A P 0 O 0 A0

O 01/06355 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 January 2001 (25.01.2001)

PCT

0) T 0

(10) International Publication Number

WO 01/06355 Al

(51) International Patent Classification”: GO6F 9/44, 12/02

(21) International Application Number: PCT/SE00/01494
(22) International Filing Date: 14 July 2000 (14.07.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

9902752-6 21 July 1999 (21.07.1999) SE
(71) Applicant (for all designated States except US): TELE-
FONAKTIEBOLAGET LM ERICSSON (publ)

[SE/SE]; S-126 25 Stockholm (SE).

(72) Inventor; and B .

(75) Inventor/Applicant (for US only): TJARNSTROM,
Robert [SE/SE]; Monjestigen 19, S-141 31 Huddinge
(SE).

(74) Agents: FORSSELL, G. et al.; Albihns Patentbyra Stock-
holm AB, P.O. Box 5581, S-114 85 Stockholm (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID,IL, IN, IS, JP,KE, KG,KP,KR,KZ,LC,LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, T™M,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A PROCESSOR ARCHITECTURE

: 8
\
INSTRUCTION DATA
ADDRESS
MEMORY MEMORY
INSTRUCTION | ‘ 1
1, INSTRUCTION], 3 DATA
—ooRa .| DECODER ADDRESS
COUNTER I
\ YPARAMETER | A 6
MEMORY
DATA
MEMORY
SECUTION HANDLER
7 | UNIT

(57) Abstract: A processor architecture is adapted to program languages operating with a sequential instruction flow and handling
data through use of lists or tuples or simple types. It comprises a program holding means (1), an instruction holding means (2, 3) a
data memory means (5) storing data objects, and execution means (7). Means (4, 5, 6) are provided for handling references to data
objects referenced by bindings and comprising means (6) to increment reference counts to a data object and to decrement reference
counts to a data object in dependence of an actual instruction from the instruction holding means (2, 3).

10

15

20

25

30

WO 01/06355 PCT/SE00/01494

A processor architecture

This invention relates to a processor architecture of the kind disclosed in the pream-
ble of claim 1. The processor is particularly, but not exclusively, adapted to execu-

tion of functional programs.

TECHNICAL FIELD OF THE INVENTION

Program development is very costly. These costs could sometimes be reduced if the
program could be made in a functional language since it is hard for a user to use a
machine programmed in a conventional language - it requires a lot of knowledge - and

because of the complexity a programmer might introduce hidden errors.

The development of programming languages

The development of the first electronic computer started the development of several
programming languages suited for this type of computer, such as FORTRAN, COBOL,
Algol, BASIC, Pascal. These languages have been called imperative languages, below
also called conventional languages, mainly because of the fact that they normally give
programs that consist of a sequence of commands or instructions to be executed
sequentially by a conventional computer, i.e. a computer designed according to the
principles developed by John von Neumann. Imperative kind of programs have became
increasingly complex and often contain a lot of errors, are difficult to read, difficult to

understand and particularly hard to modify.

An increasing discomfort with these imperative languages led to the development of
another series of languages, so called functional languages: LISP, ISWIM, Scheme (a
dialect of LISP), ML, Hope, SASL, and so on. The driving force behind the
development of these languages was conceptual simplicity; no particular machine

10

15

20

25

30

WO 01/06355 2 PCT/SE00/01494

influenced the design. Functional programming languages have several properties

alleviating some of the disadvantages of the more conventional programming languages.

For additional information and understanding we refer to the textbook "Functional
Programming Using Standard ML", Ake Wikstrém, Prentice Hall 1987.

A program written in a functional language can be seen as a set of definitions of
properties of objects and as computation rules. The definitions are the declarative part
and the computation rules are the operational part that the computer uses during
execution. Functional languages provide a higher-level interface to the computer, which
makes it possible for the programmer to abstract away from hardware-related details of
the computer. As a positive side-effect, functional programs are often shorter and easier

to understand than conventional imperative programs.

Nowadays functional languages are implemented as a virtual machine on a conventional
processor. This has been done with compilers or interpretating programs. This means
that a program is executed which interprets the program instructions. Every program
instruction results in that a number of machine instructions are executed. The execution
will therefore be slow.

It is clear that some of the benefits of the functional program approach have been held
back by the fact that practically no useful dedicated hardware has been on the market for
the process of storing and executing functional programs in an effective manner. Some
processors adapted to execute functional programming languages, so called FFP
machines, are discussed in the textbook “High-level Language Computer Architecture”
(ISBN 0,88175-1342-4) from 1988, chapters 11 and 12, and have been constructed and
manufactured from time to time. Dedicated Lisp working stations were for instance
furnished to the middle of the eighties. A transputer from Inmos Ltd, which is a
processor for built-in systems was introduced in the middle of the eighties and is still on

the market.

10

15

20

25

30

WO 01/06355 3 PCT/SE00/01494

A particular kind of functional language is Erlang, which is developed by the Applicant
for real-time applications. In spite of the disadvantage that functional programs are slow
to execute on the von Neuman kind of computer, much slower than the imperative
languages, the use of Erlang is increasing. However, the capacity of the computers
having Erlang installed is not enough for some applications. Erlang programs are built
as a number of communicating processes, also called processes. A switch is often made
between execution between different processes. This switch is improductive and should
be made as fast as possible. For the moment being this is made in software, in a so

called run-time system”.

