

US 20090162834A1

(19) **United States**

(12) **Patent Application Publication**
Fishman

(10) **Pub. No.: US 2009/0162834 A1**

(43) **Pub. Date: Jun. 25, 2009**

(54) **MOLECULAR SEQUENCE OF SWINE
RETROVIRUS AND METHODS OF USE**

(75) Inventor: **Jay A. Fishman**, Wellesley, MA
(US)

Correspondence Address:

**CHOATE, HALL & STEWART LLP
TWO INTERNATIONAL PLACE
BOSTON, MA 02110 (US)**

(73) Assignee: **The General Hospital
Corporation**, Boston, MA (US)

(21) Appl. No.: **12/334,602**

(22) Filed: **Dec. 15, 2008**

Related U.S. Application Data

(60) Continuation of application No. 10/723,552, filed on Nov. 26, 2003, now Pat. No. 7,465,573, which is a

division of application No. 09/661,858, filed on Sep. 14, 2000, now Pat. No. 6,699,663, which is a division of application No. 08/766,528, filed on Dec. 13, 1996, now Pat. No. 6,190,861, which is a continuation-in-part of application No. 08/572,645, filed on Dec. 14, 1995, now abandoned.

Publication Classification

(51) **Int. Cl.**
C12Q 1/70 (2006.01)
C07K 16/18 (2006.01)
A61K 39/21 (2006.01)

(52) **U.S. Cl.** *435/5*; 530/387.9; 424/187.1

ABSTRACT

Purified nucleic acid which can specifically hybridize with the sequence of swine retroviruses.

CTCGAGACTC GGTGGAAGGG CCCTTATCTC GTACTTTTGA CCACACCAAC	50	(SEQ ID NO: 1)
GGCTGTGAAA GTCGAAGGAA TCTCCACCTG GATOCATGCA TCCCAOGTTA	100	
AGCCGGCGCC ACCTCCCGAT TCGGGGTGGA AAGCCGAAAA GACTGAAAAT	150	
CCCTTAAGC TICGCTCCA TCGCGTGGTT CCTTACTCTG TCAATAACCT	200	
CTCAGACTAA TGGPATGCGC ATAGGAGACA GCGTGAACTC CCATAAACCC	250	
TTATCTCTCA CCTGGTTAAT TACTGACTCC GGCACAGGTA TTAATATCAA	300	
CAACACTCAA GGGGAGGCTC CTITAGGAAC CTGGTGGCCT GATCTATAAG	350	
TTTGCCTCAG ATCAGTTATT CCTAGTCTGA CCTCACCCCC AGATATOCCTC	400	
CATGCTCAOG GATTTTATGT TTGCCCCAGGA CCACCAAATA ATGGAAAACA	450	
TTTGGAAAT CCCAGAGATT CTTTTGTAA ACAATGGAAC TGTGTAAACCT	500	
CTAATGATGG ATATTGGAAA TGGCCAACCT CTCAGCAGGA TAGGGTAAGT	550	
TTTCTTATG TCAACACCTA TACCAAGCTC GGACAATTAA ATTACCTGAC	600	
CTGGATTAGA ACTGGAAGCC CCAAGTGCTC TCTTCAGAC CTAGATTACC	650	
TAAAAATAAG TTTCAGTGG AAAGGAAAAC AAGAAAATAT CCTAAATTGG	700	
GTAAATGGTA TGTCTGGGG AATGGTATAT TATGGAGGCT CGGGTAAACA	750	
ACCAGGCTCC ATTCTAACTA TICGCTCAA AATAAACCAG CTGGAGCCTC	800	
CAATGGCTAT AGGACCAAAT ACGGTCTTGA CGGGTCAAAG ACCCCCCAACC	850	
CAAGGACCA GACCATCTC TAACATAACT TCTGGATCAG ACCCCACTGA	900	
GTCTAGCAGC ACGACTAAAA TGGGGCAAA ACTTTTGTAC CTCATCCAGG	950	
GAGCTTTCA AGCTCTAAC TCCACGACTC CAGAGGCTAC CTCCTCTTGT	1000	
TGGCTATGCT TAGCTTGGG CCCACCTTAC TATGAAGGAA TGGCTAGAAG	1050	
AGGGAAATTC AATGTGACAA AAGAACATAG AGACCAATGC ACATGGGAT	1100	
CCCAAAATAA GCTTACCCCT ACTGAGGTTT CTGGAAAAGG CACCTGCATA	1150	
GGAAAGGTTTCC CCCATCCCA CCAACACCTT TGTAACCACA CTGAAGCCTT	1200	
TAATCAAACC TCTGAAAGTC AATATCTGGT ACCCTGGTTAT GACAGGTGGT	1250	
GTAA TACTGGATTA ACGCTTGIG TTTCCACCTT GGTTTTAAC	1300	

FIGURE 1

CAAACCTAAAG ATTTTTGCAT TATGGTCCAA ATTTGTCCTT GAGTGTATTA 1350 (SEQ ID NO: 1) cont'd
CTATCCCGAA AAAGCAATCC TTGATGAATA TGACTACAGA AATCATCGAC 1400
AAAAGAGAGA ACCCATATCT CIGACACTTG CTGIGATGCT CGGACTTGGA 1450
GIGGCAGCAG GTGTAGGAAC AGGAACAGCT GCGCTGGTCA CGGGACCACA 1500
GCAGCTAGAA ACAGGACTTA GTAACCTACA TOGAATTGTA ACAGAAGATC 1550
TCCAAGCCCT AGAAAAATCT GTCAAGTAACC TGGAGGAATC CCTAACCTCC 1600
TTATCTGAAG TAGCTCTACA GAATAGAAGA CGGTTAGATT TATTATTTCT 1650
AAAAGAAGGA GGATTATGIG TAGCCTTGAA CGAGGAATGC TGTTTTTATG 1700
TGGATCATTC AGGGGCCATC AGAGACTCCA TGAACAAACT TAGAGAAAGG 1750
TGGAGAAGC GTGCAAGGGA AAAGGAAACT ACTCAAGGGT CGTTTGAGGG 1800
ATGGITCAAC AGGICCTCCCTT GGTTGGCTAC CCTACCTTCT GCTTTAACAG 1850
GACCCCTTAAT AGTCCCTCTC CTGTTACTCA CAGTTGGGCC ATGTATTATT 1900
AACAAAGTTAA TTGCTTTCAT TAGAGAACGA ATAAGIGCAG TCCAGATCAT 1950
GGTACTTACA CAACAGTACC AAAGCCCGTC TAGCAGGGAA GCTGGCCGCT 2000
AGCTCTACCA GTTCTAAGAT TAGAACTATT AACAAAGAGAA GAAGTGGGGA 2050
ATGAAAGGAT GAAAATACAA CCTAAGCTAA TGAGAAGCTT AAAATIGTC 2100
TGAATTCAG AGTTTGTCTC TTATAGGAA AAGATAGGT TTTTTGCTGT 2150
TTTAAATAT GCGGAAGTAA AATAGGCCCT GAGTACATGT CTCTAGGCAT 2200
GAAACTCTCTT GAAACTATTT GAGATAACAA GAAAAGGGAG TTCTTAACIG 2250
CTTGTGTTAGC TCTCTGAAAA CTGGTTGGC CATAAAGATG TTGAAATGTT 2300
GATACACATA TCTTGGGAC AACATGTCCTC CCCCACCCCG AAACATGCCC 2350
AAATGIGTAA CTCTAAAACA ATTTAAATTA ATGGTCCAC GAAGGCGGG 2400
CTCTCGAAGT TTAAATGAA CTGGTTGIG ATATTTGAA ATGATTTGGTT 2450
TGTAAGGCG GGGCTTGTCT GTGAACCCCA TAAAAGCTGT CCCGACTCCA 2500
CACTGGGGGC CGCAGTCCTC TACCCCTGCG TGGTGTACGA CTGTTGGGCC 2550

FIGURE 1, CONT.

CAGCGCGCTT GGAATAAAAAA TCCCTCTTGCT GTTTCATCA AGACCGCTTC 2600 (SEQ ID NO: 1) cont'd
TGGTGGAGTGTA TTAAGGGGAG TGGCTTTCGCT CGAGCGTGGG CGTTCTTTT 2650
GCTGGTCCTTA CATTGGGGGG CTOGTCCGGG ATCTGTCGOG CCCACCCCTA 2700
ACACCCGAGA ACCGACTTGG AGGTAAAAAG GATCCCTTTT TPAACGTGTA 2750
TGCATGTACC GGCAGGGGTC TCTGTTCTGA GTGTCTGTTT TCAGTGGTGC 2800
GOGCTTCGG TTTCCAGCTG TCTCTCAGG CGTAAAGGGC TGGGGACTG 2850
TGATCAGCAG ACCTGCTAGG AGGATCACAG GCTGCTGCC TGGGGACGC 2900
CCGGGAGGT GAGGAGAGCC AGGGACGCT CGTGGCTOC TACTGTGGT 2950
CAGAGGACCG AATTCTGTTG CTGAAGCGAA AGCTTCCCCC TCCCGACCG 3000
TCCGACTCTT TTGCTTGCTT GTGGAATAAG TGGACGGGTC ACCTGTTCT 3050
GGATCTGTTG GTTCTGTTT TGCTGTCCT TGCTTCTGTT GTCTTGTCT 3100
ACAGTTTAA TATGGACAG ACGGTGACCA CCCCTCTTGT TTGACTCTC 3150
GACCATTGGA CTGAAGTTAA ATCCAGGGCT CATAATTGT CAGTCAGGT 3200
TAAGAAGGGC CCTTGGCAGA CTTCCTGTTG CTCGAATGG CGACATTGG 3250
ATGTTGGATG GOCATCAGAG GGGACCTTTA ATTCTGAGAT TATCTGGCT 3300
GTAAAGCAA TTATTTTCA GACTGGACCC GGCTCTCATC CGATCAGGA 3350
GCOCTATACT CTTAOGTGGC AAGATTGTC AGAGGATCTT CGCCATGGG 3400
TTAAACCAAG GCTGAATAAG CCAAGAAAGC CAGGTCCCCG AATTCTGGCT 3450
CTTGGAGAGA AAAACAAACA CTOGGCTGAA AAAGTCAGC CCTCTCCCTA 3500
TATCTACCCC GAGATTGAGG AACCAACGGC TTGGCCGGAA CCCCAATCTG 3550
TTCCCCCACC CCCCTATCTG GCACAGGGTG CGCGAGGGG ACCCTTTGCG 3600
CTCTCTGGAG CTCTGGGGGT GGAGGGACCT TCTGCAAGGGA CTGGAGCG 3650
GAGGGGCGCC ACCCGGGAGC GGACAGACCA GATCGCGACA TTACCGCTGC 3700
GCACGTACGG CCCTCCCCACA CGGGGGGGCC AATTCAGCC CCTCCAGTAT 3750
TGGCCCTTTT CTCTGCAGA TCTCTATAAT TGGAAAACIA ACCATCCCCC 3800

FIGURE 1, CONT.

TTTCTGGAG GATCCCCAAC GCCTCACGGG GTGGGGAGG TCCCTTAATGT 3850 (SEQ ID NO: 1) cont'd
TCTCTCACCA GCCTACTTGG GATGATTGTC AACAGCTGCT GCAGACACTC 3900
TTTACAACCG AGGAGCGAGA GAGAACTCTA TTAGAGGCTA GAAAAAAATGT 3950
TCCCTGGGCC GACGGGCGAC CCACCGGGTT GCAAAATGAG ATTGACATGG 4000
GATTTCCCTT AACTCGCCCC GGTTGGGACT ACAACACGGC TGAAGGTAGG 4050
GAGAGCTTGA AAATCTATCG CCAGGCTCTG GTGGGGGTC TCCGGGGCGC 4100
CTCAAGACGG CCCACTAATT TGGCTAAGGT AAGAGAAGTG ATGCAGGGAC 4150
CGAATGAACC CCCCTCTGTT TTCTCTGAGA GGCTCTTGGA AGCCTTCAGG 4200
CGGTACACCC CTTTGATCC CACCTCAGAG GCCCCAAAAG CCTCAGTGGC 4250
TTTGGCTTT ATAGGACAGT CAGCCTTGG AATTAGAAAG AAGCTTCAGA 4300
GACTGGAAGG GTTACAGGAG GCCTGAGTAC GTGATCTAGT GAAGGAGGCA 4350
GAGAAAGTAT ATTACAAAAG GGAGACAGAA GAAGAAAGGG AACAAAGAAA 4400
AGAGAGAGAA AGAGAGGAAA GGGAGGAAAG ACCTAATAAA CGCCAAGAGA 4450
AGAATTTCAC TAAGATCTTG GCTCCAGTGG TTGAAGGGAA AACCAATACG 4500
GAAAGAGAGA GAGATTTAG GAAAATTAGG TCAGGCCCTA GACAGTCAGG 4550
GAACTGGGC AATAGGAACC CACTCGACAA GGACCAATGT GCATATTGTA 4600
AAGAAAGAGG ACACCTGGCA AGGAACCTGCC CCAAGAAGGG AAACAAAGGA 4650
CCAAGGATCC TAGCTCTAGA AGAAGATAAA GATTAGGGGA GAOGGGGTTC 4700
GGACCCCTC CGCGAGGCCA GGGTAACCTT GAAGGTGGAG GGGCAACCAG 4750
TTGAGTTCTT GGTTGATACC GGAGCGAAAC ATTCACTGCC ACTACAGGCCA 4800
TTAGGAAAAC TAAAAGATAA AAAATCTGG GTGATGGGTG CACAGGGCAA 4850
CAACAGTATC CATGGACTAC CGGAAGACAG TTGACTTGGG AGTGGGACGG 4900
GTAACCCACT CGTTTCTGGT CATAACCTGAG TGCCCAGCAC CCCTCTTCTAGG 4950
TAGAGACTTA TTGACCAAGA TGGGAGCACA AATTCTTTT GAACAAGGGA 5000
AACCGAGAGT GTCTGCAAAT AACAAACCTA TCACCTGTT GACCCCTCCAA 5050

FIGURE 1, CONT.

TTAGATGAAG AATATCGACT ATACTCTCCC CTAGTAAAGC CTGATCAAAA 5100 (SEQ ID NO: 1) cont:
TATACAATTC TGGTTGGAAC AGTTTCCCCA AGCCTGGGCA GAAACOGCAG 5150
GGATGGGTTT GGCAAAGCAA GTTCCCCAC AAGTTATTCA ACTGAAGGCC 5200
AGTGCACAC CAGIGTCAGT CAGACAGTAC CCCTTGTAGTA AAGAAGCTCA 5250
AGAAGGAATT CGGCCGCATG TCCAAAGATT AATCCAACAG GGCATCTAG 5300
TTCCCTGTCCA ATCTCCCTGG AATACTCCCC TGCTACCGGT TAGAAAGCCT 5350
.GGGACTAAATG ACTATOGACC AGTACAGGAC TTGAGAGAGG TCAATAAACG 5400
GGTGCAGGAT ATACACCCAA CAGTCCCGAA CCCTTATAAC CTCCTGTGIG 5450
CTCTCOCCACC CCAACGGAGC TGGTATACAG TATTGGACTT AAAGGATGCC 5500
TTCTTCTGCC TGAGATTACA CCCCACTAGC CAACCACTTT TTGCTCTCGA 5550
ATGGAGAGAT CCAGGTACGG GAAGAACCGG GCAGCTCACC TGGACCCGAC 5600
TGCCCCAAGG GTICAAGAAC TOCCOGACCA TCTTIGACGA AGCCCTACAC 5650
AGAGA CCTGG CCAACTTCAG GATCCAACAC CCTCAGGTGA CCCTCTCCA 5700
GTACCGTGGAT GACCTGCTTC TGGGGGGAGC CACCAAACAG GACTGCTTAG 5750
AAGGCACGAA GGCACTACTG CTTGAATTGT CTGACCTAGG CTACAGAGCC 5800
TCTGCTAAGA AGGCCAGAT TTGCAAGGAGA GAGGTAAACAT ACITGGGTA 5850
CAGTTTACGG GACGGCAGC GATGGCTGAC GGAGGCACGG AAGAAAATG 5900
TAGTCCAGAT ACCGGCCCA ACCACAGCCA AACAAATGAG AGAGTTTTTG 5950
GGGACACCTG GATTTTGCAG ACTGTGGGATC CGGGGGTTTG CGACCTTAGC 6000
AGCCCCACTC TACCCGCTAA CCAAAGAAAA AGGGGAATTTC TCCCTGGCTC 6050
CTGAGCACCA GAAGGCATTT GATGCTATCA AAAAGGCCCT GCIGAGCGCA 6100
CCTGCTCTGG CCCTCCCTGA CGTAACTAAA CCCTTTACCC TTTATGTGGA 6150
TGAGCGTAAG GGAGTAGCCC GCGGAGTTTT AACCCAAACC CTAGGACCAT 6200
CGAGAAAGACC TGTGCGCTAC CTGTCAAAGA AGCTCGATCC TGTAGCCAGT 6250
GGTTGGGCCA TATGCCCTGAA GGCTATCGCA GCCTGIGGCCA TACIGGGCAA 6300

FIGURE 1, CONT.

GGACGCTGAC AAATTGACTT TGGGACAAGA ATATAACTGT AATAGCCCCC	6350	(SEQ ID NO: 1) cont'd
CATGCATTGG AGAACATCGT TOGGCAGCCC CCAGACCGAT GGATGACCAA	6400	
CGCCCGCATG ACCCACTATC AAAGCCTGCT TCTCACAGAG AGGGTCACGT	6450	
TCGCTCCACC AACCGCTCTC AACCCCTGCCA CTCTCTGCC TGAAAGAGACT	6500	
GATGAACCAG TGACTCATGA TTGOCATCAA CTATTGATTG AGGAGACTGG	6550	
GGTCCGCAAG GACCCTACAG ACATACCGCT GACTGGAGAA GTGCTAACCT	6600	
GGTTCACTGA CGGAAGCAGC TATGIGGTGG AAGGTAAGAG GATGGCTGGG	6650	
GGGGGGTGG TGGACGGGAC CGGCACGATC TGGGOCAGCA GCGTGCCTGGG	6700	
AGGAACCTCA GCACAAAAGG CTGAGCTCAT GGCCTCACG CAAGCTTTC	6750	
GGCTGGCGA AGGGAAATCC ATAAACATTT ATACGGACAG CAGGTATGCC	6800	
TTTGGGACTG CACACGTACA TGGGGCCATC TATAAACAAA GGGGGTTGCT	6850	
TACCTCAGCA GGGAGGGAAA TAAAGAACAA AGAGGAAATT CTAAGCTTAT	6900	
TAGAAGCGT ACATTTACCA AAAAGGCTAG CTATTTATACA CTGTCCTGGA	6950	
CATCAGAAAG CAAAGATCT CATACTCAGA GGAAACCAGA TGGCTGACCG	7000	
GGTTGCGAAG CAGGCAGGCC AGGGGTTAA CCTCTCTGCC ATAATAGAAA	7050	
TGCCCAAAGC CCCAGAACCC AGACGACAGT ACACCCCTAGA AGACTGGCAA	7100	
GAGATAAAAA AGATAGACCA TCTCTGAGA CTCCGGAAGG GACCTGCTAT	7150	
ACCTCAGATG CGAAGGAAAT CCTGCCCCAC AAAGAAGGGT TAGAATAATGT	7200	
CCAACAAGAT ACATCGCTCA ACCCACCTAG GAACTAAACA CCTGGCAGCAG	7250	
TTGGTCAGAA CATCCCCCTA TCACTGTTCTG AGGCTACCAAG GAGTGGCTGA	7300	
CTCGGTGGTC AAACATGIG TGCCCTGCGA GCTGGTTAAT CCTAATCCCT	7350	
CCAGAAATGCC TCCAGGGAAAG AGACTAACGG GAAGCCACCC AGCGCTCAC	7400	
TGGGAAGTGG ACTTCACTGA GGTAAAGCCG GCTAAATATG GAAACAAATA	7450	
CCTATGGTT TTCTGTAGACA CCTTTTCAGG ATGGGTAGAG CCTTATCCTA	7500	
CTAAGAAAGA GACTTCAACC GTGGTAGCTA AAAAATACT GGAAGAAATT	7550	

FIGURE 1, CONT.

