087131308 A1 |0 0 00T R IR0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

International Bureau

(43) International Publication Date
30 October 2008 (30.10.2008)

) IO O OO OO

(10) International Publication Number

WO 2008/131308 Al

(51) International Patent Classification:
GOG6F 13/36 (2006.01) GOG6F 13/362 (2006.01)

(21) International Application Number:
PCT/US2008/060942

(22) International Filing Date: 18 April 2008 (18.04.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/737,605 19 April 2007 (19.04.2007) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: XU, Ning-yi; One Microsoft Way, Redmond,
Washington 98052-6399 (US). HSU, Feng-Hsiung; One
Microsoft Way, Redmond, Washington 98052-6399 (US).
CALI, Xiong-Fei; One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,

CH, CN, CO,CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(34)

(54) Title: FIELD-PROGRAMMABLE GATE ARRAY BASED ACCELERATOR SYSTEM

100
102
»
/\ FPGA
106
Host T PCl > i
O P Interfaces Comput.atlon
Computer Controller | | < Logic
114 g 118 122 120
w
- A 4
> v L
DDR
108 SRAM SDRAM
110 12 PCI Board
v 104

FIG.

1

(57) Abstract: Accelerator systems and methods are disclosed that utilize FPGA technology to achieve better parallelism and flex-
ibility. The accelerator system may be used to implement a relevance-ranking algorithm, such as RankBoost, for a training process.
& The algorithm and related data structures may be organized to enable streaming data access and, thus, increase the training speed.
The data may be compressed to enable the system and method to be operable with larger data sets. At least a portion of the approx-
imated RankBoost algorithm may be implemented as a single instruction multiple data streams (SIMD) architecture with multiple
processing engines (PEs) in the FPGA. Thus, large data sets can be loaded on memories associated with an FPGA to increase the

speed of the relevance ranking algorithm.

WO 2008/131308 PCT/US2008/060942

FIELD-PROGRAMMABLE GATE ARRAY BASED ACCELERATOR

SYSTEM

BACKGROUND

[0001] Web search based ad services and search engines have become
important tools for providing information to users. One factor in attracting users
and advertisers is providing relevant information and ads for a given search query.
Search relevance may be determined by a ranking function that ranks resultant
documents according to their similarities to the input query.

[0002] Information retrieval (IR) researchers have studied search
relevance for various search engines and tools. Representative methods include
Boolean, vector space, probabilistic, and language models. Earlier search engines
and tools were mainly based on such IR algorithms. These search engines and tools
incorporate in varying degrees the concept of the ranking function. Many factors
may affect the ranking function for search relevance. These factors may include
page content, title, anchor, URL, spam, and page freshness. It is extremely difficult
to manually tune ranking function parameters to accommodate these factors for
large-scale data sets, such as those that are common in many applications including
World Wide Web (“Web”) applications and speech and image processing. For these
large data sets, machine based learning algorithms have been applied to learn

complex ranking functions from large-scale data sets.

WO 2008/131308 PCT/US2008/060942

[0003] Early algorithms for ranking function learning include
Polynomial-based regression, Genetic Programming, RankSVM and classification-
based SVM. However, these algorithms were only evaluated on a small-scale
dataset due to the high computational cost. In fact, these traditional machine-
learning algorithms operate slowly when searching large-scale data sets. Users
often wait many hours, days, or even weeks to get results from these data sets. This
slow computation time may be due, in part, to a typical personal computer (PC)
being unable to exploit full parallelism in machine-learning algorithms efficiently.

[0004] Instruction level parallelism techniques somewhat improve the
processing time. More particularly, distributed implementations with process level
parallelism are faster than many of the PC central processing units (CPUs), which
execute instructions in sequential manner. However, distributed implementations
occupy many machines. Additionally, for some algorithms, distributed computing
yields poor speed improvement per processor added due to communication cost. A
Graphics Processing Unit (GPU)-based accelerator could only accelerate a limited
spectrum of machine learning algorithms due to its special hardware structure
optimized for graphics applications. Thus, memory access bandwidth,
communication cost, flexibility and granularity of parallelism remain bottlenecks

for these solutions.

WO 2008/131308 PCT/US2008/060942

SUMMARY

[0005] An accelerator system and method is provided that, according to
one exemplary implementation, utilizes FPGA technology to achieve better
parallelism and flexibility. The FPGA-based accelerator uses a PCI controller to
communicate with a host CPU. A memory hierarchy composed of embedded
Random Access Memory (RAM) in the FPGA, Static Random Access Memory
(SRAM) and Synchronous Dynamic Random Access Memory (SDRAM), allows
the FPGA assisted accelerator to take advantage of memory locality in algorithms.

