(51) International Patent Classification 4 : B01D 19/00, C02F 1/20

(11) International Publication Number: WO 85/00298

(43) International Publication Date: 31 January 1985 (31.01.85)

(21) International Application Number: PCT/GB84/00243

(22) International Filing Date: 9 July 1984 (09.07.84)

(31) Priority Application Number: 8318450

(32) Priority Date: 7 July 1983 (07.07.83)

(33) Priority Country: GB

(71) Applicant (for all designated States except US): THE BRITISH HYDROMECHANICS RESEARCH ASSOCIATION [GB/GB]; Cranfield, Bedford MK43 OAJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PALMER, Murray, Hamilton [GB/GB]; 14 Rectory Orchard, Lavendon, Olney, Buckinghamshire MK46 4HB (GB). LLOYD BLAND, Sarah, Elizbeth [GB/GB]; 7 Dovehouse Close, Broomham, Bedford MK43 8PS (GB).

(74) Agent: EDWARD EVANS & CO.; Chancery House, 53-64 Chancery Lane, London WC2A 1SD (GB).

(54) Title: CONTACTING A GAS AND A LIQUID TO REMOVE AN UNWANTED GAS

(57) Abstract

Sea water containing dissolved oxygen is pumped through a main gas ejector (4) supplied with nitrogen. During flow of the sea water and entrained nitrogen from the main gas ejector (4) to an auxiliary gas ejector (5), part of the entrained nitrogen is dissolved and displaces dissolved oxygen from solution. Most of the mixed nitrogen and oxygen collected in a separation chamber (6) is passed through a catalytic burner (7) to remove the unwanted oxygen which is replaced by nitrogen from a topping-up source (9) and the resultant nitrogen mixture is fed to the main gas ejector (4) which is operated so as to provide sufficient suction to draw gas through the catalytic burner (7). Part of the mixed nitrogen and oxygen collected in the separation chamber (6) is fed to the auxiliary gas ejector (5) which is operated so as to increase the gas to liquid interface. Sea water and entrained nitrogen flow from the auxiliary gas ejector (5) to the separation chamber (6) through a stepped desorption tube (3) which causes additional turbulence and retards the flow of sea water, thereby enhancing the solution of nitrogen and removal of oxygen. Sea water with reduced dissolved oxygen is continuously removed from the separation chamber (6).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Contacting a gas and a liquid to remove an unwanted gas

Technical field
The invention relates to the contact and mass transfer of gas into a liquid with particular application to extract dissolved oxygen from sea water by dissolving nitrogen in its place. The de-oxygenated sea water is then pumped into oil wells drilled in the sea bed.

Background art
In many industrial processes, a gas and a liquid are brought into intimate contact to achieve a transfer of solute gas to or from the liquid solvent.

Gas-liquid reactions with absorption and desorption are widely used in five main fields of the chemical industry, namely:

i) Liquid phase processes : oxidation, hydrogenation, polymerisation, etc.

ii) Gas scrubbing : removal of carbon dioxide, hydrogen sulphide, carbon monoxide, etc.

iii) Manufacture : sulphuric acid, phosphates, etc.

iv) Biological processes : aerobic fermentation, oxidation, etc.

v) Multi and two-phase flow : petrol refining, etc.

Typical examples of the equipment used for such reactions are packed columns, spray columns, plate columns or mechanically agitated vessels. The present invention is concerned with new apparatus which has been developed for the desorption of a gas using a liquid phase process where one gas is replaced in solution by another.
Known apparatus for extracting a dissolved first gas from a liquid comprises a liquid conduit for conveying the liquid; gas/liquid contacting means for dissolving a second gas in the liquid to replace the first gas; and separating means for collecting and removing the first gas driven out of solution from the liquid.

Usually, such a reaction would take place in a packed column, where the column packing is designed to provide a larger interfacial area through which mass transfer can take place. Packed columns must therefore be large to provide sufficient interfacial area. Such large items of equipment can be expensive to manufacture and incur high installation costs. In certain applications, such as North Sea oil rigs, the large size of packed columns can add significantly to the cost of a complete platform.

Disclosure of the invention

According to one aspect of the invention there is provided apparatus for extracting a dissolved first gas from a liquid as set out in Claim 1 of the claims of this specification.

