(54) Title: METHOD AND APPARATUS FOR CONNECTING AN ELECTRONIC COMPONENT USING A HIGH FREQUENCY ELECTROMAGNETIC FIELD

(57) Abstract: The present invention relates to a method and apparatus for connecting an electronic component using a high frequency electromagnetic field. The method according to one embodiment of the present invention is characterized in that it comprises a step of applying a high frequency to an adhesive provided on an electronic component to be connected so as to heat the adhesive and electrically and mechanically connect the electronic component, and the method for connecting the electronic component according to the present invention involves using high-frequency electromagnetic waves so as to heat a certain ingredient contained in an interposer and/or a polymer adhesive. By not using an external heat source, components can be connected at low temperatures, which is economical. Further, compared to an ultrasonic connection technique that vibrates an entire connecting structure, the method of the present invention, which heats a certain ingredient having chemical dipoles by means of a high-frequency electromagnetic field, exhibits no process limitations caused by external vibration. Moreover, unlike an ultrasonic technique using a fixed vibrator, frequency modulation performed by a user according to fixed conditions is easy so that components can be connected under various conditions according to the material types thereof.

(74) 배열자: PARK, Young-Zoon; 137-885 서울시 서초구 서초대로 3283 엘레강 랜드 5층, Seoul (KR).
본 발명에 의하면 고주파 전자기장을 이용한 전자부품 접속방법 및 장치가 제공된다. 본 발명의 일 실시예에 따른 상기 방법은 접속시키고자 하는 전자부품에 구비된 접착제에 고주파를 인가하여 자체적으로 발열시킴으로 전기적 및 기계적으로 접합시키는 단계를 포함하는 것을 특징으로 하며, 본 발명에 따른 전자부품 접속방법은 고주파의 전자기파를 이용하여 인터포지 및/또는 플리커 접착제에 함유된 특정 성분을 발열시킨다. 외부의 열원을 사용하지 않으므로, 저온에서 품질 접속이 가능하고, 경제적이다. 또한, 접합구조 전체를 전동시키는 초음파 접속방식에 비하여, 화학적 반응을 가지는 특정 성분 등을 고주파의 전자기장으로 발열시키는 본 발명은 외부 전동에 따른 공정 제약이 없다. 아울러, 고정된 전동자를 사용하는 초음파 방식과 달리, 사용자가 공정 조건에 따라 주파수 변조가 용이하므로, 물질 종류에 따라 다양한 조건으로 품질 접속을 진행할 수 있다.
명세서
발명의 명칭: 고주파 전자기장을 이용한 전자부품 접속방법 및 장치
기술분야
[1] 본 발명은 고주파 전자기장을 이용한 전자부품 접속방법 및 장치에 관한 것으로, 보다 상세하게는, 외부의 열원을 사용하지 않으므로, 저온에서 폴리머 접착제를 이용하여 부품간 전기적, 기계적 접속이 가능하고, 또한, 접착구조 전체가 전동시키는 초음파 접속방식에 비하여, 화학적 붙여지를 가지는 특정 성분 등을 고주파의 전자기장으로 발생시키므로, 접착구조 전체에 전력지는 외부 물리적 전동이 없이 전기적, 기계적 접합이 가능한 고주파 전자기장을 이용한 전자부품 접속방법 및 장치에 관한 것이다.
배경기술
[2] 전자 패키지용 접합재료로서의 접착제는 크게 등방성 진도성 접착제(ICA; Isotropic Conductive Adhesive), 이방성 진도성 접착제 (ACA; Anisotropic Conductive Adhesive), 비진도성 접착제(NCA; Non-conductive Adhesive) 등의 형태가 있다. 대개 진도성 금속입자와 절연 및 접착력을 갖는 폴리머 수지로 구성된 일종의 복합 재료이며, 진도입자의 함량에 따라 NCA 또는 ACA에서 ICA로의 변이가 일어난다. 이러한 전기적 변이가 일어나는 진도성 입자의 함량치를 포름레이션 퍼 الكم달값(percolation threshold)이라고 한다. 즉, 진도성 입자가 전하 없는 접착제는 NCA이며, 포름레이션 퍼 الكم달값보다 적은 함량을 가지면 ACA가 되며, 그 이상이 되면 재료의 자체만으로 전전성을 가지는 ICA가 되는 것이다. 각각의 특성상 전자부품 패키지 접합재료용으로서의 목적과 기능, 적용분야도 각각 상이하다.
[3] 등방성 진도성 접착제, 즉 ICA의 비속이나 플립 적 패키지 접합 재료로서의 적용에는 도 1과 같다. 도 1을 참조하면 반도체침에 형성된 금 스티드 붕포나 금 도금 붕포, 그리고 무전해 니켈/금 붕포와 같은 비속이나 붕포 위에 ICA를 도포한 뒤 비속이나 붕포와 기판 전극간의 접점을 수행한다. 이후 열을 가해 ICA가 중합되어 비속이나 붕포와 기판 전극간 전기적 접속이 이루어진다. 이때 가열하는 온도는 ICA 경화 조건에 따라 다르지만 대개 180°C에서 10 ~ 30분 사이에 이루어진다. 그 후 플립 적 패키지의 신뢰성 향상을 위해 절과 기판 사이에
언더필 공정을 수행한다.