[0006] According to another exemplary implementation, an FPGA-based
accelerator system is combined with a relevance-ranking algorithm, such as the
algorithm known as RankBoost, to increase the speed of a training process. Using
an approximated RankBoost algorithm reduces the computation and storage scale
from O(N?) to O(N). This algorithm could be mapped to the accelerator system to
increase the speed of the pure software implementation by approximately 170
times. Several techniques assist in achieving the acceleration rate. The algorithm
and related data structures associated with the FPGA-based accelerator may be
organized to enable streaming data access and, thus, increase the training speed.
The data may be compressed to enable the system and method to be operable with
larger data sets. At least a portion of the approximated RankBoost algorithm may
be implemented as a single instruction multiple data streams (SIMD) architecture

with multiple processing engines (PEs) in the FPGA. Thus, large data sets, such as

WO 2008/131308 PCT/US2008/060942

a training set can be loaded on memories associated with an FPGA to increase the
speed of the relevance ranking algorithm.

[0007] By virtue of this system, a user can train a ranking model with
much less time and cost, so they can attempt different learning parameters of the
algorithm in the same time, or carry out a study that depends on numerous ranking
models.

[0008] This Summary is provided to introduce a selection of concepts in
a simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the

claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows an exemplary architecture of an FPGA based
accelerator system for machine learning.

[0010] FIG. 2 shows an exemplary deployment of the accelerator.

[0011] FIG. 3 shows an exemplary system architecture for an accelerator
operable to perform relevance-ranking.

[0012] FIG. 4 shows an exemplary working flow of the accelerator
system.

[0013] FIG. 5 shows an exemplary architecture of a processing engine

(PE) for an accelerator operable to perform relevance-ranking.

WO 2008/131308 PCT/US2008/060942

[0014] FIG. 6 shows data sequences for the processing engine shown in
FIG. 5.
[0015] FIG. 7 shows an exemplary data format and processing sequence

for a First In First Out (FIFO) buffer.

DETAILED DESCRIPTION

[0016] Overview

An FPGA-based accelerator system for machine learning as described and
claimed herein accelerates selected algorithms by providing better processing
parallelism and memory access. The accelerator system may include an
acceleration device, which may include a substrate, such as a Peripheral
Component Interconnect (PCI) card, with a Field-Programmable Gate Array
(FPGA) and memories acting as caches, e.g., SRAM, SDRAM, and so forth,
connected to a computing device. One or more algorithms may be implemented on
one or more of the FPGAs with direct parallel architecture and/or pipelined
architecture to exploit both application parallelism and direct functional logic
implementation. The PCI could also be replaced by other computer buses,
including but not limited to PCI-X, PCI-Express, HyperTransport, Universal Serial
Bus (USB) and Front-Side Bus (FSB).

[0017] A training data set or other data may be loaded onto one or more
memories on the accelerator board, or onto embedded memories in the FPGA, to

increase memory access bandwidth and data locality. The training data set may

WO 2008/131308 PCT/US2008/060942

comprise information collected from Web searches to assess relevancy, and other
characteristics. The system may include or be associated with one or more PCs or
other computing devices, each computing device having one or more accelerator

cards.

[0018] Exemplary System

[0019] Accelerator System Architecture

An exemplary system for use as an accelerator is shown in FIG. 1. The
accelerator system 100 may include an acceleration device 102 comprising a
Peripheral Component Interface (PCI) board 104 with a Field-Programmable Gate
Array (FPGA) 106 and Double Data Rate (DDR) memory 108, e.g., SRAM 110,
SDRAM 112, and so forth, connected to a computing device such as a host
computer 114. The PCI board 104 may interface with a PCI bus 116 on or
associated with the host computing device 114. The PCI board 104, and/or devices
thereon, may communicate with the bus 116 thorough a PCI controller 118. The
FPGA 106 may comprise computation logic 120 that communicates to the DDR
memory devices 108 and/or the PCI controller 118 through one or more interfaces
122.

[0020] Training data or other data being accessed by the FPGA 106 may
be loaded to DDR memory 108, including SRAM 110 or SDRAM 112, on the PCI
board 104, or to embedded memories in the FPGA 106, in order to increase

memory access bandwidth and data locality. Software loaded on the computer 114

WO 2008/131308 PCT/US2008/060942

may be capable of programming or re-programming the FPGA 106 at any time
during processing.