TTTCCAAGAT TTGGAATACC TAAGGTAATA GGGTCAGACA ATGGTCCAGC	7600	(SEQ ID NO: 1) cont'd
TTTTGTTGOC CAGGTAAGTC AGGGACTGGC CAAGATATTG GGGATTGATT	7650	
GGAAACTGCA TTGTCATAC AGACCCCCAA GCTCAGGACA GGTAGAGAGG	7700	
ATGAATAGAA CCATTAAGA GACCCCTACT AAATTGACCG CGGAGACTGG	7750	
CGTAAATGAT TGGATAGCTC TCTGCCCT TGTCCTTTT AGGGTTAGGA	7800	
ACACCCCTGG ACAGTTTGGG CTGACCCCT ATGAATTACT CTACGGGGGA	7850	
CCCCCCCCAT TGGTAGAAAT TGCTTCCTA CATAGTGCTG ATGTGCTGCT	7900	
TTCCCAAGCCT TTGTTCTCTA GGCTCAAGGC ACTTGAGTGG GTGAGACAAC	7950	
GAGGGTGGAG GCAACTCOGG GAGGCCCTACT CAGGAGGAGG AGACTTGCAG	8000	
ATCCACACATC GTTCCAAGT GGGAGATTCA GTCTACGTTA GACGCCACCG	8050	
TGCAGGAAAC	8060	

(SEQ ID NO: 2)

```

      10      20      30      40      50      60
      *      *      *      *      *      *
CTAACCCCTGC GTGGTGTACG ACTGTGGGCG CCAGCGCGCT TGGAAATAAA ATCCTCTTGC

      70      80      90      100      110      120
      *      *      *      *      *      *
TGTTCGCATC AAGACCGCTT CTTGTGAGTGT ATTGGGGTG TGGCTCTTC CGAGCCCCGA

      130      140      150      160      170      180
      *      *      *      *      *      *
CGAGGGGGAT TGTCTTTTA CTGGCCTTTC ATTGGTGGCG TTGGCGGGGA AATCCTGCGA

      190      200      210      220      230      240
      *      *      *      *      *      *
CCACCCCTTA CACCCGAGAA CGACTTGGG GGTAAAGGGG TCCCCTTGG AACATAATGTG

      250      260      270      280      290      300
      *      *      *      *      *      *
TGTGTGGGCC GGCGCTCTTG TTCTGAGTGT CTGTTTTCGG TGATGGCGC TTTCGGTTG

      310      320      330      340      350      360
      *      *      *      *      *      *
CAGCTGCTCT CTCAGACCGT AAGGACTTGGG GGACTGTGAT CAGCAGACGT GCTAGGAGGA

      370      380      390      400      410      420
      *      *      *      *      *      *
TCAAGGCTG CCACCCCTGGG GGAGGCGCCCG CGAGGTGGGG AGAGCCAGGG AGCCCTGGTG

      430      440      450      460      470      480
      *      *      *      *      *      *
GTCCTACT GTGGGTAGA GGACCGAGT CTGTTGTTGA ACCGAAAGCT TCCCCTCTCG

      490      500      510      520      530      540
      *      *      *      *      *      *
CGCCCGCTCG ACTCTTTTGC CTGCTTGTGG AAGACCGGGG CGGGTCCGGT GTGCTGGAT

      550      560      570      580      590      600
      *      *      *      *      *      *
CTGTTGGTTT CTGTTTGTG TGCTCTTGTCT TTGTGGCGCC TTGTCTACAG TTTTAAT ATG
                                         Met>

      610      620      630      640
      *      *      *      *
GGA CAG ACA GTG ACT ACC CCC CTT AGT TTG ACT CTC GAC CAT TGG ACT
Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Asp His Trp Thr>

      650      660      670      680      690
      *      *      *      *
GAA GTT AGA TCC AGG GCT CAT AAT TTG TCA GTT CAG GTT AAG AAG GGA
Glu Val Arg Ser Arg Ala His Asn Leu Ser Val Gln Val Lys Lys Gly>

      700      710      720      730      740
      *      *      *      *
CCT TGG CAG ACT TTC TGT GCC TCT GAA TGG CCA ACA TTC GAT GTT GGA
Pro Trp Gln Thr Phe Cys Ala Ser Glu Trp Pro Thr Phe Asp Val Gly>

```

FIGURE 2

(SEQ ID NO: 2) cont'd

750 760 770 780 790
 * * * * * * * * * * *
 TGG CCA TCA GAG GGG ACC TTT AAT TCT GAA ATT ATC CTG GCT GGT AAG
 Trp Pro Ser Glu Gly Thr Phe Asn Ser Glu Ile Ile Leu Ala Val Lys>

 800 810 820 830 840
 * * * * * * * * * * *
 GCA ATC ATT TTT CAG ACT GGA CCC GGC TCT CAT CCT GAT CAG GAG CCC
 Ala Ile Ile Phe Gln Thr Gly Pro Gln Ser His Pro Asp Gln Glu Pro>

 850 860 870 880
 * * * * * * * * * * *
 TAT ATC CTT ACG TGG CAA GAT TTG GCA GAA GAT CCT CCG CCA TGG GTT
 Tyr Ile Leu Thr Trp Gln Asp Leu Ala Glu Asp Pro Pro Pro Trp Val>

 890 900 910 920 930
 * * * * * * * * * * *
 AAA CCA TGG CTA AAT AAA CCA AGA AAG CCA GGT CCC CGA ATC CTG GCT
 Lys Pro Trp Leu Asn Lys Pro Arg Lys Pro Gly Pro Arg Ile Leu Ala>

 940 950 960 970 980
 * * * * * * * * * * *
 CTT GGA GAG AAA AAC AAA CAC TCG GCC GAA AAA GTC GAG CCC TCT CCT
 Leu Gly Lys Asn Lys His Ser Ala Glu Lys Val Glu Pro Ser Pro>

 990 1000 1010 1020 1030
 * * * * * * * * * * *
 CGT ATC TAC CCC GAG ATC GAG GAG CCG CCG ACT TGG CCG GAA CCC CAA
 Arg Ile Tyr Pro Glu Ile Glu Pro Pro Thr Trp Pro Glu Pro Gln>

 1040 1050 1060 1070 1080
 * * * * * * * * * * *
 CCT GTT CCC CCA CCC CCT TAT CCA GCA CAG GGT GCT GTG AGG GGA CCC
 Pro Val Pro Pro Pro Tyr Pro Ala Gln Gly Ala Val Arg Gly Pro>

 1090 1100 1110 1120
 * * * * * * * * * * *
 TCT GCC CCT CCT GGA GCT CGG GTG GTG GAG GGA CCT GCT GCC GGG ACT
 Ser Ala Pro Pro Gly Ala Pro Val Val Glu Gly Pro Ala Ala Gly Thr>

 1130 1140 1150 1160 1170
 * * * * * * * * * * *
 CGG AGC CGG AGA GGC GCC ACC CGG GAG CGG ACA GAC GAG ATC CGG ATA
 Arg Ser Arg Arg Gly Ala Thr Pro Glu Arg Thr Asp Glu Ile Ala Ile>

 1180 1190 1200 1210 1220
 * * * * * * * * * * *
 TTA CCG CTG CGC ACC TAT GGC CCT CCC ATG CCA GGG GGC CAA TTG CAG
 Leu Pro Leu Arg Thr Tyr Gly Pro Pro Met Pro Gly Gly Gln Leu Gln>

 1230 1240 1250 1260 1270
 * * * * * * * * * * *
 CCC CTC CAG TAT TGG CCC TTT TCT TCT GCA GAT CTC TAT AAT TGG AAA
 Pro Leu Gln Tyr Trp Pro Phe Ser Ser Ala Asp Leu Tyr Asn Trp Lys>

 1280 1290 1300 1310 1320
 * * * * * * * * * * *
 ACT AAC CAT CCC CCT TTC TGG GAG GAT CCC CAA CGC CTC ACG GGG TTG
 Thr Asn His Pro Pro Phe Ser Glu Asp Pro Gln Arg Leu Thr Gly Leu>

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

1330 1340 1350 1360
 * * * * * * *
 GTG GAG TCC CTT ATG TTC TCT CAC CAG CCT ACT TGG GAT GAT TGT CAA
 Val Glu Ser Leu Met Phe Ser His Gln Pro Thr Trp Asp Asp Cys Gln>

 1370 1380 1390 1400 1410
 * * * * * * *
 CAG CTG CTG CAG ACA CTC TTC ACA ACC GAG GAG CGA GAG AGA ATT CTG
 Gln Leu Leu Gln Thr Leu Phe Thr Glu Glu Arg Glu Arg Ile Leu>

 1420 1430 1440 1450 1460
 * * * * * * *
 TTA GAG GCT AAA AAA AAT GTT CCT GGG GCC GAC GGG CGA CCC ACG CAG
 Leu Glu Ala Lys Lys Asn Val Pro Gly Ala Asp Gly Arg Pro Thr Gln>

 1470 1480 1490 1500 1510
 * * * * * * *
 TTG CAA AAT GAG ATT GAC ATG GGA TTT CCC TTG ACT CGC CCC GGT TGG
 Leu Gln Asn Glu Ile Asp Met Gly Phe Pro Leu Thr Arg Pro Gly Trp>

 1520 1530 1540 1550 1560
 * * * * * * *
 GAC TAC AAC ACG GCT GAA GGT AGG GAG AGC TTG AAA ATC TAT CGC CAG
 Asp Tyr Asn Thr Ala Glu Gly Arg Glu Ser Leu Lys Ile Tyr Arg Gln>

 1570 1580 1590 1600
 * * * * * * *
 GCT CTG CTG CGG CGT CTC CGG CGC GCC TCA AGA CGG CCC ACT ATT TTG
 Ala Leu Val Ala Gly Leu Arg Gly Ala Ser Arg Arg Pro Thr Asn Leu>

 1610 1620 1630 1640 1650
 * * * * * * *
 GCT AAG GTA AGA GAG GTG ATG CAG GGA CCG AAC GAA CCT CCC TCG GTA
 Ala Lys Val Arg Glu Val Met Gln Gly Pro Asn Glu Pro Pro Ser Val>

 1660 1670 1680 1690 1700
 * * * * * * *
 TTT CTT GAG AGG CTC ATG GAA GCC TTC AGG CGG TTC ACC CCT TTT GAT
 Phe Leu Glu Arg Leu Met Glu Ala Phe Arg Arg Phe Thr Pro Phe Asp>

 1710 1720 1730 1740 1750
 * * * * * * *
 CCT ACC TCA GAG GCC CAG AAA CCC TCA GTG GCC CTG GCC TTC ATT GGG
 Pro Thr Ser Glu Ala Gln Lys Ala Ser Val Ala Leu Ala Phe Ile Gly>

 1760 1770 1780 1790 1800
 * * * * * * *
 CAG TCG GCT CTG GAT ATC AGG AAG AAA CTT CAG AGA CTG GAA GGG TTA
 Gln Ser Ala Leu Asp Ile Arg Lys Lys Leu Gln Arg Leu Glu Gly Leu>

 1810 1820 1830 1840
 * * * * * * *
 CAG GAG GCT GAG TTA CGT GAT CTA GTG AGA GAG GCA GAG AAG GTG TAT
 Gln Glu Ala Glu Leu Arg Asp Leu Val Arg Glu Ala Glu Lys Val Tyr>

 1850 1860 1870 1880 1890
 * * * * * * *
 TAC AGA AGG GAG ACA GAA GAG GAG AAG GAA CAG AGA AAA GAA AAG GAG
 Tyr Arg Arg Glu Thr Glu Glu Lys Glu Gln Arg Lys Glu Lys Glu>

FIGURE 2, CONT.

FIGURE 2, CONT.

2500 2510 2520 2530 2540 (SEQ ID NO: 2) cont'd
 * * * * * *
 GTG TCT GTG AAT AAC AAA CCC ATC ACT GTG TTG ACC CTC CAA TTA GAT
 Val Ser Val Asn Asn Lys Pro Ile Thr Val Leu Thr Leu Gln Leu Asp>

2550 2560 2570 2580 2590
 * * * * * * *
 GAT GAA TAT CGA CTA TAT TCT CCC CAA GTA AAG CCT GAT CAA GAT ATA
 Asp Glu Tyr Arg Leu Tyr Ser Pro Gln Val Lys Pro Asp Gln Asp Ile>

2600 2610 2620 2630 2640
 * * * * * * *
 CAG TCC TGG TTG GAG CAG TTT CCC CAA GCC TGG GCA GAA ACC GCA GGG
 Gln Ser Trp Leu Glu Gln Phe Pro Gln Ala Trp Ala Glu Thr Ala Gly>

2650 2660 2670 2680
 * * * * * * *
 ATG GGT TTG GCA AAG CAA GTT CCC CCA CAG GTT ATT CAA CTG AAG GCC
 Met Gly Leu Ala Lys Gln Val Pro Pro Gln Val Ile Gln Leu Lys Ala>

2690 2700 2710 2720 2730
 * * * * * * *
 AGT GCT ACA CCA GTA TCA GTC AGA CAG TAC CCC TTG AGT AGA GAG GCT
 Ser Ala Thr Pro Val Ser Val Arg Gln Tyr Pro Leu Ser Arg Glu Ala>

2740 2750 2760 2770 2780
 * * * * * * *
 CGA GAA GGA ATT TGG CCG CAT GTT CAA AGA TTA ATC CAA CAG GGC ATC
 Arg Glu Gly Ile Trp Pro His Val Gln Arg Leu Ile Gln Gln Gly Ile>

2790 2800 2810 2820 2830
 * * * * * * *
 CTA GTT CCT GTC CAA TCC CCT TGG AAT ACT CCC CTG CTA CCG GTT AGG
 Leu Val Pro Val Gln Ser Pro Trp Asn Thr Pro Leu Leu Pro Val Arg>

2840 2850 2860 2870 2880
 * * * * * * *
 AAG CCT GGG ACC AAT GAT TAT CGA CCA GTA CAG GAC TTG AGA GAG GTC
 Lys Pro Gly Thr Asn Asp Tyr Arg Pro Val Gln Asp Leu Arg Glu Val>

2890 2900 2910 2920
 * * * * * * *
 AAT AAA AGG GTG CAG GAC ATA CAC CCA ACG GTC CCG AAC CCT TAT AAC
 Asn Lys Arg Val Gln Asp Ile His Pro Thr Val Pro Asn Pro Tyr Asn>

2930 2940 2950 2960 2970
 * * * * * * *
 CTC TTG AGC GCC CTC CGG CCT GAA CGG AAC TGG TAC ACA GTA TTG GAC
 Leu Leu Ser Ala Leu Pro Pro Glu Arg Asn Trp Tyr Thr Val Leu Asp>

2980 2990 3000 3010 3020
 * * * * * * *
 TTA AAA GAT GCC TTC TTC TGC CTG AGA TTA CAC CCC ACT AGC CAA CCA
 Leu Lys Asp Ala Phe Phe Cys Leu Arg Leu His Pro Thr Ser Gln Pro>

3030 3040 3050 3060 3070
 * * * * * * *
 CTT TTT ACC TTC GAA TGG AGA GAT CCA GGT ACG GGA AGA ACC GGG CAG
 Leu Phe Thr Phe Glu Trp Arg Asp Pro Gly Thr Gly Arg Thr Gly Gln>

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

3080 3090 3100 3110 3120 (SEQ ID NO: 2) cont'd
 * * * * * * * * * * *
 CTC ACC TGG ACC CGA CTG CCC CAA GGG TTC AAG AAC TCC CCG ACC ATC
 Leu Thr Trp Thr Arg Leu Pro Gln Gly Phe Lys Asn Ser Pro Thr Ile>

 3130 3140 3150 3160 . .
 * * * * * * * * * * *
 TTT GAC GAA GCC CTA CAC AGG GAC CTG GCC AAC TTC AGG ATC CAA CAC
 Phe Asp Glu Ala Leu His Arg Asp Leu Ala Asn Phe Arg Ile Gln His>

 3170 3180 3190 3200 3210
 * * * * * * * * * * *
 CCT CAG GTG ACC CTC CTC CAG TAC GTG GAT GAC CTG CTT CTG GCG GGA
 Pro Gln Val Thr Leu Leu Gln Tyr Val Asp Asp Leu Leu Ala Gly>

 3220 3230 3240 3250 3260
 * * * * * * * * * * *
 GCC ACC AAA CAG GAC TGC TTA GAA GGT ACG AAG GCA CTA CTG CTG GAA
 Ala Thr Lys Gln Asp Cys Leu Glu Gly Thr Lys Ala Leu Leu Leu Glu>

 3270 3280 3290 3300 3310
 * * * * * * * * * * *
 TTG TCT GAC CTA GGC TAC AGA GCC TCT GCT AAG AAG GCC CAG ATT TGC
 Leu Ser Asp Leu Gly Tyr Arg Ala Ser Ala Lys Lys Ala Gln Ile Cys>

 3320 3330 3340 3350 3360
 * * * * * * * * * * *
 AGG AGA GAG GTA ACA TAC TTG GGG TAC AGT TTG CGG GGC GGG CAG CGA
 Arg Arg Glu Val Thr Tyr Leu Gly Tyr Ser Leu Arg Gly Gln Arg>

 3370 3380 3390 3400
 * * * * * * * * * *
 TGG CTG ACG GAG GCA CGG AAG AAA ACT GTA GTC CAG ATA CGG GCC CCA
 Trp Leu Thr Glu Ala Arg Lys Lys Thr Val Val Gln Ile Pro Ala Pro>

 3410 3420 3430 3440 3450
 * * * * * * * * * * *
 ACC ACA GCC AAA CAA GTG AGA GAG TTT TTG GGG ACA CCT GGA TTT TGC
 Thr Thr Ala Lys Gln Val Arg Glu Leu Gly Thr Ala Gly Phe Cys>

 3460 3470 3480 3490 3500
 * * * * * * * * * * *
 AGA CTG TGG ATC CGG GGG TTT CGG ACC TTA GCA GCC CCA CTC TAC CCG
 Arg Leu Trp Ile Pro Gly Phe Ala Thr Leu Ala Ala Pro Leu Tyr Pro>

 3510 3520 3530 3540 3550
 * * * * * * * * * * *
 CTA ACC AAA GAA AAA GGG GGT TGC TTA CCT CAG CAG GGA GGG AAA TA AAG
 Leu Thr Lys Glu Lys Gly
 Lys Arg Gly Leu Leu Thr Ser Ala Gly Arg Glu Ile Lys>

 3560 3570 3580 3590 3600
 * * * * * * * * * * *
 AAC AAA GAG GAA ATT CTA AGC CTA TTA GAA GCC TTA CAT TTG CCA AAA
 Asn Lys Glu Glu Ile Leu Ser Leu Leu Glu Ala Leu His Leu Pro Lys>

 3610 3620 3630 3640 3650
 * * * * * * * * * * *
 AGG CTA GCT ATT ATA CAC TGT CCT GGA CAT CAG AAA CCC AAA GAT CTC
 Arg Leu Ala Ile Ile His Cys Pro Gly His Gln Lys Ala Lys Asp Leu>

FIGURE 2, CONT.