Since data programs written in functional languages, such as Erlang, provided on
conventional computers are very power consuming, too much for a lot of applications,
there 1s a need for providing a hardware having a low power dissipation. Low power
dissipation is essential in most products. Demand for low power dissipation will be
increasing in the future. High power dissipation hinders further processor speed

improvement.

SUMMARY

OBJECTS OF THE INVENTION

An object of the invention is to provide a micro processor which is adapted to execute
programs or at least parts of programs written in a language having a sequential

instruction flow, for instance in Erlang,

Another object of the invention is to provide a co-processor executing a functional
language in a real-time operative system. One or several co-processors of this kind

should be able to handle processes demanding great capacity.

Still another object of the invention is to provide a processor, particularly dedicated to
Erlang,

10

15

20

25

30

WO 01/06355 4 PCT/SE00/01494

Yet another object of the invention is to provide a processor adapted to a functional
language in wireless portable equipment. Processors in wireless portable equipment are
provided with a content of software (SW) which often need be changed. In such a case a

processor adapted to handle a functional language, such as Erlang, should give a great
advantage.

Still another object of the invention is to provide a processor adapted to a functional
language having fewer memory accesses than what is common today. This means a

need for a high instruction density.

Another object of the invention is to provide a device able to handle much functionality
implemented in software and which has a low or reasonable power dissipation, thus to

provide a great amount of functionality to low power consumption.

Yet another object of the invention is to provide dedicated hardware support for garbage
collection and process switching in the processor in order to improve execution
performance and lower power dissipation. Such mechanisms are commonly

implemented in a “’run time system” in software.

INVENTION

The invention relates to a processor architecture adapted to program languages op-
erating with a sequential instruction flow and handling data through use of lists or
tuples or simple types, and comprising an instruction holding means, a data memory
means storing data objects, and execution means. The objects mentioned above can
be solved by providing means for handling references to data objects referenced by
bindings and comprising means to increment reference counts to a data object and to
decrement reference counts to a data object in dependence of an actual instruction

from the instruction holding means.

10

15

20

25

30

WO 01/06355 5 PCT/SE00/01494

Storage means could be provided in the means for handling temporary storage of
data, and to keep notice of bindings to said temporary storage. When the notice
keeping means detects generation of a zero reference to an object, meaning that this
object is not needed anymore, it preferably makes the memory slot for that object
available as a free memory slot. The means for handling temporary storage of data
comprises preferably a parameter memory means having means for keeping notice
of the bindings to the stored values, and having means for storage of said data val-

ucs.

Value storage means could store values and type information for the values fed to
the parameter memory. The values, being a part of the data objects, have then the
bindings to the parameters. The parameter memory will then transfer values be-
tween functions using the parameters and using the parameters for temporal storage.
The parameter memory could replace parameter references in fetched instructions
from the instruction memory means with stored actual values before computation.
Means could be provided in the parameter memory for storing and managing envi-
ronment information for the parameters, where the environment determines which
parameters are currently valid parameters. Means could be provided in the parame-
ter memory for storing and managing information for parameters and environments,
where process information fed to the parameter memory is used to determine which

environments and which parameters are currently valid.

A process identification register could be provided for identification of the currently
executed process, and an environment identification register for identification of the
currently executed environment. At least the top of at least one priority queue of
processes to be executed is preferably kept available for reading. At least part of the
process descriptor of the next to be executed process is then kept available for
reading in the parameter memory means. In order to make a process switch:

* 3 new environment is created in the parameter memory, and at least

the program counter is stored in said new environment,

10

15

20

25

30

WO 01/06355 6 PCT/SE00/01494

* said new environment value is stored in the process descriptor of the
current process, said process descriptor may be stored in the data
memory,

* the environment value of the new process is restored,

* the new process is set to be the current process,

* at least the program counter is restored.

The instructions are preferably provided with only one instruction format, where
each instruction is composed of a distinct number of sub-instructions. Each sub-
instruction has in turn the same and only one instruction format comprising a first
part and a second part, the first part determining the action to take and the second
part providing a value to use in the action.

The invention could be adapted to execution of functional languages. Then a set of
instructions are created comprising dedicated instructions for function calls, func-
tion returns, parameter transfer between functions. Then also a set of instructions
could be created comprising dedicated instructions for incrementing and decre-
menting of memory references. The processor architecture disclosed above could be

adapted to process parts of computer programs written in a functional language.

Thus, the invention relates to a processor architecture adapted to program languages
operating with a sequential flow of instructions and handling data through use of
simple values and lists and dynamically allocated arrays, and comprising an instruc-
tion holding means, a data memory means storing data objects, and execution
means. The invention is essentially characterized bymeans handling simple values
and references to data objects in dependence of an actual instruction from the in-
struction holding means, said dependence called a binding. It has also means to in-
crement reference counts to a data object and to decrement reference counts to a
data object in dependence of an actual instruction from the instruction means, and in
dependence of the means storing a reference to said data object. The invention could

comprise means for handling storage of simple data and references to data objects in

10

15

20

25

30

WO 01/06355 7 PCT/SE00/01494

the means, said stored data and references to data objects referred to, by means of
identifiers, from instructions from the instruction means. Storage means could be
provided in the means for handling storage of simple data and references to data
objects. The means for storage of values could comprise a parameter memory means
having means for keeping notice of the bindings to the stored values, and having
storage means for storage of said data values. The storage means could be provided
in the means for handling temporary storage of values, where the stored values
comprise at least type information and numeric information, and the type informa-

tion characterizes the numeric information.