[0021] As shown in FIG. 2, an acceleration system 200 may be composed
of one or more computing devices 210, similar to computer 114, with each
computing device 210 having one or more PCI cards 204, similar to PCI board 104.
The computing devices 210 may be connected through a network 206. Thus,
multiple cards 204 on multiple computing devices 210 may process data in parallel
and thereby handle larger scale algorithms.

[0022] FIG. 3 shows a block diagram of a system 300 that is operable to
implement relevance-ranking software 302 on an FPGA 304 residing on a substrate,
such as a PCI card 305. The relevance ranking software 302 may have, or be
associated with, a driver 306 having a register read/write (R/W) module 308 and/or
a direct memory access read/write (DMA R/W) module 310 for operation of the
software 302 with the CPU 312 and memory store 314 through a PCI 316 and/or
Northbridge (NB) 318. The PCI card 305 may have a PCI 9054 Chip 320 or other
32-bit PCI bus mastering interface chip in order to facilitate communication
between the FPGA 304 and the PCI 316.

[0023] The FPGA 304 may include a PCI local interface 322 for
interfacing with the PCI 9054 chip 320. The PCI local interface 322 may also
connect to the processing engine (PE) units, e.g., PEO, PE1, and PEn. The PE units
implement the computation logic. The FPGA 304 may also have a DDR interface

324 for interfacing with DDR memory 326. The FPGA 304 may additionally have

WO 2008/131308 PCT/US2008/060942

a control unit 328 for controlling the processing units PEO, PE1, PW, and PEn by
sending a signal to the PE units. The FPGA 304 may also have a memory
management unit (MMU) 330 for aligning or managing data for faster processing.
The processing engines of the FPGA 304 may provide an output to the PCI local
interface 320 for further implementation or use.

[0024] FIG. 4 illustrates an exemplary workflow 400 for processing and
utilizing the training data in a system such as shown in FIG. 3. The first column 402
represents actions taken by the application software. The second column 404
represents driver-side activity. The third column 406 describes actions performed
on, or by, hardware, such as accelerator device 301. In the following, steps (a)-(r)
are steps for training. At (a), application software will process the training data for
hardware. The possible processing may include organizing data in the sequence of
how the FPGA logic will access and utilize it. At (b), application software will call
the write routine in the driver (at (c)) to write the data to memories on the
accelerator. The write routine may be implemented with a direct memory access
(DMA) method to achieve high bandwidth access to the accelerator. At (d), upon
receiving the training data, the PCI controller on the accelerator will write the data
to the FPGA. Then the memory management unit (MMU) in the FPGA will write
the data to DDR memory (or other cache memories). At (e), when all the data has
been saved to the memory, the MMU may set a register, or issue an interrupt
through PCI controller, indicating that the data transfer has been finished and the

application software may proceed. At (g), the application software may check the

WO 2008/131308 PCT/US2008/060942

status of the data transfer through register read routine in the driver (at (f)), or wait
for the interrupt. At (h), application software configures the hardware to begin the
training process by calling register write routine in the driver (at (1)). At (j), the
control unit begins to control other hardware blocks to train using the training data.
In the training process, at (k) application software may write (at (I)) some
intermediate data to the accelerator hardware. At (m), the MMU in the accelerator
sends this data to participate the training. At (p), this intermediate data may be
generated from intermediate results of the training process (at (n)). At (q), the
software may check the status of the training (at (r))) to determine if the training
process needs to be continued for another round. The software continues to monitor

the training process to decide when the training rounds should be stopped.

[0025] Data organization

The accelerator system supports hierarchical memory organization and
access methods using SDRAM, SRAM and RAM/registers within the FPGA.

[0026] According to one example, training data that will be iteratively
used may be loaded onto SDRAM onboard an accelerator device, such as
accelerator device 301. The training data loaded in the SDRAM may be organized
according to its access order in logic associated with the FPGA by a software tool
so that the FPGA can fetch data in a so-called, and well-known, “burst” mode, thus

enabling high bandwidth access to the data set.

WO 2008/131308 PCT/US2008/060942

[0027] Randomly used large-scale data structures could be loaded to
SRAM onboard the accelerator device, such as accelerator device 301, and
associated with an FPGA, such as FPGA 304. According to this implementation,
the SRAM may be used as a large low latency cache.