According to another aspect of the invention there is provided a method of extracting a dissolved first gas from a liquid as set out in Claim 6 of the claims of this specification.

An example of the invention will now be described with reference to the accompanying drawing which is a schematic arrangement of apparatus for removing oxygen from sea water by replacing the dissolved oxygen with nitrogen.
In use of the apparatus, for gas stripping, the volume of second gas consumed should be kept to a minimum and this may be achieved by recycling all or part of the free first and second gases discharging from the liquid conduit and passing this mixture of gases through a cleaner such as a catalytic burner or filter device to remove the unwanted first gas.

Thus, in a preferred embodiment, the separating means comprise a separation chamber for receiving liquid and a mixture of free first and second gases discharging from the liquid conduit; cleaning means associated with the or each main gas ejector for removing first gas conveyed from the separation chamber; and main recycling means associated with the or each main gas ejector for conveying free first and second gases from the separation chamber and into the cleaning means and for conveying second gas from the cleaning means to the associated main gas ejector. With this form of apparatus topping-up
means are provided for supplying additional second gas to the or each main gas ejector to replace the first gas removed by the cleaning means; and the or each main gas ejector is operable so as to provide sufficient suction to draw first and second gases from the separation chamber through the associated cleaning means.

Gas flow control means may be provided for adjustably restricting the amount of free first and second gas conveyed from the separation chamber to the cleaning means and for adjustably restricting the amount of second gas supplied from the topping-up means to the or each main gas ejector to replace the unwanted first gas removed in the cleaning means.

In order to increase the volume of second gas entrained in the liquid, the gas/liquid contacting means may comprise at least one auxiliary gas ejector provided in the liquid conduit downstream of the or each main gas ejector, so that no main gas ejector is downstream of any auxiliary gas ejector; and auxiliary recycling means associated with the or each auxiliary gas ejector may be provided for conveying free first and second gases from the separation chamber and into the associated auxiliary gas ejector. Although the recycled gas is slightly impure, the or each auxiliary gas ejector is not required to be operated so as to provide suction for drawing a mixture of gases through a cleaning device for the removal of the unwanted first gas and so can be designed and operated so as to improve the gas to liquid contact areas. High gas to liquid flow ratios can be maintained while at the same time the second gas is continuously purified.

Apparatus embodying the invention is hereinafter described, by way of example, with reference to the accompanying drawing.

Brief description of the drawing

The drawing is a schematic arrangement of apparatus for removing oxygen from sea water by replacing the dissolved oxygen with nitrogen.
Modes for carrying out the invention

In the apparatus shown in the drawing, sea water containing dissolved oxygen is pumped by a pump 18 through an inlet pipe 1 to a main gas ejector 4 comprising a convergent nozzle 19 connected to the inlet 5 pipe 1, a mixing chamber 20 opening into a mixing tube 2, and a first gas pipe 8 for supplying nitrogen to the mixing chamber 20. Liquid flow through the main gas ejector 4 creates a low pressure region within the chamber 20 and so nitrogen is drawn into the chamber 20 and mixes with the sea water as it passes up the mixing tube 2. The resultant liquid/gas mixture then discharges into an auxiliary gas ejector 5 formed by the lower, inlet end 11 of a mixing tube 3 which surrounds the outlet end 21 of the mains gas ejector mixing tube 2 and is provided with a second gas pipe 10. Flow of liquid through the auxiliary gas ejector 5 creates a low pressure region in the inlet end 11 of the mixing tube 3 and thus draws in further gas from the gas pipe 10. The resultant liquid/gas mixture passes up the mixing tube 3 and discharges from the mixing tube 3 into a separation chamber 6 surrounding the upper, outlet end 12 of the mixing tube 3. To reduce the velocity of the flow as it discharges into the separation vessel 6, the cross section of the mixing tube 3 is increased at steps 22 and 23 provided to cause additional turbulence and to retard the flow.

Although, in the apparatus shown in the drawing, the sea water passes vertically upwards through the main and auxiliary gas ejectors 4 and 5, this is not necessary at the high rates of liquid flow during normal operation. Similarly, it is not necessary for the mixing tube 3 to extend vertically into the separation vessel 6.