이방성 전도성 필름(ACF)은 막에 두께 방향으로는 도전성, 면방향으로는 절연성이라는 전기 이방성 및 접촉성을 갖는 고분자막으로, 기본적으로 니켈, 금/플라티넘 등의 도전성 임자들과 열교화성, 열가소성의 절연수지로 구성되어 있다. 이를 이용한 실장방법으로는 첨 또는 첨이 실장된 연성 기판(flexible circuit substrate)과 글라스 또는 경성 기판(Rigid Substrate) 사이에서 상부 및 하부 전극 간에 위치하면서 열과 압력을 동시에 받아 ACF 내 분산된 도전입자가 상부 및 하부 전극 사이에 기계적으로 접촉되어 형성된 전기적 연결에 의해 전통이 이루어지는 방식이다. (도 2) 이 때 가해진 열에 의해 절연수지의 경화가 일어나서 강한 접착력을 갖게 된다. 지가의 접착제 제조공정과 이러한 접착제를 이용한 지가의 풀립 접 공정개발을 위하여 경화가 빠른 열교화성 액체성 수지 또는 아크릴계 수지를 이용한 ACF의 상품화가 되었다. ACA도 필름 형태(Anisotropic Conductive Film; ACF)와 페이스트(Anisotropic Conductive Paste; ACP) 형태로 구분할 수 있으며, 접속공정과 접착제의 제조공정의 간편성을 위해 최근 페이스트 형태의 접착제가 개발되고 있다. 또 초극세척처리 접속 및 지가접착을 위해 도전입자를 제거한 비전도성 필름(Non-conductive Film; NCF)도 있으며, 역시 페이스트 제품인 NCP도 있다.

도 3은 NCF, NCP를 접합재료로 사용한 풀립 접 접속공정을 나타낸다. 먼저 NCF나 NCP를 기판 전극 주위에 도포하고 비술처 범프 중 특히 금 스테이드 범프가 형성된 점과 정렬된 후 열압착공정에 의해 비술처 범프와 기판 전극간 직접적인 접촉이 이루어지게 하면서 가해진 열에 의해 NCA가 경화가 되는 접합 기구이다.

상기 ICA, ACA (ACF, ACP), NCA (NCF, NCP) 등의 접합제료는 LCD, PDP, OLED 등의 평판디스플레이 모듈 실장과 전자부품의 표면 실장, 그리고 반도체 풀림 접 접속에 쓰이는 접합제료로서, 이미 평판디스플레이 모듈 실장 부분에서 OLB(Out Lead Bonding), PCB, COG(Chip-On-Glass), COF(Chip-On-Film) 공정에 활용히 사용되고 있고, 비술처 풀림 접 공정 및 표면 부품 실장 기술에 그 시장 면역을 확대적용하고 있다.

ICA의 경우, 전기 및 전자부품이나 회로 배선 조립을 위해 접합에 사용되는 기존의 솔더링을 대체할 수 있는 재료로서 그 적용범위 또한 솔더링의 접속 부분과 유사하다. 즉, 솔더 리플로우가 필요한 표면 실장 부품 조립이나 솔더를 이용한 풀림 접 접속에 활용가능하며, 솔더링 리플로우 공정 온도보다 낮은 온도에서 ICA의 열교화에 의해 접합을 이루 수 있으나 이 역시 공정 온도가 높고 경화시간이 긴다는 단점이 발생한다.