The parameter memory could be used for transfer of, and storage of, function argu-
ments such that argument values are stored in the parameter memory in dependence
of an actual instruction from the instruction means, then bond to certain identifiers
in the instructions. The values could be read from the parameter memory in depend-
ence of said identifiers in an actual instruction. Means could be provided in the pa-
rameter memory for storage and managing scope information, denoted environment,
for the stored values, where the scope determines which values are currently valid
and eligible to be read out from the storage. Means could be provided in the pa-
rameter memory for storage and managing information for scope and values, where
the means is used for storing and managing process information, and the process in-
formation determines which scopes and values are currently valid and eligible to be
read out from the storage. A process identification register could be provided for
identification of the currently executing process. A scope identification register
could also be provided for identification of the currently valid scope. At least the
top of at least one priority queue of processes to be executed could be kept available
for reading, At least part of the process descriptor of the next to be executed process
could be kept available for reading. In order to make a process switch preferably:

* a new scope is created and at least the program counter is stored in the parameter

memory using said new scope;

10

15

20

25

30

WO 01/06355 8 PCT/SE00/01494

* the new scope value is stored in the process descriptor of the current process, said
process description may be stored in the data memory;

* the value of the scope for the switched to process is restored from the process de-
scriptor of said process;

* the switched to process is set to be the current process;

* at least the program counter is read from the parameter memory and is restored.

The invention relates also to a process architecture, which is characterised by in-
structions having only one instruction format, where each instruction is composed
of a distinct number of sub-instructions, each of which has in turn the same and
only one format comprising a first part and a second part, the first part determining
the action to take and the second part providing a value to use in that action. The
process architecture is preferably adapted to execution of languages using functions
and dynamic memory allocation. It could then be characterised by an instruction set
comprising

dedicated instructions for making function calls and transfer function arguments in
the same instruction,;

dedicated instructions for making return from function and transfer function result

in the same instruction.

A set of instructions could comprise dedicated sub-instructions for incrementing or
decrementing the number of references to data objects stored in the data memory,
where said sub-instructions specify identifiers representing bindings to the parame-
ter memory. The parameter memory could in turn store memory references to the
actual data objects referred to by said bindings. The managing of the storage utilisa-
tion of the parameter memory is an autonomous process, which is able to read out
values from the parameter memory and store these values in the data memory. It
could then make storage positions in the parameter memory free to use, and be able
to read back such values from the data memory and store these values back in the
parameter memory and restore the information in for said values. When the number

of processes having values in the parameter memory is larger than a specified limit

10

15

20

25

30

WO 01/06355 9 PCT/SE00/01494

values belonging to a chosen process could be moved to the data memory. When the
number of scopes for a process in the parameter memory is larger than a specified
limit values belonging to a chosen scope could be moved to the data memory. When
the next to be executed process not having values in the parameter memory, but has
such values moved to the data memory, at least some of these values could be
moved from the data memory and restored in the parameter memory. When the
number of scopes in the parameter memory for the current process goes below a
specified limit, there are values for the current process moved to the data memory,
at least some of these values could moved from the data memory and restored in the

parameter memory.
ADVANTAGES

The processor architecture is designed to perform particularly well for the following
cases:

”Functional application” which constitutes the controlling structure in a functional
language.

Process switching, below called context switching (Other expressions for processes
are tasks or threads. The expression process(es) will be used in the remaining of the
text, although it should be understood that tasks or threads could be used as well).
Normally, Telecom applications are implemented using a large number of proc-
esses. It is essential to be able to switch between these processes fast, in order not to
loose performance.

Message passing between processes.

Memory management, including garbage collection.

Functional languages leave memory management to the run-time system. Handling
memory takes time from the processor and is generally regarded as a problem.
When using the invention provided with for instance Erlang, this is done in the

processor by a dedicated unit and interfering very little with the useful computing.

10

15

20

25

WO 01/06355 10 PCT/SE00/01494

The processor according to the invention executes the instructions in a RISC like
manner, i.e. in a sequential instruction flow easy to pipeline. Thus, the processor
according to the invention is not a reduction machine. It has a simple combinatory
instruction decoding, efficient execution for function calls, support for creation and
manipulation of lists and tuples, support for fast context switching, and high code
density. This keeps the power dissipation on a low and economical level avoiding

the need for costly cooling systems.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and for further objects
and advantages thereof, reference is now made to the following description taken in

conjunction with the accompanying drawings, in which:

FIG 1 illustrates a first embodiment of a dedicated processor architecture for
handling functional languages working with a sequential instruction flow, such as
Erlang.

FIG 2 illustrates a preferred embodiment of an instruction pipeline.

FIG 3 illustrates an embodiment of the internal structure of the parameter

memory included in the processor according to the invention.

FIG 4 illustrates the hierarchy in the specification of the parameters stored in

the parameter memory.

