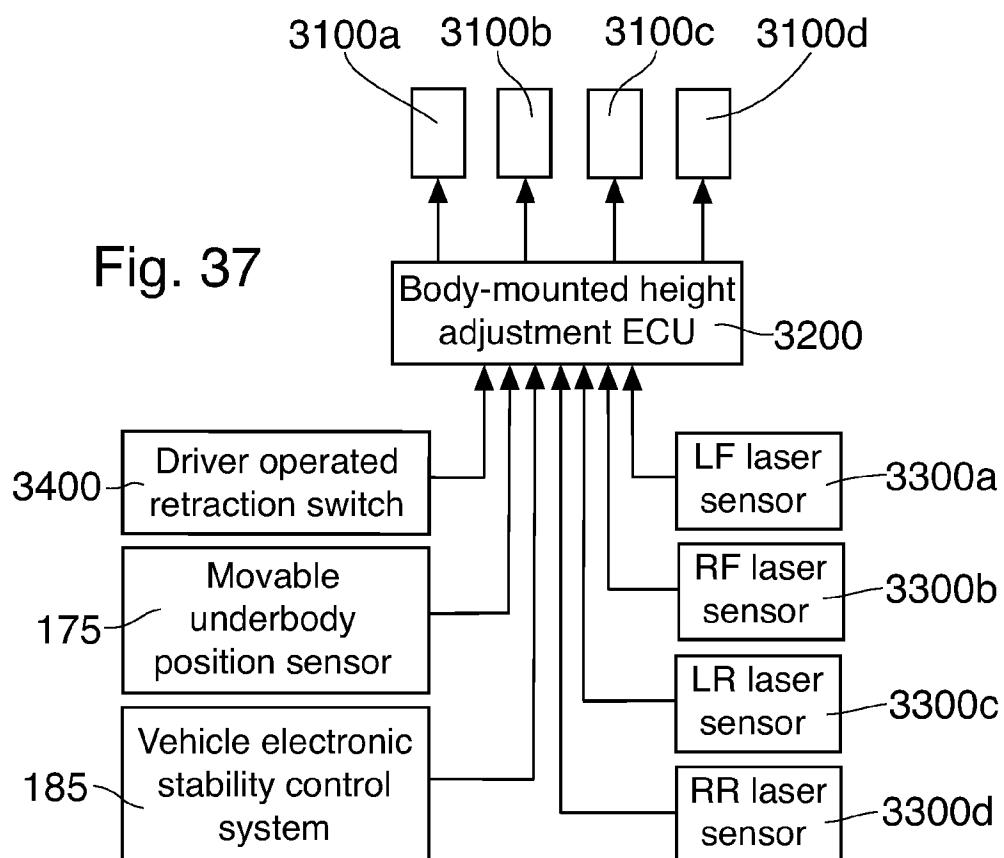
