发明名称

扩展和调节救生衣 GPS 终端 130dBm 频率的多功能系统

摘要

本发明公开了一种在海边、船上或飞机上发生的事故时使用的救生衣 GPS 终端频带 (130dBm) 频率扩展调制复合多功能系统。该系统包括主体，其包括前板，在频带 130dBm 中引入并与星际 VLBI 共享耦合方案的过程中，前板发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触：头部单元，用于在主体头部连接可变光栏，并支持微波传输带接收天线的频率传播放大发射；以及基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语言语音信息服务的功能。
1. 一种救生衣 GPS 终端频带 (130dBm) 频率扩展调制复合多功能系统，包括：

主体，其包括前板，在频带 130dBm 中引入并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；

头部单元，用于在主体头部连接可变光栏，并支持微波传输带接收天线的频率传播放大发射；以及

基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语言语音信息服务的功能，

其中无线电波传播和频率传播放大的调制形成于主体和头部单元中。

2. 如权利要求 1 所述的复合多功能系统，其中主体包括：前板，在频带 130dBm 中引入并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；

其中头部具有连接在主体头部的可变光栏，并支持微波传输带接收天线的频率传播放大发射。

3. 如权利要求 1 或 2 所述的复合多功能系统，其中在调频器中，采用无线电波放大发射方法执行调制，并以救生衣 GPS 终端请求的频带 130dBm 的频率远程使用该方法；调频器设有振荡器，其配置与 VOC 相同；具有频移键控/载波频率校正控制电路，其包括自动频率检测电路，用于将频率低于载波频率的固定频率信号与压控振荡器 (VOC) 的输出做相位比较，VOC 的振荡频率为划分数次以后的信号频率的数倍；VOC，其输入是频率检测电路输出的误差电压；误差电流生成器，其具有电压/功率转换器，用于转换 PLL（其包括用于划分 VOC 高频的分频器）的输出误差功率；反馈梳状 (FBC) 电路，用于接收低固定频率信号、要进行频率转换的输入信号和确定梳状电平然后梳状输入信号的参考电压；以及加法器，用于将误差电流和偏差电流相加，其中输入信号的频率按设定的载波频率进行调制。

4. 如权利要求 1 或 2 所述的复合多功能系统，其中在使用频带 120dBm 的 HDX 无线电波传播方案中，救生衣 GPS 终端的芯片材料适合于让受害者能够穿戴后板上的活动标签 (RFID)。

5. 如权利要求 1 或 2 所述的复合多功能系统，其中将可变光栏连接到插入救生衣 GPS 终端的微波传输带接收天线，并通过远程使用频带 120dBm 的
无线电波放大方案，对信号接收被转换为三维配置时的频率进行处理。

6. 如权利要求 1 或 2 所述的复合多功能系统，其中使用形成于多功能系统中的基于位置的服务（GIS 核心技术），将救生衣 GPS 终端发射的急救信号频率转换为多语语音信息服务平台。
扩展和调制救生衣 GPS 终端 130dBm 频率的多功能系统

技术领域

[01] 本发明涉及一种在海边、船上或飞机上发生事故时使用的救生衣 GPS 终端频带 (130dBm) 扩展和调制复合多功能系统。更具体地说，本发明涉及一种频带 (130dBm) 扩展和调制复合多功能系统，其具有使用星际 VLBI（一种位置跟踪终端，其能够通过与 GPS 卫星进行无线信号通信，并在 GPS 终端具有能够跟踪海难受害者位置的位置跟踪终端的情况下，通过针对 GPS 卫星发射和接收无线信号，并在穿戴救生衣时发射急救信号，从而跟踪海难受害者）实现 RFID 的 HDX 频率扩展调制的功能。

背景技术

[03] 传统技术 1-1 是一项针对传统无线电通信的研究，以便在有限的 RF 频带中高效地传输各种由视频、语音和数据组成的多媒体信息：有关适应通道状态的编码方案和数字调制方案，以及有关满足低价格、高性能和适合于高速带宽属性的 RF 模块微型化要求的 MMIC 和 RFIC 的研究正在进行，但是还没有实现。

[04] 在此类传统技术中，要通过级联 HBT-MMIC 无线电放大理论设计具有高增益和低噪声指数的高效 RF 收发器，要考虑的问题如下。即，在 RF 前端的情况下，使用某种超外差方法的优点是现实的，例如选择优特性、通道选择滤波条件放宽和 C 频带上的相对高频中的 DC 偏移消除。

[05] 然而，最严重的问题是在超外差方法中使用高 Q 值的图像删除滤波器，应该执行一项研究，在 RF 接收器的设计中应用有源滤波器来克服此问题。具体地说，由于设计过程中存在诸如噪声指数和有源器件偏差升高而向 RF 前端应用有源滤波器等问题，最近的趋势是通过微波有源器件的级联耦合来设计放大器，从而同时表现出高增益属性和低噪声属性。

[06] 在通过 CE-CB 形式的有源器件级联耦合来配置放大器时，假设放大器的频率属性变得非常优异，因为有效电容由于放大器输入级中出现的密勒电容而减小了。然而，还存在另外一个问题，即级联放大器必须在低噪声属性、高增大和放大器稳定性之间寻求平衡。在精度和位置跟踪区域方面存在限制。也就是说，在广袤海域出现受害者时，不容易进行位置验证，并且跟踪区域具有限制。

[07] 例如，在记录视频和音频信号然后在需要时重放这些信号的高清磁带录像机中，信号被记录为调频信号。为此，一般将调频电路配置为由寄存器和电容组成的振荡器，并在外部配备一个控制终端，以便在进行调频时控制载波频率。
使用外部控制设备来控制载波频率的主要原因在于，在配置调频电路时使用了
由寄生器和电容组成的振荡电路。也就是说，当载波频率没有正确振荡时，则
通过控制某个控制终端来控制载波频率，例如在外部连接以匹配载波频率的可
变电阻器。

[08] 下面将更详细介绍其理论。

[09] 首先，VOC 通过将参考信号（预先确定的载波频率）与自由振荡的 VOC
的输出作比较来检测裕度，并具有一个相位检测器，用于生成对应于相位的误差
电压；以及一个振荡器，用于在收到误差电压后，按照与参考频率相同的频
率以反馈方式振荡误差电压。此外，调频器执行输入信号的调频，以便使用与
VOC 具有相似配置的调频器来记录输入信号。

[10] 然而，VOC 是使用配置有寄存器和电容器的振荡电路来配置的，这些寄
存器和电容器通常是具有相同配置的振荡调频器。也就是说，采用一种使用误差
电压（通过 VOC 的自动控制回路获得）来控制调频器调制频率的方案，并
且 VOC 通过反馈回路以与参考信号相同的频率振荡。此时，为了更恰当地控
制振荡器频率，应该通过使用可变电阻器执行外部控制来控制载波频率，并且
应该在制造产品的过程中相应地执行规定的制造，例如技术人员、部件使用、
测量设备、控制时间等等，从而成为导致主要成本增加的原因。

[11] 此外，还有一个缺点在于，需要用于生成频率为 3.4MHz 的振荡信号的电
路。此外，当相位检测器的频率变高时，误差产生比率也会变高，并且技术人
员导致的控制误差是无法避免的。

[12] 传统技术 1-2 涉及一种调制频带压缩的装置和方法——其用途和目的
与本发明不同。

[13] 关于该传统技术，尽管美国专利第 3, 893, 163 号中描述的技术思想具
有一个优点，即提供了一种在诸如光盘等对振幅不敏感的记录材料上记录视频颜
色信息和语音信息的技术，但也存在缺点，即颜色信号应该远离频谱上的亮度信
号。