[0028] Temporary data structures, such as intermediate variables,
parameters, and so forth, and results, e.g., the learned model, could be stored in
distributed memory or registers inside the FPGA, which would act as high
bandwidth, low latency cache. The data could be utilized without needing to access

memory off of the FPGA, which would enhance the access speed of the cache.

[0029] Stream Data Processing Architecture

A streaming data access architecture and method may be incorporated with
the accelerator system and/or the data organization structure, such as described
above, to enable fast access to data in the host memory hierarchy and to decrease
the amount of hardware/software communication for selected algorithms.
Software, which may be provided by or on a host CPU, may configure a PCI bridge
chip on the accelerator board to fetch data from a host memory hierarchy. The host
memory hierarchy may provide a variety of memories including hard disks. The
data will contain necessary information (generated and inserted by software), with
which FPGA logic can perform computing functions over the data stream without
interaction with software or drivers. Furthermore, the data will be organized in the

sequence of how FPGA logic is accessing and utilizing it, such that input data is

10

WO 2008/131308 PCT/US2008/060942

consumed at the time FPGA logic receives it. The FPGA may buffer the result for a
delayed read from the software, which reduces the time and processing cost of

hardware/software communication.

[0030] Data Compression/Decompression

A Dbit-map based data compression/decompression method for the
architecture may be implemented to increase memory capacity and bandwidth
available in the accelerator system. Training data may be compressed by
conventional compression software and stored in the memories associated with the
acceleration device. The FPGA may then read and decompress the data before
performing computations. Implementing compression and decompression
techniques with the FPGA may increase the virtual bandwidth from a DDR to a PE

by 2-4 times the virtual bandwidth for uncompressed data.

[0031] Relevance-Ranking Algorithm

A machine learning, relevance ranking, algorithm may be implemented
using the accelerator system. Generally, when ranking objects, the goal is to find a
ranking function to order the given set of objects. Such an object is denoted as an
instance x in a domain (or instance space) X. As a form of feedback, information
about which instance should be ranked above (or below) one another is provided
for every pair of instances. This feedback is denoted as function @: X X X —R,

where @ (xy, x;)>0 means x; should be ranked above x,, and® (x,, x;)<0 means x,

11

WO 2008/131308 PCT/US2008/060942

should be ranked above x;. A learner then attempts to find a ranking function H: X
—R, which is as consistent as possible to the given @, by asserting x; is preferred
over xq if H(x;> H(xy).

[0032] A relevance-ranking algorithm may be used to learn the ranking
function H by combining a given collection of ranking functions. The relevance-
ranking algorithm may be pair-based or document-based. The psuedocode for one
such relevance ranking algorithm, is shown below:

Initialize: Distribution D over X x X

Do for ¢ =1,....T:

(1) Train WeakLearn using distribution D,.
(2) WeakLearn returns a weak hypothesis #4,,

(3) Chooseq, € R

(4) Update weights: for each pair (dy, d;):

D,(d,,d,)exp(~a,(h,(d,) ~ 1, (d,)))
z

t

Dz+1 (doad1) =

where Z, 1s the normalization factor:

Zt = Z Dz (dO » dl) eXp(_az (hz (do) - hz (dl)))

X0>%1

T
Output: the final hypothesis: H(x)=> a,h,

t=1
[0033] The relevance-ranking algorithm is utilized in an iterative manner.
In each round, a procedure named “WeakLearn” is called to select the best “weak

ranker” from a large set of candidate weak rankers. The weak ranker has the form

12

WO 2008/131308 PCT/US2008/060942

h;: X =R and h(x;)> h(x,) means that instance x; is ranked higher than x, in round
t. A distribution D, over X X X is maintained in the training process. Weight Dy(xy,
x;) will be decreased if 4, ranks x, and x; correctly (4, (x;) > &, (xy)), and increased
otherwise. Thus, D, will tend to concentrate on the pairs that are hard to rank. The
final strong ranker H is a weighted sum of the selected weak rankers in each round.

[0034] The WeakLearn algorithm may be implemented to find the weak
ranker with a maximum r(f,), by generating a temporary variable m(d) for each
document. The Weaklearn algorithm may be defined as follows:

Given: Distribution D(d,, d;) over all pairs

Initialize: (1) For each document d(g):
Compute z(d(q) = ", (D(d'(¢).d(¢))~ D(d(q).d"(¢))
(2) For every feature f; and every threshold 6*;:

Compute (f,,65)= > z(d(q))

d(q):fi (d(9))>6F
(3) Find the maximum|r"(f,., 6’;1*) |

1. 1+r
(4) Compute: o = Eln(1 il r*)

—-r

Output: weak ranking (.., Hs’i* yand a.