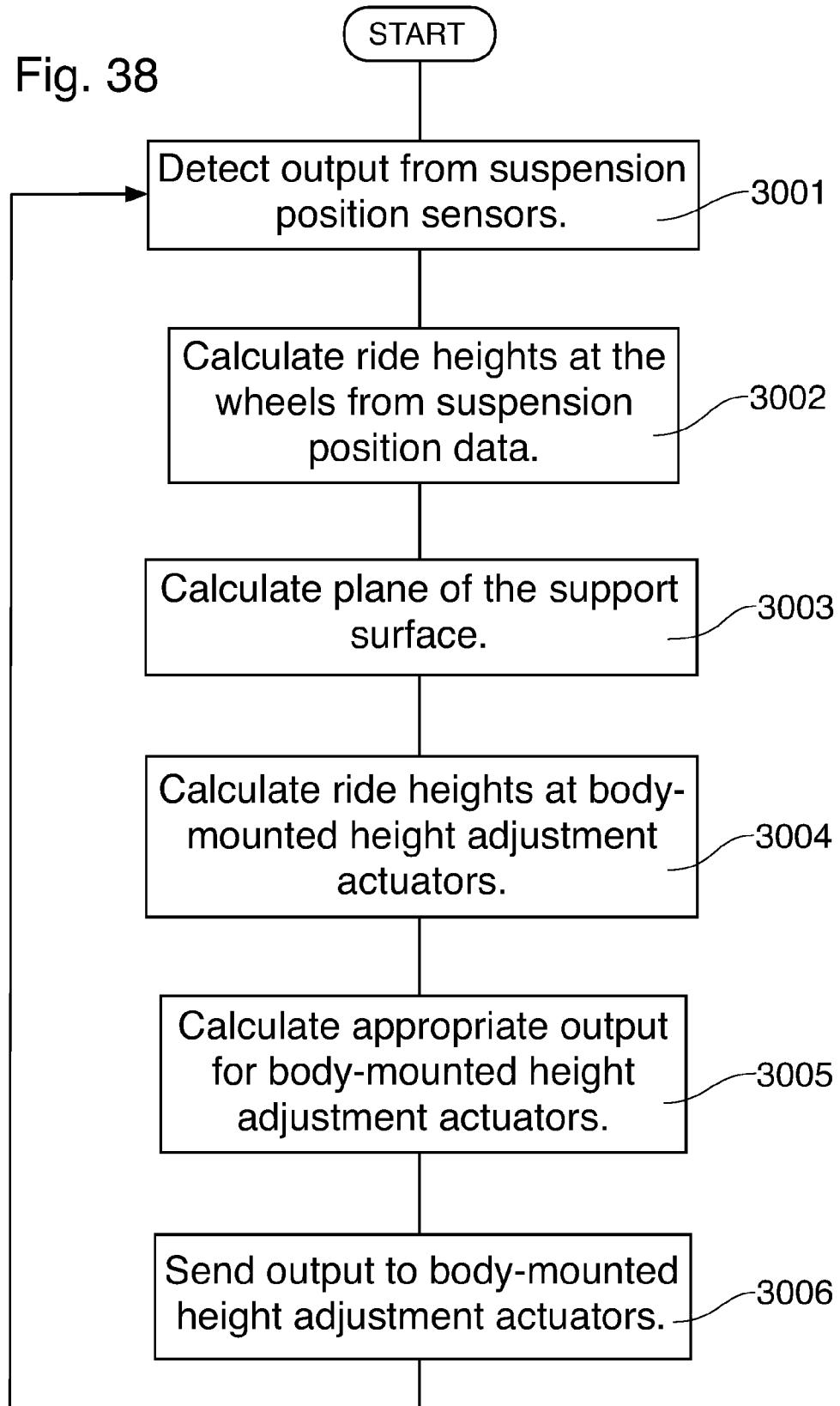