10

15

20

25

WO 01/06355 11 PCT/SE00/01494

DETAILED DESCRIPTION OF EMBODIMENT

The instruction set architecture (ISA) in the processor according to the invention is
designed to be compact and efficient for the execution of functional languages and
particularly for Erlang. However, the inventive concept is also adaptable to some
other kinds of languages than functional. Some design goals for the ISA are identi-
fied below:

Execution in a RISC like manner, i.e. a sequential instruction flow easy to pipeline.
Simple instruction decoding.

Efficient execution for function calls.

Support of fast context switching.

High code density.

Supporting garbage collection for lists an tuples.

There is preferably only one instruction format. Every instruction is preferably
composed of a distinct number of sub-instructions, for example three, each having
the same format. The first sub-instruction format comprises a first part, which de-
termines the action to take, and a second part, which provides a value used in the
action taken. The first sub-instruction may determine the interpretation of the full
instruction, or may allow other sub-instructions to instruct concurrent independent

actions in a Very Long Instruction Word (VLIW) manner.

Reference is now made to FIG 1, which illustrates an embodiment of the main ar-
chitecture of the processor according to the invention, which fulfils the features
mentioned above. The program for the processor is written into an instruction mem-
ory 2. The program is stepped forwards by a program counter 1 providing an ad-
dress to the instruction memory 2.

10

15

20

25

30

WO 01/06355 12 PCT/SE00/01494

As 1llustrated in FIG 2, the processor architecture is in this embodiment basically a
four stage pipeline, comprising the stages Fetch IF, Instruction Decode ID, Parame-
ter Memory Access PMA and Execute EX, as will be further described below. Since
stores can be pipelined a fifth store stage also could be regarded as a part of the

pipeline.

Returning to FIG 1, the instruction to be fetched is pointed out by the program
counter 1. It is fetched from the instruction memory 2 by the instruction fetch
mechanism IF. Therefore, the program counter is connected to the instruction mem-

ory 2 and feeds an address to the memory. The memory then returns the instruction
pointed to by the address.

The fetched instruction is stored in the memory 2 in coded form, i.e. in a form com-
piled into the machine code of the processor, and is then fed to an instruction de-
coder 3, which makes the Instruction Decode ID. Unconditional branches are de-
tected during the decoding stage. The decoder 3 transfers the instruction into a

number of control signals functioning as control words.

The decoded instruction is then transferred into a parameter memory 4 stage, for the
Parameter Memory Access PMA. This parameter memory 4 is a hardware means of
a particular kind provided for this invention. Within this stage parameter references
in the decoded instruction will be substituted by their corresponding actual values
which are stored in the parameter memory 4, as will be apparent below in relation to
FIG 3.

Thus the processor does not operate with registers or a stack. It is instead operating
with parameters. The parameters are temporary bindings to values, which are tem-
porarily stored in the parameter memory 4 in the processor. Parameters are allocated
according to need and are freed upon completion of function application or upon
explicit instruction to be. Parameters are accessed according to context. The maxi-

mum number of parameters is not limited by the architecture but depends on the

10

15

20

25

30

WO 01/06355 13 PCT/SE00/01494

specialised processor implementation. This gives a good and efficient support for

handling of function arguments and local variables/bindings.

Parameters thus take a central part in the instruction set architecture of the processor
according to the invention, as will be illustrated below. Parameters are used for ar-
guments of functions and local bindings made within a function body, and for ar-
gument transfer at function calls.

The parameter memory 4 is designed to provide a fast instruction execution and
stores current bindings, i.e. function parameters and local variables. This means that
parameter transfer, local bindings and function results do not go through the main

data memory 5 and instead through the fast parameter memory 4.

Within this parameter memory stage certain decoded instructions will create new
parameter bindings by storing actual values in the parameter memory 4 and creating
parameter bindings to these values. Stored values may be provided from the de-
coded instruction or may be provided from a register, or may be fetched from a data
memory 5. Several operations of either kind of store and substitute may be done

during each clock cycle.

During the parameter memory access stage parameter bindings in an instruction are
replaced with actual values. The parameter memory 4 could preferably support at
least two such replacements per clock cycle. After the parameter memory stage pa-
rameter bindings in an instruction have been substituted with actual values where

the actual values are fetched from the parameter memory.

The data memory handler 6 keeps record of the addresses in the data memory 5, be-
cause in functional languages, such as Erlang, the program is not working with ad-
dresses and pointers as in imperative languages. Such features are hidden in a so
called run-time procedure which means that the data memory handler 6 is needed to

determine and keep record of the addresses for the particular registers comprising

10

15

20

25

30

WO 01/06355 14 PCT/SE00/01494

the data for the processes stored in the data memory 5. Addresses for stored data is

delivered back to the execution unit 7.

The parameter memory 4 feeds substituted instruction data and code words to the
execution unit 7, which executes the instruction. The parameter memory 4 com-
prises also a register into which at least the current identity, id, of a process is

stored, as will be discussed further when describing FIG 3.

The parameter memory 4 is in fact the unit, which reads the registers in the data
memory 5, while an execution unit 7 connected to the parameter memory 4 is the
unit, which writes the data into the registers. The data memory handler 6 is con-

nected to co-operate with both the parameter memory 4 and the execution unit 7.