ACA의 경우, 디스플레이 모듈 실장에 활발히 사용되어 왔다. 인성 기판을 글라스 기판에 접속할 때 사용되는 OLB 본딩, 인성 기판을 PCB 기판과 접합하는 PCB 본딩용 ACF의 시장이 가장 크며 적용범위에 따라 도전입자의 종류가 달라지고 접속온도와 시간 또한 점점 낮아지면서 빨라지는 저온속경화형을 필요로 하고 있다. 또 구동회로 IC 첨이 글라스 기판에 직접 접속되는 COG 본딩,
연성 기판에 직접 플립 접 접속되는 COF 본딩은 구동회로 IC의 고밀도화, 복잡화되면서 극미세피치 접속의 필요성이 더욱 대두되고 있다. 따라서 ACF의 극미세피치 접속 및 자동화장화 접속 공정은 필요한 상황은 앞으로 지속될 전망이다. 또 디스플레이 모듈 실장 외에 반영의 연성 기판과 경성 기판의 실장에서도 소려티나 납땜 솔더링의 극미세피치 접속능력 및 디자인 자유성, 접속 면적 및 높이 감소 요구에 따라 ACF 접속으로 활발히 대체되고 있는 상황이다. 기존의 솔더를 이용한 플립 접 접속 대신 비솔더 플립 접 공정의 장점이 부각되면서 그 활용도를 높여가고 있고 ACA의 대체제로로서 NCA가 급부상하고 있다. 비솔더 플립 접 공정에 사용되는 비솔더 범프로서는 글 스타퍼 범프나 금 도금범프, 무전결 나이젤, 구리 범프 등이 있으며, 이 경우 높은 용접 때 문에 리플로우에 의한 플립 접 접속이 불가능하므로 ACF에 의한 열압착공정에 의해 플립 접 접속 공정을 수행하고 있다.

그러나 ACF를 사용한 OLBI PCB, COG, COF, Flex-to-Rigid 접속 공정, 플립 접 공정 기술은 기본적으로 열압착공정에 의한 도전입자와 전극 패드, 비솔더 범프와의 기계적 접촉과, 주변 풀리머 수지의 열경화에 의한 접속 공정이다. 이에 따라 접속 압력의 가하는 문제, 풀리머 수지의 균일한 열경화 문제, 빠른 열경화 가동을 얻기 위한 높은 공정 온도와 이에 따른 페키지의 열변형 문제, 그리고 기판 평판도 문제 등의 여러 가지 문제점이 해결되어야 한다. 특히 공정 압력에 비례적 취약한 화합물 반도체 접점이나 실리콘 접점이라 하더라도 두께가 얇은 접의 경우 발생하는 본딩 압력의 한계는 ACF 접속기술을 적용하기에 큰 어려움이 있다. 이러한 문제를 해결하기 위하여, 일본특허출원 2000-349304 등은 조음파를 이용한 플립 접 실장방법을 개시한다. 하지만, 이 경우 조음파인 외부 진동을 접합구조 내의 접합재료에 전달 및 전동시켜 열 에너지를 얻는 방식에서 전자 페키지 구조가 물리적으로 전동함으로 복잡한 페키지 구조에서는 공정 변수의 제약이 있을 수 있다. 아울러, 조음파 발생장치의 외부진동가 가지는 고유 진동수를 변경, 조절하기 어렵다는 문제가 있다.

발명의 상세한 설명

기술적 개요

따라서, 본 발명이 해결하려는 과제는 플리머 접착제료를 사용하여 전자부품을 전기적, 기계적으로 접속 시 발생하는 압, 기계적 손상을 최소화하면서 외부 열원으로부터의 열 공급이 없이 플립 접, 기판과 같은 전자부품을 효과적으로 접속시킬 수 있는 방법 및 장치를 제공하는 것이다.

과제 해결 수단

상기 과제를 해결하기 위하여, 본 발명은 고주파를 이용한 전자부품 접속 방법으로, 상기 방법은 접속시키고자 하는 전자부품에 구비된 접착재에 고주파를 인가하여 자속적으로 발열시킴으로 전기적 및 기계적으로 접합시키는 단계를 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법을
제공한다.


[14] 본 발명의 일 실시예에서 상기 화학적 쌍극자를 가지는 특정의 성분은 폴砕스케일 전기음성도 차이가 0.3 이상인 극성 결합을 하나 또는 두 개 이상 포함하는 화합물을 포함한다.

[15] 본 발명의 일 실시예에서, 또한, 상기 접착제는 폴리머 접착제이며, 상기 폴리머 접착제는 인가되는 상기 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강자성체로부터 이루어진 균으로부터 선택된 어느 하나 또는 2종 이상을 포함하며, 이때 상기 화학적 쌍극자를 가지는 특정의 성분은 폴砕스케일 전기음성도 차이가 0.3 이상인 극성 결합을 하나 또는 두 개 이상 포함하는 화합물을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법을 제공한다.