[14] 此类传统技术仅使用商业应用中的方法，P.W. Bogels 和 N. V. Philips 发
表的题为“反射式视频光盘播放机的系统编码参数、力学和电动机械学 (System
Coding Parameters, Mechanics and Electro-Mechanics of the Reflective Videodisc
Palyer)”的论文中对此作了描述，该论文已提交到 1976 年在华盛顿举行的
IEEE 第 17 届家电消费者秋季大会。

[15] Bogels 提出的此类方法将载波信号与标准 NTSC 视频颜色信号一起执
行调频，并将零交叉调频信号与调频语音子载波一起进行调制（例如美国专利第3,893,163号所述的占空比调制方法）。

[16] 然而，无论使用哪一种方法，都存在将要记录在光盘上的信息应该在光盘的带宽范围内的问题。

[17] 这是因为用于记录和重放视频信号的传统光盘的内圆周具有大约13MHz的上限截止频率。

[18] 根据本发明的调制方法生产的光盘的优选方法包括：提供与复杂视频信号一起调频的视频载波信号，其中大约8.1MHz的载波频率对应于消隐电平，大约7.6MHz的载波频率对应于同步信号，大约9.3MHz的载波频率对应于白电平。

[19] 在其中对2组分离频率进行调制的语音子载波在频段上位于大约2.3MHz和2.8MHz之间。

[20] Bogels的论文中对这样的方法作了详细的描述。

[21] Bogels提出的上述方法是用于消费和工业用高性能播放机以及光盘的标准方法。

[22] 传统技术2-1中存在电子感应型和电子耦合型无线射频识别标签（以下称为“RFID标签”），两种类型都使用电子波，并在不与读写终端等接触的情况下执行通信。

[23] 当传统技术中具有天线线圈和控制器的RFID标签使用天线线圈接收到读写终端中的发射信号时，控制器将信号转换为电能，并将电能存储在电容器中。此外，RFID标签再次使用该电能将存储器中存储的诸如ID代码等信息发射到读写终端。

[24] 发射和接收方法包括幅移键控（ASK）方法和频移键控（FSK）方法。前者通过电磁波的ASK执行发射和接收，后者通过电磁波的FSK执行发射和接收。

[25] 如果将一般RFID标签划分为不同的天线线圈类型，则存在两种类型的天线线圈，即使用圆形无芯线圈的盘式天线线圈，以及具有铁氧体磁芯（其绕有电热波波腹铜线）的柱形天线线圈。每种RFID标签的外部形状对应于天线线圈的形状，其中前者形成为盘形，后者形成为杆形。

[26] 这里，具有盘形天线线圈的RFID标签使用圆形线圈表面方向的磁通量变化执行通信，具有柱上天线线圈的RFID标签使用轴方向的磁通量变化执行通
信。这里，电磁波的交变电通量和磁通量在 90 度的相位进行转换。然而，当磁变所改变的磁通量与诸如铁、铝、铜等导电材料交叉时，导电材料中将发生过流，并由于过流而在与交变磁通量相反的方向产生磁通量。相应地，一般将传统 RFID 标签定位在尽可能远离导电材料的位置。

[27] 因此，在需要邻近导电材料安装 RFID 标签的情况下，存在的问题在于，控制过流的方法是使用具有盘形天线线圈的 RFID 标签，在平面上定位 RFID 标签的线圈表面和导电材料的表面，然后通过在两者之间插入绝缘隔离物，从而使它远离导电材料；或者通过在线圈表面和导电材料之间插入铁氧体磁心或具有高磁导率的非晶态磁片，从而将流入导电材料的磁通量传输到高磁导率材料。

[28] 直到最近为止，可以使用这样的方法减轻导电材料的影响，并在与线圈表面垂直的方向执行通信，即盘上的天线线圈将磁场分布变宽的方向。

[29] 相反，与具有盘上天线线圈的 RFID 标签相比，具有柱上天线线圈的 RFID 标签具有可以做得相当小的优点，从而能够应用于所有应用场合。

[30] 然而，由于在导电材料表面上安装具有柱上天线线圈的 RFID 标签在原理上是不合理的，甚至在传统研究中也没有对此进行尝试。

[31] 此外，传统技术 2-1 涉及到“RFID 标签安装结构、RFID 标签安装方法和 RFID 标签通信方法”。

[32] 因而，在部分和不同地应用频率的传统技术中，ASK 无线通信方法中使用的频率可以在 50KHz 到 500KHz 中的某个通信敏感点（通信长度），最好是在 100KHz 到 400KHz。

[33] 然而，传统技术与传统技术 1-2 没有什么区别，只不过在将具有柱上天线线圈（其形成为杆形）的 RFID 标签安装为几乎与导电材料安装表面折叠并水平时，可以使用具有 RFID 标签的安装表面空间中的磁通量，按照该区域给定的频率执行通信。

[34] 传统技术 2-2 涉及一种与传统技术 1-2 和 2-1 相联系的技术，即通过 RFID 处理消息的方法和装置。

[35] 该传统技术使用了一个原则，即只有在消息发送方和接收方同时存在于同一个网络中时，才能进行相互消息传输和材料传输，因为消息服务系统在实时数据传输的基础上工作。

[36] 然而，在此类系统中，由于无法在用户需要时传输材料或消息，因此存在
耽误消息传输的可能性，从而需要诸如电子邮件等附加基础设施，或者限制了用途。

[37] 此外，由于无法验证另一方身份是否真实，并且仅使用很容易泄露的简单个人信息执行用户身份验证，因此对另一方的信任也成为问题。

[38] 此外，由于家庭消息传输是在存储和重放消息的过程中由未指定的多数执行的，因此存在的问题在于，由于未指定的人员在指定的组中交换消息时无法固定消息接收者，取决于成员的属性和任务类型，形成于特定区域中的成员（例如，家庭、公司）之间的消息传输存在时间和地点限制（尽管在家庭成员之间传输简单消息不存在问题），并且由于该装置多次使用单个设备的事实，平台或产品没有移动性或便携性。

[39] 此外，传统技术 2-3 还涉及一种在移动通信终端中使用电子标签系统的技术。

[40] 该传统技术涉及一种使用移动通信终端的电子标签读取系统，具体地说，涉及一种使用移动通信终端的电子标签读取系统，其包括能够使用无线射频识别技术以非接触模式读取 RFID 标签信息的电子标签读取系统，通过该系统，任何人都可以使用包括电子标签读取器的移动通信终端，随时随地轻松验证、获得和利用连接到每个设备的电子标签信息，即对应设备的信息。

[41] 使用该传统技术，诸如产品、货物、设备、动植物、工件、库存财产等几乎所有对象都具有附加了条形码的信息和价格。

[42] 然而，由于条形码的各种限制功能，存在诸如价格高和无法高效地方便消费者和生产者的问题，也就是说，在读取时，条形码应该在读取对象的激光区域内，大量的信息无法记录，存在很高的损坏、更换和伪造可能性，并且读取条形码需要时间和成本。

[43] 为克服此类问题，提出了一种可取代该传统技术与新型电子标签相关的 RFID 技术，利用此类电子标签的 RFID 技术可以称为无线识别装置，其属于自动数据采集装置的领域，通过该装置，可以使用无线频率采集或记录数据以利用所需信息。