Similarly to the language Erlang the processor architecture is based upon processes.
A first dedicated register in the parameter memory holds the current process id, cpr.
A second dedicated register holds the current environment identity, env. An envi-

ronment means a sequence of instruction within which certain parameter references

are valid, for instance the scope of the value bindings.

The preferred structure of the parameter memory 4 is presented in FIG 3. It com-
prises a process storage plane 10 in which the current process, process_info, is
stored, an environment storage plane 11 in which the information of the environ-

ments, environment_info, for the process is stored.

While not directly visible in the instruction set, processes are used to keep track of
processes (or tasks or threads) in the high level language executed on the processor.
There is a correspondence between an Erlang process and a process in the proces-
sor. A spawn instruction creates a new process, initiates its environment and associ-
ates it with its process descriptor. Another instruction pushes a process on a process
queue. Another instruction switches out the current process and switches in the first

process in the process queue to become the new current process.

10

15

20

25

WO 01/06355 15 PCT/SE00/01494

At least the following information is stored in the process descriptor:
Pointer to first message.

Pointer to last message.

Current environment (when not executing).

Other misc information, such as a list of linked processes.

Also, the architecture is based upon the concept of environments. An environment
(env) defines the current bindings in the parameter memory 4. Environments are
used to keep track of parameter scope. A new environment, env, is created at the
beginning of a function call and becomes the current environment. The parameter
bonds in a function call are bonded in the new environment. At a function return the
current environment is terminated, and the environment of the calling function is re-
stored as the current environment, i.e. the current environment is replaced with the
previous environment. All parameter bindings in the replaced environment are

purged at function return.

As illustrated in FIG. 4, a parameter is valid only within its environment. Similarly

an environment is valid only within its process.

Thus, when an instruction is provided which makes a function call then env is
stepped up with 1. When an instruction comes, which indicates a jump back then

env is stepped down with 1.

The parameter memory 4 also has a storage plane 12, for instance comprising a
register crp, holding process identity for a certain parameter value and type stored in
plane 13. As illustrated in FIG 3, searching for the parameter id, actual environment,

env, and actual process is transmitted to the value storage 13.

10

15

20

25

30

WO 01/06355 16 PCT/SE00/01494

The parameter memory 4 can perform a number of actions. Examples of these ac-

tions and their corresponding results and required inputs are listed below.

Read: The parameter memory 4 returns the type and value, stored in the value
storage plane 13, of the specified parameter. Information of the parameter id, actual
environment and actual process is provided to the storage planes 10, 11 and 12 in

the parameter memory 4.

Pop: The parameter memory 4 returns the value + type (stored in the storage
plane 13) of the specified parameter. In addition it eliminates the parameter and its
value from the parameter memory 4. Information of the parameter id, actual envi-
ronment and actual process is provided to the storage planes 10, 11, and 12 in the

parameter memory 4.

Set: The parameter memory 4 stores a new parameter with a specified id (in the
type and value storage plane 13). Information of the parameter id, actual environ-
ment, actual process and parameter value is provided to the planes 12, 11, and 10 in

the parameter memory 4.

Garb: The parameter memory eliminates the parameter and its value from the
planes 10-13 in the memory. Information of the parameter id, actual environment

and actual process is provided to the parameter memory 4.

Garb env: The Parameter Memory eliminates all parameters and their values from
the planes 10-13 for the specified environment value, information of the environ-

ment and the actual process is provided to the parameter memory 4.

A read operation could, for example, work in the following way. The three leftmost
storage planes 10, 11, 12 in FIG 3 perform an associative search. The line yielding
hits in the three storage planes selects the value + type data stored for that line in the
rightmost storage plane 13 in FIG 3.

10

15

20

25

30

WO 01/06355 17 PCT/SE00/01494

The function is similar for storing, except that value + type data is stored instead of
being read. The garb and pop operations discard the information in the addressed

position and make it free to use.

Thus, the parameter memory 4 is used to store values, and type information for
these values. Parameters are bound to the values where the parameters are used to
transfer values between functions and are used for temporal storage. The parameter
memory 4 can replace parameter references in fetched instructions with stored ac-

tual values before computation.

Search in the files could be made in some kind of associative process. However, the
search could be implemented in some other way as well, for example to use com-
promised addresses by for example process and env. It is also possible to connect
the process storage to an associative memory and the environment storage 11. Then,
the parameter reference is fed to the parameter memory and makes a search. A value

is out-putted.

The parameter memory 4 can also manage environment information for the pa-
rameters where the environment determines which ones of the stored parameters,

which are the currently valid parameters.

The parameter memory 4 could as well manage process information for the pa-
rameters and environments where the process information determines which ones of
the stored environments, which are currently valid environments, and which of the

stored parameters, which are currently valid parameters.

This means that parameters are used instead of registers or stack. This leads to more
efficient handling of function calls and local bindings. A context dependent mecha-

nism is used for addressing the parameters. This makes the instruction set architec-

10

15

20

25

30

WO 01/06355 18 PCT/SE00/01494

ture here described independent of the amount of parameter storage in a particular

processor implementation.

At least one process queue is administrated by the processor. Several queues may be

administrated, for instance for different priority levels.

Since the Parameter Memory 4 has a limited number of parameter slots it may not

be sufficient to hold all parameters for a large program at the same time.