[0035] To extend the relevance-ranking algorithm to Web relevance
ranking, training pairs may be generated and weak rankers may be defined. To
generate the training pairs, the instance space for a search engine may be

partitioned according to queries issued by users. For each query ¢, the returned

13

WO 2008/131308 PCT/US2008/060942

documents may be rated a relevance score, from 1 (means "'poor match') to 5 (means
'excellent match') using a manual or automated process. Unlabeled documents may
be given a relevance score of 0. Based on the rating scores (ground truth), the
training pairs for the relevance-ranking algorithm may be generated from the
returned documents for each query.

[0036] So-called “weak rankers” may be defined as a transformation of a
document feature, which is a one-dimensional real value number. Document
features can be classified into query dependent features, such as query term
frequencies in a document and term proximity, and query independent features,
such as PageRank, and so forth. Thus, the same document may be represented by
different feature vectors for different queries based upon its query-dependent
features.

[0037] In keeping with the previous algorithm example, a document may
be designated as d(g), a pair as {di(q), d»(q)}, and dij means a document for query
¢;- The ky feature for document is denoted as ﬁc(dij). With these notations, an
alternative relevance-ranking algorithm may be implemented as follows.

Initialize: initial distribution D over XxX

Given: N, queries {q;| i=1..., N,}.

N; documents { dij | j/=1,..., N; } for each query ¢;, where

2N = N

N, features {fi(d’) | j=1...., N;} for each document d";

N,candidate thresholds {Hks| s=1,..., ng} for each f;.

14

WO 2008/131308 PCT/US2008/060942

Npair palrs (diﬂ, dijg) generated by ground truth rating {R(q.d})} or
(&},
Initialize: initial distribution D(diﬂ, di]'2) over XxX
Do for ¢ =1,....T:

(1) Train WeakLearn using distribution D,.

(2) WeakLearn returns a weak hypothesis #,, weighte,

(3) Update weights: for each pair (dy, d;):

D, \(dy.d,) =2 (do’dJeXP(—O; (h(dy) ~h,(d))

t

where Z, is the normalization factor:

Z, = Y D,(dy,d,)exp(~a,(h(dy) ~h,(d)).

RO

T
Output: the final hypothesis: H(x)=)_a,h,

1

[0038] For the relevance-ranking algorithms described by example above,
WeakLearn may be defined as a routine that uses the Ny document features to form
its weak rankers, attempting to find the one with the smallest pair-wise
disagreement relative to distribution D over N,,;, document pairs. The weak ranker
may be defined by the following relationship:

N L IR
D=1, if £(d)<0or f(d) is undefined

[0039] To find the best #(d), the weak learner checks all of the possible

combinations of feature f; and threshold & The WeakLearn algorithm may be

15

WO 2008/131308 PCT/US2008/060942

implemented to ascertain a maximum #(f, £) by generating a temporary variable z(d)
tor each document. Intuitively, © contains information regarding labels and pair
weights, and the weak ranker only needs to access 7 in a document-wise manner for
each feature and each threshold, that is O(NgN; Ng), in a straightforward
implementation. Based on this, an alternative weak learner may be utilized using
an integral histogram to further reduce the computational complexity to O(NgNy).
Because of this relatively low computational complexity, the algorithm may be
implemented in both software and hardware, e.g., an accelerator system utilizing an
FPGA, as described above.

[0040] According to the implementation, » may be calculated in
O(NgcNy) time 1n each round using an integral histogram in O(NgNy) time. First,

feature values { f,(d) } in a dimension of the whole feature vector (f,..., f;;,) may

be classified into N;;, bins. The boundaries of these bins are:

ko gk
oF :M.S+frﬁin,s:0,],... N

s > Vbin o
bin

k

where f* and f' are maximum and minimum values of all f; in the

training data set. Then each document d can be mapped to one of the bins according

to the value of f,(d):

Bin,(d) = ﬂoor(% Ny, D)

max min

The histogram of 7(d)over feature f; is then built using:

Hist,(iy= D 7(d),i=0,....(N,, —1)

d:Biny (d)=i

16

WO 2008/131308 PCT/US2008/060942

Then, an integral histogram can be determined by adding elements in the
histogram from the right (i=N,;,-1) to the left (i=0). That is,

Integral, (i) = ZHiSl‘k (a),i =0,...,(N,,, —1)

a>i

[0041] Exemplary Implementation of Relevance-Ranking Algorithm

A relevance-ranking algorithm, such as described above, may be
implemented using an FPGA based accelerator system, also described above. The
main computing data structure is a histogram, mapped to the architecture of single
instruction multiple data streams (SIMD) with distributed memories. The SIMD
architecture is capable of separately building several integral histograms with
multiple PE units at the same time, as described above.