[44] 传统的 RFID 系统的一般配置如下。

[45] RFID 系统通过三个因素进行配置，即通常称为电子标签的发射应答器，电子标签读取器和主计算机或数据处理设备，并且电子标签具有制造用于满足各种用途和要求的半导体芯片（IC 芯片），以及可接收从电子标签读取器发射的频率的天线。
[46] 当电子标签经过电子标签读取器中的天线的有效频率区域时，其检测来自电子标签读取器的信号，并将电子标签中存储的信息材料发射到电子标签读取器。

[47] 电子标签读取器包括用于发射和接收无线电波的天线，以及用于针对电子标签发送和接收无线电波的电子电路。电子标签读取器中的半导体芯片转换来自电子标签的传入信号，或将其存储在内存（在验证数据的信号时用作存储器）中，并且可以在以后需要时发射这些信号。

[48] 收到电子标签中的数据的电子标签读取器将数据转换为数字信号，并通过有线或无线通信网络将信号发射到主计算机。

[49] 然而，在使用此类电子标签的 RFID 技术中，电子标签存在的缺点在于，只有存在单独的电子标签读取器时才能够识别电子标签的信息。传统上，公司的个人或消费者和用户没有电子标签读取器，因此几乎没有办法利用电子标签的信息。

[50] 也就是说，在没有传统电子标签或使用单独电子标签读取器的情况下，存在如下所述的不便之处。

[51] 首先，虽然电子标签包括与条形码不同的存储器，从而能够存储各种信息，例如生产日期、原产地、产品保证、产品认证、配送流程、有效期、历史事件，但是普通消费者或用户可能遇到伪造或调换的产品、未确认的有效期和原产地含糊不清等情况，因为他们无法确认此类信息。

[52] 其次，获得各种装置的电子标签中包含的信息并不容易，即旅游信息、交通信息、位置信息等等。

[53] 第三，用户在普及计算时代无法读取和利用电子标签也就使其从现在开始流行起来，从而带来大量的不便性。

[54] 第四，当用户希望使用用于财产、设备、产品、物流、股票、动物等的电子标签高效地执行管理任务时，他或她必须购买单独的电子标签读取器，从而产生附加的成本，并且拥有单独的读取器存在不便性。

[55] 传统技术 3 涉及“具有微波传输带接收天线的翻转型 GPS 终端”，这是一项与连接到 GPS 终端以添加传统 GPS 服务功能的 GPS 天线有关的研究。

[56] 传统上，GPS 服务功能是指接收 GPS 卫星信息并保存个人位置信息的增值服务，因此 E911 服务广泛使用它来保存个人安全、导航系统、物流、休闲等信息。对于此类 GPS 服务功能，GPS 天线安装在一般化的手持终端上。传
统上，一般以凸出的方式将 GPS 天线安装在主体上。

[57] 这种 GPS 天线的主要类型包括陶瓷接收天线，其中通过注塑成型来包装陶瓷形陶瓷片；以及螺旋天线，其中使用注塑成型来包装由双绞电源线形成的圆柱形聚四氟乙烯天线。

[58] 然而，由于此类传统天线与主体尺寸相比应该非常大，考虑到安装空间，不能将其安装在主体内部，并且由于与其他部件的干扰（即使将其安装在主体内部），因此不容易匹配卫星角度以接收 GPS 卫星信号。

[59] 相应地，传统 GPS 天线应该安装在主体外部。然而，由于终端和 GPS 终端越来越小、越来越薄，在将天线应用于此类终端的情况下，主体的尺寸应该非常大，用户在持有终端时感觉很不方便，并且存在以不同方式设计终端的限制。

[60] 实际上，在传统 GPS 天线中的陶瓷贴片天线的情况下，陶瓷贴片大小为 25mm x 25mm x 4mm，在圆柱形螺旋天线的情况下，天线大小为 50mm x 15mm。因此，不能将天线安装在小型化的终端主体中。此外，尽管安装在主体之外，传统 GPS 天线也成为主体小型化和超薄化的很大障碍。

[61] 此外，在不小心将手持终端跌落在地上的情况下，有时会发生主体的天线（尤其是 GPS 天线）受损的情况，从而使终端无法提供 GPS 服务。

[62] 传统技术 4-1 涉及“使用自动响应系统语音信息的移动通信终端位置验证系统和方法”。

[63] 该传统技术涉及一种位置验证系统和位置验证方法，其能够提供特定移动通信终端的位置信息，此位置信息使用自动响应系统通过位置搜索进行验证。根据一个实施例的移动通信终端位置验证系统包括一个侧面模块，用于识别连接到第二终端单元的无线访问网络或核心网络（在生成了针对 LBS 平台模块的页面请求以便生成第二终端系统的页面请求的情况下）上的基站；以及信息供应控制模块，用于控制自动响应系统以便将生成的位置信息作为语音数据通知第一终端单元。这样的目的转化为（更明确地说是牵涉到）能够提供特定移动通信终端位置信息的位置验证系统和位置验证方法，其中位置信息通过位置搜索进行验证。

[64] 通过识别附近基站峰窝位置来预测另一方位置的方法中体现了这样的位置搜索服务，其中基站验证了特定用户的移动通信终端接入。

[65] 然而，此类传统位置搜索服务提供有关移动通信终端位置的信息，其位置通过诸如文本或地图（图像）等可视化信息进行验证，因此对于其终端无法显
示此类可视化信息以提供位置搜索服务的用户，将存在切断限制。

[66] 此外，由于执行位置搜索服务的所有操作均通过依赖于用户终端键盘按钮的界面来使用，这成了阻止不熟悉该界面的用户访问位置服务的障碍。此外，依赖键盘按钮的界面实际上需要非常麻烦的键盘按钮操作才能接收位置搜索服务，例如无线（或有线）Internet 访问、位置搜索服务菜单访问、位置搜索对象输入等等，从而阻碍了服务使用的激活。

[67] 相应地，迫切需要提供具有新概念的移动通信终端位置验证系统和方法，其能够通过简单的键盘操作提供用于位置搜索的界面服务以增进服务访问，并且能够使用易于获得信息的信号来提供有关被验证用户位置的信息。

[68] 传统技术 4-2 可划分为“无线紧急呼叫系统”等等。

[69] 该传统技术涉及一种特定地点的紧急呼叫系统（例如，地下停车场、犯罪猖獗的区域），具体地说，涉及一种无线紧急呼叫系统，其能够在特定区域发生犯罪或火灾时将紧急情况通知中央控制中心（例如，公寓治安室、警察局、消防队）。该传统技术的目的是配置紧急呼叫系统，其能够从手持终端收集针对紧急情况的紧急呼叫无线信号，并将信号传输到控制中心。因此，当特定区域发生犯罪或火灾时，此类紧急情况将通知到位于另一个位置的中央控制中心（例如，控制室、警察局、消防队），以便对此类情况作出快速反应，并通过改进传统紧急铃声所具有的不便性，以及向无线紧急呼叫系统的呼叫终端添加用于停车场入口门以及各种入口门打开和关闭的 RFID 输出材料，从而增强使用方便性。

[70] 在集成上述传统技术时，可以理解的是，根据合成每个天线发射的无线电波信号的方法，本发明中定义的星际 VLBI 的理论中的无线电波干涉系统可以划分为多种类型。

[71] 在一实施例中，提高测量网络精度的方法包括从多个天文台观察 GPS 来提高卫星轨道要素精度的方法。然而，卫星轨道要素中存在误差，并极大地影响 GPS 的精度。