If the Parameter Memory 4 begins to reach its capacity limit, parameters begin to be
stored in the data memory 5, thus freeing slots in the Parameter Memory 4. This ac-
tion is called swap out of parameters. The opposite action, called parameter swap in,
reads previously stored parameters from the data memory 5 and restores them in the

Parameter Memory 4 with correct process, environment and parameter id values.

Both parameter swap in and swap out are done automatically by the processor with-

out interfering the instruction execution.

The top of the process queue(s) is observed. If a process (PF) is found there which
is not currently in the Parameter Memory 4, parameters for a process (which is not
the current process) in the Parameter Memory 4 become swapped out, and parame-
ters in the topmost environments of the found process (PF) are swapped in to the

Parameter Memory.

A certain mechanism determines which process, which should have it s parameters
swapped out. For instance, Least Recently Used (LRU) could be the strategy by

which it is decided which process to swap out.

If for the current process the number of environments in the Parameter Memory be-
gins to reach the maximum limit, an activity is started to swap out parameters of the

lowest environment to the data memory. Similarly, if the number of environments in

10

15

20

25

30

WO 01/06355 19 PCT/SE00/01494

the Parameter Memory begins to reach the lower limit, an activity is started to swap

in parameters of the highest environment stored in the data memory (if any).

The parameter swap in and swap out mechanisms ensures that the most likely to be

used parameters are stored in the Parameter Memory 4.

Regarding the memory management, the memory slots in the data memory 5 not
used are organised as a list of available memory registers. A determined register
(free) in the data memory handler 6 points to the first element of that list. Upon a
request for storage of an element, this element is stored in the memory slot denoted
by the mentioned dedicated register (free). The register (free) is then updated to
point to the now actual first available memory position, below called memory slot,
which earlier was the second in the list. Upon releasing a used memory slot this slot

is placed in the beginning of the list of available memory slots.

As mentioned above Erlang handles data through the use of tuples and lists and
simple types. These data are referenced by bindings. When a data object is not ref-
erenced by a binding, it is not needed any more and can be thrown away. Its mem-
ory slot can then be used for other data objects. Thus, memory slots to which no
reference is made are considered free to use. This means that an automatic garbage
collection could be regarded as being made. Notice is kept of such memory slots,

and they are released upon request.

Memory management is thus supported well in this architecture and is performed
according to the principle of reference counting. This means that some sub-
instructions control incremented reference and decremented reference, respectively,
for data objects. When such a sub-instruction is executed the reference part of a data
object is either incremented or decremented automatically by the unit for memory
management. If a zero reference occurs and is detected its memory slot is made free

and available as free memory slot for usage of other data objects.

10

15

20

25

WO 01/06355 20 PCT/SE00/01494

As mentioned above, the architecture of the parameter memory 4 is based on proc-
esses and there will often be a need to switch from one process to another process.

Then the following operations need be done.

Upon a context switch the current environment identity is stored in a Process (or
Task) Descriptor pointed out by the process register (cpr). Other registers may be
stored in the parameter memory if needed. When the process is switched back the
register values can then be restored from the parameter memory. Thus, the only ac-
cess to the data memory 5 needed to accomplish a context switch is to store and re-

store the environment.

In order to make a switch:

Bind data values of registers in the current working set to parameters and store them
in the parameter memory 4. The value of the current environment is stored in the
process descriptor of the current process. Exv then functions as a key for pointing to
where in the parameter memory 4 a reading should begin at restore.

Read env and restore into the parameter memory 4 the new “working set” of the
new process to which the switch is made from the process descriptor in the data
memory 5 comprising the environment for that new process.

Restore the program counter 1 to the value next after it was before the actual

switched process were switched out.

Following this scheme time consuming memory access to the main memory 5 is

minimised, and fast context switching is achieved.

The instruction set architecture could for example be intended for execution of
functional languages, supporting the languages with dedicated instructions for func-
tion calls, function returns, transfer of arguments between functions, and process

management. There are particular instructions for creating, reading, writing and ma-

10

15

20

25

30

WO 01/06355 21 PCT/SE00/01494

nipulation of the data objects, which occur in Erlang, i.e. lists and tuples and simple

types.

Examples of instruction format

instruction :: = sub-instruction, sub-instruction, sub-instruction

sub-instruction :: = tag, value

where 1ag specifies how value should be interpreted. For example: par, 5 means that
parameter number 5 is specified. This presents the logical organisation of the in-
structions. In an actual processor implementation all tags can for example be
grouped together. The tag in the first sub-instruction typically specifies how the full
instruction shall be interpreted. If for example tag in the first sub-instruction speci-
fies a binary arithmetic operation, the two other sub-instruction specify the oper-
ands, and the value of the first sub-instruction specifies the type of arithmetic op-

eration.

There can be exceptions from this rule. Some of the instructions in the first memory
slot do only use the first two sub-instructions in which case the third slot can be
utilised for a single sub-instruction, i.e. there could be a group of independent sub-
instructions which only operates in the third slot in an instruction. Some independ-

ent sub-instructions can be placed in the second slot as well.

Examples of tag/value combinations are:

Tag, value :: = fun, fun number (call function fun_number)

| par, par number (use the specified parameter)
| pop, register_number (return back from current function, deliver result in the
specified register)

| reg, register number (use the value in register number)

10

15

20

25

30

WO 01/06355 22 PCT/SE00/01494

| alu, alu_operation (perform the operation given by

alu_operation)

| gar, par number (free the space used by this parameter)

| etc.