[0042] Software provided on or to the host computer will send the
quantized feature values to a DDR memory through the PCI bus, PCI controller and
FPGA. As described above, the data may be organized to enable streaming
memory access, which can make full use of DDR memory bandwidth. In each
training round, the software will call WeakLearn to compute a(d) for every
document, and send 7(d) to a First In First Out (FIFO) queue in the FPGA. The
control unit (CU) in the FPGA will direct the PE arrays to build histograms and
integral histograms, and will then send the results #(f,6) as output to the FIFO
queue. The CU is implemented as a finite state machine (FSM), which halts or
resumes the pipeline in PE units according to the status of each FIFO. When the

CU indicates that the calculation of » is finished, the software will read back these »

17

WO 2008/131308 PCT/US2008/060942

values and select the maximum value. Then the software will update the
distribution D(dy, d;) over all pairs and begin the next round.

[0043] It is noted that the micro-architecture of the PE supports fully-
pipelined operation, which enhances the performance of hardware, particularly with
regard to machine learning algorithms, such as a relevance-ranking algorithm. Fig.
5 illustrates an exemplary micro-architecture of a processing engine 500, such as
PEO, PE1, or PEn, previously described. This micro-architecture may be used in
building the integral histogram for a relevance ranking algorithm, such as
RankBoost. The dual port RAM 502 is used to store the histograms and integral
histograms in the building process. The base address of the RAM indexes the
teature and the offset address indexes the bin of histogram or integral histogram as
defined in the Hist(i)and Integrali(i) equations described above. The shift registers
504 are used to delay the input feature f{d). First, the histogram is built. Feature
values fi(d) are input as the offset address to read out the corresponding
intermediate values Hist(i) of the bin i. Then the other input a(d) will be added to
Histi(7), and the result will be saved to the same bin where Hist(7) is read out.

[0044] An example data input 600 into 8§ PE arrays with 16 features per
PE is illustrated in FIG. 6. First, software aligns a given amount data in its original
format. A software tool may be used to rearrange this data in the memory to
generate binary data for storage in a memory block. The data is ordered according
to the order that the FPGA will access the data. Moreover the input data may be

organized to be aligned with the PE, as shown in FIG. 6, thereby mapping the data

18

WO 2008/131308 PCT/US2008/060942

structure to the memories. This data organization enables a streaming memory
access. The integral histogram can be implemented with this data structure based
on the histogram stored in the dual port RAM. The values are read out, added and
then stored back to the memory according to the Integrali(i) equation described
above.. At last the final result 7(f, &) will be read out.

[0045] A streaming memory access organization can also be used for the
FIFO buffer that will provide data from the DDR memory to the group of PE units.
The width of the FIFO associated with the PE array may be, for example, 128 bits,
which is equivalent to 16 bytes. The data in the FIFO can be arranged as shown in
Fig. 7 to map the data to the PE units and further enable streaming memory access
to data transferred from the DDR to the FPGA. Thus, running the relevance-
ranking algorithm utilizing an FPGA and incorporating streaming memory access
provides fast processing of large data sets.

[0046] Although the invention has been described in language specific to
structural features and/or methodological steps, it is to be understood that the
invention defined in the appended claims is not necessarily limited to the specitic
features or steps described. Rather, the specific features and steps are disclosed as

preferred forms of implementing the claimed invention.

19

WO 2008/131308 PCT/US2008/060942

CLAIMS

1. A system comprising:
a Field Programmable Gate Array (FPGA) provided on a substrate;
a memory connected to the substrate and the FPGA;
an interface for connecting the FPGA to a computing device; and

a relevance-ranking algorithm associated with the logic in FPGA.

2. A system as recited in claim 1, wherein the substrate comprises a
Peripheral Component Interface (PCI) board, PCI-X board, PCI-Express board,
HyperTransport board, Universal Serial Bus (USB) board or Front-Side Bus (FSB)

board.

3. A system as recited in claim 1, wherein the FPGA has at least one

processing engine, and the processing engine is controlled by a control unit.