[72] 第一，可以通过使用直接电缆建立连接来合成无线电波，这种情况称为无线电波阵列。无线电波阵列在安装和管理方面对于短途干涉系统非常有用，因此在诸如美国、日本、欧洲等国家和地区的实际天文研究中使用得非常之多。

[73] 在相互距离为数百或数千公里以便获得高于无线电波阵列的空间定义的无线电波干涉系统的情况下，由于无法直接通过电缆连接，每个天线发射的信号将记录在每个磁带上，并再次收集磁带并进行合成。也就是说，在认为提高
了轨道要素精度的方法中，GPS 是从 VLBI 角度进行观察的。

[74] 换句话说，在使用 VLBI 观察网络确定精确相对位置以后，在通过搜索卫星来计算 VLBI 搜索点的卫星位置时，GPS 还提高了轨道确定精度，其中对于数百公里以上的距离，使用 GPS-VLBI 方法可以获得 2~3cm 的精度。这种情况称为 VLBI。

[75] 第二，RFID 的 HDX 无线电波传播扩展调制的理论意味着，在通过连接到救生衣 GPS 终端的无线电标签的标记信号，将接收到来自 GPS 卫星和伪卫星的信号以后处理的数据传输到中央控制中心时，将在中央控制中心计算校正信息，并执行各种处理，以便逐一列出受害者的正确位置。

[76] 这样的功能类似于目前应用海洋控制系统中的一般 GPS 卫星信号的功能，其中可以通过应用 D-GPS 来校正代码信息和应用 CD-GPS 方法来确定载波信号，从而计算正确的位置。

[77] 在如上所述的功能中，当连接到救生衣 GPS 终端的无线电标签 (RFID) 的每个指示标志具有唯一编号并发射时，一次可以识别数以百个受害者的信号。此外，由于可以在海难导航地图上正确标记有关海洋区域、受害者位置、距离等等的信息，因此提高了人们对海洋信息和灾难救援的兴趣。

[78] 第三，根据微波传输带贴片天线的射频无线电波放大发射方法的理论，采用了一种更改射频无线电波的方法，其中通过将可变光栏连接到与救生衣 GPS 终端相连的微波传输带贴片天线，从而在三维结构上对贴片进行更改。

[79] 第四，通过基于位置的服务（复合功能中形成的核心技术），可以通过多种语音信息为从救生衣 GPS 终端发射的急救 110 频率提供服务。

[80] 在根据发明的上述传统技术中，可以发现与第一、第二、第三和第四项中的每一项所请求的频率相关的频带 (130dBm) 信号强度具有一个公共因子。

[81] 检查第一项中的星际 VLBI，公共因子在于，使用星际 VLBI 和耦合方法作为频带 (130dBm) 信号（此频带信号在 GPS 卫星信号系统中的所有卫星之间具有几乎相同的信号强度），可以实现无线电波传播扩展和调制以及频率传播放大。

[82] 在第二项中，标签 (RFID) 的 HDX 无线电波传播扩展和调制所需的通信区域具有一个属性，即在信号频率变低时，无线电波传播的很远，并且存在的一些问题在于，信号的无线电波在大小等于波长的材料中会遇到衍射现象。因此，当波长变短时，无线电波会受到环境的严重影响，从而在频率超过 2GHz 时变得几乎不切实际。相应地，可以使用星际 VLBI 和耦合方法，通过具有活动
标签频率的 130dBm 瞬时无线电波信号系统，实现无线电波传播扩展和调制以及频率传播放大。

[83] 在第三项中，在利用大约 130 dBm 的瞬时无线电波信号强度，使用频传播播放大变更方法实现无线电波传播扩展和调制以及频率传播调制时，将需要微波传输带贴片天线的频率放大传输方法，其中通过将可变光缆连接到与救生衣 GPS 终端（在上述卫星中的实际 GPS 卫星信号系统中）相连的微波传输带贴片天线，从而在三维结构上对帖片进行更改。

[84] 在第四项中，LBS 意味着所有基于客户端（手持电话或 PDA）位置提供所请求的服务的领域，这意味着从现有网络和无线通信网络轻松和高速地为移动人员提供正确信息的集成服务。基于位置的服务技术是下一代 GIS 核心技术，通过该技术，用户可以在世界上的任何位置使用终端以本地语言对基于位置的服务加以利用，其中在单个数据库中使用 130dBm 瞬时无线电波信号以多种语言商业化该服务的情况下，通过基于位置的服务（形成于该复合功能中的 GIS 核心技术），可以将从救生衣 GPS 终端发射的急救信号频率更改为多语言语音信息服务。

发明内容

技术问题

[85] 因此，本发明的一个目的是利用 130dBm 频带的瞬时传播信号系统，通过无线电波扩展和调制以及无线电波放大发射实现频率扩展系统。换句话说，本发明的目的在救生衣 GPS 频率的频带 130dBm 中使用星间 VLBI 和耦合方法，为具有 RFID 的 HDX 无线电波传播扩展和调制以及可变光缆的微波传输带贴片天线提供频率传播放大方法，以及提供一种射频复合多功能系统，其能够提供连接到基于位置的服务（GPS 核心技术）的多种语音信息服务，其中急救信号频率发射自救生衣 GPS 终端。

[86] 本发明的另一个目的是利用与形成于地球大气区域中的现有表面弹性波相同的频率传输瞬时无线电波（从海洋中具有救生衣 GPS 终端的受害者传输到太空中的 GPS 卫星的急救信号）。也就是说，其目的是使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm) 信号，以便获得无线电波传播扩展和调制以及频率传播放大，从而根据地球大气区域的气体吸收，通过中心频率移动实现输出级的扩展波长相位变化。这意味着通过与现有表面弹性波（形成于从星际 VLBI 发射的频率 130dBm 传播信号中）相同的频带 130dBm，从而形成无线电波传播扩展和调制以及频率传播放大的过程。
通过感应大气区域的大气层分析气体是否被吸收的传感器，人们执行了有关频率输出扩展和移动的研究，并且各种测量气体以获得当前大气层频率移动路径的气体传感器已变得实用。然而，不存在用于将频带 (130dBm) 激活到星际 VLBI 的方法。这样的方法因为使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm)，以便在卫星中的实际 GPS 卫星信号系统中获得无线电波扩展和调制以及频率播放大。以及使用与形成于地球大气区域中的现有表面弹性波相同的信号强度。原因之一在于，根据一般表面波波长水深传感器的原理，由于气体在压电声件中被吸收以后出现的瞬时质量变化，表面声波在传播过程中受到阻碍，然后气体传感器的检测设备将器件表面上的目标检测气体吸收所引起的化学变化转换为电信号；虽然针对特定气体感应特性的感应性能非常优异，但是狂测中存在实现频率变化电路的问题。

使用将从本发明中获得的形成于大气区域传统表面波表面空域信波形式中的频带 (130dBm)，根据地球大气区域的气体吸收，通过合成输出级的波长移动路径和从星际 VLBI 发射的 130dBm 无线电信号，可以提供一种形成无线电波传播扩展和调制以及频率播放大的过程。

通过在该过程中添加复合多功能，首先，由于该建议方法具有一个特性，即信号频率变低时，实现标签 (RFID) 的 HDX 无线电波扩展和调制所必需的通信区域将变大，因此使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm)，以便在卫星之间的实际 GPS 卫星信号系统中获得无线电波扩展和调制以及频率播放大，从而保证实际 VLBI 和耦合方法时，可以对此方法加以应用；