3660 3670 3680 3690 (SEQ ID NO: 2) cont'd

ATA TCT AGA GGG AAC CAG ATG GCT GAC CGG GTT GGC AAG CAG GCA GCC
Ile Ser Arg Gly Asn Gln Met Ala Asp Arg Val Ala Lys Gln Ala Ala>

3700 3710 3720 3730 3740

CAG GCT GTT AAC CTT CCT ATA ATA GAA ACG CCC AAA GCC CCA GAA
Gln Ala Val Asn Leu Leu Pro Ile Ile Glu Thr Pro Lys Ala Pro Glu>

3750 3760 3770 3780 3790

CCC AGA CGA CAG TAC ACC CTA GAA GAC TGG CAA GAG ATA AAA AAG ATA
Pro Arg Arg Gln Tyr Thr Leu Glu Asp Trp Gln Glu Ile Lys Lys Ile>

3800 3810 3820 3830 3840

GAC CAG TTC TCT GAG ACT CGG GAG GGG ACC TGC TAT ACC TCA TAT GGG
Asp Gln Phe Ser Glu Thr Pro Glu Gly Thr Cys Tyr Thr Ser Tyr Gly>

3850 3860 3870 3880 3890

AAG GAA ATC CTG CCC CAC AAA GAA GGG TTA GAA TAT GTC CAA CAG ATA
Lys Glu Ile Leu Pro His Lys Glu Gly Leu Glu Tyr Val Gln Gln Ile>

3900 3910 3920 3930

CAT CGT CTA ACC CAC CTA GGA ACT AAA CAC CTG CAG CAG TTG GTC AGA
His Arg Leu Thr His Leu Gly Thr Lys His Leu Gln Gln Leu Val Arg>

3940 3950 3960 3970 3980

ACA TCC CCT TAT CAT GTT CTG AGG CTA CCA GGA GTG GCT GAC TCG GTG
Thr Ser Pro Tyr His Val Leu Arg Leu Pro Gly Val Ala Asp Ser Val>

3990 4000 4010 4020 4030

GTC AAA CAT TGT GTG CCC TGC CAG CTG GTT AAT GCT AAT CCT TCC AGA
Val Lys His Cys Val Pro Cys Gln Leu Val Asn Ala Asn Pro Ser Arg>

4040 4050 4060 4070 4080

ATA CCT CCA GGA AAG AGA CTA AGG GGA AGC CAC CCA GGC GCT CAC TGG
Ile Pro Pro Gly Arg Leu Arg Gly Ser His Pro Gly Ala His Trp>

4090 4100 4110 4120 4130

GAA GTG GAC TTC ACT GAG GTA AAG CGG GCT AAA TAC GGA AAC AAA TAT
Glu Val Asp Phe Thr Glu Val Lys Pro Ala Lys Tyr Gly Asn Lys Tyr>

4140 4150 4160 4170

CTA TTG GTT TTT GTA GAC ACC TTT TCA GGA TGG GTA GAG GCT TAT CCT
Leu Leu Val Phe Val Asp Thr Phe Ser Gly Trp Val Glu Ala Tyr Pro>

4180 4190 4200 4210 4220

ACT AAA AAA GAG ACT TCA ACC GTG GTG GCT AAG AAA ATA CTG GAG GAA
Thr Lys Lys Glu Thr Ser Thr Val Val Ala Lys Ile Leu Glu Glu>

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

4230 4240 4250 4260 4270
 * * * * * * * * * * *
 ATT TTT CCA AGA TTT GGA ATA CCT AAG GTA ATA GGG TCA GAC AAT GGT
 Ile Phe Pro Arg Phe Gly Ile Pro Lys Val Ile Gly Ser Asp Asn Gly>

 4280 4290 4300 4310 4320
 * * * * * * * * * * *
 CCA GCT TTC GTT GCC CAG GTC ACT CAG GGA CTG GCC AAG ATA TTG GGG
 Pro Ala Phe Val Ala Gln Val Ser Gln Gly Leu Ala Lys Ile Leu Gly>

 4330 4340 4350 4360 4370 4380
 * * * * * * * * * * *
 ATT GAT TG A AAA CTG CAT TGT GCA TAC AGA CCC CAA AGC TCA GGA CAG
 Ile Asp Lys Leu His Cys Ala Tyr Arg Pro Gln Ser Ser Gly Gln>

 4380 4390 4400 4410
 * * * * * * * * * *
 GTA GAG AGG ATG AAT AGA ACC ATT AAA GAG ACC CTT ACC AAA TTG ACC
 Val Glu Arg Met Asn Arg Thr Ile Lys Glu Thr Leu Thr Lys Leu Thr>

 4420 4430 4440 4450 4460
 * * * * * * * * * *
 ACA GAG ACT GGC ATT AAT GAT TGG ATG GCT CTC CTG CCC TTT GTG CTT
 Thr Glu Thr Gly Ile Asn Asp Trp Met Ala Leu Leu Pro Phe Val Leu>

 4470 4480 4490 4500 4510
 * * * * * * * * * *
 TTT AGG GTG AGG AAC ACC CCT GGA CAG TTT GGG CTG ACC CCC TAT AAA
 Phe Arg Val Arg Asn Thr Pro Gly Gln Phe Gly Leu Thr Pro Tyr Lys>

 4520 4530 4540 4550 4560
 * * * * * * * * * *
 TTG CTC TAC GGG GGA CCC CCC CGG TTG GCA GAA ATT GCC TTT GCA CAT
 Leu Leu Tyr Gly Pro Pro Leu Ala Glu Ile Ala Phe Ala His>

 4570 4580 4590 4600 4610
 * * * * * * * * * *
 AGT GCT GAT GTG CTG CTT TCC CAG CCT TTG TTC TCT AGG CTC AAG GCG
 Ser Ala Asp Val Leu Leu Ser Gln Pro Leu Phe Ser Arg Leu Lys Ala>

 4620 4630 4640 4650
 * * * * * * * * * *
 CTC GAG TGG GTG AGG CAG CGA GCG TGG AAG CAG CTC CGG GAG GCC TAC
 Leu Glu Trp Val Arg Gln Arg Ala Trp Lys Gln Leu Arg Glu Ala Tyr>

 4660 4670 4680 4690 4700
 * * * * * * * * * *
 TCA GGA GGA GAC TTG CAA GTT CCA CAT CGC TTC CAA GTT GGA GAT TCA
 Ser Gly Asp Leu Gln Val Pro His Arg Phe Gln Val Gly Asp Ser>

 4710 4720 4730 4740 4750
 * * * * * * * * * *
 GTC TAT GTT AGA CGC CAC CGT GCA GGA AAC CTC GAG ACT CGG TAG AAG
 Val Tyr Val Arg Arg His Arg Ala Gly Asn Leu Glu Thr Arg *** Lys>

 4760 4770 4780 4790 4800
 * * * * * * * * * *
 GGA CCT TAT CTC GTA CTT TTG ACC ACA CCA ACG GCT GTG AAA GTC GAA
 Gly Pro Tyr Leu Val Leu Leu Thr Thr Pro Thr Ala Val Lys Val Glu>

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

4810 4820 4830 4840 4850
 * * * * * * *
 GGA ATC CCC TTA AGC TTC GCC TCC ATC GCG TGG TTC CTT ACT CTG TCA
 Gly Ile Pro Leu Ser Phe Ala Ser Ile Ala Trp Phe Leu Thr Leu Ser>

 4860 4870 4880 4890
 * * * * * * *
 ATA ACT CCT CAA GTT AAT GGT AAA CGC CTT GTG GAC AGC CCG AAC TCC
 Ile Thr Pro Gln Val Asn Gly Lys Arg Leu Val Asp Ser Pro Asn Ser>

 4900 4910 4920 4930 4940
 * * * * * * *
 CAT AAA CCC TTA TCT CTC ACC TGG TTA CTT ACT GAC TCC GGT ACA GGT
 His Lys Pro Leu Ser Leu Thr Trp Leu Leu Thr Asp Ser Gly Thr Gly>

 4950 4960 4970 4980 4990
 * * * * * * *
 ATT AAT ATT AAC AGC ACT CAA CGG GAG GCT CCC TTG GGG ACC TGG TGG
 Ile Asn Ile Asn Ser Thr Gln Gly Glu Ala Pro Leu Gly Thr Trp Trp>

 5000 5010 5020 5030 5040
 * * * * * * *
 CCT GAA TTA TAT GTC TGC CTT CGA TCA GTA ATC CCT GGT CTC AAT GAC
 Pro Glu Leu Tyr Val Cys Leu Arg Ser Val Ile Pro Gly Leu Asn Asp>

 5050 5060 5070 5080 5090
 * * * * * * *
 CAG GCC ACA CCC CCC GAT GTA CTC CGT GCT TAC GGG TTT TAC GTT TGC
 Gln Ala Thr Pro Pro Asp Val Leu Arg Ala Tyr Phe Tyr Val Cys>

 5100 5110 5120 5130
 * * * * * * *
 CCA GGA CCC CCA AAT AAT GAA GAA TAT TGT GGA AAT CCT CAG GAT TTC
 Pro Gly Pro Pro Asn Asn Glu Glu Tyr Cys Gly Asn Pro Gln Asp Phe>

 5140 5150 5160 5170 5180
 * * * * * * *
 TTT TGC AAG CAA TGG AGC TGC ATA ACT TCT AAT GAT GGG AAT TGG AAA
 Phe Cys Lys Trp Ser Cys Ile Thr Ser Asn Asp Gly Asn Trp Lys>

 5190 5200 5210 5220 5230
 * * * * * * *
 TGG CCA GTC TCT CAG CAA GAC AGA GTA AGT TAC TCT TTT GGT AAC AAT
 Trp Pro Val Ser Gln Gln Asp Arg Val Ser Tyr Ser Phe Val Asn Asn>

 5240 5250 5260 5270 5280
 * * * * * * *
 CCT ACC AGT TAT AAT CAA TTT AAT TAT GGC CAT GGG AGA TGG AAA GAT
 Pro Thr Ser Tyr Asn Gln Phe Asn Tyr Gly His Gly Arg Trp Lys Asp>

 5290 5300 5310 5320 5330
 * * * * * * *
 TGG CAA CAG CGG GTA CAA AAA GAT GTA CGA AAT AAG CAA ATA AGC TGT
 Trp Gln Gln Arg Val Gln Lys Asp Val Arg Asn Lys Gln Ile Ser Cys>

 5340 5350 5360 5370
 * * * * * * *
 CAT TCG TTA GAC CTA GAT TAC TTA AAA ATA AGT TTC ACT GAA AAA GGA
 His Ser Leu Asp Leu Asp Tyr Leu Lys Ile Ser Phe Thr Glu Lys Gly>

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

5380 5390 5400 5410 5420
 * * * * * * * * * *
 AAA CAA GAA AAT ATT CAA AAG TGG GTA AAT GGT ATA TCT TGG GGA ATA
 Lys Gln Glu Asn Ile Gln Lys Trp Val Asn Gly Ile Ser Trp Gly Ile>

5430 5440 5450 5460 5470
 * * * * * * * * * * * *
 GIG TAC TAT GGA GGC TCT GGG AGA AAG AAA GGA TCT GFT CTG ACT ATT
 Val Tyr Tyr Gly Gly Ser Gly Arg Lys Lys Gly Ser Val Leu Thr Ile>

5480 5490 5500 5510 5520
 * * * * *
 CGC CTC AGA ATA GAA ACT CAG ATG GAA CCT CCG GTT GCT ATA GGA CCA
 Leu Leu Glu Val Glu Pro Pro Val Ala Ile Glu Pro

5530 5540 5550 5560
* * * * * * * *
AAT AAG GGT TTG GCC GAA CAA GGA CCT CCA ATC CAA GAA CAG

5570 * * * 5580 * * 5590 * * 5600 * * 5610 *
 AGG CCA TCT CCT AAC CCC TCT GAT TAC AAT ACA ACC TCT GGA TCA GTC
 Arg Pro Ser Pro Asn Pro Ser Asp Tyr Asn Thr Thr Ser Gly Ser Val>

5670 * 5680 * 5690 * 5700 * * * * *
CTC ATC CAG GGA GCT TTT CAA GCT CTT AAC TCC ACG ACT CCA GAG GCT
C T C A C G G A G C T T T C A A G C T C T T A A C T C C A G A G G C T
Ala Val Glu Gln Lys Tyr Lys Asp Ser Thr Thr Pro Cys Ala>

5710	5720	5730	5740	5750											
*	*	*	*	*											
ACC	TCT	TCT	TGT	TGG	CTT	TGC	TTA	GCT	TCG	GGC	CCA	CCT	TAC	TAT	GAG

5760 * 5770 * 5780 * 5790 * 5800 *
 GGA ATG GCT AGA GGA GGG AAA TTC AAT GTG ACA AAG GAA CAT AGA GAC

5810 5820 5830 5840 5850

CAA TGT ACA TGG GGA TCC CAA AAT AAG CTT ACC CTT ACT GAG GTT TCT
Gln Cys Thr Trp Gly Ser Gln Asn Lys Leu Thr Leu Thr Glu Val Ser>

5860 5870 5880 5890 5900
 * * * * * * * * * * * *
 GGA AAA GGC ACC TGC ATA GGG ATG GTT CCC CCA TCC CAC CAA CAC CTT
 Glv Lys Glv Thr Cys Ile Glv Met Val Pro Pro Ser His Gln His Leu>

5910 * 5920 * 5930 * 5940 * * * * *
 TGT AAC CAC ACT GAA GCC TTT AAT CGA ACC TCT GAG AGT CAA TAT CTG
 Cys Asp His Thr Glu Ala Phe Asp Arg Thr Ser Glu Ser Gln Tyr Leu

FIGURE 2. CONT.

(SEQ ID NO: 2) cont'd

5950	5960	5970	5980	5990	
*	*	*	*	*	*
GTA CCT GGT TAT GAC AGG TGG TGG GCA TGT AAT ACT GGA TTA ACC CCT Val Pro Gly Tyr Asp Arg Trp Trp Ala Cys Asn Thr Gly Leu Thr Pro>					
6000	6010	6020	6030	6040	
*	*	*	*	*	*
TGT GTT TCC ACC TTG GTT TTC AAC CAA ACT AAA GAC TTT TGC GTT ATG Cys Val Ser Thr Leu Val Phe Asn Gln Thr Lys Asp Phe Cys Val Met>					
6050	6060	6070	6080	6090	
*	*	*	*	*	*
GTC CAA ATT GTC CCC CGG GTG TAC TAC TAT CCC GAA AAA GCA GTC CTT Val Gln Ile Val Pro Arg Val Tyr Tyr Pro Glu Lys Ala Val Leu>					
6100	6110	6120	6130	6140	
*	*	*	*	*	*
GAT GAA TAT GAC TAT AGA TAT AAT CGG CCA AAA AGA GAG CCC ATA TCC Asp Glu Tyr Asp Tyr Arg Tyr Asn Arg Pro Lys Arg Glu Pro Ile Ser>					
6150	6160	6170	6180		
*	*	*	*	*	*
CTG ACA CTA GCT GTA ATG CTC GGA TTG GGA GTG GCT GCA GCC GTG GGA Leu Thr Leu Ala Val Met Leu Gly Leu Gly Val Ala Ala Gly Val Gly>					
6190	6200	6210	6220	6230	
*	*	*	*	*	*
ACA GGA ACG GCT CCC CTA ATC ACA GGA CCG CAA CAG CTG GAG AAA GGA Thr Gly Thr Ala Ala Leu Ile Thr Gly Pro Gln Gln Leu Glu Lys Gly>					
6240	6250	6260	6270	6280	
*	*	*	*	*	*
CTT AGT AAC CTA CAT CGA ATT GTA ACG GAA GAT CTC CAA GCC CTA GAA Leu Ser Asn Leu His Arg Ile Val Thr Glu Asp Leu Gln Ala Leu Glu>					
6290	6300	6310	6320	6330	
*	*	*	*	*	*
AAA TCT GTC AGT AAC CTG GAG GAA TCC CTA ACC TCC TTA TCT GAA GTG Lys Ser Val Ser Asn Leu Glu Ser Leu Thr Ser Leu Ser Glu Val>					
6340	6350	6360	6370	6380	
*	*	*	*	*	*
GTT CTA CAG AAC AGA AGG GGG TTA GAT CTG TTA TTT CTA AAA GAA GGA Val Leu Gln Asn Arg Arg Gly Leu Asp Leu Phe Leu Lys Glu Gly>					
6390	6400	6410	6420		
*	*	*	*	*	*
GGG TTA TGT GTA GCC TTA AAA GAG GAA TGC TGC TTC TAT GTA GAT CAC Gly Leu Cys Val Ala Leu Lys Glu Cys Cys Phe Tyr Val Asp His>					
6430	6440	6450	6460	6470	
*	*	*	*	*	*
TCA GGA GCC ATC AGA GAC TCC ATG AGC AAG CTT AGA GAA AGG TTA GAG Ser Gly Ala Ile Arg Asp Ser Met Ser Lys Leu Arg Glu Arg Leu Glu>					
6480	6490	6500	6510	6520	
*	*	*	*	*	*
AGG CGT CGA AGG GAA AGA GAG GCT GAC CAG GGG TGG TTT GAA GGA TGG Arg Arg Arg Arg Glu Arg Ala Asp Gln Gly Trp Phe Glu Gly Trp>					

FIGURE 2, CONT.

(SEQ ID NO: 2) cont'd

6530 6540 6550 6560 6570 (SEQ ID NO: 2) cont'd
 * * * * * * * * * * *
 TTC AAC AGG TCT CCT TGG ATG ACC ACC CTG CTT GCT CTG ACG GGG
 Phe Asn Arg Ser Pro Trp Met Thr Thr Leu Leu Ser Ala Leu Thr Gly>

 6580 6590 6600 6610 6620
 * * * * * * * * * *
 CCC CTA GTC GTC CTC CTC TTA CTT ACA GTC GGG CCT TGC TTA ATT
 Pro Leu Val Val Leu Leu Leu Leu Leu Thr Val Gly Pro Cys Leu Ile>

 6630 6640 6650 6660
 * * * * * * * * *
 AAT AGG TTT GTC TTT GTC AGA GAA CGA GTG AGT GCA GTC CAG ATC
 Asn Arg Phe Val Ala Phe Val Arg Glu Arg Val Ser Ala Val Gln Ile>

 6670 6680 6690 6700 6710
 * * * * * * * * * *
 ATG GTA CTT AGG CAA CAG TAC CAA GGC CTT CTG AGC CAA GGA GAA ACT
 Met Val Leu Arg Gln Gln Tyr Gln Gly Leu Leu Ser Gln Gly Glu Thr>

 6720 6730 6740 6750 6760 6770
 * * * * * * * * * *
 GAC CTC TAGCTCTC CCAAGTCTAA GATTTAGAACT ATTAAACAAGA CAAGAAAGTGG
 Asp Leu>

 6780 6790 6800 6810 6820 6830
 * * * * * * * * * *
 GGAATGAAAG GATGAAAATG CAACCTAACCC CTCGGAGAAC CCAGGAAGT AATAAAAAGC

 6840 6850 6860 6870 6880 6890
 * * * * * * * * * *
 TCTAAATGCC CCCGAATTCC AGACCCCTGGT GGCTGGCAGT AAATAGGTAG AAGGTACAC

 6900 6910 6920 6930 6940 6950
 * * * * * * * * * *
 TCCCTATTTG TCCAGGGCCT GCTATCTGG CCTAAGTAAG ATAACAGGAA ATGAGTTGAC

 6960 6970 6980 6990 7000 7010
 * * * * * * * * * *
 TAATCGCTTA TCTGGATTCT GTAAAATGCA CTGGCACCAT AGAAGAATTG ATTACACATT

 7020 7030 7040 7050 7060 7070
 * * * * * * * * * *
 GACAGCCCTA GTGACCTATC TCAACTGCAA TCTGTGACTC TGCCGAGGAG CCCACCCAGA

 7080 7090 7100 7110 7120 7130
 * * * * * * * * * *
 TGGGGACCTC CGGAGCTATT TTAAAATGAT TGGTCCACGG AGGGGGGCT CTCGATATTT

 7140 7150 7160 7170 7180 7190
 * * * * * * * * * *
 TAAAATGATT GGTCCATGGA CGCGGGCTC TCGATATTTT AAAATGATG GTTGTGACG

 7200 7210 7220 7230 7240 7250
 * * * * * * * * * *
 CACAGGCTTT GTTGTGAAACC CCATAAAAGC TGTCCCGATT CGGCACCTGG CGCGCGAGTC

FIGURE 2, CONT.

7260 7270 7280 7290 7300 7310 (SEQ ID NO: 2) cont'd
* * * * * * * * * * * *
CTCTTACCCCT CGGTGGGTGA CGACTGTGGG CCOCAGGGGG CTTGGAAATAA AAATCCTCTT
7320 7330
* * * *
GCTGTGGCA TCAAAAAAAA AAA

FIGURE 2, CONT.