Fig. 36B



37/41

38/41

Fig. 38

39/41

Fig. 39A

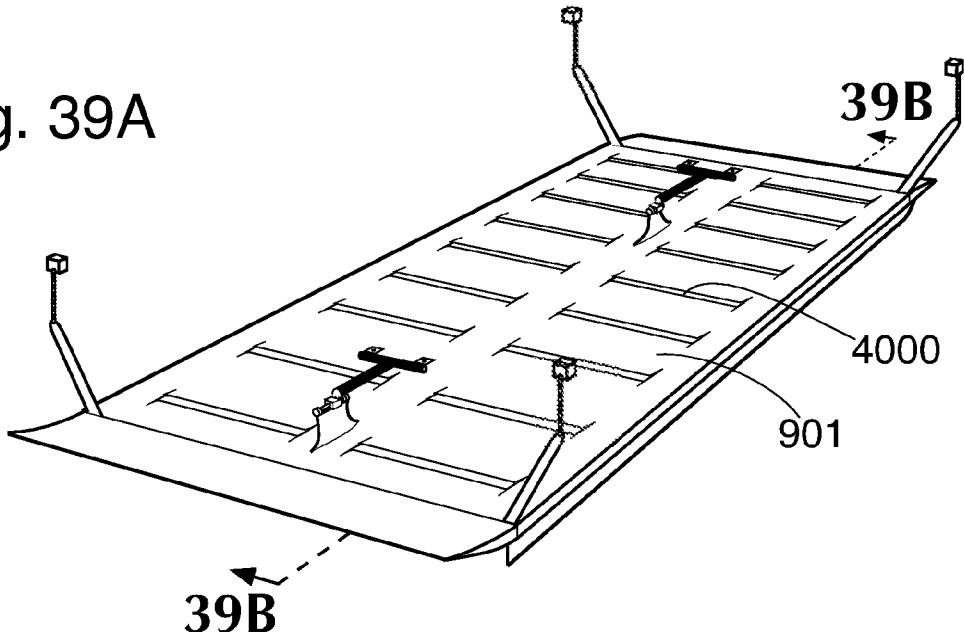


Fig. 39B

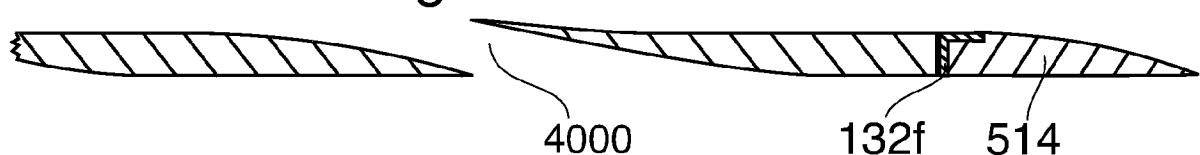


Fig. 39C

Fig. 39D

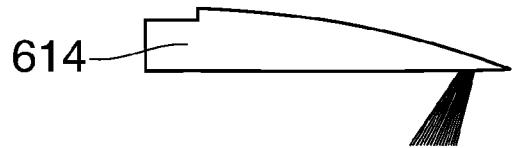


Fig. 39F

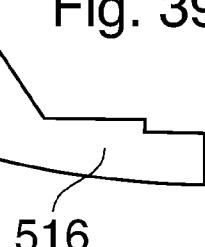
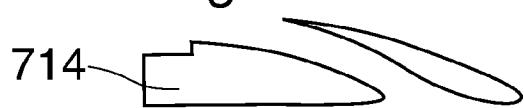