其次，通过将可变光里连接到主体来形成支持微波传输带接收天线频率传播大发射的头部单元，当使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm)，以便在获得无线电波扩展和调制以及频率播放大，从而保证实际 VLBI 和耦合方法时，可以在卫星之间应用实际的 GPS 卫星信号系统；存在的有利效果在于，在通过将可变光里连接到微波传输带接收天线来从三维配置上改变接收天线本身时，可以实现用于改变频率播放大的方法；

第三，在每一项中，再救生衣 GPS 终端发射的急救信号频率形成复合功能的情况下，可以通过基于位置的服务 (GIS 核心技术) 实现多语言语音信息服务。

如上所述，在具有救生衣 GPS 终端的受害者输出瞬时无线电波（海洋急救信号）的情况下，传输频率具有与形成于地球大气区域中的现有表面声波相同的频带 (130dBm)，从而使用安装在测量站（例如太空中的 GPS 卫星、伪卫
星等等) 的测量设备，可以在通过介质（例如以各种波长发射和辐射的电磁能）测量/记录海洋中的受害者以后提取所需的信息。

技术方案

[93] 根据本发明的一个方面，提供了一种救生衣 GPS 终端频带 (130dBm) 频率扩展调制复合多功能系统，包括：主体，其包括前板，在频带 130dBm 中引用并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；头部单元，用于在主体顶部连接可变光栅，并支持微波传输带接收天线的频率传播放大发射；以及基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语言语音信息服务的功能，其中无线电波传播和频率传播放大的调制形成于主体和头部单元中。

[94] 优选地，主体包括前板，其在频带 130dBm 中引用并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；头部具有连接在主体顶部的可变光栅，并支持微波传输带接收天线的频率传播放大发射。

[95] 优选地，在调频器中，采用无线电波放大发射方法执行调制，并以救生衣 GPS 终端需求的频带 130dBm 的频率范围使用该方法；调频器具有振荡器，其配置与 VOC 相同；具有频移键控/载波频率校正控制电路，其包括自动频率检测电路，用于将频率低于载波频率的固定频率信号与压控振荡器 (VOC) 的输出做相位比较，VOC 的振荡频率为划分数次以后的信号频率的数倍；VOC，其输入是频率检测电路输出的误差电压；差电流生成器，其具有电压/功率转换器，用于转换 PLL（其包括用于划分 VOC 高频的分频器）的输出误差功率；反馈频率 (FBC) 电路，用于接收低固定频率信号、要进行频率转换的输入信号和确定箱位电平然后箱制输入信号的参考电压；以及加法器，用于将误差电流和偏差电流相加，其中输入信号的频率按设定的载波频率进行调制。

[96] 优选地，在使用频带 120dBm 的 HDX 无线电波传播方案中，救生衣 GPS 终端的芯片材料适合于让受害者能够穿戴后板上的活动标签 (RFID)。

[97] 优选地，将可变光栅连接到插入救生衣 GPS 终端的微波传输带接收天线，并以远程使用频带 120dBm 的无线电波放大方案，对信号接收被转换为三维配置时的频率进行处理。

[98] 优选地，使用形成于多功能系统中的基于位置的服务 (GIS 核心技术)，将救生衣 GPS 终端发射的急救信号频率转换为多语言语音信息服务。
有利效果

[99] 根据本发明的救生衣 GPS 终端配置为频带 (130dBm) 中的频率扩展和调制复合多功能系统，其主要独创性以及与现有方法的区别如下：

[100] 根据本发明的救生衣 GPS 终端的频带 (130dBm) 中的频率扩展和调制复合多功能系统形成有前板，其在频带 (130dBm) 中引入并与星际 VLBI 共享耦合方法的过程中，用于射频和接收救生衣 GPS 终端发射的频率；以及底板，其与 HDX 频率扩展和调制的标签接触。由于在所有卫星中具有几乎相同的信号强度的频带 (130dBm) 信号，以便在卫星之间的实际 GPS 卫星信号系统中获得无线电波传播扩展和调制以及频率微波放大，从而保证星际 VLBI 和耦合方法时，可以应用此建议的方法；因此不存在噪声空间向量维数方面的限制，并且协方差矩阵的大小减小了，从而降低了计算复杂性，实施将非常容易。

[101] 此外，应用于 RFID 系统的天线频率一般使用从 125kHz 的低频带到 5.8GHz 的微波频带的各种频带。然而，在复杂的地球大气环境中，微波在大小等于波长的材料中具有严重的衍射现象，例如多路径误差、卫星轨道误差和时钟误差、对流层误差、电离层区域误差等等。因此，在波长变换时，无线电波会受到环境的大规模影响，使得超过 2GHz 的频率很少实用。

[102] 相应地，存在的有利效果在于，可以从通道估计算法中体现相同信号强度频率的起因，该算法通过将部分空间通道算法与匹配滤波器耦合，从而降低 DS/CDMA DMA 下行链路（点对多点）的复杂性。例如，在诸如数字多媒体广播（DMB）等点和多点系统的情况下，一般可以做出如下切合实际的假设。首先，下行链路信号在发射阶段合成，并具有相同的信号功率。第二，下行链路信号通过相同的无线电传播通道。

[103] 根据本发明的救生衣 GPS 终端在频带 (130dBm) 中的频率扩展和调制复合多功能系统中采用的点对多点移动接收器知道所有通道的扩展码。

[104] 由于该建议方法具有的特性，即信号频率变低时，实现标签 (RFID) 的 HDX 无线电波传播扩展和调制所需的通信区域将变远，因此使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm)，以便在卫星之间的实际 GPS 卫星信号系统中获得无线电波传播扩展和调制以及频率传播放大，从而保证星际 VLBI 和耦合方法时，可以对此方法加以应用。

[105] 此外，通过将可变光栏连接到主体来形成用于支持微波传输带接收天线频率传播放大发射的头部单元，当使用在所有卫星中具有几乎相同的信号强度的频带 (130dBm)，以便在获得无线电波传播扩展和调制以及频率传播放大，从而
保证星际 VLBI 和耦合方法时，可以在卫星之间应用实际的 GPS 卫星信号系统；存在的效果在于，在通过将可变光栏连接到微波传输带接收天线来从三维配置上改变接收天线本身时，可以实现用于更改频率传播放大的方法。

[106] 因此，可以克服适合于通道状态的编译方法和数字调制方法的限制，以便有效地在受到级联 HBT-MMIC 传播放大理论（高增益和低噪声指数）所限制的 RF 频率中进行发射。此外，虽然通过满足 RF 模块的低价格、高性能和小型化的 MMIC 和 FRIC 来进行的模块商品开发还没有实现，但是正在进行研究，它将被本发明所替代。

[107] 本发明包括基于位置的服务，其具有发射急救信号的功能，能够通过连接到主体前板的中间部分或头部单元，从而形成无线电传播扩展调制和频率传播放大；并且能够将急救信号转换为多语言语音信息服务，从而可以实现多语言语音信息服务。

[108] 虽然以下参照附图说明了具有星际 VLBI 和耦合方法功能（其能够针对在所有卫星中具有几乎相同的信号强度的频带（130dBm）执行频率发射和输出接收，以便在卫星之间的实际 GPS 卫星信号系统中获得无线电传播扩展调制和频率传播放大）和具有特定形状和配置的 GPS 终端，但本领域的技术人员应了解，可在不脱离本发明的主旨和范围的情况下，对本发明的形式和细节进行各种修改。