(SEQ ID NO: 3)

10	20	30	40	50	60	
*	*	*	*	*	*	
GGCTGGTGTGTA CGACTGTGGG CCCCCAGCCCG CTTGGAATAA AAATCCCTTT GCTGTTTGC						
70	80	90	100	110	120	
*	*	*	*	*	*	
TCAAGACCCG TTCTCGTGAG TGATTAAGGG GAGTCGCGCTT TTCCGAGCCT GGAGGGTCTT						
130	140	150	160	170	180	
*	*	*	*	*	*	
TTTGTGGTC TTACATTTGG GGGCTCGTCC GGGATCTGTC GGGGCGACCC CTAACACCCG						
190	200	210	220	230	240	
*	*	*	*	*	*	
AGAACCGACT TGGAGGTAAA AAGGATCCCTT TTTTAACTGT GTATGCATGT ACCGGCGGGC						
250	260	270	280	290	300	
*	*	*	*	*	*	
GTCCTGTTC TGAGTGTCTG TTTTCAGTGG TGCGCGCTTT CGGTTTGCAG CTGTCCTCTC						
310	320	330	340	350	360	
*	*	*	*	*	*	
AGGCCGTAAG GGCTGGGGGA CTGTGATCAG CAGACGTGCT AGGAGGATCA CAGGCTGCTG						
370	380	390	400	410	420	
*	*	*	*	*	*	
CCCTGGGGGA CGCCCGGGGA CGTGAGGAGA GGCAGGGACG CCTGGTGGTC TCCTACIGTC						
430	440	450	460	470	480	
*	*	*	*	*	*	
GGTCAGAGGA CGGAATTCTG TTGCTGAAGC GAAACCTTCC CCCTCGGGA CGTCGGACT						
490	500	510	520	530	540	
*	*	*	*	*	*	
CTTTGCTCTG CTTGCTGGAAAG ACGTGGACGG GTCACTGTG TCTGGATCTG TTGGTTCTG						
550	560	570	580	590		
*	*	*	*	*		
TTTGTGTGT CTTGTCTCTG TGCTGCTCTG TCTACAGTTT TAAT ATG GGA CAG ACG Met Gly Gln Thr>						
600	610	620	630	640		
*	*	*	*	*		
GTG ACG ACC CCT CTT AGT TTG ACT CTC GAC CAT TGG ACT GAA GTT AAA Val Thr Thr Pro Leu Ser Leu Thr Leu Asp His Trp Thr Glu Val Lys>						
650	660	670	680	690		
*	*	*	*	*		
TCC AGG GCT CAT AAT TTG TCA GTT CAG GTT AAG AAG GGA CCT TGG CAG Ser Arg Ala His Asn Leu Ser Val Gln Val Lys Lys Gly Pro Trp Gln>						
700	710	720	730	740		
*	*	*	*	*		
ACT TTC TGT GTC TCT GAA TGG CCG ACA TTC GAT GTT GGA TGG CCA TCA Thr Phe Cys Val Ser Glu Trp Pro Thr Phe Asp Val Gly Trp Pro Ser>						

FIGURE 3

(SEQ ID NO: 3) cont'd

750 760 770 780 *
 * * * * * * * *
 GAG GGG ACC TTT AAT TCT GAG ATT ATC CTG GCT GTT AAA GCA GTC ATT
 Glu Gly Thr Phe Asn Ser Glu Ile Ile Leu Ala Val Lys Ala Val Ile>

 790 800 810 820 830
 * * * * * * * * *
 TTT CAG ACT GGA CCC GGC TCT CAT CCC GAT CAG GAG CCC TAT ATC CTT
 Phe Gln Thr Gly Pro Gly Ser His Pro Asp Gln Glu Pro Tyr Ile Leu>

 840 850 860 870 880
 * * * * * * * * *
 ACG TGG CAA GAT TTG GCA GAG GAT CCT CCG CCA TGG GTT AAA CCA TGG
 Thr Trp Gln Asp Leu Ala Glu Asp Pro Pro Pro Trp Val Lys Pro Trp>

 890 900 910 920 930
 * * * * * * * * *
 CTG AAT AAG CCA AGA AAG CCA GGT CCC CGA ATT CTG GCT CTT GGA GAG
 Leu Asn Lys Pro Arg Lys Pro Gly Pro Arg Ile Leu Ala Leu Gly Glu>

 940 950 960 970 980
 * * * * * * * * *
 AAA AAC AAA CAC TCG GCT GAA AAA GTC AAG CCC TCT CCT CAT ATC TAC
 Lys Asn Lys His Ser Ala Glu Lys Val Lys Pro Ser Pro His Ile Tyr>

 990 1000 1010 1020
 * * * * * * * * *
 CCC GAG ATT GAG GAG CCA CCG GCT TGG CCG GAA CCC CAA TCT GTT CCC
 Pro Glu Ile Glu Glu Pro Pro Ala Trp Pro Glu Pro Gln Ser Val Pro>

 1030 1040 1050 1060 1070
 * * * * * * * * *
 CCA CCC CCT TAT CTG GCA CAG GGT GCC GCG AGG GGA CCC TTT GCC CCT
 Pro Pro Pro Tyr Leu Ala Gln Gly Ala Ala Arg Gly Pro Phe Ala Pro>

 1080 1090 1100 1110 1120
 * * * * * * * * *
 CCT GGA GCT CCG CGG GTG GAG GGA CCT GCT GCA GGG ACT CGG ACC CGG
 Pro Gly Ala Pro Ala Val Glu Gly Pro Ala Ala Gly Thr Arg Ser Arg>

 1130 1140 1150 1160 1170
 * * * * * * * * *
 AGG GGC GCC ACC CGG GAG CGG ACA GAC GAG ATC GCG ACA TTA CGG CTG
 Arg Gly Ala Thr Pro Glu Arg Thr Asp Glu Ile Ala Thr Leu Pro Leu>

 1180 1190 1200 1210 1220
 * * * * * * * * *
 CGC ACG TAC GGC CCT CCC ACA CCG GGG GGC CAA TTG CAG CCC CTC CAG
 Arg Thr Tyr Gly Pro Pro Thr Pro Gly Gly Gln Leu Gln Pro Leu Gln>

 1230 1240 1250 1260
 * * * * * * * * *
 TAT TGG CCC TTT TCT TCT GCA GAT CTC TAT AAT TGG AAA ACT AAC CAT
 Tyr Trp Pro Phe Ser Ser Ala Asp Leu Tyr Asn Trp Lys Thr Asn His>

 1270 1280 1290 1300 1310
 * * * * * * * * *
 CCC CCT TTC TCG GAG GAT CCC CAA CGC CTC ACG GGG TTG GTG GAG TCC
 Pro Pro Phe Ser Glu Asp Pro Gln Arg Leu Thr Gly Leu Val Glu Ser>

FIGURE 3,CONT.

1320 1330 1340 1350 1360 (SEQ ID NO: 3) cont'd

CTT ATG TTC TCT CAC CAG CCT ACT TGG GAT GAT TGT CAA CAG CTG CTG
Leu Met Phe Ser His Gln Pro Thr Trp Asp Asp Cys Gln Gln Leu Leu>

1370 1380 1390 1400 1410

CAG ACA CTC TTC ACA ACC GAG GAG CGA GAG AGA ATT CTA TTA GAG GCT
Gln Thr Leu Phe Thr Thr Glu Glu Arg Glu Arg Ile Leu Glu Ala>

1420 1430 1440 1450 1460

AGA AAA AAT GTT CCT CGG GCC GAC GGG CGA CCC ACG CGG TTG CAA AAT
Arg Lys Asn Val Pro Gly Ala Asp Gly Arg Pro Thr Arg Leu Gln Asn>

1470 1480 1490 1500

GAG ATT GAC ATG GGA TTT CCC TTA ACT CGC CCC GGT TGG GAC TAC AAC
Glu Ile Asp Met Gly Phe Pro Leu Thr Arg Pro Gly Trp Asp Tyr Asn>

1510 1520 1530 1540 1550

ACG GCT GAA GGT AGG GAG AGC TTG AAA ATC TAT CGC CAG GCT CTG CTG
Thr Ala Glu Arg Glu Ser Leu Lys Ile Tyr Arg Gln Ala Leu Val>

1560 1570 1580 1590 1600

GCG GGT CTC CGG GGC GCC TCA AGA CGG CCC ACT AAT TTG GCT AAG GTA
Ala Gly Leu Arg Gly Ala Ser Arg Arg Pro Thr Asn Leu Ala Lys Val>

1610 1620 1630 1640 1650

AGA GAA GTG ATG CAG GGA CCG AAT GAA CCC CCC TCT GTT TTT CTT GAG
Arg Glu Val Met Gln Gly Pro Asn Glu Pro Pro Ser Val Phe Leu Glu>

1660 1670 1680 1690 1700

AGG CTC TTG GAA GCC TTC AGG CGG TAC ACC CCT TTT GAT CCC ACC TCA
Arg Leu Leu Glu Ala Phe Arg Arg Tyr Thr Pro Phe Asp Pro Thr Ser>

1710 1720 1730 1740

GAG GCC CAA AAA GCC TCA GTG GCT TTG GCC TTT ATA GGA CAG TCA GCC
Glu Ala Gln Lys Ala Ser Val Ala Leu Ala Phe Ile Gly Gln Ser Ala>

1750 1760 1770 1780 1790

TTG GAT ATT AGA AAG AAG CTT CAG AGA CTG GAA GGG TTA CAG GAG GCT
Leu Asp Ile Arg Lys Lys Leu Gln Arg Leu Glu Gly Leu Gln Glu Ala>

1800 1810 1820 1830 1840

GAG TTA CGT GAT CTA GTG AAG GAG GCA GAG AAA GTA TAT TAC AAA AGG
Glu Leu Arg Asp Leu Val Lys Glu Ala Glu Lys Val Tyr Tyr Lys Arg>

1850 1860 1870 1880 1890

GAG ACA GAA GAA GAA AGG GAA CAA AGA AAA GAG AGA GAA AGA GAG GAA
Glu Thr Glu Glu Glu Arg Glu Gln Arg Lys Glu Arg Glu Arg Glu Glu>

(SEQ ID NO: 3) cont'd

1900 * 1910 * 1920 * 1930 * 1940 *
 AGG GAG GAA ÁGA CGT AAT AAA CGG CAA GAG AAG AAT TTG ACT AAG ATC
 Arg Glu Glu Arg Arg Asn Lys Arg Gln Glu Lys Asn Leu Thr Lys Ile>

 1950 * 1960 * 1970 * 1980 *
 TTG GCT GCA GTG GTT GAA GGG AAA AGC AAT ACG GAA AGA GAG AGA GAT
 Leu Ala Ala Val Val Glu Gly Lys Ser Asn Thr Glu Arg Glu Arg Asp>

 1990 * 2000 * 2010 * 2020 * 2030 *
 TTT AGG AAA ATT AGG TCA GGC CCT AGA CAG TCA GGG AAC CTG GGC AAT
 Phe Arg Lys Ile Arg Ser Gly Pro Arg Gln Ser Gly Asn Leu Gly Asn>

 2040 * 2050 * 2060 * 2070 * 2080 *
 AGG ACC CCA CTC GAC AAG GAC CAA TGT GCA TAT TGT AAA GAA AGA GGA
 Arg Thr Pro Leu Asp Lys Asp Gln Cys Ala Tyr Cys Lys Glu Arg Gly>

 2090 * 2100 * 2110 * 2120 * 2130 *
 CAC TGG GCA AGG AAC TGC CCC AAG AAG GGA AAC AAA GGA CCA AGG ATC
 His Trp Ala Arg Asn Cys Pro Lys Lys Gly Asn Lys Gly Pro Arg Ile>

 2140 * 2150 * 2160 * 2170 * 2180 *
 CTA GCT CTA GAA GAA GAT AAA GAT TAGG GGAGACGGGG TTGGAACCCC
 Leu Ala Leu Glu Asp Lys Asp>

 2190 * 2200 * 2210 * 2220 * 2230 * 2240 *
 CTCCCCGAGC CCAGGGTAAC TTTGAAGGTG GAGGGCAAC CAGTTGAGTT CCTGGTTGAT

 2250 * 2260 * 2270 * 2280 * 2290 * 2300 *
 ACCGGAGCGA AACATTCACT GCTACTACAG CCATTAGGAA AACTAAAAGA TAAAAAATCC

 2310 * 2320 * 2330 * 2340 * 2350 *
 TGGGTG ATG GGT GCC ACA GGG CAA CAA CAG TAT CCA TGG ACT ACC CGA AGA
 Met Gly Ala Thr Gly Gln Gln Tyr Pro Trp Thr Arg Arg>

 2360 * 2370 * 2380 * 2390 *
 ACA GTT GAC TTG GGA GTG GGA CGG GTC ACC CAC TCG TTT CTG GTC ATA
 Thr Val Asp Leu Gly Val Gly Arg Val Thr His Ser Phe Leu Val Ile>

 2400 * 2410 * 2420 * 2430 * 2440 *
 CCT GAG TGC CCA GCA CCC CTC TTA GGT AGA GAC TTA TTG ACC AAG ATG
 Pro Glu Cys Pro Ala Pro Leu Leu Gly Arg Asp Leu Leu Thr Lys Met>

 2450 * 2460 * 2470 * 2480 * 2490 *
 GGA GCA CAA ATT TCT TTT GAA CAA GGG AAA CCA GAA GTG TCT GCA AAT
 Gly Ala Gln Ile Ser Phe Glu Gln Gly Lys Pro Glu Val Ser Ala Asn>

(SEQ ID NO: 3) cont'd

2500 2510 2520 2530 2540
 * * * * * * * * * * *
 AAC AAA CCT ATC ACT GTG TTG ACC CTC CAA TTA GAT GAC GAA TAT CGA
 Asn Lys Pro Ile Thr Val Leu Thr Leu Gln Leu Asp Asp Glu Tyr Arg>

 2550 2560 2570 2580 2590
 * * * * * * * * * * *
 CTA TAC TCT CCC CTA GTA AAG CCT GAT CAA AAT ATA CAA TTC TGG TTG
 Leu Tyr Ser Pro Leu Val Lys Pro Asp Gln Asn Ile Gln Phe Trp Leu>

 2600 2610 2620 2630
 * * * * * * * * * *
 GAA CAG TTT CCC CAA GCC TGG GCA GAA ACC GCA GGG ATG GGT TTG GCA
 Glu Gln Phe Pro Gln Ala Trp Ala Glu Thr Ala Gly Met Gly Leu Ala>

 2640 2650 2660 2670 2680
 * * * * * * * * * * *
 AAG CAA GTT CCC CCA CAA GTT ATT CAA CTG AAG GCC AGT GCC ACA CCA
 Lys Gln Val Pro Pro Gln Val Ile Gln Leu Lys Ala Ser Ala Thr Pro>

 2690 2700 2710 2720 2730
 * * * * * * * * * * *
 GTG TCA GTC AGA CAG TAC CCC TTG AGT AAA GAA GCT CAA GAA GGA ATT
 Val Ser Val Arg Gln Tyr Pro Leu Ser Lys Glu Ala Gln Glu Gly Ile>

 2740 2750 2760 2770 2780
 * * * * * * * * * * *
 CGG CCG CAT GTC CAA AGA TTA ATC CAA CAG GGC ATC CTA GTT CCT GTC
 Arg Pro His Val Gln Arg Leu Ile Gln Gln Gly Ile Leu Val Pro Val>

 2790 2800 2810 2820 2830
 * * * * * * * * * * *
 CAA TCT CCC TGG AAT ACT CCC CTG CTA CGG GTT AGA AAG CCT GGG ACT
 Gln Ser Pro Trp Asn Thr Pro Leu Leu Pro Val Arg Lys Pro Gly Thr>

 2840 2850 2860 2870
 * * * * * * * * * *
 AAT GAC TAT CGA CCA GTA CAG GAC TTG AGA GAG GTC AAT AAA CGG GTG
 Asn Asp Tyr Arg Pro Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val>

 2880 2890 2900 2910 2920
 * * * * * * * * * * *
 CAG GAT ATA CAC CCA ACA GTC CCG AAC CCT TAT AAC CTC TTG TGT GCT
 Gln Asp Ile His Pro Thr Val Pro Asn Pro Tyr Asn Leu Cys Ala>

 2930 2940 2950 2960 2970
 * * * * * * * * * * *
 CTC CCA CCC CAA CGG AGC TGG TAT ACA GTA TTG GAC TTA AAG GAT GCC
 Leu Pro Pro Gln Arg Ser Trp Tyr Thr Val Leu Asp Leu Lys Asp Ala>

 2980 2990 3000 3010 3020
 * * * * * * * * * * *
 TTC TTC TGC CTG AGA TTA CAC CCC ACT AGC CAA CCA CTT TTT GCC TTC
 Phe Phe Cys Leu Arg Leu His Pro Thr Ser Gln Pro Leu Phe Ala Phe>

 3030 3040 3050 3060 3070
 * * * * * * * * * * *
 GAA TGG AGA GAT CCA GGT ACC GGA AGA ACC GGG CAG CTC ACC TGG ACC
 Glu Trp Arg Asp Pro Gly Thr Gly Arg Thr Gln Leu Thr Trp Thr>

(SEQ ID NO: 3) cont'd

3080	3090	3100	3110	
*	*	*	*	*
CGA CTG CCC CAA GGG TTC AAG AAC TCC CCG ACC ATC TTT GAC GAA GCC Arg Leu Pro Gln Gly Phe Lys Asn Ser Pro Thr Ile Phe Asp Glu Ala>				
3120	3130	3140	3150	3160
*	*	*	*	*
CTA CAC AGA GAC CTG GCC AAC TTC AGG ATC CAA CAC CCT CAG GTG ACC Leu His Arg Asp Leu Ala Asn Phe Arg Ile Gln His Pro Gln Val Thr>				
3170	3180	3190	3200	3210
*	*	*	*	*
CTC CTC CAG TAC GTG GAT GAC CTG CTT CTG GCG GGA GCC ACC AAA CAG Leu Leu Gln Tyr Val Asp Asp Leu Leu Leu Ala Gly Ala Thr Lys Gln>				
3220	3230	3240	3250	3260
*	*	*	*	*
GAC TGC TTA GAA GGC ACG AAG GCA CTA CTG CTG GAA TTG TCT GAC CTA Asp Cys Leu Glu Gly Thr Lys Ala Leu Leu Glu Leu Ser Asp Leu>				
3270	3280	3290	3300	3310
*	*	*	*	*
GGC TAC AGA GCC TCT GCT AAG AAG GCC CAG ATT TGC AGG AGA GAG GTA Gly Tyr Arg Ala Ser Ala Lys Lys Ala Gln Ile Cys Arg Arg Glu Val>				
3320	3330	3340	3350	
*	*	*	*	*
ACA TAC TTG GGG TAC AGT TTG CCG GAC GGG CAG CGA TGG CTG ACG GAG Thr Tyr Leu Gly Tyr Ser Leu Arg Asp Gly Gln Arg Trp Leu Thr Glu>				
3360	3370	3380	3390	3400
*	*	*	*	*
GCA CGG AAG AAA ACT GTA GTC CAG ATA CCG GCC CCA ACC ACA GCC AAA Ala Arg Lys Thr Val Val Gln Ile Pro Ala Pro Thr Thr Ala Lys>				
3410	3420	3430	3440	3450
*	*	*	*	*
CAA ATG AGA GAG TTT TTG GGG ACA GCT GGA TTT TGC AGA CTG TGG ATC Gln Met Arg Glu Phe Leu Gly Thr Ala Gly Phe Cys Arg Leu Trp Ile>				
3460	3470	3480	3490	3500
*	*	*	*	*
CCG GGG TTT GCG ACC TTA GCA GCC CCA CTC TAC CCG CTA ACC AAA GAA Pro Gly Phe Ala Thr Leu Ala Ala Pro Leu Tyr Pro Leu Thr Lys Glu>				
3510	3520	3530	3540	3550
*	*	*	*	*
AAA GGG GAA TTC TCC TGG GCT CCT GAG CAC CAG AAG GCA TTT GAT GCT Lys Gly Glu Phe Ser Trp Ala Pro Glu His Gln Lys Ala Phe Asp Ala>				
3560	3570	3580	3590	
*	*	*	*	*
ATC AAA AAG GCC CTG CTG AGC GCA CCT GCT CTG GCC CTC CCT GAC GTA Ile Lys Ala Leu Leu Ser Ala Pro Ala Leu Ala Leu Pro Asp Val>				
3600	3610	3620	3630	3640
*	*	*	*	*
ACT AAA CCC TTT ACC CTT TAT GTG GAT GAG CGT AAG GGA GTA GCC CGG Thr Lys Pro Phe Thr Leu Tyr Val Asp Glu Arg Lys Gly Val Ala Arg>				

(SEQ ID NO: 3) cont'd

3650 3660 3670 3680 3690
 * * * * * * * * * *
 GGA GTT TTA ACC CAA ACC CTA GGA CCA TGG AGA AGA CCT GTC GGC TAC
 Gly Val Leu Thr Gln Thr Leu Gly Pro Trp Arg Arg Pro Val Ala Tyr>

 3700 3710 3720 3730 3740
 * * * * * * * * * *
 CTG TCA AAG AAG CTC GAT CCT GTC GCC AGT GGT TGG CCC ATA TGC CTG
 Leu Ser Lys Lys Leu Asp Pro Val Ala Ser Gly Trp Pro Ile Cys Leu>

 3750 3760 3770 3780 3790
 * * * * * * * * * *
 AAG GCT ATC GCA GCT GTG GCC ATA CTG GTC AAG GAC GCT GAC AAA TTG
 Lys Ala Ile Ala Ala Val Ala Ile Leu Val Lys Asp Ala Asp Lys Leu>

 3800 3810 3820 3830
 * * * * * * * * * *
 ACT TTG GGA CAG AAT ATA ACT GTC ATA GGC CCC CAT GCA TTG GAG AAC
 Thr Leu Gly Gln Asn Ile Thr Val Ile Ala Pro His Ala Leu Glu Asn>

 3840 3850 3860 3870 3880
 * * * * * * * * * *
 ATC GTT CCG CAG CCC CCA GAC CGA TGG ATG ACC AAC GGC CGC ATG ACC
 Ile Val Arg Gln Pro Pro Asp Arg Trp Met Thr Asn Ala Arg Met Thr>

 3890 3900 3910 3920 3930
 * * * * * * * * * *
 CAC TAT CAA AGC CTG CTT CTC ACA GAG AGG GTC ACG TTC GCT CCA CCA
 His Tyr Gln Ser Leu Leu Leu Thr Glu Arg Val Thr Phe Ala Pro Pro>

 3940 3950 3960 3970 3980
 * * * * * * * * * *
 GCC GCT CTC AAC CCT GCC ACT CTT CTG CCT GAA GAG ACT GAT GAA CCA
 Ala Ala Leu Asn Pro Ala Thr Leu Leu Pro Glu Glu Thr Asp Glu Pro>

 3990 4000 4010 4020 4030
 * * * * * * * * * *
 GTG ACT CAT GAT TGC CAT CAA CTA TTG ATT GAG GAG ACT GGG GTC CGC
 Val Thr His Asp Cys His Gln Leu Ile Glu Glu Thr Gly Val Arg>

 4040 4050 4060 4070
 * * * * * * * * * *
 AAG GAC CTT ACA GAC ATA CGG CTG ACT GGA GAA GTG CTC ACC TGG TTC
 Lys Asp Leu Thr Asp Ile Pro Leu Thr Gly Glu Val Leu Thr Trp Phe>

 4080 4090 4100 4110 4120
 * * * * * * * * * *
 ACT GAC GGA AGC AGC TAT GTG GTG GAA GGT AAG AGG ATG GCT GGG GCG
 Thr Asp Gly Ser Ser Tyr Val Val Glu Gly Lys Arg Met Ala Gly Ala>

 4130 4140 4150 4160 4170
 * * * * * * * * * *
 GCG GTG GTG GAC GGG ACC CGC ACG ATC TGG GCC AGC AGC CTG CGG GAA
 Ala Val Val Asp Gly Thr Arg Thr Ile Trp Ala Ser Ser Leu Pro Glu>

 4180 4190 4200 4210 4220
 * * * * * * * * * *
 GGA ACT TCA GCA CAA AAG GCT GAG CTC ATG GCC CTC ACG CAA GCT TTG
 Gly Thr Ser Ala Gln Lys Ala Glu Leu Met Ala Leu Thr Gln Ala Leu>

FIGURE 3,CONT.