[16] 상기 또 다른 과제를 해결하기 위하여, 본 발명은 제 1 전극상에 제1 전자부품을 적저하는 단계; 상기 제 1 전자부품상에 접착제를 위치시키고, 상기 제 1 전자부품과 접속되는 제 2 전자부품을 정렬시키는 단계; 상기 제 2 전자부품에 제 2 전극을 접촉시키는 단계; 및 상기 제 1 전극과 제 2 전극을 통하여 상기 접착제에 고주파를 인가하여, 상기 접착제를 발열시키는 단계를 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법을 제공한다.

[17] 본 발명의 일 실시예에서, 상기 제 2 전극과 상기 제 2 전자부품 사이에는 인터포저층이 구비되며, 상기 제 2 전극으로부터 발생하는 고주파는 상기 인터포저층을 발열시킨다. 또한, 상기 인터포저층은 상기 인가되는 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강자성체로부터 이루어진 균으로부터 선택된 어느 하나를 포함한다.

[18] 본 발명의 또 다른 일 실시예에서, 상기 접착제는 상기 인가되는 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강자성체로부터 이루어진 균으로부터 선택된 어느 하나 또는 2종 이상을 포함하며, 본 발명은 상술한 방법에 의하여 기판에 접속된 전자부품을 제공한다.

[19] 상기 또 다른 과제를 해결하기 위하여, 본 발명은 고주파를 이용한 전자부품 접속장치로서, 상기 장치는 스테이지; 상기 스테이지 상에 구비된 제 1 전극; 상기 제 1 전극과 소정 간격으로 이격된 제 2 전극; 및 상기 제 1 전극과 제 2 전극에 연결된 고주파 발생장치를 포함하며, 여기에서 상기 장치는 상기 제 1 전극과 제 2 전극 사이에 구비되는 전자부품에 고주파를 인가하여 상기 전자부품을 접속시키는 것을 특징으로 하는 고주파를 이용한 전자부품 접속장치를 제공한다.
발명의 효과

본 발명에 따른 전자부품 접속방법은 고주파의 전자기계를 이용하여 인터포저 및/또는 폴리머 접착제에 허용된 특정 성분을 발열시킨다. 외부의 열원을 사용하지 않으므로, 저온에서 부품간 접속이 가능하고, 경제적이다. 또한, 접합구조 전체를 진동시키는 초음파 접속방식에 비하여, 화학적 쌍극자를 가지는 특정 성분 등을 고주파의 전자기장으로 발열시키는 본 발명은 외부 진동에 따른 공정 제약이 없다. 아울러, 고정된 전동자를 사용하는 초음파 방식과 달리, 사용자가 공정 조건에 따라 주파수 변조가 용이하므로, 물질 종류에 따라 다양한 조건으로 부품간 접속을 진행할 수 있다.

도면의 간단한 설명

도 1은 동방성 전도성 접착제, 즉 ICA의 비틀려 폴립 점 펌키지 접합 재료로서의 적용예를 설명하는 도면이다.

도 2는 ACF 내 분산된 도전입자가 상부 및 하부 전극 사이에 기계적으로 접촉되어 형성된 전기적 연결에 의해 동전이 이루어지는 방식을 설명하는 도면이다.

도 3은 NCF, NCP를 접합 재료로 사용한 플립 접 접속 공정을 나타내는 도면이다.

도 4는 본 발명에 따른 전자부품 접속방법의 단계도이다.

도 5는 본 발명의 일 실시예에 따른 전자부품 접속 방식을 설명하는 도면이다.

도 6은 이방 전도성 접착제가 사용된 부품 접속방법을 설명하는 도면이다.

도 7은 본 발명의 일 실시예에 따른 전자부품 접속방법의 단계도이고, 도 8 내지 10은 본 발명의 일 실시예에 따른 전자부품 접속방법의 단계별 모식도이다.

도 11 및 12는 본 발명의 일 실시예에 따른 전자부품 접속장치의 모식도이다.

발명의 실시를 위한 형태

이하, 본 발명을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당 업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해서 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 견처서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.

본 발명은 상술한 종래 기술의 문제를 해결하기 위하여, 고주파의 전자기장을 이용하여, 전자부품간 접속, 접합을 유도한다. 즉, 본 발명은 접속시키고자 하는 전자부품을 정렬한 후, 부품과 접촉하는 접착제에 발열 성분에 따라 각기 다른, 수 kHz 이상의 주파수를 갖는 고주파 전자기장(고주파)을, 또는 상기 고주파와
압력을 인가하여 점착제를 발열시킨다(도 4 참조).