Example

The following registers could be used in the processor:

acc: stores the result from alu operations,

cpr: stores the current process id,

env: stores current environment,

id: stores the memory address of the latest stored element,

res: holds a result value when returning from a function,

do: holds a data element. Its parts can be addressed by d01, d02, d03, do4,

where d01 holds the element type value, d02 holds a numerical value,
d03 and d04 holds pointer/integer values including value type,

free: stores the first free memory slot.

The processor could use following not addressable registers:
env-old: stores the previous environment

cnt. stores the last allocated parameter number.

As mentioned above, parameters are used for argument transfer at function calls,

and for local bindings. When a function call is executed the arguments are listed in
the second and third sub-instructions in the calling instructions. The arguments get
consecutive numbers as they appear starting the first sub-instruction in a new func-

tion body.

A local binding is made through the par or pad instructions mentioned below, e.g.

10

15

20

25

WO 01/06355 23. PCT/SE00/01494

(pab:5, reg:acc, * *)
binds parameter 5 to the value in the register acc in the current environment in the

current process. * represent arbitrary element.

There are also particular instructions for manipulating the references to data, i.e. to
support the language with dedicated instructions to increment or decrement the

number of memory references to a data object.

Experiences with this ISA (Instruction Set Architecture) has indicated a consider-
able reduction of instructions in order to make a particular functionality. This means
correspondingly fewer numbers of memory accesses. Memory accesses demand
much power. A reduction of them will therefore lower the power consumption in

the system.

Although the invention is described with respect to exemplary embodiments it
should be understood that modifications can be made without departing from the
scope thereof. Accordingly, the invention should not be considered to be limited to
the described embodiments, but defined only by the following claims, which are
intended to embrace all equivalents thereof. As mentioned above, the parameter
memory 4 is based on processes. Therefore, this kind of device can be provided
even for computers handling other kinds of languages using processes (or tasks or
threads) than functional languages, for example C and C++. Context switching is
also provided in for instance the language ADA, and thus the features described for
the context switching could also be valid for other kinds of languages handling
context switching. Data management of the kind described above is also made in for

instance the modern language Java and is therefore valid also for such kinds of lan-

guages.

10

15

20

25

30

WO 01/06355 24 PCT/SE00/01494

We claim

1. A processor architecture adapted to program languages operating with a sequen-
tial instruction flow and handling data through use of lists or tuples or simple types,
and comprising an instruction holding means (2,3), a data memory means (5) storing
data objects, and execution means (7),

characterized by

means (4,5,6) for handling references to data objects referenced by bindings and
comprising means (6) to increment reference counts to a data object and to decre-
ment reference counts to a data object in dependence of an actual instruction from

the instruction holding means (2,3).

2. A processor architecture according to claim 1, characterized by

means (4) for handling temporary storage of data in the means (4,5,6) for handling
references to data objects;

storage means (13) in the means (4) for handling temporary storage of data, and to

keep notice of bindings to said temporary storage.

3. A processor architecture according to claim 2, characterized by

data memory handler means (6) in said means (4,5,6) for handling references to data
objects which when detecting a generation of a zero reference to an object, meaning
that this object is not needed anymore, makes the memory slot for that object avail-

able as a free memory slot.

4. A processor architecture according to any of the preceding claims, characterized
n

that the means for handling temporary storage of data comprises a parameter mem-
ory means (4) having means (10, 11, 12) for keeping notice of the bindings to the

stored values, and having storage means (13) for storing said data values.

10

15

20

25

30

WO 01/06355 25 PCT/SE00/01494

5. A processor architecture according to claim 4, characterized by said storage
means (13) in the means (4) for handling temporary storage of data stores values
and type information for the values fed to the parameter memory (4), and that the
values, being a part of the data objects, have the bindings to the parameters, and that
the parameter memory (4) transfers values between functions using the parameters

and using the parameters for temporal storage.

6. A processor architecture according to claim 4 or 5, characterized in that the pa-
rameter memory (4) replaces parameter references in fetched instructions from the

instruction memory means (2) with stored actual values before computation.

7. A processor architecture according to any of the claims 4 to 6, characterized by
means (11) in the parameter memory (4) for storing and managing environment in-
formation for the parameters, where the environment determines which parameters

are currently valid parameters.

8. A processor architecture according to any of the claims 4 to 7, characterized by
means (10 - 13) in the parameter memory (4) for storing and managing information
for parameters and environments, where process information fed to the parameter
memory is used to determine which environments and which parameters are cur-

rently valid.

9. A processor architecture according to any of the claims 4 to 8, characterized by
a process identification register for identification of the currently executed process,
and an environment identification register (11) for identification of the currently

executed environment.

10. A processor architecture according to any of the claims 4 to 9, characterized in
that at least the top of at least one priority queue of processes to be executed are

kept available for reading, and that at least part of the process descriptor of the next

10

15

20

25

30

WO 01/06355 26 PCT/SE00/01494

to be executed process are kept available for reading in the parameter memory

means (4).