附图说明

[109] 图 1 是根据本发明的一个实施例的正视图；
[110] 图 2 是根据本发明的一个实施例的仰视图；
[111] 图 3 是显示应用本发明的 GPS 终端的位置测量系统的配置图；
[112] 图 4 显示根据本发明的一个实施例的位置跟踪终端的示意框图；
[113] 图 5 是根据本发明的一个实施例的用于调制信号强度的频带 130dBm 的过程说明图；
[114] 图 6 显示根据本发明的一个实施例的 GPS 天线的辐射模式；
[115] 图 7 显示根据本发明的一个实施例在更改中心频率后的输出；
[116] 图 8 是根据本发明的一个实施例的用于调制信号强度的频带 130dBm 的过程说明图；
[117] 图 9 是显示图 4 所示的调频器的配置的详细框图；
[118] 图 10 是显示图 4 所示的 VOC 的详细配置图;
[119] 图 11 显示用于说明图 4 所示的 PLL 操作的波形;
[120] 图 12 显示用于说明图 4 所示的 PLL 操作的波形;
[121] 图 13 显示用于说明图 4 所示的 PLL 操作的模拟测试和试验中的反射损耗结果;
[122] 图 14 显示用于说明图 4 所示的 PLL 操作的模拟测试和试验中的轴比带宽结果;
[123] 图 15 是显示图 4 所示的 FBC 电路的详细配置图;
[124] 图 16 显示 FCC 电路的输出波形 1;
[125] 图 17 显示 FCC 电路的输出波形 2;
[126] 图 18 显示 FCC 电路的输出波形 3;
[127] 图 19 显示 FCC 电路的输出波形 4;
[128] 图 20 是互导放大器的详细电路图;
[129] 图 21 是显示根据本发明的输出波形的一个实施例的框图;
[130] 图 22 是使用根据本发明的 GPS 终端的 FRID 系统的示意图;
[131] 图 23 是显示图 22 所示的射频 RFID 系统的一个实施例的框图;
[132] 图 24 是显示图 22 所示的 RFID 读取器中使用的放大器的一个实施例的示意图；以及
[133] 图 25 是显示图 22 所示的调幅信号的一个实施例的情况图。

<table>
<thead>
<tr>
<th>元件符号</th>
<th>对照表</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>头部单元</td>
</tr>
<tr>
<td>20</td>
<td>主体</td>
</tr>
<tr>
<td>21</td>
<td>前板</td>
</tr>
<tr>
<td>22</td>
<td>底板</td>
</tr>
<tr>
<td>23</td>
<td>微型计算机</td>
</tr>
<tr>
<td>30</td>
<td>位置跟踪终端</td>
</tr>
<tr>
<td>31</td>
<td>星际 VLBI 接收器</td>
</tr>
<tr>
<td>32</td>
<td>基于位置的服务中的控制器</td>
</tr>
<tr>
<td>40</td>
<td>急救信号（119 频率）接收器</td>
</tr>
<tr>
<td>50</td>
<td>电子标签（RFID）</td>
</tr>
<tr>
<td>51</td>
<td>电子标签读取器</td>
</tr>
</tbody>
</table>
[142] 60：可变光缆单元 61：微波传输带接收天线

[143] 62：频带（130 dBm）

具体实施方式

[144] 根据本发明的救生衣 GPS 终端优选地包括：主体，其包括前板，在频带 130dBm 中引入并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；头部单元，用于在主体头部连接可变光缆，并支持微波传输带接收天线的频率传播放大发射；以及基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语音语音信息服务器的功能，其中无线电波传播和频率传播放大调制形成于主体和头部单元中。

实施例

[145] 以下将参照附图更全面地说明本发明。

[146] 图 1 是根据本发明的一个实施例的正视图，图 2 是根据本发明的一个实施例的仰视图，图 3 是显示应用本发明的 GPS 终端的位置测量系统的配置图。

[147] 参照图 1 至 3，可以知道根据本发明的救生衣 GPS 终端频带（130dBm）扩展调制复合多功能系统包括与导航仪相连的视频功能。

[148] 以下将参照附图更全面地说明本发明，其中显示了本发明的优选实施例，以使本发明的公开内容详尽而完整，并且向本领域的技术人员完整地传达本发明的范围。

[149] 如图 1 所示，前板 21 上露出的微型计算机 23 是平板型计算机，其具有 8mm 的厚度和 25mm（宽度）x 55mm（长度）的大小，一般划分第一传感器触点和第二传感器触点，两个触点都以芯片器件的形式安装在其中。其包括两对分别位于上方和下方部分的开关，每对开关在显示单元的按键操作单元上沿直线的左侧和右侧方向具有两个突起开关，使得可手动对其进行操作（开和关），以在遇到灾难时指示紧急情况。

[150] 这里，上方部分的一对开关由“开”操作线组成，下方部分的一对开关由“关”操作线组成。特别地，在“开”或“关”操作状态下，左侧是主开关，右侧是辅助开关。配备辅助开关是为了防备主开关在遇到灾难时的紧急情况下无法顺利操作。

[151] 在微型计算机 23 的频带（130dBm）扩展调制复合多功能系统中，正视图...
显示了前板 21，在频带 (130dBm) 中引入并共享星际 VLBI 和耦合方案的过程中，前板通过输出级的波长发射和接收微型计算机发射的频率，该正视图主要分为带和显示单元。以下将详细说明其构成。

[152] 在根据本发明的急救信号（119 频率）中，通过插入连接在微型计算机 23 上的键盘操作单元左侧的突起部分，微型计算机 23 系统形成为自动“开”操作状态。对于有关受害者紧急情况的急救请求，将以 3 到 4 秒的间隙重复发射急救信号（119 频率）。

[153] 接下来，如图 2 所示，底板 22 主要分为带和第一传感器触点及第二传感器触点，两个触点都内置在显示单元中。在微波放大发射方案中，底板调制信号空间的相互差矩阵大小；在使用第一传感器触点中配置的位置跟踪终端（30，装置或芯片器件）作为频带（130dBm）62（由微型计算机 23 远程使用的频率）来实现部分空间通道估计时，该方案具有正交性。此外，与 VOC 具有相同振荡器的调频器包括：自动频率检测电路，用于将频率低于载波频率的固定频率信号与压控振荡器（VOC）的输出相位比较，其中 VOC 的振荡频率为划分数次以后的信号频率的数倍；VOC，其输入是频率检测电路输出的误差电压；误差电流生成器，其具有电压/功率转换器，用于转换 PLL（其包括用于划分 VOC 高频的分频器）的输出误差功率；反馈箱位（FBC）电路，用于接收低固定频率信号、要进行频率转换的方法信号和确定箱位电平然后箱制输入信号的参考电压；以及加法器，用于将误差电流和偏压电流相加，其中输入信号的频率按设定的载波频率进行调制。

[154] 以下将详细说明调频器的构成。

[155] 该系统包括主体，其具有底板 22，并使用位置跟踪终端（30，装置或芯片器件）向量形成 HDX 频率扩展调制带的标签（RFID）；头部单元，用于在主体头部连接可变光栏，并支持微波传输带接收天线的频率传播放大发射；以及基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语言语音信息服务的功能，其中基于位置的服务（32，LBS 服务器）包括安装在微型计算机 23 的显示单元中的第一传感器触点和第二传感器触点。