(SEQ ID NO: 3) cont'd

4230	4240	4250	4260	4270
*	*	*	*	*
CGG CTG GCC GAA GGG AAA TCC ATA AAC ATT TAT ACG GAC AGC AGG TAT				
Arg Leu Ala Glu Gly Lys Ser Ile Asn Ile Tyr Thr Asp Ser Arg Tyr>				
4280	4290	4300	4310	
*	*	*	*	*
GCC TTT GCG ACT GCA CAC GTC CAT GGG GCC ATC TAT AAA CAA AGG GGG				
Ala Phe Ala Thr Ala His Val His Gly Ala Ile Tyr Lys Gln Arg Gly>				
4320	4330	4340	4350	4360
*	*	*	*	*
TTG CTT ACC TCA GCA GGG AGG GAA ATA AAG AAC AAA GAG GAA ATT CTA				
Leu Leu Thr Ser Ala Gly Arg Glu Ile Lys Asn Lys Glu Glu Ile Leu>				
4370	4380	4390	4400	4410
*	*	*	*	*
AGC CTA TTA GAA GCC GTC CAT TTA CCA AAA AGG CTA GCT ATT ATA CAC				
Ser Leu Leu Glu Ala Val His Leu Pro Lys Arg Leu Ala Ile Ile His>				
4420	4430	4440	4450	4460
*	*	*	*	*
TGT CCT GGA CAT CAG AAA GCT AAA GAT CTC ATA TCC AGA GGA AAC CAG				
Cys Pro Gly His Gln Lys Ala Lys Asp Leu Ile Ser Arg Gly Asn Gln>				
4470	4480	4490	4500	4510
*	*	*	*	*
ATG GCT GAC CGG GTT GCC AAG CAG GCA GCC CAG GGT GTT AAC CTT CTG				
Met Ala Asp Arg Val Ala Lys Gln Ala Ala Gln Gly Val Asn Leu Leu>				
4520	4530	4540	4550	
*	*	*	*	*
CCT ATA ATA GAA ATG CCC AAA GCC CCA GAA CCC AGA CGA CAG TAC ACC				
Pro Ile Ile Glu Met Pro Lys Ala Pro Glu Pro Arg Arg Gln Tyr Thr>				
4560	4570	4580	4590	4600
*	*	*	*	*
CTA GAA GAC TGG CAA GAG ATA AAA AAG ATA GAC CAG TTC TCT GAG ACT				
Leu Glu Asp Trp Gln Glu Ile Lys Lys Ile Asp Gln Phe Ser Glu Thr>				
4610	4620	4630	4640	4650
*	*	*	*	*
CCG GAA GGG ACC TGC TAT ACC TCA GAT GGG AAG GAA ATC CTG CCC CAC				
Pro Glu Gly Thr Cys Tyr Thr Ser Asp Gly Lys Glu Ile Leu Pro His>				
4660	4670	4680	4690	4700
*	*	*	*	*
AAA GAA GGG TTA GAA TAT GTC CAA CAG ATA CAT CGT CTA ACC CAC CTA				
Lys Glu Gly Leu Glu Tyr Val Gln Gln Ile His Arg Leu Thr His Leu>				
4710	4720	4730	4740	4750
*	*	*	*	*
GGA ACT AAA CAC CTG CAG CAG TTG GTC AGA ACA TCC CCT TAT CAT GTT				
Gly Thr Lys His Leu Gln Gln Leu Val Arg Thr Ser Pro Tyr His Val>				
4760	4770	4780	4790	
*	*	*	*	*
CTG AGG CTA CCA GGA GTG GCT GAC TCG GTG GTC AAA CAT TGT GTG CCC				
Leu Arg Leu Pro Gly Val Ala Asp Ser Val Val Lys His Cys Val Pro>				

5380 5390 5400 5410 5420 (SEQ ID NO: 3) cont'd
 * * * * * *
 TCC CAG CCT TTG TTC TCT AGG CTC AAG GCA CTT GAG TGG GTG AGA CAA
 Ser Gln Pro Leu Phe Ser Arg Leu Lys Ala Leu Glu Trp Val Arg Gln>

5430 5440 5450 5460 5470
 * * * * * * *
 CGA CGG TGG AGG CAA CTC CGG GAG GCC TAC TCA GGA GGA GGA GAC TTG
 Arg Ala Trp Arg Gln Leu Arg Glu Ala Tyr Ser Gly Gly Asp Leu>

5480 5490 5500 5510
 * * * * * * *
 CAG ATC CCA CAT CGT TTC CAA GTG GGA GAT TCA GTC TAC GTT AGA CGC
 Gln Ile Pro His Arg Phe Gln Val Gly Asp Ser Val Tyr Val Arg Arg>

5520 5530 5540 5550 5560
 * * * * * * *
 CAC CGT GCA GGA AAC CTC GAG ACT CGG TGG AAG GGC CCT TAT CTC GTC
 His Arg Ala Gly Asn Leu Glu Thr Arg Trp Lys Gly Pro Tyr Leu Val>

5570 5580 5590 5600 5610
 * * * * * * *
 CTT TTG ACC ACA CCA ACG CCT GTG AAA GTC GAA GGA ATC TCC ACC TGG
 Leu Leu Thr Thr Pro Thr Ala Val Lys Val Glu Gly Ile Ser Thr Trp>

5620 5630 5640 5650 5660
 * * * * * * *
 ATC CAT GCA TCC CAC GTT AAA CCG CGC CCA CCT CCC GAT TCG GGG TGG
 Met His Pro Thr Leu Asn Arg Arg His Leu Pro Ile Arg Gly Gly>

Ile His Ala Ser His Val Lys Pro Ala Pro Pro Asp Ser Gly Trp>

5670 5680 5690 5700 5710
 * * * * * * *
 AAA GGC GAA AAG ACT GAA AAT CCC CTT AAG CTT CGC CTC CAT CGC GIG
 Lys Pro Lys Arg Leu Lys Ile Pro Leu Ser Phe Ala Ser Ile Ala Trp>

Lys Ala Glu Lys Thr Glu Asn Pro Leu Lys Leu Arg Leu His Arg Val>

5720 5730 5740 5750 5760
 * * * * * * *
 GTT CCT TAC TCT GTC AAT AAC CTC TCA GAC T AAT GGT ATG CGC ATA GGA
 Phe Leu Thr Leu Ser Ile Thr Ser Gln Thr Asn Gly Met Arg Ile Gly>

Val Pro Tyr Ser Val Asn Asn Leu Ser Asp>

5770 5780 5790 5800
 * * * * * * *
 GAC AGC CTG AAC TCC CAT AAA CCC TTA TCT CTC ACC TGG TTA ATT ACT
 Asp Ser Leu Asn Ser His Lys Pro Leu Ser Leu Thr Trp Leu Ile Thr>

5810 5820 5830 5840 5850
 * * * * * * *
 GAC TCC GGC ACA GGT ATT AAT ATC AAC AAC ACT CAA GGG GAG GCT CCT
 Asp Ser Gly Thr Gly Ile Asn Ile Asn Asn Thr Gln Gly Glu Ala Pro>

5860 5870 5880 5890 5900 (SEQ ID NO: 3) cont'd
 * * * * * *
 TTA GGA ACC TGG TGG CCT GAT CTA TAC GAT TGC CTC AGA TCA GAT ATT
 Leu Gly Thr Trp Trp Pro Asp Leu Tyr Val Cys Leu Arg Ser Val Ile>

5910 5920 5930 5940 5950
 * * * * * * *
 CCT AGT CTG ACC TCA CCC CCA GAT ATC CTC CAT GCT CAC GGA TTT TAT
 Pro Ser Leu Thr Ser Pro Pro Asp Ile Leu His Ala His Gly Phe Tyr>

5960 5970 5980 5990 6000
 * * * * * * * *
 GTT TGC CCA GGA CCA CCA AAT AAT GGA AAA CAT TGC GGA AAT CCC AGA
 Val Cys Pro Gly Pro Pro Asn Asn Gly Lys His Cys Gly Asn Pro Arg>

6010 6020 6030 6040
 * * * * * * * *
 GAT TTC TTT TGT AAA CAA TGG AAC TGT GTA ACC TCT AAT GAT GGA TAT
 Asp Phe Phe Cys Lys Gln Trp Asn Cys Val Thr Ser Asn Asp Gly Tyr>

6050 6060 6070 6080 6090
 * * * * * * * *
 TGG AAA TGG CCA ACC TCT CAG CAG GAT AGG GTA AGT TTT TCT TAT GTC
 Trp Lys Trp Pro Thr Ser Gln Gln Asp Arg Val Ser Phe Ser Tyr Val>

6100 6110 6120 6130 6140
 * * * * * * * *
 AGC ACC TAT ACC AGC TCT GGA CAA TTT AAT TAC CTG ACC TGG ATT AGA
 Asn Thr Tyr Thr Ser Ser Gly Gln Phe Asn Tyr Leu Thr Trp Ile Arg>

6150 6160 6170 6180 6190
 * * * * * * * *
 ACT GGA AGC CCC AAG TGC TCT CCT TCA GAC CTA GAT TAC CTA AAA ATA
 Thr Gly Ser Pro Lys Cys Ser Pro Ser Asp Leu Asp Tyr Leu Lys Ile>

6200 6210 6220 6230 6240
 * * * * * * * *
 AGT TTC ACT GAG AAA GGA AAA CAA GAA AAT ATC CTA AAA TGG GTA AAT
 Ser Phe Thr Glu Lys Gly Gln Glu Asn Ile Leu Lys Trp Val Asn>

6250 6260 6270 6280
 * * * * * * * *
 GGT ATG TCT TGG GGA ATG GTA TAT TAT GGA GGC TCG GGT AAA CAA CCA
 Gly Met Ser Trp Gly Met Val Tyr Tyr Gly Ser Gly Lys Gln Pro>

6290 6300 6310 6320 6330
 * * * * * * * *
 GGC TCC ATT CTA ACT ATT CGC CTC AAA ATA AAC CAG CTG GAG CCT CCA
 Gly Ser Ile Leu Thr Ile Arg Leu Lys Ile Asn Gln Leu Glu Pro Pro>

6340 6350 6360 6370 6380
 * * * * * * * *
 ATG GCT ATA GGA CCA AAT ACG GTC TTG ACG GGT CAA AGA CCC CCA ACC
 Met Ala Ile Gly Pro Asn Thr Val Leu Thr Gly Gln Arg Pro Pro Thr>

6390 6400 6410 6420 6430
 * * * * * * * *
 CAA GGA CCA GGA CCA TCC TCT AAC ATA ACT TCT GGA TCA GAC CCC ACT
 Gln Gly Pro Gly Pro Ser Ser Asn Ile Thr Ser Gly Ser Asp Pro Thr>

(SEQ ID NO: 3) cont'

6440	6450	6460	6470	6480
*	*	*	*	*
GAG TCT AAC AGC ACG ACT AAA ATG GGG GCA AAA CTT TTT ACC CTC ATC				
Glu Ser Asn Ser Thr Thr Lys Met Gly Ala Lys Leu Phe Ser Leu Ile>				
6490	6500	6510	6520	
*	*	*	*	*
CAG GGA GCT TTT CAA GCT CTT AAC TCC ACG ACT CCA GAG GCT ACC TCT				
Gln Gly Ala Phe Gln Ala Leu Asn Ser Thr Thr Pro Glu Ala Thr Ser>				
6530	6540	6550	6560	6570
*	*	*	*	*
TCT TGT TGG CTA TGC TTA GCT TCG GGC CCA CCT TAC TAT GAA GGA ATG				
Ser Cys Trp Leu Cys Leu Ala Ser Gly Pro Pro Tyr Tyr Glu Gly Met>				
6580	6590	6600	6610	6620
*	*	*	*	*
GCT AGA AGA GGG AAA TTC AAT GTG ACA AAA GAA CAT AGA GAC CAA TGC				
Ala Arg Arg Gly Lys Phe Asn Val Thr Lys Glu His Arg Asp Gln Cys>				
6630	6640	6650	6660	6670
*	*	*	*	*
ACA TGG GGA TCC CAA AAT AAG CTT ACC CTT ACT GAG GTT TCT GGA AAA				
Thr Trp Gly Ser Gln Asn Lys Leu Thr Leu Thr Glu Val Ser Gly Lys>				
6680	6690	6700	6710	6720
*	*	*	*	*
GGC ACC TGC ATA GGA AAG GTT CCC CCA TCC CAC CAA CAC CTT TGT AAC				
Gly Thr Cys Ile Gly Lys Val Pro Pro Ser His Gln His Leu Cys Asn>				
6730	6740	6750	6760	
*	*	*	*	*
CAC ACT GAA GCC TTT AAT CAA ACC TCT GAG AGT CAA TAT CTG GTA CCT				
His Thr Glu Ala Phe Asn Gln Thr Ser Glu Ser Gln Tyr Leu Val Pro>				
6770	6780	6790	6800	6810
*	*	*	*	*
GGT TAT GAC AGG TGG TGG GCA TGT AAT ACT GGA TTA ACC CCT TGT GTT				
Gly Tyr Asp Arg Trp Trp Ala Cys Asn Thr Gly Leu Thr Pro Cys Val>				
6820	6830	6840	6850	6860
*	*	*	*	*
TCC ACC TTG GTT TTT AAC CAA ACT AAA GAT TTT TGC ATT ATG GTC CAA				
Ser Thr Leu Val Phe Asn Gln Thr Lys Asp Phe Cys Ile Met Val Gln>				
6870	6880	6890	6900	6910
*	*	*	*	*
ATT GTT CCC CGA GTG TAT TAC TAT CCC GAA AAA GCA ATC CTT GAT GAA				
Ile Val Pro Arg Val Tyr Tyr Pro Glu Lys Ala Ile Leu Asp Glu>				
6920	6930	6940	6950	6960
*	*	*	*	*
TAT GAC TAC AGA AAT CAT CGA CAA AAG AGA GAA CCC ATA TCT CTG ACA				
Tyr Asp Tyr Arg Asn His Arg Gln Lys Arg Glu Pro Ile Ser Leu Thr>				
6970	6980	6990	7000	
*	*	*	*	*
CTT CCT GTG ATG CTC GGA CTT GGA GTG GCA GCA GGT GTA GGA ACA GGA				
Leu Ala Val Met Leu Gly Leu Gly Val Ala Ala Gly Val Gly Thr Gly>				

FIGURE 3,CONT.

(SEQ ID NO: 3) cont'd

7010 7020 7030 7040 7050
 * * * * * * * * * *
 ACA GCT GCC CTG GTC ACG GGA CCA CAG CAG CTA GAA ACA GGA CTT AGT
 Thr Ala Ala Leu Val Thr Gly Pro Gln Gln Leu Glu Thr Gly Leu Ser>

 7060 7070 7080 7090 7100
 * * * * * * * * * *
 AAC CTA CAT CGA ATT GTA ACA GAA GAT CTC CAA GCC CTA GAA AAA TCT
 Asn Leu His Arg Ile Val Thr Glu Asp Leu Gln Ala Leu Glu Lys Ser>

 7110 7120 7130 7140 7150
 * * * * * * * * * *
 GTC AGT AAC CTG GAG GAA TCC CTA ACC TCC TTA TCT GAA GTA GTC CTA
 Val Ser Asn Leu Glu Ser Leu Thr Ser Leu Ser Glu Val Val Leu>

 7160 7170 7180 7190 7200
 * * * * * * * * * *
 CAG AAT AGA AGA GGG TTA GAT TTA TTA TTT CTA AAA GAA GGA GGA TTA
 Gln Asn Arg Arg Gly Leu Asp Leu Leu Phe Leu Lys Glu Gly Leu>

 7210 7220 7230 7240
 * * * * * * * * * *
 TGT GTA GCC TTG AAG GAG GAA TGC TGT TTT TAT GTG GAT CAT TCA GGG
 Cys Val Ala Leu Lys Glu Glu Cys Phe Tyr Val Asp His Ser Gly>

 7250 7260 7270 7280 7290
 * * * * * * * * * *
 GCC ATC AGA GAC TCC ATG AAC AAG CTT AGA GAA AGG TTG GAC AAG CGT
 Ala Ile Arg Asp Ser Met Asn Lys Leu Arg Glu Arg Leu Glu Lys Arg>

 7300 7310 7320 7330 7340
 * * * * * * * * * *
 CGA AGG GAA AAG GAA ACT ACT CAA GGG TGG TTT GAG GGA TGG TTC AAC
 Arg Arg Glu Lys Glu Thr Thr Gln Gly Trp Phe Glu Gly Trp Phe Asn>

 7350 7360 7370 7380 7390
 * * * * * * * * * *
 AGG TCT CTT TGG TTG GCT ACC CTA CTT TCT GCT TTA ACA GGA CCC TTA
 Arg Ser Leu Trp Leu Ala Thr Leu Leu Ser Ala Leu Thr Gly Pro Leu>

 7400 7410 7420 7430 7440
 * * * * * * * * * *
 ATA GTC CTC CTC CTG TTA CTC ACA GTT GGG CCA TGT ATT ATT AAC AAG
 Ile Val Leu Leu Leu Leu Leu Thr Val Gly Pro Cys Ile Ile Asn Lys>

 7450 7460 7470 7480
 * * * * * * * * * *
 TTA ATT GCC TTC ATT AGA GAA CGA ATA AGT GCA GTC CAG ATC ATG GTC
 Leu Ile Ala Phe Ile Arg Glu Arg Ile Ser Ala Val Gln Ile Met Val>

 7490 7500 7510 7520 7530
 * * * * * * * * * *
 CTT AGA CAA CAG TAC CAA AGC CGG TCT AGC AGG GAA GCT GGC CGC
 Leu Arg Gln Gln Tyr Gln Ser Pro Ser Ser Arg Glu Ala Gly Arg>

 7540 7550 7560 7570 7580 7590
 * * * * * * * * * *
 TAGCTCT ACCAGTTCTA AGATTTAGAAC TATTAACAAG AGAAGAAGTG GGGATGAAA

FIGURE 3, CONT.