[32] 따라서, 본 발명에서 상기 점착제는 고주파에 의하여 발열이 가능한 성분을 하나 이상 포함하는 것이 바람직하다. 예를 들면, 상기 점착제는 인가되는 고주파에 의하여 전동하는 화학적 망극자를 가지는 성분의 성분, 금속 또는 강자성체로부터 이루어진 군으로부터 선택된 어느 하나 또는 2종 이상을 포함할 수 있다. 여기서 화학적 망극자를 가지는 성분은 폴라스케일 전기음성도 차이가 0.3 이상인 극성 결합을 하나 또는 두 개 이상 포함하는 화합물이다.

[33] 본 발명의 또 다른 일 실시에는 전자부품과 고주파 전극 사이에 구비되는 별도의 절연제 층인 인터포저서(interposer)층과 부분 사이에 구비되는 점착제를 고주파 인가로 동시에 발열시킨다. 따라서, 본 발명에 따른 고주파 인가에 의하여 발열되는 중은 상부 부품의 양면에 구비되는 두 개의 층(즉, 인터포저층과 그 반대의 점착제층)이 된다.

[34] 도 5는 본 발명의 일 실시에 따른 전자부품 접속 방식을 설명하는 도면이다.

[35] 도 5를 참조하면, 사용자에 의하여 주파수를 변조시킬 수 있는 고주파 발생기(120)가, 서로 대향하며, 이각된 2개의 전극(100, 110)에 연결된다. 상기 2 개의 전극 중 제 1 전극(110)은 스테이지(S)상에 구비되어, 부품 접속을 하여 아래로 가해지는 힘을 지탱하게 된다. 접속시키고자 하는 제 1 전자부품과 제 2 전자부품(140, 150)은 제 1 전극(110)과 제 2 전극(100)사이에 구비되며, 상기 두 전자부품(140, 150) 사이에는 접착제가 구비된다. 또한, 제 2 전자부품(140)과 고주파를 인가하기 위한 전극(100)사이에는 접착제에 의한 전극 오염을 방지함과 동시에, 인가되는 고주파에 의하여 발열되는 절연체 층인 인터포저층(130)이 구비 됨으로써 공정의 효율을 높일 수 있다.

[36] 이와 같이 전자부품에 인가되는 고주파 전자기장에 의하여 상기 인터포저층(130)과 점착제(160)를 동시에 발열시키는 경우, 부품의 두께와 상관없이 접착제를 경화시킬 수 있으며, 균일한 접착력을 얻을 수 있다. 상기 절연제층인 인터포저층(130) 또한 고주파에 의한 발열 효율을 높이기 위하여, 전극을 통하여 인가되는 고주파에 의하여 발열되는 성분, 예를 들어 화학적 망극자를 가지는 특정의 성분, 금속 또는 강자성체로부터 이루어진 군으로부터 선택된 어느 하나 또는 2종 이상을 포함하는 것이 바람직하다.

[37] 상기 인터포저층(130)이 화학적 망극자를 가지는 화합물을 구성성분으로 포함한 경우, 인가되는 고주파에 의하여 상기 인터포저층(130)의 전부 또는 일부 성분이 전동하며, 이러한 분자단위 전동에 따라 인터포저층(130)은 발열된다. 또한, 인터포저층(130)에 금속 첨가물이 포함된 경우, 인가되는 고주파에 의하여 금속 첨가물 내에 유도 전류가 흐르게 되고, 이에 의한 루열(joule heat)이 인터포저층(130)에 함유된 금속 첨가물 내에서 발생, 인터포저층(130)이 발열된다. 또한, 상기 인터포저층(130)에 강자성체 첨가물이 포함된 경우, 인가되는 고주파 전자기장에 의하여 반복적으로 강자성체의 결정구조가 변형되는 허스테리시스 (hysteresis)에 의해 전자기 에너지는 열 에너지로 바뀌어
인터포저층(130)이 발달된다. 이로써, 본 발명에 따르면, 외부로부터의 가열이나, 물리적 진동 없이도, 자연에서도 전자부품간 접속이 가능하다.

디어가, 본 발명에 따른 부품 접속 방법은 고주파 인가를 위한 전극 사이에 접착제를 위치시키고, 상기 접착제 또는 인터포저층과 동일한 방식으로 발열시키는 기술구성을 제공한다. 따라서, 상기 접착제는 상기 인가되는 고주파에 의하여 진동하는 화학적 반응제를 가지는 특성의 성분, 금속 또는 강자성체로부터 이루어진 용으로부터 선택된 어느 하나 또는 2종 이상을포함하는 것이 바람직하며, 그 형태는 혼합 수지, 구리체 또는 섬유형태일 수 있다.