[156] 本发明的急救信号（119 频率）由调频器（d_1）通过安装在微型计算机 23 中的第一传感器触点中安装的载波频率校正控制器（a_2）进行调频并输出。这里，调频器中的振荡器具有与误差电流生成器（a_1）的 VOC 相同的配置，从而将误差电压（Verr）应用于调频器（d_1）以及 VOC，然后无需外部控制即可获得自动控制的载波频率。频率校正控制器（a_2）包括误差电流生成器（a_1）
和偏差电流生成器 (a_3)，电路块 (a_1 和 a_4) 的输出 (lerr 和 ldev) 在加法器 (a_5) 中相加，并输出为校正信号 (a_2)。

[157] 误差电流生成器 (a_1) 通过锁相回路 (PLL) 块由电压/电流转换器 (a_9) 生成误差电流 lerr，PLL 由自动频率检测器 (a_6)、分频器 (a_7) 和振荡器 (a_8) 组成。

[158] 这里，偏差电流生成器 (a_3) 通过反馈原理电路 (a_10) 和作为电压/电流转换器的互导放大器 (c_1 和 c_2) 生成偏差电流 ldev，其中反馈原理电路接收同步信号 fh 和视频信号、带隙参考信号 (a_11)。

[159] 具体而言，本发明的 VOC 的特征在于，其将所需载波频率的参考信号与自由振荡的 VOC 的输出做比较并检测相差，并具有相位检测器，用于生成对应于相位的误差电压；以及振荡器，用于接收反馈中的误差电压并以与参考频率相同的频率振荡。

[160] 相应地，调频器具有与 VOC 相似的配置，以调制将要记录的输入信号。

[161] 由于将振荡器配置为具有上述特征的互导放大器 (c_1 和 c_2)，即使由于任何原因而发生振荡频率更改，320fH 的 VOC (b_3) 也和下面描述的图 5 所示的调频器 (d_1) 中配置的振荡频率变化相同。

[162] 误差电流生成器 (a_1) 主要包括 PLL，例如，VOC (b_3) 的振荡频率为 5.04MHz。此信号具有 fH 频率信号，其通过 1/320fH 分频器应用于自动频率检测电路 (b_1)，从而将其与外部应用的 fH 同步信号进行比较，并生成与不匹配的相位对应的误差电压 Verr。误差电压 Verr 再次应用于 VOC (b_1)，并在 5.04MHz 正确地振荡。误差电压 Verr 输入到 320fH 的 VOC (b_1) 和电压/电流转换器 (b_4)，然后连接到调频器 (d_1)。通过电压/电流转换器 (b_4) 将误差电压 Verr 转换为对应的电流信号并输出，以便生成误差电流。

[163] 图 3 是显示应用本发明的 GPS 终端的位置测量系统的配置图。

[164] 参照图 3，该系统包括头部单元 10、微型计算机 23、位置跟踪终端 30、星座 VBLI 接收器 31、基于位置的服务中的控制器 32、急救信号（119 频率）发射器 40、电子标签 (RFID) 50、电子标签读取器 51、可变光栏单元 60、微波传输带接收天线 61、频带 (130dBm) 62。以下将详细说明各个组成部分。

[165] 急救信号（119 频率）发射器 (BTC/ BSC) 40（其包括与根据本发明的受害者紧急情况信号系统相关的 GPS 收发器，以及来自伪卫星 31 和 31-1 的位置信息）通过开关 MSC 63，将包括位置信息的基站信息、基站与微型计算机 23 之间的本地信息、包括海洋、船舶或飞机位置信息的基站信息发射到位
置确定实体 (PDE) 70。PDE 70 基于从微型计算机 23 接收的位置信息计算位置。PDE 70 还可以包括 GPS 接收器，以及来自 GPS 卫星 31-2 的位置信息，并利用该信息来计算微型计算机 23 的位置。此外，PDE 70 接收在受害者位置校正转换装置（可变光栏单元、ILR）60 中管理的微型计算机 23 的位置信息，以及从微型计算机接收的以经纬度计算的位置信息和基站信息，并使得微型计算机 23 的位置更加确切。

[166] 移动定位中心 (MPC) 51 基于多语言语音信息服务转换来提供移动视频和定位信息，其中根据来自基于位置的服务 (LBS 服务器) 32（个性化和移动性在这里与信息通信和无线 Internet 服务耦合在一起）的受害者急救信号请求，从微型计算机 23 发射的频带 (130dBm) 62 频率形成微波传播扩展调制和频率传播放大。此外，其接收微型计算机 23 中的完整信息，并将其发射到 LBS 服务器 32。在与普通移动计算机外设交换移动视频和定位信息以后，当通过电子标签读取器 MPC 64（监视识别系统）将其发射到 LBS 服务器 32 时，LBS 服务器 32 将信息发射到应用服务提供商服务 ASP 40，并利用该信息来为各种基于移动视频和定位的服务提供商提供基本材料。

[167] 图 4 至 8 是位置跟踪终端的示意框图，并且是根据本发明的一个实施例的用于调制信号强度的频带 130dBm 的过程说明图。调频电路包括校正电路，其自动和有规律地控制调频电路的载波频率，以将频率信号记录在磁化记录介质上，如图 5 中的框图所示。

[168] 图 9 是图 4 所示的调频器配置的详细框图。

[169] 根据本发明，频率信号将由调频器 (d_1) 通过载波频率校正控制器 (a_2) 进行调制。特别是，调频器中包括的振荡器具有与误差电流生成器 (a_1) 的 VOC 相同的配置，以便按相同方式将误差电压 Ver 发应用于调频器 (d_1) 以及 VOC，然后无需任何外部控制即可获得自动控制的载波频率。也就是说，当VERR 和 Idev 发生更改时，OTA 的 gm 值将更改，从而可以更改振荡频率。

[170] 频率校正控制器 (a_2) 包括误差电流生成器 (a_1) 和偏差电流生成器 (a_3)，两个电路块 (a_1 和 a_4) 的输出 verr 和 Idev 在加法器 (a_5) 中相加，并输出为校正信号 (a_2)。

[171] 这里，误差电流生成器 (a_1) 在从外部接收到同步信号 fH 以后，通过锁相回路 (PLL) 块由电压/电流转换器 (a_9) 生成误差电流 lerr，其中 PLL 由自动频率检测器 (a_6)、分频器 (a_7) 和振荡器 (a_8) 组成。此外，偏差电流生成器 (a_3) 通过反馈箝位电路 (a_10)、带隙参考电路 (a_11) 和作为电压/电流
转换器的互导放大器(\(c_1, c_2\))生成偏差电流 \(I_{dev}\)，其中反馈箇位电路接收同步信号 \(f_{H}\) 和视频信号。

[172] 图 10 是显示图 4 所示的 VOC 的详细配置图。

[173] 图 6 所示的输出 320fH 频率的 VOC (b_3) 配置为具有第一和第二互导放大器 (c_1 和 c_2)，如图 10 所示。互导放大器 (c_1 和 c_2) 具有高度的自由，因为它是具有高度独立性的个别电路元件的组合。在某个振荡频率以后，通过更改互导来控制其自由度是适当的。此外，其一致地维持诸如阻抗等元件属性，并同时控制多个滤波器。

[174] 由于将振荡器 (b_3) 配置为具有上述属性的互导放大器 (c_1 和 c_2)，因此，相对而言 320fH 的 VOC (b_3) 和下面将描述的图 5 的调频器 (d_1) 中配置的振荡频率更改是相同的。