Sea water is removed from the separation chamber 6 through an outlet pipe 13 through a valve 14 controlled by a float sensor 15, the valve 14 and sensor 15 operating to maintain the level 16 of sea water 17 within the separation chamber 6 between predetermined limits.

The free gas issuing into the separation chamber 6 contains a
proportion of unwanted oxygen which has been stripped from solution in the sea water and this gas mixture leaves the separation chamber 6 through outlet 24 and is split into two streams flowing in pipes 8 and 10 providing main and auxiliary recycling means respectively associated with the main gas ejector 4 and the auxiliary ejector 5. The stream passing through pipe 8 also passes through a catalytic burner 7 which removes the unwanted oxygen whereas the stream passing through pipe 10 passes to the auxiliary gas ejector 5. The flow rate in the pipe 10 is monitored by a flow meter 25 which controls a valve 26, whereas the flow rate in the pipe 8 is monitored by a flow meter 27 and controlled by valves 28 and 29, the valve 29 controlling the flow of pure nitrogen from a separate source 9 in order to make up for the oxygen removed in the catalytic burner 7. In an alternative arrangement, the source 9 of pure nitrogen may be omitted and fresh air may be admitted into the system via valve 29. In this case, unwanted oxygen is removed in the catalytic burner 7 so that the gas fed through the first gas pipe 8 is predominantly nitrogen, as required.

In tests using fresh water with a liquid flow rate of about one litre per second, discharging at a pressure of 2.5 bar into the separation chamber 6, two litres per second of nitrogen is entrained in the flow by a suction pressure of 100mm of mercury. The mixing action in the transfer pipe 2 reduces the oxygen concentration in the water from 10ppm to 0.6ppm. This gas/liquid mixture entrains a further two 25 litres per second of nitrogen as it discharges into the mixing tube 3 where it creates a suction pressure of 25mm of mercury. The mixing action in the mixing tube 3 further reduces the oxygen level to 0.25ppm and the water is discharged with this oxygen concentration. Nitrogen flow rates are two litres per second through first and 30 second gas pipes 8 and 10 and two litres per second through the catalytic burner 7. The catalytic burner must remove the oxygen released from the water, namely 9.75mg per second and approximately 5mg per second nitrogen will be required to replace the nitrogen dissolved in the water in place of the oxygen. This can be supplied by passing 6.25mg per second of air through the valve 29 which, on
passing through the catalytic burner 7 will have the oxygen removed, leaving 5mg per second nitrogen.
Claims

1. Apparatus, for extracting a dissolved first gas from a liquid, comprising:

 a liquid conduit (1 to 3) for conveying the liquid;

 at least one main gas ejector (4) provided in the liquid conduit (1 to 3) and supplied with the second gas for dissolving the second gas in the liquid to replace the first gas; and a separation chamber (6) for receiving liquid and a mixture of free first and second gases discharging from the liquid conduit (1 to 3);

 characterised by:

 cleaning means (7) associated with the or each main gas ejector (4) for removing first gas conveyed from the separation chamber (6); and the or each main gas ejector (4) being operable so as to provide sufficient suction to draw first and second gases from the separation chamber (6) through the associated cleaning means (7).

2. Apparatus, according to Claim 1, comprising main recycling means (8) associated with the or each main gas ejector (4), for conveying free first and second gases from the separation chamber (6) and into the cleaning means (7) and for conveying second gas from the cleaning means (7) to the associated main gas ejector (4); and
tapping-up means (9) are provided for supplying additional second gas to the or each main gas ejector (4) to replace the first gas removed by the cleaning means (7).

3. Apparatus, according to Claim 2, in which:

the gas/liquid contacting means (4 and 5) comprise at least one auxiliary gas ejector (5) provided in the liquid conduit (1 to 3) downstream of the or each main gas ejector (4), so that no main gas ejector (4) is downstream of any auxiliary gas ejector (5); and

auxiliary recycling means (10) associated with the or each auxiliary gas ejector (5) are provided for conveying free first and second gases from the separation chamber (6) and into the associated auxiliary gas ejector (5).