도 6은 이 방법 전도성 접착제가 사용된 부품 접속방법을 설명하는 도면이다.

도 6을 참조하면, 접착제(160) 내에는 전도성 입자(161)가 구비되는데, 상기 전도성 입자(161)가 고주파에 의하여 발열되는 경우, 고주파에 의한 열 발생효과를 기대할 수 있다.

도 7은 본 발명의 일 실시예에 따른 전자부품 접속방법의 단계도이고, 도 8내지 10은 본 발명의 일 실시예에 따른 전자부품 접속방법의 단계별 도식도이다.

도 8을 참조하면, 제 1 전극(110)상에 플립 첩과 같은 전자부품이 접속되어야 하는 기판이나 청판 제 1 전자부품(150)이 접착된다. 이후, 제 1 전자부품(150)상에 접착제(160)를 위치시키고, 또 다른 제 2 전자부품(140)을 상기 제 2 전자부품(150)에 대응하여 정렬시킨다. 상기 전자부품은 접, 기판 등일 수 있으며, 상기 접착제(160) 또한 이방성 전도성 접착제 또는 비전도성 접착제일 수 있다.

도 9를 참조하면, 상기 제 1 전자부품(150), 접착제(160) 및 제 2 전자 부품(140)으로 구성된 전자 접속 구조 상에 고주파 인가를 위한 제 2 전극(100)을 접촉시키는데, 상기 제 2 전극의 접착제에 의한 오열과 발열 효율을 높이기 위하여 상기 제 2 전극(100)과 제 2 전자부품(150) 사이에는 고주파에 의하여 발열되는 성분을 전부 또는 일부 포함하는 인터포저층(130)이 구비될 수 있다. 인터포저층(130)을 사용하는 경우, 제 2 전자 부품(140)을 접착제(160) 위에 정렬시킨 후, 인터포저층(130)을 상기 제 2 전자부품(140) 위에 적층하고, 제 2 전극(100)을 상기 인터포저층(130) 위에 접촉시킨다.

도 10을 참조하면, 고주파의 인가에 따라 제 2 전자부품(150) 기판과 접하는 인터포저층(130)과 부품 전체에 구비된 접착제(160)가 발열되며, 상기 제 2 전극 (100)으로 압력이 인가될 수 있다. 또한, 인터포저층(130) 제 2 전자부품(140), 접착제(160), 제 1 전자부품(150)의 구조와 두께, 물질종류에 따라 인가되는 고주파의 주파수 범위와 출력, 그리고 압력이 사용자에 의하여 자유롭게 변경될 수 있다. 따라서, 고주파를 이용하여 인터포저층과 접착제만을 선택적으로 발열시킨 본 발명은 별도의 가열수단을 사용하지 않고서도 부품간 접속을 열, 기계적 손상 없이 달성할 수 있다는 장점이 있다.

본 발명은 또한 고주파 인가에 따라 접속된 전자부품을 제공하며, 상기
전자부품은 풀림 점 또는 첨간 작중, 기판간 접속 구조 일 수 있으나, 본 발명의 범위는 이에 제한되지 않는다.

[46] 본 발명은 또한 고주파 안테나에 따라 접속된 전자부품을 제공하며, 상기 전자부품은 풀림 점 또는 첨간 작중, 기판간 접속 구조 일 수 있으나, 본 발명의 범위는 이에 제한되지 않는다.

[47] 더 나아가, 본 발명은 고주파를 이용한 전자부품 접속장치를 제공한다.

[48] 도 11 및 12는 본 발명의 일 실시예에 따른 전자부품 접속장치의 도식도이다.

[49] 도 11을 참조하면, 상기 장치는 전자 부품간 접속을 위하여 부품 정렬, 부품 지지 및 인가되는 알력을 지탱하기 위한 스테이지(S), 상기 스테이지(S) 상에 구비된 제 1 전극(110), 상기 제 1 전극(110)과 소정 간격으로 이격된 제 2 전극(100), 및 상기 제 1 전극(110)과 제 2 전극(100)에 연결된 고주파 발생장치(120)를 포함한다.

[50] 본 발명의 일 실시예에 따르면, 상기 제 1 전극(110)과 제 2 전극(100)은 그 사이에 위치되는 전자부품에 대하여 고주파를 인가하게 되며, 이에 따라 부품 사이에 위치되는 접착제를 발열시킨다. 이로써, 전자부품들은 기계적으로 접합되고, 아울러 전자부품들은 전기적으로도 접합된다.