[175] 误差电流生成器 (a_1) 主要包括 PLL 配置，例如，VOC (b_3) 的振荡频率具有频率 5.04MHz。信号的 \(f_{H}\) 频率信号通过 1/320fH 分频器应用于自动频率检测电路 (b_1)，并与外部信号的 \(f_{H}\) 同步信号进行比较，以便生成与不匹配的相位对应的误差电压 \(V_{err}\)。将误差电压 \(V_{err}\) 再次应用于 VOC (b_1)，以便在 5.04MHz 有规律地振荡。将误差电压 \(V_{err}\) 应用于电压/电流转换器 (b_4) 以及 320fH 的 VOC (b_1)，以便将其连接到调频器 (d_1)，误差电压 \(V_{err}\) 在调频器中由电压/电流转换器 (b_4) 转换并输出为对应的电流，并产生误差电流 \(I_{err}\)。

[176] 误差电流使得与调频器 (d_1) 中的 VOC 具有相同配置的生成器正确地振荡，具体的频率取决于应用产品，例如 3.4MHz。

[177] 误差电流生成器是完成本发明所必需的，意味着调频器 (d_1) 的载波频率可以从外部自动进行控制。

[178] 图 11 至 14 是说明图 4 所示的 PLL 操作的波形图。

[179] PLL 需要 VOC。具体来说，在误差电流生成器 (a_1) 的 PLL 中，振荡器 (b_3) 接收误差电压作为 VOC 并输出对应的频率信号，其配置包括图 4 至 8 所示的详细 FBC 电路和图 15 所示的互导放大器 OTA (c_1 和 c_2)。

[180] 在使用包括 VOC 的 PLL 的传统电路中，将 VOC 振荡器和频率振荡器的振荡电路配置为无源器件 R 和 C，以便降低振荡频率的控制电流。此外，虽然需要重新配置振荡器以振荡 3.4MHz 的频率，但是通过采用可在频带 (130dBm) 的频率扩展和调制中转换的 OTA 电路，可以克服此问题。因此，尽管在比较诸如 3.4MHz 等高频的相位以后，不容易检测校正误差电压 \(V_{err}\)，
但是可以使用在频率低于 15.625MHz 的 fH (只有很少量) 的频带 (130dBm) 进行的频率扩展和调制过程中形成的相位来执行相位比较，从而可以精确比较相位。此外，添加了可以控制调频电路频率偏移的电路，因此还存在控制调频的功能。

[181] 图 15 是图 4 所示的 FBC 电路的详细配置图。

[182] 参照图 4，其中表明，根据对应于输入视频信号的电平，获得了具有较密波的调制信号。这里，具体地表示了根据视频信号电平的对应频率，特别是表示了具有最低电平的暗电平削波区域和具有最高电平的白电平削波区域。图 15 使用通过集成上述电路来获得的 FBC 电路，示意图地说明了对应于视频信号电平的频率值。也就是说，例如，其表明暗电平削波 75% 电平被调频到 2.65MHz。

[183] 图 16 至 19 显示了 FCC 电路的输出波形。

[184] 将 320fH 的 VOC 振荡频率输入到 1/320fH 的计数器 (一般配置为触发器并出现 fH)，在自动频率检测电路 (b_1) 中，将向下计数到 1/320 的信号与图 9(a) 的参考信号进行比较。使用众所周知的方法获得误差电压 Verr，以下将对此方法进行简要说明。

[185] 首先，占空比为 60% (其中产生等价复合同步脉冲周期) 的 H 脉冲与图 19 中获得的脉冲类似。

[186] 然后，虽然 FCC 电路的输出按 1/320 进行分频，但是产生了用于检测 PLL 的门脉冲，如图 18 所示。使用 H 脉冲对脉冲信号进行门控，以便获得如图 19 所示的检测输出，并在积分器中求检测输出的积分，从而产生误差电压 Verr。

[187] 误差电压 Verr 控制 VOC (b_3) 的振荡频率 例如，当初始 VOC 振荡频率很低时，图 18 所示的门脉冲周期延长，图 9(d) 所示的检测输出的上部延伸，因此积分器的输出变高，从而提高 OC(b_3) 的振荡频率。相应地，通过电压/电流转换器 (b_4) 将检测输出 (图 19) 输入到与 VOC (b_3) 具有相同配置的调频器 (d_1)，并通过 VOC (b_3) 的更改来控制振荡频率，从而可以按计划的振荡频率进行振荡。

[188] 同时，在将视频信号应用于图 1 中的电路之前，在预定的电位安排一个同步脉冲顶部。所安排的视频信号生成与通过电压/电流转换器 (b_4) 输入的信号大小成比例的电流 Idev，并将获得的电流 Idev 与误差电流 Ierr 相加以控制载波频率，从而控制调频器 (d_1) 的频率偏移。也就是说，视频信号的同步脉
冲顶部部分调制为 3.4MHz，白电平部分调制为 4.4MHz，这意味着在频带（130dBm）的频率扩展和调制过程中形成了某种强度的调频电路，其具有视频信号的同步脉冲顶部控制电路部分，以自动和有规律地控制调频电路的载波频率，从而在磁化记录介质上记录频率信号。

[189] 图 20 是互导放大器的详细电路图。

[190] 如图 20 所示，振荡器 (b_3) 配置为经过第一互导放大器 (c_1)，后者接收振荡器 (b_3) 的输出 Vout，并且第一互导放大器 (c_1) 的输出经过电容器 C1 和阻抗电路 Zim、第二互导放大器 (c_2)，并应用于连接到第二互导放大器 (c_2) 的另一个电容器 C2。最终输出 Vout 将从 C2 获得。

[191] 图 21 是显示根据本发明的一个实施例的输出波形的框图。

[192] 首先，图 22 和 23 是使用根据本发明的 GPS 终端的电子标签读取系统示意图，参照这两幅图说明了无线频率方法的第一实施例。此外，图 24 是显示 RFID 读取器中使用的放大器的一个实施例的示意图，图 25 是显示幅调信号的情况图，两者都在每一个实施例中得到适当采用。在每一个实施例中，参照附图说明了使用频感方法的电子标签的实施例。

工业适用性

[193] 根据本发明的救生衣 GPS 终端频带（130dBm）频率扩展调制复合多功能系统包括：主体、其包括前板，并在频带 130dBm 中引入并与星际 VLBI 共享耦合方案的过程中，用于发射和接收救生衣 GPS 终端发射的频率，以及后板，其与 HDX 频率扩展调制的标签接触；头部单元，用于在主体头部连接可变光栏，并支持微波传输带接收天线的频率传播放大发射；以及基于位置的服务，其连接到主体前板的中间部分或头部单元，具有发射急救信号并将信号转换为多语言语音信息服务的功能，其中无线电波传播和频率传播放大的调制形成于主体和头部单元中。
图 5

图 6

GPS 天线的辐射模式
(a) E 型模式 (b) H 型模式
衰减10dB

中心1.585650GHz 跨度5.000MHz 中心1.565190GHz 跨度5.000MHz
中心频率变化: +10.23MHz 中心频率变化: -10.23MHz
更改中心频率以后的输出

图7

频带 (130dBm) 频率扩展和调制过程图

图8
图9

图10

图11

TM10 和 TM01 模式的标准化阻抗变化，(a) 振幅
图 12

图 13

图 14
图 15

门电路输出状态

- 门电路高电平
- 门电路低电平

图 16