(SEQ ID NO: 3) cont'd

7600	7610	7620	7630	7640	7650
*	*	*	*	*	*
GGATGAAAAT ACAACCTAAG CTAATGAGAA CCTTAAAATT GTCTGAAATT CCAGAGTTTG					
7660	7670	7680	7690	7700	7710
*	*	*	*	*	*
TTCCCTATAG GTAAAAGATT AGGTTTTTIG CTGTTTAAA ATATGGGAA GTAAAATAGG					
7720	7730	7740	7750	7760	7770
*	*	*	*	*	*
CCCTGAGTAC ATGCTCTAG GCATGAAACT TCTTGAAACT ATTTGAGATA ACAAGAAAAG					
7780	7790	7800	7810	7820	7830
*	*	*	*	*	*
GGAGTTCTA ACTGCTGTT TAGCTCTGT AAAACTGGTT GOGCCATAAA GATGTGAAA					
7840	7850	7860	7870	7880	7890
*	*	*	*	*	*
TGTGATACA CATACTTGG TGACAACATG TCTCCCCAC CCCGAAACAT GCGCAAATGT					
7900	7910	7920	7930	7940	7950
*	*	*	*	*	*
GTAACCTCTAA AACAAATTAA ATTAATTGGT CCACGAAGCG CGGGCTCTCG AAGTTTAAA					
7960	7970	7980	7990	8000	8010
*	*	*	*	*	*
TTGACTGGTT TGTGATATTT TGAAATGATT GGTTGTAAA GCGGGGGCTT TGTTGTGAAAC					
8020	8030	8040	8050	8060	8070
*	*	*	*	*	*
CCCATAAAAG CTGTCGGAC TCCACACTCG GGGCCCCAGT CCTCTACCCCG TGCGTGGTGT					
8080	8090	8100	8110	8120	8130
*	*	*	*	*	*
ACGACTGTGG GCCCCAGCGC CCTTGAATA AAAATCTCT TGCTGTGTC ATCAAAAAAA					

AA

MOLECULAR SEQUENCE OF SWINE RETROVIRUS AND METHODS OF USE

[0001] This application is a continuation of U.S. Ser. No. 10/723,552, filed Nov. 26, 2003, which is a divisional of U.S. Ser. No. 09/661,858, filed on Sep. 14, 2000, now U.S. Pat. No. 6,699,663, which is a divisional of U.S. Ser. No. 08/766,528, filed on Dec. 13, 1996, now U.S. Pat. No. 6,190,861, which is a continuation-in-part of U.S. Ser. No. 08/572,645, filed on Dec. 14, 1995, the entire contents of which are hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The invention relates to porcine retroviral sequences, peptides encoded by porcine retroviral sequences, and methods of using the porcine retroviral nucleic acids and peptides.

BACKGROUND OF THE INVENTION

[0003] Advances in solid organ transplantation and a chronic shortage of suitable organ donors have made xenotransplantation an attractive alternative to the use of human allografts. However, the potential for introduction of a new group of infectious diseases from donor animals into the human population is a concern with the use of these methods.

[0004] The term applied to the natural acquisition by humans of infectious agents carried by other species is zoonosis. The transplantation of infection from nonhuman species into humans is best termed "direct zoonosis" or "xenosis."

[0005] Nonhuman primates and swine have been considered the main potential sources of organs for xenotransplantation (Niekrasz et al. (1992) *Transplant Proc* 24:625; Starzl et al. (1993) *Lancet* 341:65; Murphy et al. (1970) *Trans Proc* 4:546; Brede and Murphy (1972) *Primates Med* 7:18; Cooper et al. In *Xenotransplantation: The Transplantation of Organs and Tissues between Species*, eds. Cooper et al. (1991) p. 457; R Y Calne (1970) *Transplant Proc* 2:550; H. Auchincloss, Jr. (1988) *Transplantation* 46:1; and Chiche et al. (1993) *Transplantation* 6:1418). The infectious disease issues for primates and swine are similar to those of human donors. The prevention of infection depends on the ability to predict, to recognize, and to prevent common infections in the immunocompromised transplantation recipient (Rubin et al. (1993) *Antimicrob Agents Chemother* 37:619). Because of the potential carriage by nonhuman primates of pathogens easily adopted to humans, ethical concerns, and the cost of maintaining large colonies of primates, other species have received consideration as organ donors (Brede and Murphy (1972) *Primates Med* 7:18; Van Der Riet et al. (1987) *Transplant Proc* 19:4069; Katler In *Xenotransplantation: The Transplantation of Organs and Tissues between Species*, eds. Cooper et al. (1991) p. 457; Metzger et al. (1981) *J Immunol* 127:769; McClure et al. (1987) *Nature* 330:487; Letvin et al. (1987) *J Infect Dis* 156:406; Castro et al. (1991) *Virology* 184:219; Benveniste and Todaro (1973) *Proc Natl Acad Sci USA* 70:3316; and Teich, in *RNA Tumor viruses*, eds. Weiss et. al. (1985) p. 25). The economic importance of swine and experience in studies of transplantation in the miniature swine model have allowed some of the potential pathogens associated with these animals to be defined (Niekrasz et al.

(1992) *Transplant Proc* 24:625; Cooper et al. In *Xenotransplantation: The Transplantation of Organs and Tissues between Species*, eds.

Cooper et al. (1991) p. 457; and Leman et al. (1992) *Diseases of Swine*, 7th ed. Ames, Iowa:Iowa State University). Miniature swine have received consideration as organ donors because of a number of features of the species. The structure and function of the main pig organs are comparable to those of man. Swine attain body weights and organ sizes adequate to the provision of organs for human use. Lastly, veterinarians and commercial breeders have developed approaches to creation of specific-pathogen-free (SPF) swine with the ability to eliminate known pathogens from breeding colonies (Alexander et al. (1980) *Proc 6th Int Congr Pig Vet Soc*, Copenhagen; Betts (1961) *Vet Rec* 73:1349; Betts et al. (1960) *Vet Rec* 72:461; Caldwell et al. (1959) *J Am Vet Med Assoc* 135:504; and Yong (1964) *Adv Vet Sci* 9:61).

[0006] Concern exists over the transfer of porcine retroviruses by xenotransplantation (Smith (1993) *N Engl J Med* 328:141). Many of the unique properties of the retroviruses are due to the synthesis of a complementary DNA copy from the RNA template (by reverse transcriptase), and integration of this DNA into the host genome. The integrated retroviral copy (which is referred to as an endogenous copy or "provirus") can be transmitted via the germ line.

SUMMARY OF THE INVENTION

[0007] In general, the invention features a purified swine or miniature swine retroviral nucleic acid, e.g., a Tsukuba nucleic acid, a purified miniature swine retroviral nucleic acid sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, and methods of their use in detecting the presence of porcine, e.g., miniature swine, retroviral sequences.

[0008] In another aspect, the invention features a purified nucleic acid, e.g., a probe or primer, which can specifically hybridize with a purified swine or miniature swine retroviral genome, e.g., a Tsukuba genome, the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0009] In preferred embodiments the nucleic acid is other than the entire retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., it is at least 1 nucleotide longer, or at least 1 nucleotide shorter, or differs in sequence at least one position, e.g., the nucleic acid is a fragment of the sequence of SEQ ID NO:1 or its complement SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or it includes sequence additional to that of SEQ ID NO:1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0010] In preferred embodiments, the nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0011] In other embodiments: the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by 1, 2, 3, 4, or 5 base pairs; the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO: 1 or its complement, SEQ ID NO:2

or its complement, or SEQ ID NO:3 or its complement, by at least 1, 2, 3, 4, or 5 base pairs but less than 6, 7, 8, 9, or 10 base pairs.

[0012] In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length.

[0013] In yet other preferred embodiments: the nucleic acid can specifically hybridize with a translatable region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., a region from the gag, pol, or env gene; the probe or primer can specifically hybridize with an untranslated region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement; the probe or primer can specifically hybridize with a non-conserved region of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement; the probe or primer can specifically hybridize with the highly conserved regions of a miniature swine retroviral genome, e.g., the retroviral genome of SEQ ID NO: 1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0014] In preferred embodiments, the primer is selected from the group consisting of SEQ ID NOs:4-74.

[0015] In preferred embodiments, hybridization of the probe to retroviral sequences can be detected by standard methods, e.g., by radiolabeled probes or by probes bearing nonradioactive markers such as enzymes or antibody binding sites. For example, a probe can be conjugated with an enzyme such as horseradish peroxidase, where the enzymatic activity of the conjugated enzyme is used as a signal for hybridization. Alternatively, the probe can be coupled to an epitope recognized by an antibody, e.g., an antibody conjugated to an enzyme or another marker.

[0016] In another aspect, the invention features a reaction mixture which includes a target nucleic acid, e.g., a human, swine, or a miniature swine nucleic acid, and a purified second nucleic acid, e.g., a probe or primer, as, e.g., is described herein, which specifically hybridizes with the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a swine or a miniature swine retroviral nucleic acid, e.g., a Tsukuba nucleic acid.

[0017] In preferred embodiments, the target nucleic acid: includes RNA; or includes DNA.

[0018] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0019] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0020] In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

[0021] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0022] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0023] In preferred embodiments the second nucleic acid is: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

[0024] In another aspect, the invention features a method for screening a cell or a tissue, e.g., a cellular or tissue transplant, e.g., a xenograft, for the presence or expression of a swine or a miniature swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

[0025] contacting a target nucleic acid from the tissue with a second sequence chosen from the group of: a sequence

which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous miniature swine retrovirus or retroviral sequence in the tissue or an endogenous swine retrovirus in the tissue.

[0026] In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0027] In preferred embodiments, the tissue or cellular transplant is selected from the group consisting of: heart, lung, liver, bone marrow, kidney, brain cells, neural tissue, pancreas or pancreatic cells, thymus, or intestinal tissue.

[0028] In other preferred embodiments, the target nucleic acid is: DNA; RNA; or cDNA.

[0029] In other preferred embodiments, the target nucleic acid is taken from: a tissue sample, or a blood sample, e.g., a tissue biopsy sample, e.g., a tissue sample suitable for in situ hybridization or immunohistochemistry.

[0030] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0031] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated

an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

[0032] In a preferred embodiment the target nucleic acid is RNA, or a nucleic acid amplified from RNA in the tissue, and hybridization is correlated with expression of an endogenous miniature swine retrovirus or retroviral sequence or an endogenous swine retrovirus.

[0033] In a preferred embodiment the target nucleic acid is DNA, or a nucleic acid amplified from DNA in the tissue, and hybridization is correlated with the presence of an endogenous miniature swine retrovirus or an endogenous swine retrovirus.

[0034] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0035] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0036] In another aspect, the invention features a method of screening a porcine derived cell or tissue for the presence of an activatable porcine retrovirus, e.g., an activatable porcine provirus. The method includes:

[0037] stimulating a porcine derived cell or tissue with a treatment which can activate a retrovirus;

[0038] contacting a target nucleic acid from the porcine derived cell or tissue with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides

2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid hybridization being indicative of the presence of an activatable porcine provirus in the porcine derived cell or tissue.

[0039] In preferred embodiments the treatment is: contact with a drug, e.g., a steroid or a cytotoxic agent, infection or contact with a virus, the induction of stress, e.g., nutritional stress or immunologic stress, e.g., contact with a T-cell, e.g., a reactive T-cell.

[0040] In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0041] In other preferred embodiments, the target nucleic acid is taken from: a tissue sample, or a blood sample, e.g., a tissue biopsy sample, e.g., a tissue sample suitable for in situ hybridization or immunohistochemistry.

[0042] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0043] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

[0044] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0045] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0046] In another aspect, the invention features a method for screening a miniature swine genome or a swine genome for the presence of a porcine retrovirus or retroviral sequence, e.g., an endogenous porcine retrovirus. The method includes:

[0047] contacting the miniature swine (or swine) genomic DNA with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the miniature swine (or swine) genome.

[0048] In preferred embodiments, the method further includes amplifying all or a portion of the miniature swine (or swine) genome with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0049] In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

[0050] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0051] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0052] In another aspect, the invention features a method for screening a genetically modified miniature swine or a

genetically modified swine for the presence or expression of a miniature swine or swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

[0053] contacting a target nucleic acid from the genetically modified miniature swine or swine with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

[0054] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous miniature swine retrovirus or retroviral sequence or swine retrovirus or retroviral sequence in the genetically modified miniature swine or swine.

[0055] In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0056] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0057] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA tem-

plate, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

[0058] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0059] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0060] In another aspect, the invention features a method of assessing the potential risk associated with the transplantation of a graft from a donor miniature swine or swine into a recipient animal, e.g., a miniature swine or swine, a non-human primate, or a human. The method includes:

[0061] contacting a target nucleic acid from the donor, recipient or the graft, with a second sequence chosen from the group of: a nucleic acid sequence which specifically hybridizes a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

[0062] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

[0063] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of a risk associated with the transplantation.

[0064] In a preferred embodiment: the second nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is a porcine retro-

viral sequence, probe or primer, e.g., as described herein; the second nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

[0065] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0066] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine potential donor organ; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a recipient swine or a xenogeneic recipient, e.g., a primate, e.g., a human.

[0067] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0068] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0069] In another aspect, the invention features a method of determining if an endogenous miniature swine or swine retrovirus or retroviral sequence genome includes a mutation which modulates its expression, e.g., results in misexpression. The method includes:

[0070] determining the structure of the endogenous retroviral genome, and

[0071] comparing the structure of the endogenous retroviral genome with the retroviral sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a difference being predictive of a mutation.

[0072] In preferred embodiments the method includes sequencing the endogenous genome and comparing it with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0073] In preferred embodiments, the method includes using primers to amplify, e.g., by PCR, LCR (ligase chain reaction), or other amplification methods, a region of the endogenous retroviral genome, and comparing the structure of the amplification product to the sequence of SEQ ID NO:1

or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement to determine if there is difference in sequence between retroviral genome and SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement. The method further includes determining if one or more restriction sites exist in the endogenous retroviral genome, and determining if the sites exist in SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0074] In preferred embodiments, the mutation is a gross defect, e.g., an insertion, inversion, translocation or a deletion, of all or part of the retroviral genome.

[0075] In preferred embodiments, detecting the mutation can include: (i) providing a labeled PCR probe amplified from DNA (e.g., SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3) containing a porcine retroviral nucleotide sequence which hybridizes to a sense or antisense sequence from the porcine retroviral genome(e.g., SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3), or naturally occurring mutants thereof; (ii) exposing the probe/primer to nucleic acid of the tissue (e.g., genomic DNA) digested with a restriction endonuclease; and (iii) detecting by in situ hybridization of the probe/primer to the nucleic acid, the presence or absence of the genetic lesion. Alternatively, direct PCR analysis, using primers specific for porcine retroviral genes (e.g., genes comprising the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3), can be used to detect the presence or absence of the genetic lesion in the porcine retroviral genome by comparing the products amplified.

[0076] In another aspect, the invention features a method of providing a miniature swine or a swine free of an endogenous retrovirus or retroviral sequence, e.g., activatable retrovirus, insertion at a preselected site. The method includes:

[0077] performing a breeding cross between a first miniature swine (or swine) having a retroviral insertion at the preselected site and a second miniature swine (or swine) not having a retroviral insertion at a preselected site, e.g., the same site, and recovering a progeny miniature swine (or swine), not having the insertion, wherein the presence or absence of the retroviral insertion is determined by contacting the genome of a miniature swine(or swine) with a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g, from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g, from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g, from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

[0078] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 23204737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense

or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

[0079] In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the first animal or one of its ancestors.

[0080] In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the second animal or one of its ancestors.

[0081] In preferred embodiments, the nucleic acid is hybridized to nucleic acid, e.g., DNA from the genome, of the progeny animal or one of its descendants.

[0082] In preferred embodiments, the nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0083] In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is a full length retroviral genome.

[0084] In another aspect, the invention features a method of evaluating a treatment, e.g., an immunosuppressive treatment, for the ability to activate a retrovirus, e.g., an endogenous porcine retrovirus. The method includes:

[0085] administering a treatment to a subject, e.g., a miniature swine (or a swine), having an endogenous porcine retrovirus; and

[0086] detecting expression of the porcine retrovirus with a purified nucleic acid sequence which specifically hybridizes to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0087] In preferred embodiments, the immunosuppressive treatment includes radiation, chemotherapy or drug treatment.

[0088] In preferred embodiments: the treatment is one which can induce immunological tolerance; the treatment is one which can introduce new genetic material, e.g., introduce new genetic material into a miniature swine genome (or a swine genome) or into the genome of a host which receives a swine or a miniature swine graft, e.g., the treatment is one which introduces a new genetic material via retroviral mediated transfer.

[0089] In a preferred embodiment: the purified nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the purified nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein; the purified nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of such sequence or complement at least 10, 20, or 30, basepairs in length.

[0090] In preferred embodiments, the purified nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity

or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0091] In other preferred embodiments: the purified nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the purified nucleic acid is a full length retroviral genome.

[0092] In preferred embodiments the second nucleic acid is: a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof.

[0093] In another aspect, the invention features a method of localizing the origin of a porcine retroviral infection. The method includes:

[0094] contacting a target nucleic acid from the graft with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

[0095] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from

nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid contacting a target nucleic acid from the recipient with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid; hybridization to the nucleic acid from the graft correlates with the porcine retroviral infection in the graft; and hybridization to the nucleic acid from the recipient correlates with the porcine retroviral infection in the recipient.

[0096] In preferred embodiments, the target nucleic acid includes: genomic DNA, RNA or cDNA, e.g., cDNA made from an RNA template.

[0097] In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

[0098] In preferred embodiments, the recipient is an animal, e.g., a miniature swine, a swine, a non-human primate, or a human.

[0099] In preferred embodiments, the graft is selected from the group consisting of: heart, lung, liver, bone marrow or kidney.

[0100] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0101] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably

at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0102] In another aspect, the invention features a method of screening a cell, e.g., a cell having a disorder, e.g., a proliferative disorder, e.g., a tumor cell, e.g., a cancer cell, e.g., a lymphoma or a hepatocellular carcinoma, developing in a graft recipient, e.g., a xenograft, for the presence or expression of a porcine retrovirus or retroviral sequence. The method includes:

[0103] contacting a target nucleic acid from a tumor cell with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid, under conditions in which the sample and the nucleic acid sequence can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the tumor cell.

[0104] In preferred embodiments, the target nucleic acid from a tumor cell includes: genomic DNA, RNA or cDNA, e.g., cDNA made from an RNA template.

[0105] In a preferred embodiment: the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein, e.g., a Tsukuba-1 retroviral sequence; the second nucleic acid is a sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or a fragment of the sequence or complement at least 10, 20, or 30, basepairs in length.

[0106] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity

or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0107] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0108] In another aspect, the invention features a method of screening a human subject for the presence or expression of an endogenous porcine retrovirus or retroviral sequence comprising:

[0109] contacting a target nucleic acid derived from the human subject with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid under conditions in which the sequences can hybridize, hybridization being indicative of the presence of the endogenous porcine retrovirus or retroviral sequence in the human subject.

[0110] In preferred embodiments, the target nucleic acid derived from a human subject is DNA, RNA or cDNA sample, nucleic acid from a blood sample or a tissue sample, e.g., a tissue biopsy sample.

[0111] In preferred embodiments, the human subject is a miniature swine or swine xenograft recipient, or a person who has come into contact with a miniature swine or swine xenograft recipient.

[0112] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0113] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0114] In preferred embodiments: the recipient is tested for the presence of porcine retroviral sequences prior to implantation of swine or miniature swine tissue.

[0115] In another aspect, the invention features a method of screening for viral mutations which modulate, e.g., increase or decrease, susceptibility of a porcine retrovirus to an anti-viral agent, e.g., an antiviral antibiotic. The method includes:

[0116] administering a treatment, e.g., an antiviral agent, e.g., an antiviral antibiotic;

[0117] isolating a putative mutant porcine retroviral strain;

[0118] determining a structure of the putative mutant retroviral strain; and

[0119] comparing the structure to SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0120] In another aspect, the invention features a method of screening for viral mutations which modulate, e.g., increase or decrease, susceptibility of a porcine retrovirus to an anti-viral agent, e.g., an antiviral antibiotic. The method includes:

[0121] growing the porcine retrovirus in a presence of a treatment, e.g., an antiviral agent, e.g., an antiviral antibiotic; and

[0122] determine the amount of porcine retroviral DNA synthesized by hybridizing the porcine retroviral DNA to a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

[0123] In preferred embodiments, the method further includes amplifying the porcine retroviral nucleic acid with

primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., by polymerase chain reaction quantitative DNA testing (PDQ).