4. Apparatus, according to Claim 2 or Claim 3, in which:

the downstream end of the liquid conduit (1 to 3) comprises a mixing tube (3) extending upwardly into the separation chamber (6) and having an inlet end (11), an outlet end (12) disposed within the separation chamber (6), and divergent sides so that the cross-section of the mixing tube (3) is greater at the outlet end (12) than at the inlet end (11); and
liquid control means (13 to 15) are provided for maintaining the level (16) of the liquid (17) in the separation chamber (6) between predetermined limits.

5. Apparatus, according to Claim 4, in which the lower end (11) of the mixing tube (3) forms part of an auxiliary gas ejector (5).

6. A method of extracting a dissolved first gas from a liquid, including the steps of:

passing the liquid through a liquid conduit (1 to 3);

dissolving a second gas in the liquid by passing the liquid through at least one main gas ejector (4) provided in the liquid conduit (1 to 3) and supplied with the second gas to replace the first gas; and

collecting the first gas driven out of solution from the liquid and second gas entrained in the liquid in a separation chamber (6); characterised by:

conveying at least part of this mixture from the separation chamber (6) to cleaning means (7) associated with the or each main gas ejector (4) for removing first gas conveyed to the cleaning means (7); and the or each main gas ejector (4) is operated so as to provide sufficient suction to draw first and second gases from the separation chamber (6) and into the associated cleaning means (7).

7. A method, according to Claim 6, in which:
second gas is conveyed to the or each main gas ejector (4) from the associated cleaning means (7) and from topping-up means (9) for supplying additional second gas to replace the second gas removed by the cleaning means (7).

8. A method, according to Claim 6 or Claim 7, in which the second gas is dissolved in the liquid by conveying part of the gas mixture collected in the separation chamber (6) to at least one auxiliary gas ejector (5) provided in the liquid conduit (1 to 3) downstream of the or each main gas ejector (4), so that no main gas ejector is downstream of any auxiliary gas ejector (5).

9. A method, according to any one of Claims 6 to 8, in which:

the liquid and the entrained mixture of free first and second gases are separated by being fed into the separation chamber (6) through an upwardly extending mixing tube (3) having an inlet end (11), an outlet end (12) disposed within the separation chamber (6), and divergent sides so that the cross-section of the mixing tube (3) is greater at the outlet end (12) than at the inlet end (11); and

the level (16) of liquid (17) in the separation chamber (6) is
maintained between predetermined limits.

10. A method, according to Claim 9, in which liquid passing through the mixing tube (3) is subjected to turbulence induced by providing at least one stepped increase in the cross-section of the mixing tube (3).

11. Apparatus, for extracting a dissolved first gas from a liquid, substantially as hereinbefore described with reference to and as illustrated in the accompanying drawing.

12. A method of extracting a dissolved first gas from a liquid, substantially as hereinbefore described with reference to the accompanying drawing.
INTERNATIONAL SEARCH REPORT

International Application No: PCT/GB 84/00243

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| IPC | B 01 D 19/00; C 02 F 1/20 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>B 01 D; C 02 F</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, P</td>
<td>WO, A/83/02402 (BRITISH HYDROMECHANICS RESEARCH ASSOCIATION) 21 July 1983 see page 3, line 19 - page 4, line 5; page 5, line 21 - page 6, line 14; figure 3</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>FR, A, 2345397 (BROWN, BOVERI CIE.) 21 October 1977 see page 2, lines 1-8</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1531537 (THE BRITISH PETROLEUM) 8 November 1978 see page 1, lines 9-16, 54-63; page 1, line 81 - page 2, line 70; claims 1-5; figures</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DE, A, 3143459 (D. WIELAND) 11 May 1983 see page 13, line 1 - page 15, line 17; figure 1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 15
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 * "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 4th October 1984

Date of Mailing of this International Search Report: 19 OCT. 1984

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: G.L.M. Kruissenberg

Form PCT/ISA/210 (second sheet) (October 1995)
This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 11/10/84.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-A- 2345397</td>
<td>21/10/77</td>
<td>DE-A- 2709722</td>
<td>29/09/77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 598142</td>
<td>28/04/78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-A- 150377</td>
<td>15/03/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-B- 353194</td>
<td>25/10/79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1576057</td>
<td>01/10/80</td>
</tr>
<tr>
<td>GB-A- 1531537</td>
<td>08/11/78</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>DE-A- 3143459</td>
<td>11/05/83</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex:
see Official Journal of the European Patent Office, No. 12/82