4. A system as recited in claim 3, wherein the memory comprises Double

Data Rate (DDR) memory.

5. A system as recited in claim 1, wherein the relevance ranking

algorithm incorporates a RankBoost algorithm.

20

WO 2008/131308 PCT/US2008/060942

6. A system as recited in claim 4, wherein the FPGA comprises a number
of processing engine (PE) unit, and wherein data is arranged in a First In First Out

(FIFO) buffer to map the data onto the PE unit.

7. A system as recited in claim 1, wherein the FPGA associated with a
computing device 1s a first FPGA associated with a first computing device, the
system further comprising a network connecting the first FPGA associated with the
first computing device to a second FPGA associated with the second computing

device.

8. A system as recited in claim 7, wherein the first and second computing

devices are each associated with multiple FPGA devices

9. A method comprising:

mapping data in one or more data structures to one or more memories
associated with a Field Programmable Gate Array (FPGA); and

enabling the performance of a relevance ranking-algorithm with respect to

the data structures.

10. A method as recited in claim 9, wherein the relevance-ranking

algorithm comprises at least a portion of a RankBoost algorithm.

21

WO 2008/131308 PCT/US2008/060942

11. A method as recited in claim 9, further comprising loading a training

dataset into a memory associated with the FPGA.

12. A method as recited in claim 9, further comprising utilizing memory

within the FPGA as a cache memory.

13. The method of claim 9, further comprising compressing data in the
one or more data structures prior to mapping the one or more data structures in the

one or more memories.

14. The method of claim 9, wherein the relevance-ranking algorithm is

document based.

15. The method of claim 9, further comprising organizing the data
according to input data structure of processing units in the FPGA and according to

the order by which the FPGA will access the data.

16. A system comprising:
an FPGA logic device operable to perform a machine learning algorithm;
a PCI controller to communicate with a Central Processing Unit (CPU) of a

host computing device, and

22

WO 2008/131308 PCT/US2008/060942

a memory hierarchy composed of Static Random Access Memory (SRAM)
and Synchronous Dynamic Random Access Memory (SDRAM) associated with the

FPGA and embedded Random Access Memory (RAM) within the FPGA.

17. A system according to claim 16, wherein the machine learning

algorithm comprises a document-based relevance-ranking algorithm.

18. A system according to claim 16, wherein:

training data that will be iteratively used is loaded onto the SDRAM and
organized according to its usage pattern in logic associated with the FPGA;

randomly used large-scale data structures are loaded onto the SRAM to be
used as a large low latency cache; and

temporary data structures are stored in the embedded RAM to act as high

bandwidth, low latency cache.

19. A system according to claim 16, wherein multiple FPGA devices are

provided for connection to the computer.

20. A system according to claim 19, wherein multiple computers are

connected together through a network.

23

PCT/US2008/060942

WO 2008/131308

117

| Ol

2
pseog 10d ZIT or |
NvYas nvys | 801
¥ad
i
ocl A 8Ll
o_mm_._ seoBlau| > ssjj0nu0)
uonendwo) < 19d
901
YOdS
&
201
001

(o)

PCIl Bus 11

vil
Jandwon

}SOH

PCT/US2008/060942

WO 2008/131308

217

¢ Old

00¢

¢ Old

PCT/US2008/060942

3/7

9ce
AJONW3N

ddd

- ———q
NId [—
«- - |
@ _
« — — 1 -
ad e—— |
- - _
i _
e —— T o
13d e——
<« — - _
|
. _
|
< —— 1+ L
0dd |e——
<t — -
|

144

3OV4d3INI ¥dd

{3
pIEd |0d
pLe
© NI
cce 0ce 5 g8L¢
JOV4H31IN]| 7G06 m aN
w001 10d & ZLe
10d Ndo
oLe 80¢
- .mmm MY MY
d31SI194
TOHLINOD viNd SIo3d
90¢ d3aN-EkJ
0se 20g
NININ JIdVYML40S
ONMNYY AODNVATITY

WO 2008/131308

(op)

4

o
o
™

WO 2008/131308 PCT/US2008/060942

+
af7
400
402 404 06
Application .
PP Driver Accelerator
Software Hardware
(a) Preprocess the training data
for hardware, including
generating optimized data
organization for DDR memory to
enable stream access.
(b) Write the training data () DMA write > (d) PCI controller writes data to
to memory in accelerator. FPGA. MMU will write the data to

DDR through DDR interface unit.