11. A processor architecture according to claims 10, characterized in that in order
to make a process switch:
* a new environment is created in the parameter memory (4), and at least
the program counter is stored in said new environment,
* said new environment value is stored in the process descriptor of the
current process, said process descriptor may be stored in the data
memory (5),
* the environment value of the new process is restored,
* the new process is set to be the current process,

* at least the program counter is restored.

12. A processor architecture according to any of the preceding claims, character-
ized by instructions having only one instruction format, where each instruction is
composed of a distinct number of sub-instructions, each of which has in turn the
same and only one instruction format comprising a first part and a second part, the
first part determining the action to take and the second part providing a value to use

in the action.

13. A processor architecture according to any of the preceding claims adapted to
execution of functional languages, characterized by a set of instructions comprising
dedicated instructions for function calls, function returns, parameter transfer be-
tween functions.

14. A processor architecture according to claim 13, characterized by a set of in-
structions comprising dedicated instructions for incrementing and decrementing of

memory references.

WO 01/06355 27 PCT/SE00/01494

15. A processor architecture according to any of the preceding claims, character-
ized in that it is adapted to process parts of computer programs written in a func-

tional language.

WO 01/06355 PCT/SE00/01494

1/2

2\ K

ADDRESS | INSTRUCTION DATA
y MEMORY MEMORY
INSTRUCTION . f
1 INSTRUCTION/|, 3 DATA
vyt DEOOPER ADDRESS
COUNTER \ ~
PARAMETER |, .
MEMORY ;
' DATA
MEMORY
EXECUTION { HANDLER
7_JUNIT
FIG 1
IF ID PMA EX
INSTRUCTION INSTRUCTION PARAMETER EXECUTE
FETCH DECODE ~ MEMORY
ACCESS

FIG 2

WO 01/06355 PCT/SE00/01494

2/2

Value + type
Id_info
Environment_info
Process_info —
y J’ .
PROCESS ENV. ID write
4| STORE STORE | [N\ [STORE | [encoc
=5)
¢ read
[\ \ \
10 11 12 13
FIG 3
ID 3 ID3
ENV 2 [ID2 D3
D 1 PROCESSENV 2 {ID 2
PR?CESS D3 2 D3
ENV 1 |ID2 ID2
ID 1 ENV 1 ID 1

FIG 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/SE 00/01494

A. CLASSIFICATION OF SUBIJIECT MATTER

IPC7: GO6F 9/44, GO6F 12/02

According to International Patent Classification (IPC) or to both national ¢lassification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: GO6F

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED 10 BE RELEVANT

Category*| Citation of documient, with indication, where appropriate, of the relevant passages Relevant to claiim No.

X US 4912629 A (ROBERT L. SHULER,JR.), 27 March 1990 1-4,13-15
(27.03.90), column 1 - column 4; column 6;
column 11, line 55 - column 12, line 12

Y US 5555434 A (L. GUNNAR CARLSTEDT), 10 Sept 1996 5-8
(10.09.96), column 5, line 56 - column 6, line 6;
column 6, line 45 - line 58; column 10,

line 10 - column 11, line 47, figure 4,

abstract

A EP 0171934 A2 (TEXAS INSTRUMENTS INCORPORATED), 1-8,13-15
19 February 1986 (19.02.86), the whole document

[)Zl Further documents are listed in the continuation of Box C. Sce patent family annex.

* Special categories of cited documents: "I later document published afler the international filing date or priority
"A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier applicalion or patent but published on or after the international v« g, cument of particular relevance: the claimed invention cannot he
filing date o o considered novel or cannot be considered Lo involve an inventive
“L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other o o .))
special reason (as specified) Y doct{r‘rlwntd of parm]'ular relevance: the clalhmcd }:n\:;tnt\on cannot be
neyo : : ey considered to involve an inventive step when the document is
0 ﬁi)ec:nr:\cnt referring to an oral disclosure, use, exhibition or other combhined with one or more other such documents, such combination

.) .) being ohvious to a person skilled in the art
“P” document published prior to the international filing date but later than ¢ P

the priority date claimed “&" document memher of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

| 1 November 2000 09 -11- 2000

Name and mailing address of the ISA/ Authorized officer

Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM Erik Veillas/0GU
Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International applicationn No.

PCT/SE 00/01494

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the refevant passages

Relevant to claim No.

A

US 4922414 A (JOHN T. HOLLOWAY ET AL.), 1 May
1990 (01.05.90), the whole document

US 5535390 A (THOMAS H. HILDEBRANDT), 9 July 1996
(09.07.96), the whole document

WO 9608948 A2 (PHILIPS NORDEN AB), 28 March 1996
(28.03.96), abstract

1-8,13-15

1-8,13-15

9-12

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family rmembers
PCT/SE 00/01494

us 4912629 A 27/03/90 NONE

us 555434 A5 10/09/96 NONE

EP 0171934 A2 19/02/86 us 4695949 A 22/09/87

us 4922414 A 01/05/90 AU 570657 B 24/03/88
AU 2217683 A 21/06/84
CA 1214283 A 18/11/86
CA 1229682 C 24/11/87
EP 0113460 A 18/07/84
IL 70279 A 31/07/87
JP 59188879 A 26/10/84
us 4887235 A 12/12/89

us 5535390 A 09/07/96 NONE

WO 9608948 A2 28/03/96 NONE

Form PCT/ISA/210 (patent family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