Fig. 39E

40/41

Fig. 40A

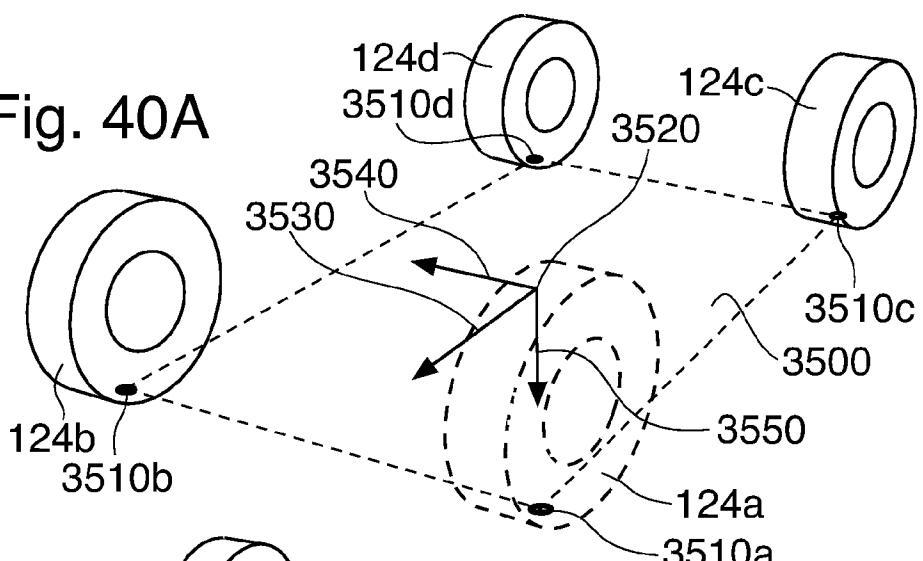


Fig. 40B

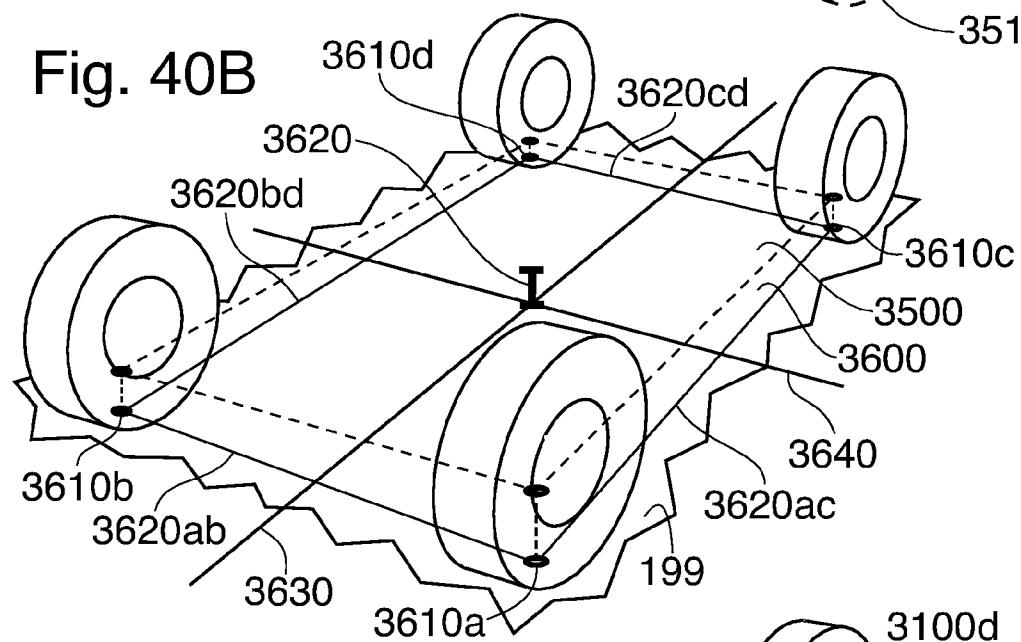
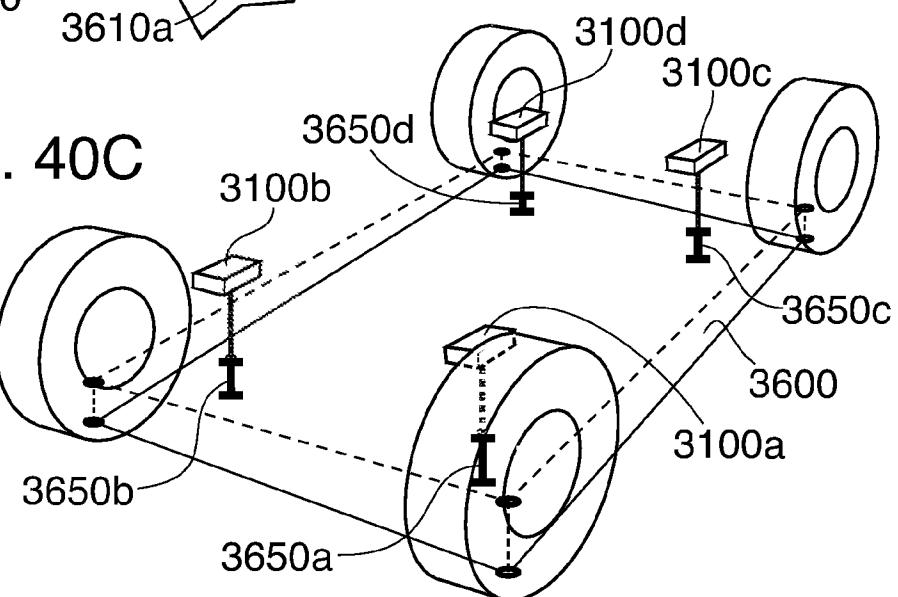