[51] 또 다른 경우, 상기 제 2 전극(110)에는 인터포저층(130)이 위치되며, 상기 인터포저층(130) 또한 제 2 전극(110)에 의하여 발생한 고주파에 의하여 발열될 수 있다(도 12 참조).

[52] 본 이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 동상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 제한되어야 하고, 이와 균등하거나 또는 동기적인 변형 모두는 본 발명 사상의 범주에 속한다 할 것이다.

[53] 산업상 이용가능성

[54] 본 발명은 고주파 전자기장을 이용하여 전자부품 간을 접속시키는 장비에 적용된다.
청구범위

[청구항 1] 고주파를 이용한 전자부품 접속 방법으로, 상기 방법은 접속시키고자 하는 전자부품에 구비된 접착제에 고주파를 인가하여 자체적으로 발열시킴으로 전기적 및 기계적으로 접합시키는 단계를 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 2] 청구항 1에 있어서, 상기 인가되는 고주파는 상기 전자부품과 접속하는 인터포저(interposer)층을 발열시키는 것을 특징으로 하는 전자부품 접속 방법.

[청구항 3] 청구항 2에 있어서, 상기 인터포저층은 상기 인가되는 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강아성체로부터 이루어진 곤으로부터 선택된 어느 하나 또는 2중 이상을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 4] 청구항 3에 있어서, 상기 화학적 쌍극자를 가지는 특정의 성분은 폴리스케일 전기음성도 차이가 0.3 이상인 극성 결합을 하나 또는 두 개 이상 포함하는 화합물을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 5] 청구항 4에 있어서, 상기 접착제는 폴리머 접착제이며, 상기 폴리머 접착제는 인가되는 상기 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강아성체로부터 이루어진 곤으로부터 선택된 어느 하나 또는 2중 이상을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 6] 청구항 5에 있어서, 상기 화학적 쌍극자를 가지는 특정의 성분은 폴리스케일 전기음성도 차이가 0.3 이상인 극성 결합을 하나 또는 두 개 이상 포함하는 화합물을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 7] 제 1 전극상에 제 1 전자부품을 적치하는 단계; 상기 제 1 전자부품상에 접착제를 위치시키고, 상기 제 1 전자부품과 접속되는 제 2 전자부품을 정렬시키는 단계; 상기 제 2 전자부품에 제 2 전극을 접촉시키는 단계; 및 상기 제 1 전극과 제 2 전극을 통하여 상기 접착제에 고주파를 인가하여, 상기 접착제를 발열시키는 단계를 포함하는 것을
특정으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 8]
청구항 7에 있어서,
상기 제 2 전극과 상기 제 2 전자부품 사이에는 인터포지층이 구비되며, 상기 제 2 전극으로부터 발생하는 고주파는 상기 인터포지층을 발열시키는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 9]
청구항 8에 있어서,
상기 인터포지층은 상기 인가되는 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강자성체로부터 이루어진 균으로부터 선택된 어느 하나를 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 10]
청구항 7에 있어서,
상기 접착제는 상기 인가되는 고주파에 의하여 전동하는 화학적 쌍극자를 가지는 특정의 성분, 금속 및 강자성체로부터 이루어진 균으로부터 선택된 어느 하나 또는 2종 이상을 포함하는 것을 특징으로 하는 고주파를 이용한 전자부품 접속 방법.

[청구항 11]
청구항 7 내지 청구항 10 중 어느 한 항에 따른 방법에 의하여 기판에 접속된 전자부품.

[청구항 12]
고주파를 이용한 전자부품 접속장치로서, 상기 장치는 스테이지;
상기 스테이지 상에 구비된 제 1 전극;
상기 제 1 전극과 소정 간격으로 이격된 제 2 전극; 및
상기 제 1 전극과 제 2 전극에 연결된 고주파 발생장치를 포함하며, 여기에서 상기 장치는 상기 제 1 전극과 제 2 전극 사이에 구비되는 전자부품에 고주파를 인가하여 상기 전자부품을 접속시키는 것을 특징으로 하는 고주파를 이용한 전자부품 접속장치.