[0124] In a preferred embodiment: the second nucleic acid is a Tsukuba-1 retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is a porcine retroviral sequence, probe or primer, e.g., as described herein; the second nucleic acid is the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0125] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0126] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0127] In another aspect, the invention features a method for screening a porcine-derived product for the presence or expression of a swine or miniature swine retrovirus or retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes:

[0128] contacting a target nucleic acid from the porcine-derived product with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid, under conditions in which hybridization can occur, hybridization being indicative of the presence or expression of an endogenous

miniature swine or swine retrovirus or retroviral sequence s in the porcine-derived product.

[0129] In preferred embodiments the product is: a protein product, e.g., insulin; a food product; or a cellular transplant, e.g., a swine or miniature swine cell which is to be transplanted into a host, e.g., a swine or miniature swine cell which is genetically engineered to express a desired product,

[0130] In preferred embodiments, the method further includes amplifying the target nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0131] In other preferred embodiments, the target nucleic acid is: DNA; RNA; or cDNA.

[0132] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0133] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0134] In another aspect, the invention features a transgenic miniature swine or swine having a transgenic element, e.g., a base change, e.g., a change from A to G, or an insertion or a deletion of one or more nucleotides at an endogenous porcine retroviral insertion site, e.g., a retroviral insertion which corresponds to the retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0135] In preferred embodiments, the transgenic element is a knockout, e.g., a deletion, insertion or a translocation, of one or more nucleic acids, which alters the activity of the endogenous porcine retrovirus.

[0136] In another aspect, the invention features a method of inhibiting expression of an endogenous porcine retrovirus, including: inserting a mutation, e.g. a deletion into the endogenous retrovirus.

[0137] In preferred embodiments, the endogenous porcine retrovirus is inactivated.

[0138] In preferred embodiments, the mutation can be a point mutation, an inversion, translocation or a deletion of one or more nucleotides of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0139] In another aspect, the invention features a method of detecting a recombinant virus or other pathogen, e.g., a protozoa or fungi. The method includes:

[0140] providing a pathogen having porcine retroviral sequence; and

[0141] determining if the pathogen includes non-porcine retroviral sequence, the presence of non-porcine retroviral sequence being indicative of viral recombination.

[0142] In preferred embodiments, the method further includes determining the structure of a retrovirus by comparing the retrovirus sequence with sequence of SEQ ID NO:1 or

its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, a difference being indicative of viral recombination.

[0143] In preferred embodiments, the method further includes comparing the structure of the retrovirus with a human retroviral sequence, e.g., HTLV1, HIV1, or HIV2, a similarity in structure being indicative of viral recombination.

[0144] In another aspect, the invention features a method of determining the copy number, size, or completeness of a porcine retrovirus or retroviral sequence, e.g., in the genome of a donor, recipient or a graft. The method includes:

[0145] contacting a target nucleic acid from the donor, recipient or a graft, with a second sequence chosen from the group of: a sequence which can specifically hybridize to a porcine retroviral sequence; a sequence which can specifically hybridize to the sequence of SEQ ID NO:1 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:2 or its complement; a sequence which can specifically hybridize to the sequence of SEQ ID NO:3 or its complement; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a gag protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 (e.g., from nucleotides 3112-4683) of SEQ ID NO:1, nucleotides 598-2169 (e.g., from nucleotides 598-2169) of SEQ ID NO:2, or nucleotides 585-2156 (e.g., from nucleotides 585-2156) of SEQ ID NO:3, or naturally occurring mutants thereof;

[0146] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a pol protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, nucleotides 2320-4737 of SEQ ID NO:2, or nucleotides 2307-5741 of SEQ ID NO:3, or naturally occurring mutants thereof;

[0147] a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence which encodes a env protein; a nucleic acid of at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 (e.g., from nucleotides 86-1999) of SEQ ID NO:1, nucleotides 4738-6722 (e.g., from nucleotides 4738-6722) of SEQ ID NO:2, or nucleotides 5620-7533 of SEQ ID NO:3, or naturally occurring mutants thereof; a swine or miniature swine retroviral nucleic acid; or a Tsukuba nucleic acid.

[0148] In preferred embodiments, the method further includes amplifying the porcine retroviral nucleic acid with primers which specifically hybridize to the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., by polymerase chain reaction quantitative DNA testing (PDQ) or nested PCR.

[0149] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a miniature swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine; DNA, RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a miniature swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0150] In preferred embodiments, the target nucleic acid includes: genomic DNA isolated from a swine; RNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine; DNA, RNA or cDNA, e.g., cDNA made from

an RNA template, isolated from a swine organ, e.g., a kidney; RNA, DNA or cDNA, e.g., cDNA made from an RNA template, isolated from a swine organ which has been transplanted into a organ recipient, e.g., a xenogeneic recipient, e.g., a primate, e.g., a human.

[0151] In preferred embodiments, the second nucleic acid has at least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with a sequence from SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0152] In other preferred embodiments: the second nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the second nucleic acid is a full length retroviral genome.

[0153] In another aspect, the invention features a method for screening a tissue, e.g., a cellular or tissue transplant, e.g., a xenograft, or a tissue from a graft recipient, for the presence or expression of a swine or a miniature swine retroviral sequence, e.g., an endogenous miniature swine retrovirus. The method includes: contacting a tissue sample with an antibody specific for a retroviral protein, e.g., an anti-gag, pol, or env antibody, and thereby determining if the sequence is present or expressed.

[0154] In preferred embodiments the protein is encoded by a sequence from: the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0155] In preferred embodiments, the tissue is selected from the group consisting of: heart, lung, liver, bone marrow, kidney, brain cells, neural tissue, pancreas or pancreatic cells, thymus, or intestinal tissue.

[0156] A “purified preparation” or a “substantially pure preparation” of a polypeptide as used herein, means a polypeptide which is free from one or more other proteins, lipids, and nucleic acids with which it naturally occurs. Preferably, the polypeptide, is also separated from substances which are used to purify it, e.g., antibodies or gel matrix, such as polyacrylamide. Preferably, the polypeptide constitutes at least 10, 20, 50, 70, 80 or 95% dry weight of the purified preparation. Preferably, the preparation contains: sufficient polypeptide to allow protein sequencing; at least 1, 10, or 100 µg of the polypeptide; at least 1, 10, or 100 mg of the polypeptide.

[0157] Specifically hybridize, as used herein, means that a nucleic acid hybridizes to a target sequence with substantially greater degree than it does to other sequences in a reaction mixture. By substantially greater means a difference sufficient to determine if the target sequence is present in the mixture.

[0158] A “treatment”, as used herein, includes any therapeutic treatment, e.g., the administration of a therapeutic agent or substance, e.g., a drug or irradiation.

[0159] A “purified preparation of nucleic acid”, is a nucleic acid which is one or both of: not immediately contiguous with one or both of the coding sequences with which it is immediately contiguous (i.e., one at the 5' end and one at the 3' end) in the naturally-occurring genome of the organism from which the nucleic acid is derived; or which is substantially

free of a nucleic acid sequence or protein with which it occurs in the organism from which the nucleic acid is derived. The term includes, for example, a recombinant DNA which is incorporated into a vector, e.g., into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other DNA sequences. Substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional sequences. A purified retroviral genome is a nucleic acid which is substantially free of host nucleic acid or viral protein.

[0160] "Homologous", as used herein, refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same amino acid or base monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position. The percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared^x 100. For example, if 6 of 10, of the positions in two sequences are matched or homologous then the two sequences are 60% homologous. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology. The term sequence identity has substantially the same meaning.

[0161] The term "provirus" or "endogenous retrovirus," as used herein, refers to an integrated form of the retrovirus.

[0162] The terms "peptides", "proteins", and "polypeptides" are used interchangeably herein.

[0163] As used herein, the term "transgenic element" means a nucleic acid sequence, which is partly or entirely heterologous, i.e., foreign, to the animal or cell into which it is introduced but which is designed to be inserted, or is inserted, into the animal's genome in such a way as to alter the genome of the cell into which it is inserted. The term includes elements which cause a change in the sequence, or in the ability to be activated, of an endogenous retroviral sequence. Examples of transgenic elements include those which result in changes, e.g., substitutions (e.g., A for G), insertions or deletions of an endogenous retroviral sequence (or flanking regions) which result in inhibition of activation or misexpression of a retroviral product.

[0164] As used herein, the term "transgenic cell" refers to a cell containing a transgenic element.

[0165] As used herein, a "transgenic animal" is any animal in which one or more, and preferably essentially all, of the cells of the animal includes a transgenic element. The transgenic element can be introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection. This molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA.

[0166] As described herein, one aspect of the invention features a pure (or recombinant) nucleic acid which includes a miniature swine (or swine) retroviral genome or fragment thereof, e.g., nucleotide sequence encoding a gag-pol or env polypeptide, and/or equivalents of such nucleic acids. The term "nucleic acid", as used herein, can include fragments and equivalents. The term "equivalent" refers to nucleotide

sequences encoding functionally equivalent polypeptides or functionally equivalent polypeptides which, for example, retain the ability to react with an antibody specific for a gag-pol or env polypeptide. Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants, and will, therefore, include sequences that differ from the nucleotide sequence of gag, pol, or env shown in herein due to the degeneracy of the genetic code.

[0167] "Misexpression", as used herein, refers to a non-wild type pattern of gene expression, e.g., porcine retroviral, e.g., Tsukuba-1 gene expression, e.g., gag, pol or env gene expression. It includes: expression at non-wild type levels, i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms of the splicing, size, amino acid sequence, post-translational modification, stability, or biological activity of the expressed, porcine retroviral, e.g., Tsukuba-1, polypeptides; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the porcine retroviral, e.g., Tsukuba-1 genes, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.

[0168] Methods of the invention can be used with swine or miniature swine.

[0169] Endogenous retrovirus is a potential source of infection not always susceptible to conventional breeding practices. Many proviruses are defective and unable to replicate. Proivirus, if intact, can be activated by certain stimuli and then initiate viral replication using the host's cellular mechanisms. Retroviral infection will often not harm the host cell. However, replication of virus may result in viremia, malignant transformation (e.g., via insertion of retroviral oncogenes), degeneration, or other insertional effects (e.g., gene inactivation). The effects of such infection may not emerge for many years. The spectrum of behavior of active lentiviral infection in humans is well described relative to HIV. These include AIDS, unusual infections and tumors, recombinant and other viruses, and antigenic variation which may prevent the generation of protective immunity by the infected host.

[0170] Screening of animals will allow elimination of donors with active replication of known viruses. Inactive proviruses can be detected with genetic probes and removed or inactivated. These novel approaches will allow the identification and elimination of potential human pathogens derived from swine in a manner not possible in the outbred human organ donor population and, thus, will be important to the development of human xenotransplantation.

[0171] The porcine retroviral sequences of the invention are also useful as diagnostic probes to detect activation of endogenous porcine retroviruses following transplantation and xenotransplantation of organs derived from swine or miniature swine. The porcine retroviral sequences of the invention also provide diagnostic tools necessary to assess the risks associated with transplantation of organs from swine or miniature swine into human recipients. These sequences are

also useful for the longitudinal evaluation of retroviral activation in the human recipient of miniature swine-derived organs.

[0172] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, *Molecular Cloning A Laboratory Manual*, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); *DNA Cloning*, Volumes I and II (D. N. Glover ed., 1985); *Oligonucleotide Synthesis* (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; *Nucleic Acid Hybridization* (B. D. Hames & S. J. Higgins eds. 1984); *Transcription And Translation* (B. D. Hames & S. J. Higgins eds. 1984); *Culture Of Animal Cells* (R. I. Freshney, Alan R. Liss, Inc., 1987); *Immobilized Cells And Enzymes* (IRL Press, 1986); B. Perbal, *A Practical Guide To Molecular Cloning* (1984); the treatise, *Methods In Enzymology* (Academic Press, Inc., N.Y.); *Gene Transfer Vectors For Mammalian Cells* (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); *Methods In Enzymology*, Vols. 154 and 155 (Wu et al. eds.), *Immunochemical Methods In Cell And Molecular Biology* (Mayer and Walker, eds., Academic Press, London, 1987); *Handbook Of Experimental Immunology*, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

[0173] Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described below. All publications mentioned herein are incorporated by reference. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

DETAILED DESCRIPTION OF THE DRAWINGS

[0174] FIG. 1 is the nucleotide sequence (SEQ ID NO: 1) of the Tsukuba-1 cDNA.

[0175] FIG. 2 is the nucleotide sequence (SEQ ID NO: 2) of a defective retroviral genome isolated from the retrovirus from the PK-15 cell line.

[0176] FIG. 3 is the nucleotide sequence (SEQ ID NO: 3) of a retrovirus found in miniature swine.

DETAILED DESCRIPTION

Miniature Swine Retroviruses

[0177] Transplantation may increase the likelihood of retroviral activation, if intact and infectious proviruses are present. Many phenomena associated with transplantation, e.g., immune suppression, graft rejection, graft-versus-host disease, viral co-infection, cytotoxic therapies, radiation therapy or drug treatment, can promote activation of retroviral expression.

[0178] Many species are thought to carry retroviral sequences in their genomic DNA. The number of intact (complete) retroviral elements that could be activated is often unknown. Once activated, swine-derived viruses would require the appropriate receptor on human tissues to spread beyond the transplanted organ. Most intact endogenous proviruses (usually types B and C), once activated, are not pathogenic. However, coinfection with other viruses, recom-

bination with other endogenous viruses, or modification of viral behavior in the foreign human environment may alter the pathogenicity, organ specificity or replication of the retroviruses or other infectious agents.

[0179] The lack of sequence data on pig viruses has impeded efforts to assess the number of porcine sequences, or porcine retroviral sequences, that have incorporated into the human genome or the frequency of incorporation.

[0180] The inventor, by showing that the Tsukuba-1 retrovirus is found in miniature swine, and by providing the entire sequence of the porcine retroviral (Tsukuba-1) genome, has allowed assessment of the risk of endogenous retroviruses in general clinical practice and more importantly in xenotransplantation.

[0181] The porcine retroviral sequences of the invention can be used to determine the level (e.g., copy number) of intact (i.e., potentially replicating) porcine provirus sequences in a strain of xenograft transplantation donors. For example, the copy number of the miniature swine retroviral sequences can be determined by the Polymerase Chain Reaction DNA Quantitation (PDQ) method, described herein, or by other methods known to those skilled in the art. This quantitation technique will allow for the selection of animal donors, e.g., miniature swine donors, without an intact porcine retroviral sequence or with a lower copy number of viral elements.

[0182] The porcine retroviral sequences of the invention can be used to determine if mutations, e.g., inversions, translocations, insertions or deletions, have occurred in the endogenous porcine retroviral sequence. Mutated viral genomes may be expression-deficient. For example, genetic lesions can be identified by exposing a probe/primer derived from porcine retrovirus sequence to nucleic acid of the tissue (e.g., genomic DNA) digested with a restriction endonucleases or by in situ hybridization of the probe/primer derived from the porcine retroviral sequence to the nucleic acid derived from donor, e.g., miniature swine, tissue. Alternatively, direct PCR analysis, using primers specific for porcine retroviral genes (e.g., genes comprising the nucleotide sequence shown in SEQ ID NO: 1, 2, or 3), can be used to detect the presence or absence of the genetic lesion in the porcine retroviral genome.

[0183] Miniature swine retroviral sequences of the invention can also be used to detect viral recombinants within the genome, or in the circulation, cells, or transplanted tissue, between the porcine retrovirus and other endogenous human viruses or opportunistic pathogens (e.g. cytomegalovirus) of the immunocompromised transplant recipient. For example, pieces of the viral genome can be detected via PCR or via hybridization, e.g., Southern or Northern blot hybridization, using sequences derived from SEQ ID NO: 1, 2, or 3 as primers for amplification or probes for hybridization.

[0184] Miniature swine retroviral sequences of the invention, e.g., PCR primers, allow quantitation of activated virus. Sequences of the invention also allow histologic localization (e.g., by in situ hybridization) of activated retrovirus. Localization allows clinicians to determine whether a graft should be removed as a source of potential retroviral infection of the human host or whether the retroviral infection was localized outside the graft.

[0185] Sequences of the invention, e.g., PCR primers, allow the detection of actively replicating virus, e.g., by using reverse transcribed PCR techniques known in the art. Standard techniques for reverse transcriptase measurements are often complicated, species-specific, and are of low sensitivity

and specificity, and false positive results may develop using full-length probes for Southern and Northern molecular blotting. Sequences of the invention allow for sensitive and specific assays for the activation of virus and this will allow performance of a wide variety of tests, some of which are outlined below.

[0186] The invention provides for the testing and development of donor animals having reduced numbers of intact proviral insertions. It also provides for the testing of immunosuppressive regimens less likely to provide the conditions for active replication of retrovirus. Conditions likely to activate one retrovirus are generally more likely to activate other viruses including unknown retroviruses and known human pathogens including cytomegalovirus, hepatitis B and C viruses, Human Immunodeficiency Viruses (I and II). Given the availability of preventative therapies for these infections, these therapies could be used prophylactically in patients known to be susceptible to the activation of porcine retrovirus.

[0187] The miniature swine retroviral sequences of the invention can be used to measure the response of the miniature swine retroviral infection in humans to therapy, e.g., immunomodulatory or antiviral therapy, e.g., antiviral agents, e.g., antiviral antibiotics. With HIV, susceptibility to antiviral antibiotics is determined by the genetic sequence of the reverse transcriptase gene (RT pol region) and other genes. The ability to determine the exact sequence of the retroviral genes will allow the detection of mutations occurring during infection which would then confer resistance of this virus to antiviral agents. Primers, e.g., for the RT-pol region, of the invention can be used to detect and to sequence clinical viral isolates from patients which have developed mutations by PDQ method described herein. The primers of the invention can also be used to determine whether tumor cells, e.g., cancer cells, e.g. lymphoma or hepatocellular carcinoma, developing in xenograft recipients contain porcine retroviral elements.

[0188] The porcine retroviral sequences of the invention can also be used to detect other homologous retroviruses and to determine whether these are the same or different as compared to the Tusukuba-1 retroviral sequences. For example, within a species, the polymerase genes are highly conserved. PCR assays aimed at the gag-pol region followed by sequence analysis allow for this detection of homologous viruses. The appropriate regions of the Tsukuba-1 virus can be determined by using sequences derived from SEQ ID NO:1, described herein, to identify additional 5' and 3' viral genomic sequences. As is discussed elsewhere herein, the sequences from SEQ ID NO: 1 were used to obtain the sequence of the PK-15 retroviral insert (SEQ ID NO:2) and of a retroviral insertion in a miniature swine (SEQ ID NO:3).

[0189] Miniature swine retroviral sequences of the invention can be used to screen donor animals and xenograft recipients after transplantation both for infection, and as a measure of the appropriate level of immune suppression, regarding susceptibility to infection. Physicians, medical staff, family, or individuals who come into contact with graft recipients, and others, can be screened for infection with virus derived from the xenograft recipient. Members of the population in general can also be screened. Such screening can be used for broad epidemiologic studies of the community. These methods can help in meeting the requirements of the F.D.A. regarding enhancing the safety of the recipients and of the

community to exposure to new viruses introduced into the community by xenograft transplantation.

[0190] As is shown in Suzuka et al., 1986, FEBS 198:339, the swine retroviruses such as the Tsukuba-1 genome can exist as a circular molecule. Upon cloning the circular molecule is generally cleaved to yield a linear molecule. As will be understood by one skilled in the art, the start point and end point of the resulting linear molecule, and the relative subregions of the viral sequence will of course vary with the point of cleavage. For example, in the Suzuka et al. reference the LTR is shown to be in an internal fragment. This is indicated herein in that the order of gag, pol, env in SEQ ID NO 1 is shown as env, gag, pol, while elsewhere herein the order of these regions is given as the naturally occurring gag, pol, env order.

Primers Derived from the Porcine Retroviral (Tsukuba-1) Genome Sequence

[0191] A number of different primers useful in the methods of the invention have been described herein. One skilled in the art can identify additional primers from the viral sequence of SEQ ID NO:1 by using methods known in the art. For example, when trying to identify potentially useful primers one skilled in the art would look for sequences (sequences should be between about 15 and 30 nucleotides in length) which hybridize to SEQ ID NO:1 with high melting temperature; have a balanced distribution of nucleotides, e.g., a balanced distribution of A, T, C and Gs; have a terminal C or G; do not self-hybridize or internally complement.