Fig. 40C

41/41

Fig. 41A

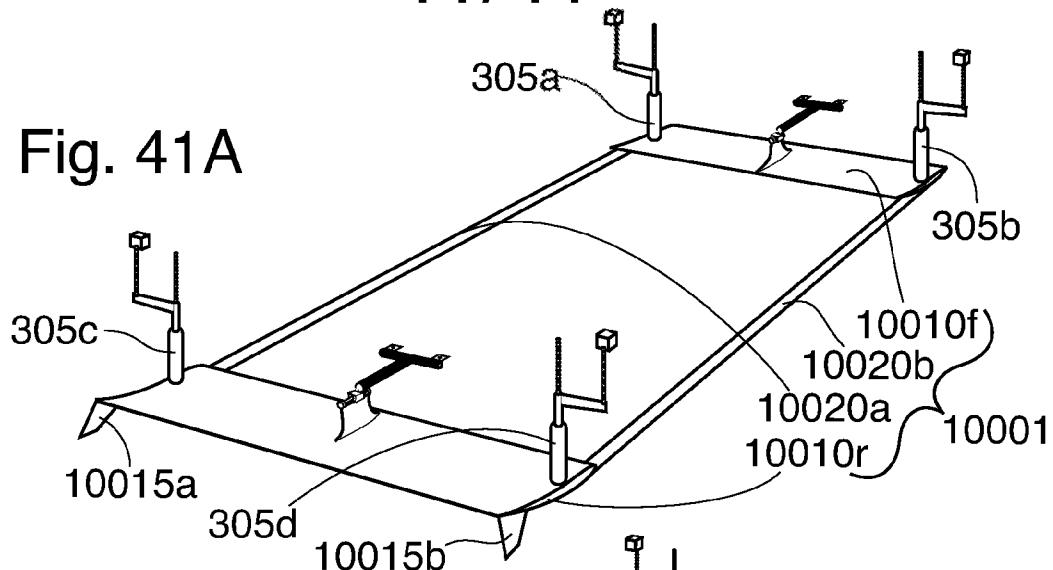


Fig. 41B

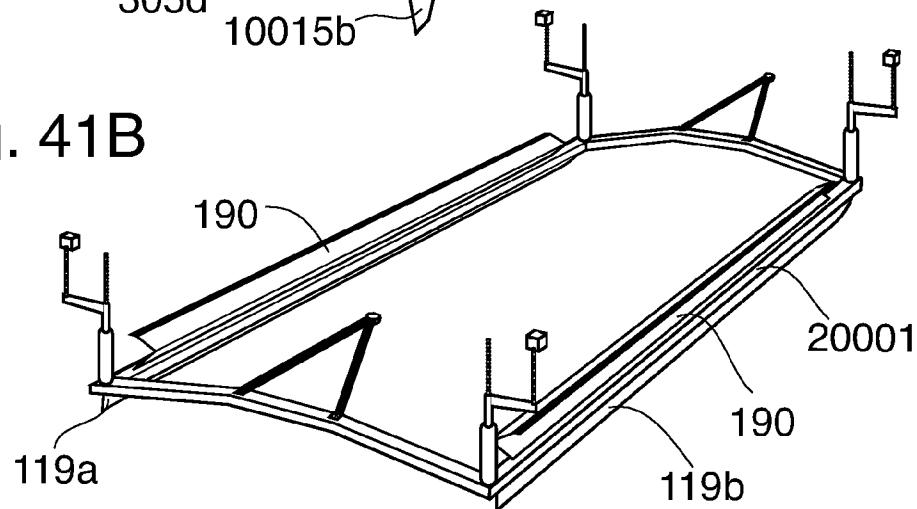
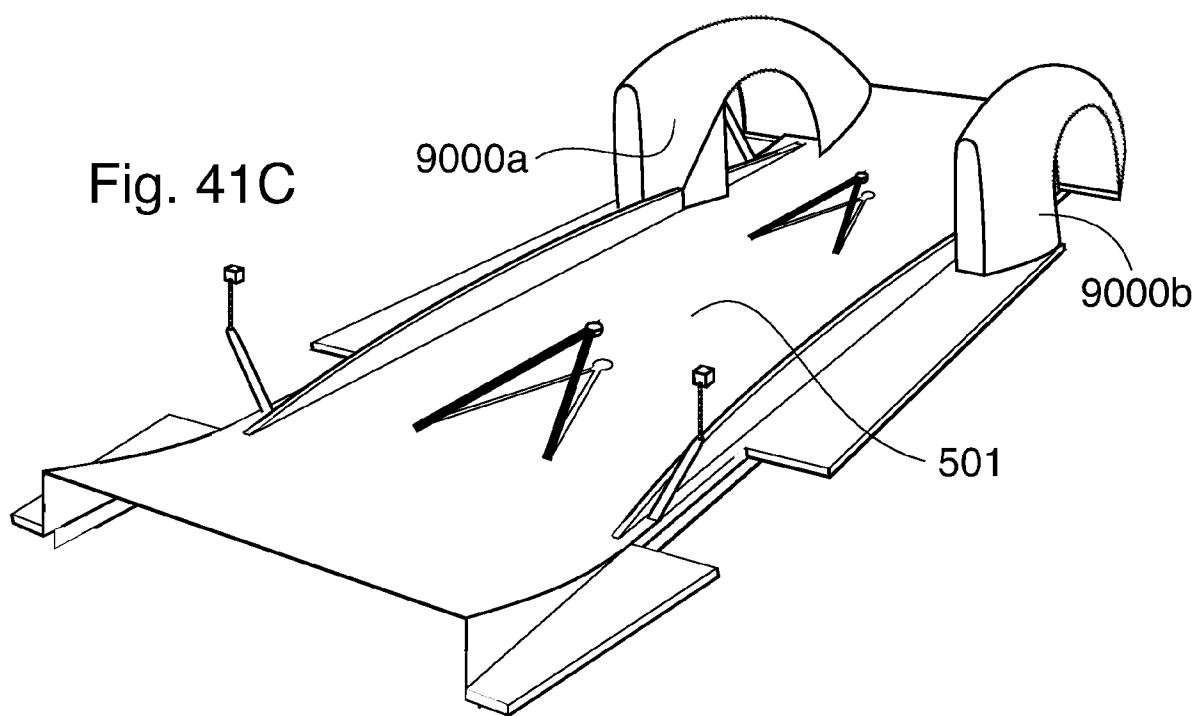



Fig. 41C

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2013/029149**A. CLASSIFICATION OF SUBJECT MATTER****B60G 3/20(2006.01)i, B60G 7/02(2006.01)i, B60G 11/12(2006.01)i**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
B62D 25/20; B62D 35/00; B60G 3/04; B62D 37/02Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: underbody, floor, suspension, aerodynamic, downforce, and wheel**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2011-057147 A (TOYOTA MOTOR CORP.) 24 March 2011 See abstract; paragraph [0028]; and figure 4.	1-24
A	US 7654544 B2 (LOUNSBERRY et al.) 02 February 2010 See column 1, line 60 – column 2, line 34 and figure 1.	1-24
A	US 2012-0013113 A1 (TRENNE et al.) 19 January 2012 See paragraphs [0032], [0033] and figure 3.	1-24
A	JP 2005-053321 A (MITSUBISHI MOTORS CORP.) 03 March 2005 See paragraphs [0012], [0013] and figure 1.	1-24
A	US 6007102 A (HELMUS, HERBERT JOHN) 28 December 1999 See claim 1 and figure 3.	1-24

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 07 June 2013 (07.06.2013)	Date of mailing of the international search report 10 June 2013 (10.06.2013)
Name and mailing address of the ISA/KR Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea Facsimile No. 82-42-472-7140	Authorized officer SONG, Ho Keun Telephone No. 82-42-481-5580

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/029149

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 2011-057147 A	24.03.2011	None	
US 7654544 B2	02.02.2010	US 2007-0096420 A1	03.05.2007
US 2012-0013113 A1	19.01.2012	CN 102336225 A WO 2012-009089 A1	01.02.2012 19.01.2012
JP 2005-053321 A	03.03.2005	None	
US 06007102 A	28.12.1999	None	