[청구항 13]
청구항 12에 있어서,
상기 제 2 전극에는 인터포지층이 구비되며, 여기에서 인터포지층은 상기 전자부품과 접촉하며, 상기 인가되는 고주파에 의하여 발열되는 것을 특징으로 하는 고주파를 이용한 전자부품 접속장치.
부품 정렬

고주파 인가 또는 고주파인가/가압

[Fig. 4]

가압

100

130

140

150

160

110

S

120

[Fig. 5]
[Fig. 6]

[Fig. 7]

제 1 전극상에 기판착지

접촉제 위치, 전자부품 정렬

전자부품에 제 2 전극 접촉

고주파 인가
가압
발열
발열
고주파

[Fig. 10]

[S]

[Fig. 11]

정정용지 (규칙 제91조) ISA/KR
A. CLASSIFICATION OF SUBJECT MATTER

_H01L 21/60 (2006.01)i, H05K 3/32 (2006.01)_i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

_H01L 21/60; B23K 13/01; B05B 5/14; B23K 1/002; C09J 7/02; B05B 5/08; B29C 65/04; B23K 1/00_

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above

Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

_eKOMPASS (KIPO internal)&_ Keywords: "high frequency, heat-radiation, adhesive, electronic parts"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KR 10-0504955 B1 (WASKO CO., LTD.) 08 August 2005</td>
<td>1,11, 2-10, 12, 13</td>
</tr>
<tr>
<td>A</td>
<td>See figures 1-4; page 2, lines 23-54</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>See figures 1, 2; paragraphs [0025]-[0048]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 10-060385 A (SHINKO KAGAKU KOGYO KK) 03 March 1998</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>See figures 1-4; paragraphs [0024]-[0139]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 02-241563 A (TOSHIBA CORP) 26 September 1990</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>See figures 8-10; page 394, bottom of the left column line 2-page 397, top of the left column line 10</td>
<td></td>
</tr>
</tbody>
</table>

See patent family annex.

Date of the actual completion of the international search

04 JULY 2012 (04.07.2012)

Date of mailing of the international search report

09 JULY 2012 (07.09.2012)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office

Government Complex-Daejeon, 139 Seonja-ro, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0504955 B1</td>
<td>08.08.2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2008-521609 A</td>
<td>26.06.2008</td>
<td>CN 101065993 B</td>
<td>26.05.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004057630 B3</td>
<td>30.03.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1817942 A1</td>
<td>15.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-521609 T</td>
<td>26.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2007006354 A</td>
<td>19.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-059025 A1</td>
<td>08.06.2006</td>
</tr>
<tr>
<td>JP 10-060385 A</td>
<td>03.03.1998</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야(IPC))

H011.21/60(2006.01), H05K 3/32(2006.01)

B. 조사된 문헌
조사된 최소문헌(국제특허분야를 기재)
H011.21/60; B23K 13/01; B05B 5/14; B23K 1/002; B05B 5/08; B29C 65/04; B23K 1/00

조사된 문헌(수 있는 최소문헌이외의 문헌)
한국특허출원공보 및 한 buc 특허출원공보: 조사된 최소문헌 및 기재된 IPC
일본특허출원공보 및 일본특허출원공보: 조사된 최소문헌 및 기재된 IPC

한국특허에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
cKOMPASS(특허청 내부 검색시스템) & 기워드: '고주파, 발열, 접착제, 전자부품'

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>K1 10-0504555 B1 ((주)위스코) 2005.08.08</td>
<td>1, 11</td>
</tr>
<tr>
<td>A</td>
<td>도 1-4: 페이지 2, 라인 23 - 라인 54 참조</td>
<td>2-10, 12, 13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2008-521609 A (SAINT-GOBAIN GLASS FRANCE) 2008.06.26</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>도 1, 2: 단락 [0025]~[0046] 참조</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 10-060385 A (SHINKO KAGAKU KOGYO KK) 1998.03.03</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>도 1-4: 단락 [0024]-[0139] 참조</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 02-214563 A (TOSHIBA CORP) 1990.09.26</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>도 8-10: 페이지 394, 좌하단 칸tutorial 라인 2-페이지 397, 좌상단 칸tutorial 라인 10 참조</td>
<td></td>
</tr>
</tbody>
</table>


시석 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 이용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0504955 B1</td>
<td>2005.08.08</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>JP 2008-521609 A</td>
<td>2008.06.26</td>
<td>CN 101065993 B</td>
<td>2010.05.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004057630 B3</td>
<td>2006.03.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1817942 A1</td>
<td>2007.08.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-521609 T</td>
<td>2008.06.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2007006354 A</td>
<td>2007.06.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-0164248 A1</td>
<td>2008.07.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-059025 A1</td>
<td>2006.06.08</td>
</tr>
<tr>
<td>JP 10-060385 A</td>
<td>1998.03.03</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)