Read register (or wait (e) MMU sets a internal register (or
or an interrupt) issue an interrupt) when all the
data is saved.

(i) Control Unit begins to control

(g) Check if data transfer is over.

(h) Configure the hardware to (i) Write register

begin the training. > the train process.
L . () DMA write
*flg)a\é\ggﬁa'rgﬁrrmed'ate data P (M) MMU gets data from PCI and

send to Processing Engines.

(p) Read back intermediate (o) DMA read
results and calculate new
intermediate data.

(n) Control Unit will control MMU, PE
units to process the training data with
intermediate operands.

| () Check the status of (r) Read register
training. et

FIG. 4

PCT/US2008/060942

WO 2008/131308

57

G Ol

ssalppy
9SO

1 SWA

=2 X

Jappy
Julod Buneo| 4

— uj
eleQq
ssalppy

9SO
) ssalppy

SJUAA
mmm:vv<v

1400

NVY
1od [eng

eseqg

X | 0d.C¢
o n
W (p)r
f—
a 04q.ce
X
no L
e1eq o
ssalppy
18siO
ssalppy
peay \ @
A|_mme_o_o< (P)
aseq

20G sJeysibay uiys

o
o
{9

PCT/US2008/060942

WO 2008/131308

6/7

9 Ol4

(1 {4 {4 o . _ ; ; _ ; ; .

N 2L Ned | el (NZH (L end (beg)d | Qsd | G4 | © 4 Oe)d | oshd | @4
- & . <« ; .
N N N84 | LN EA O 1ehd ad | 084 | U4 [0 ©2z14 | (064 (o4
(1 (1 L o . . . _ . . » .
Nl N (NG | (EN‘OH (1 oep4 (Ba4 | G984 | (o4 | O'oeld ©9L4 | (o84 | (ood

009

.3d

9~¢3d

l3d

03d

PCT/US2008/060942

WO 2008/131308

"

asin

0000000} emmmmmjli--

.

sy
o

.

.
.

)

%2012 351

as

gzl Odid

Z3d

93d

Gdd

¥3ad

€4d

cdd

L3d

03d

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2008/060942

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 13/36(2006.01)i, GOGF 13/362(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 : GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "relevance", "ranking”, "function”, "search", "accelerator”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 7197497 B2(DAVID COSSOCK) 27 March 2007 1-20
See abstract; figures 1-6.

A US 2005-0246328 A1(BENYU ZHANG et al.) 3 November 2005 1-20
See abstract; figures 1-5.

A US 2004-0111388 A1(FREDRIC BOISCUVIER et al.) 10 June 2004 1-20
See abstract; figure 2.

A US 2005-0234953 A1(BENYU ZHANG et al.) 10 June 2004 1-20
See abstract.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 AUGUST 2008 (26.08.2008) 26 AUGUST 2008 (26.08.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- HAN, Seon Kyoung
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8523

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2008/060942
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7197497 B2 27.03.2007 CN 1826597 A 30.08.2006
EP 1623298 A2 08.02.2006
JP 2006-524869 T2 02.11.2006
KR 10-2006-0006945 A 20.01.2006
US 2004-0215606 A1 28.10.2004
WO 2004-097568 A2 11.11.2004
WO 2004-097568 A3 05.01.2006
US 2005-0246328 A1 03.11.2005 AU 2005-201824 A1 17.11.2005
CA 2505904 AA 30.10.2005
CN 1758244 A 12.04.2006
EP 1591923 A1 02.11.2005
JP 2005-322244 A2 17.11.2005
KR 10-2006-0047664 A 18.05.2006
PA 05004681 A 08.03. 2006
RU 2005113189 A 10.11.2006
US 2004-0111388 A1 10.06.2004 AU 2003-283793 A1 30.06.2004
EP 1570381 A1 07.09.2005
US 2006-206466 AA 14.09. 2006
WO 2004-053734 B1 29.07.2004
US 2005-0234953 A1 10.06.2004 AU 2005-201684 A1 27.10.2005
BR 200503051 A 06.12.2005
CA 2504181 A1 15.10.2005
CN 1691019 A 02.11.2005
EP 1587010 A2 19.10.2005
EP 1587010 A3 02.11.2006
JP 2005-302041 A2 27.10.2005
KR 10-2006-0045786 A 17.05.2006
PA 05004008 A 19.10.2005
RU 2005111001 A 20.10.2006
US 7260568 B2 21.08.2007

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