Use of Primers Derived from the Porcine Retroviral (Tsukuba-1) Genome-Sequence

[0192] I. Testing of Organs or Cells Prior to Transplantation

[0193] Potential donor animals can be screened for active retroviral replication prior to being used in transplantation. This allows avoidance of animals undergoing active viral replication. Replicating virus is often infectious in 100% of recipients, while nonreplicating, latent provirus generally causes infection in 5 to 25% of recipients.

[0194] II. Testing of Recipients

[0195] Serial samples, e.g., of white blood cells, can be obtained from a graft recipient monthly, e.g., for the first month and every three months thereafter. Tissue biopsies obtained for evaluation of graft function can be used to evaluate the activation of retroviral sequences or of the expression retroviral sequences in graft tissue. Samples can be screened for the presence of retrovirus infection both specifically for the homologous virus, for viral recombinants containing portions of the viral genome, and for other retroviruses, using, e.g., PCR primers for the pol region of the virus, which is the region most likely to be conserved. If virus is detected, quantitative PCR can be used to determine the relative stability of viral production. Cells isolated from xenograft recipients can be tested by cocultivation with permissive human and porcine (e.g., pig fallopian tube, pig macrophage, or pig testis) cell lines known to contain endogenous viruses. Isolated virus will be tested for homology with the parental strain and for mutations which might affect susceptibility to antiviral agents, e.g., antiviral antibiotics.

[0196] III. Testing of Surgical and Medical Personnel and Family Members of Graft Recipient

[0197] Samples, e.g., white blood cells, can be banked (archived) from the surgical and medical personnel and from family members of the recipient prior to transplantation and at three months intervals for the first year and at least annually thereafter. Epidemiologic studies can be performed on these

samples as well. These samples can be tested if the recipient becomes viremic or if unusual clinical manifestations are noted in these individuals.

[0198] IV. Testing of Tumor Cells

[0199] Tumor cells which develop from a graft, or a graft recipient, can be tested for the presence of active retrovirus and for proviruses.

[0200] V. Testing of Patients

[0201] Patients can be retested for any significant change in clinical condition or for increased immune suppression of graft rejection which may be associated with an increased risk of viral activation.

Sequencing of the Porcine Retroviral (Tsukuba-1) Genome

[0202] A clone (Pλ8.8) containing the 8060 bp Xhol porcine retrovirus (Tsukuba-1) insert was used to transfect competent *E. coli*, and DNA was isolated for sequencing. The strategy used to sequence the 8060 bp porcine retrovirus genome included a combination of procedures which are outlined below.

[0203] Random fragments (1-3 kb) of the clone (Pλ8.8) were generated by sonication. The fragments were blunted and were subcloned into the EcoRV site of the pBlue-script SK vector. Plasmid DNA was prepared using a modified alkaline lysis procedure. DNA sequencing was performed using DyeDeoxy termination reactions (ABI). Base specific fluorescent dyes were used as labels. Sequencing reactions were analyzed on 4.75% polyacrylamide gels by an ABI 373A-S or 373S automated sequencer. Subsequent data analysis was performed on Sequencer™ 3.0 software. The following internal sequencing primers were synthesized:

AP1	5' GATGAACAGGCAGACATCTG 3'	(SEQ ID NO:48)
AP2	5' CGCTTACAGACAAGCTGTGA 3'	(SEQ ID NO:49)
AP3	5' AGAACAAAGGCTGGGAAAGC 3'	(SEQ ID NO:50)
AP4	5' ATAGGAGACAGCCTGAACTC 3'	(SEQ ID NO:51)
AP5	5' GGACCATTGTCTGACCCTAT 3'	(SEQ ID NO:52)
AP6	5' GTCAACACCTATACCAAGCTC 3'	(SEQ ID NO:53)
AP7	5' CATCTGAGGTATAGCAGGTC 3'	(SEQ ID NO:54)
AP8	5' GCAGGTGTAGGAACAGGAAC 3'	(SEQ ID NO:55)
AP9	5' ACCTGTTGAACCATCCCTCA 3'	(SEQ ID NO:56)
AP10	5' CGAATGGAGAGATCCAGGTA 3'	(SEQ ID NO:57)
AP11	5' CCTGCATCACTTCTCTTACC 3'	(SEQ ID NO:58)
AP12	5' TTGCCTGCTGCTGGAATACG 3'	(SEQ ID NO:59)
AP13	5' CAAGAGAAGAAGTGGGGATG 3'	(SEQ ID NO:60)
AP14	5' CACAGTCGTACACCACGCAG 3'	(SEQ ID NO:61)
AP15	5' GGGAGACAGAAGAAGAAAGG 3'	(SEQ ID NO:62)
AP16	5' CGATAGTCATTAGTCCCAGG 3'	(SEQ ID NO:63)
AP17	5' TGCTGGTTGCATCAAGACCG 3'	(SEQ ID NO:64)
AP18	5' GTCGCAAAGGCATACCTGCT 3'	(SEQ ID NO:65)
AP19	5' ACAGAGCCTCTGCTAAGAAG 3'	(SEQ ID NO:66)

-continued

AP20	5' GCAGCTGTTGACAATCATC 3'	(SEQ ID NO:67)
AP21	5' TATGAGGAGAGGGCTTGACT 3'	(SEQ ID NO:68)
AP22	5' AGCAGACGTGCTAGGAGGT 3'	(SEQ ID NO:69)
AP23	5' TCCTCTGCTGTTGCATC 3'	(SEQ ID NO:70)
AP24	5' CAGACACTCAGAACAGAGAC 3'	(SEQ ID NO:71)
AP25	5' ACATCGTCTAACCCACCTAG 3'	(SEQ ID NO:72)
AP26	5' CTCGTTCTGGTCATACCTGA 3'	(SEQ ID NO:73)
AP27	5' GAGTACATCTCTCTAGGCA 3'	(SEQ ID NO:74)
AP28	5' TGCCTAGAGACATGTACTC 3'	(SEQ ID NO:4)
AP29	5' CCTCTCTAGGCCATTCCCTCA 3'	(SEQ ID NO:5)

The clone (Pλ8.8) containing the 8060 bp Xhol porcine retrovirus (Tsukuba-1) insert was deposited with ATCC on Dec. 27, 1995 (ATCC Deposit No. 97396).

Determination of the Porcine Retroviral (Tsukuba-1) Copy Number in a Miniature Swine

[0204] Total genomic DNA was isolated from miniature swine kidney by the methods known in the art. The isolated genomic DNA was digested with either EcoRI or HindIII restriction enzyme. The DNA digests were electrophoresed on an agarose gel, Southern blotted and hybridized to the full-length, purified, Tsukuba-1 sequence (SEQ ID NO:1) under high stringency conditions (0.1×SSC, 65° C.). In both digested samples (EcoRI or HindIII) at least six copies of the high molecular fragments of the miniature swine genome (over 16 Kb in size) hybridized to SEQ ID NO:1, indicating the presence of homologous retroviral sequences in porcine DNA.

Susceptibility Testing by Polymerase Chain Reaction DNA Quantitation (PDQ)

[0205] Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing can be used to rapidly and directly measure nucleoside sensitivity of porcine retrovirus isolates. PCR can be used to quantitate the amount of porcine retroviral RNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of porcine retroviral RNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. With the PDQ method both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells.

[0206] The PDQ experiments can be performed essentially as described by Eron et al., *PNAS USA* 89:3241-3245, 1992. Briefly, aliquots (150 µl) of serial dilutions of virus sample can be used to infect 2×10⁶ PHA-stimulated donor PBMCs in 1.5 ml of growth medium per well of a flat-bottom 24-well plate (Corning). Separate cell samples can be counted, harvested, and lysed at 48, 72 and 96 hr. Quantitative PCR and porcine retrovirus copy-number determination can then be performed in duplicate on each lysate.

[0207] The results of a PDQ infectivity titration assay can be used to determine the virus dilution and length of culture time employed in a subsequent PDQ susceptibility test. These parameters should be chosen so that the yield of porcine

retrovirus specific PCR product for the untreated control infection would fall on the porcine retrovirus copy-number standard curve before the curve approached its asymptotic maximum, or plateau. PHA-stimulated donor PBMCs can be incubated with drug for 4 hr prior to infection. Duplicate wells in a 24-well plate should receive identical porcine retrovirus inocula for each drug concentration tested and for the untreated infected controls. Uninfected controls and drug toxicity controls should be included in each experiment. All cultures can be harvested and cells lysed for PCT after either 48 or 72 hr. Previously characterized isolates can be used as assay standards in each experiment.

[0208] Cell pellets can be lysed in various volumes of lysis buffer (50 mM KCl/10 mM Tris.HCl, pH 8.3/2.5 mM MgCl₂/0.5% Nonidet P-40/0.5% Tween 20/0.01% proteinase K) to yield a concentration of 1.2×10⁴ cell equivalents/μl. Uniformity to cell lysate DNA concentrations should be confirmed in representative experiments by enhancement of Hoechst 33258 fluorescence (Mini-Fluorometer, Hoefer).

[0209] A conserved primer pair can be synthesized according to the pol gene sequences. The primers can then be used to amplify a 1580-base pair fragment of the porcine retrovirus pol gene from 1.2×10³ cell equivalents of lysate by using PCR (GeneAmp, Cetus) under standard conditions. Amplifications should be repeated if porcine retrovirus DNA is amplifiable from reagent controls.

[0210] Porcine retrovirus pol gene amplification products can be specifically detected and quantitated as described (Conway, B. C. (1990) in *Techniques in HIV Research*, (Aldovani & Walker, eds.) (Stockton, N.Y.) pp. 40-46). Heat-denatured PCR products can be hybridized in a Streptavidin-coated microtiter plate well with both biotinylated capture probe and horseradish peroxidase (HRP)-labeled detector probe [enzyme-linked oligonucleotide solution sandwich hybridization assay ((ELOSA), DuPont Medical Products, Billerica, Mass.) for 60 min at 37° C. After extensive washing to remove all reactants except probe-DNA hybrids, an HRP chromogen, tetramethylbenzidine (TMBBlue, Transgenic Sciences, Worcester, Mass.), should be added to each well. The HRP-catalyzed color development should be stopped after 1 hr by addition of sulfuric acid to 0.65 M. Absorbance (OD) at 450 nm can be measured in an automated microtiter plate reader (SLT LabInstruments, Hillsborough, N.C.).

[0211] A standard curve of porcine retrovirus DNA copy number can be generated in each PCR by using a dilution series of cells containing one porcine proviral genome per cell.

Preparation of a Miniature Swine Having a Knockout of Tsukuba-1 Viral Sequence Using Isogenic DNA Targeting Vectors

[0212] Isogenic DNA, or DNA that is substantially identical in sequence between the targeting vector and the target DNA in the chromosomes, greatly increases the frequency for homologous recombination events and gene targeting efficiency. Using isogenic-DNA targeting vectors, targeting frequencies of 80% or higher can be achieved in mouse embryonic stem cells. This is in contrast to non-isogenic DNA vectors which normally yield targeting frequencies of around 0.5% to 5%, i.e., approximately two orders of magnitude lower than isogenic DNA vectors. Isogenic DNA constructs are predominantly integrated into chromosomes by homologous recombination rather than random integration. As a consequence, targeted mutagenesis of viral sequences, e.g., viral

genes, can be carried out in biological systems including zygotes, which do not lend themselves to the use of elaborate selection protocols, resulting in production of animals, e.g., miniature swine, free of, or having a reduced number of, activatable viral sequences. In order for the isogenic DNA approach to be feasible, targeting vectors should be constructed from a source of DNA that is identical to the DNA of the organism to be targeted. Ideally, isogenic DNA targeting is carried out in inbred strains of animals, e.g., inbred miniature swine, in which all genetic loci are homozygous. Any animal of that strain can serve as a source for generating isogenic targeting vectors. This protocol for isogenic gene targeting is outlined in TeRiele et al., PNAS 89:5128-5132, 1992 and PCT/US92/07184, herein incorporated by reference. A protocol for producing Tsukuba-1 knockout miniature swine is described briefly below.

[0213] An insertion vector is designed as described by Hasty and Bradley (Gene Targeting Vectors for Mammalian Cells, in *Gene Targeting: A Practical Approach*, ed, Alexandra L. Joyner, IRL Press 1993). Insertion vectors require that only one crossover event occur for integration by homologous recombination into the native locus. The double strand breaks, the two ends of the vector which are known to be highly recombinogenic, are located on adjacent sequences on the chromosome. The targeting frequencies of such constructions will be in the range of 30 to 50%. One disadvantage of insertion vectors, in general, concerns the sequence duplications that are introduced and that potentially make the locus unstable. All these constructions are made using standard cloning procedures.

[0214] Replacement vectors have also been extensively described by Hasty and Bradley. Conceptually more straightforward than the insertion vector, replacement vectors use an essentially co-linear fragment of a stretch of Tsukuba-1 genomic sequence. Preferably, the DNA sequence from which an isogenic replacement vector is constructed includes approximately 6 to 10 kb of uninterrupted DNA. Two crossovers, one on either side of the selectable marker causes the mutant targeting vector to become integrated and replace the wild-type gene.

[0215] Microinjection of the isogenic transgene DNA into one of the pronuclei of a porcine embryo at the zygote stage (one-cell embryo) is accomplished by modification of a protocol described earlier (Hammer et al. 1985, Nature 315, 680; Pursel et al. 1989, Science 244, 1281). The age and the weight of the donor pigs, e.g., haplotype specific mini-swine, are critical to success. Optimally, the animals are of age 8 to 10 months and weigh 70 to 85 lbs. This increases the probability of obtaining an adequate supply of one-cell embryos for microinjection of the transgenes. In order to allow for accurate timing of the embryo collections at this stage from a number of embryo donors, the gilts are synchronized using a preparation of synthetic progesterone (Regumate). Hormone implants are applied to designated gilts 30 days prior to the date of embryo collection. Twenty days later, ten days prior to the date of collection, the implants are removed and the animals are treated with additional hormones to induce superovulation to increase the number of embryos for microinjection. Three days following implant removal, the animals are treated with 400 to 1000 IU of pregnant mare serum gonadotropin (PMSG) and with 750 IU of human chorionic gonadotropin (hCG) three to four days later. These animals are bred by artificial insemination (AI) on two consecutive days following injection of hCG.

[0216] Embryo collections are performed as follows: three days following the initial injection of hCG, the animals are anesthetized with an intramuscular injection of Telazol (3 mg/lb), Rompum (2 mg/lb) and Atropine (1 mg/lb). A midline laparotomy is performed and the reproductive tract exteriorized. Collection of the zygotes is performed by cannulating the ampulla of the oviduct and flushing the oviduct with 10 to 15 ml phosphate buffered saline, prewarmed to 39° C. Following the collection the donor animals are prepared for recovery from surgery according to USDA guidelines. Animals used twice for embryo collections are euthanized according to USDA guidelines.

[0217] Injection of the transgene DNA into the pronuclei of the zygotes is carried out as summarized below: Zygotes are maintained in medium HAM F-12 supplemented with 10% fetal calf serum at 38° C. in 5% CO₂ atmosphere. For injection the zygotes are placed into BMOC-2 medium, centrifuged at 13,000 g to partition the embryonic lipids and visualize the pronuclei. The embryos are placed in an injection chamber (depression slide) containing the same medium overlaid with light paraffin oil. Microinjection is performed on a Nikon Diaphot inverted-microscope equipped with Nomarski optics and Narishige micromanipulators. Using 40× lens power the embryos are held in place with a holding pipette and injected with a glass needle which is back-filled with the solution of DNA containing the transgenic element, e.g., a mutant viral gene (2 µg/ml). Injection of approximately 2 picoliters of the solution (4 femtograms of DNA), which is equivalent to around 500 copies of the transgenic element, e.g., a mutant viral gene, is monitored by the swelling of the pronucleus by about 50%. Embryos that are injected are placed into the incubator prior to transfer to recipient animals.

[0218] Recipient animals are prepared similarly to the donor animals, but not superovulated. Prior to the transfer of the injected embryos, recipient gilts are anesthetized, the abdomen opened surgically by applying a longitudinal incision and the ovaries exteriorized. The oviduct ipsilateral to the ovary with the larger number of corpus lutei is flushed, the embryos checked to evaluate if the animals are reproductively sound. Approximately 4 to 6 zygotes injected with the transgenic element, e.g., a mutant viral gene, are transferred to the flushed oviduct, the abdominal incision sutured and the animals placed in a warm area for recovery. The status of the pregnancy is monitored by ultrasound starting at day 25, or approximately one week following the expected date of implantation. Pregnant recipients are housed separately until they are due to farrow.

[0219] Newborn piglets are analyzed for integration of the transgenic element into chromosomal DNA. Genomic DNA is extracted from an ear punch or a blood sample and initial screening is performed using PCR. Animals that are potentially transgenic element-positive are confirmed by Southern analysis. Transgenic founder animals are subjected to further analysis regarding the locus of transgenic element integration using Southern analysis.

The Isolation and Sequencing of an Endogenous Swine Retroviral Insert and of a Retroviral Insert in Porcine PK-15 Cells

Cloning of PK15 and PAL Endogenous Retroviruses

I. Poly A⁺RNA Isolation

[0220] Peripheral blood lymphocytes (PBLs) were prepared from haplotype d/d miniswine using standard protocols known in the art. The PBLs were cultured in the presence of

1% phytohemagglutinin (PHA) for about 84 hours. The activated PBLs were collected and total RNA was isolated using commercially available kits, such as Gentra's (Minneapolis, Minn.) PUREscript Kit. Poly A⁺RNA was isolated from the total RNA using another commercially available product, Dynal Dynabeads (Lake Success, N.Y.). Northern analysis of the RNA using a pig retroviral probe confirmed the presence of potentially full-length retroviral genome RNA. RNA from PK15 cells was isolated using similar protocols.

II. Construction of the cDNA Libraries

[0221] Using Superscript Choice System (Life Technologies Ltd, Gibco BRL, Gaithersburg, Md.) for cDNA Synthesis, a cDNA library was constructed using oligo dT to make the first strand cDNA. The use of Superscript reverse transcriptase was important in order to obtain full-length retroviral (RV) cDNAs, due to the length of the RV RNA. The cDNA library was enriched for large cDNA fragments by size selecting >4 kb fragments by gel electrophoresis. The cDNAs were cloned into Lambda ZAP Express (Clontech Laboratories, Inc. Palo Alto, Calif.), which is one of the few commercially available cDNA vectors that would accept inserts in the 1-12 kb range.

III. Screening of the cDNA Libraries

[0222] 0.75-1.2×10⁶ independent clones were screened using either gag and pol or gag and env probes. Double positive clones were further purified until single isolates were obtained (1 or 2 additional rounds of screening).

IV. Characterization of the Clones

[0223] Between 18 and 30 double positive clones were selected for evaluation. Lambda DNA was prepared using standard protocols, such as the Lambda DNA Kit (Qiagen Inc., Chatsworth, Calif.). The clones were analyzed by PCR to check for (a) RV genes, and (b) determine the size of insert and LTR regions. Restriction digests were also done to confirm the size of insert and to attempt to categorize the clones. Clones containing the longest inserts and having consistent and predicted PCR data were sequenced.

Development of a PCR-Based Assay for the Detection of the Presence of an Endogenous Retrovirus in Cells, Tissues, Organs, Miniswine or Recipient Hosts (e.g., Primates, Humans)

[0224] Using a commercially available computer software program (such as RightPrimer, Oligo 4.0, MacVector or Geneworks), one can analyze sequences disclosed herein for the selection of PCR primer pairs. The criteria for the general selection of primer pairs includes:

[0225] a. The Tm of each primer is between 65-70° C.

[0226] b. The Tm's for each pair differ by no more than 3° C.

[0227] c. The PCR fragment is between 200-800 bp in length

[0228] d. There are no repeats, self complementary bases, primer-dimer issues, etc for each pair

A. Additional Criteria for: a Pig-Specific PCR Assay

[0229] a. Primers are selected within porcine-specific regions of the sequence—such as within gag, env, or U3. Porcine-specific primers are defined as sequences which overall have <70% homology to the corresponding region in

human, mouse and primate retroviruses. In addition, the last five bases at the 3' end of the primer should be unique to the pig retroviral sequence.

[0230] b. Primers should have no more than one or two mismatched bases based on the miniswine, and retroviral sequences disclosed herein. These mismatched bases should not be within the last three or four bases of the 3' end of the primer.

B. Additional Criteria for: Miniswine-Specific PCR Assay

[0231] a Primers are selected such that there are at least one or two mismatches between miniswine and domestic pig sequences. At least one of these mismatches should be located within the last three or four bases at the 3' end of the primer. Preferably, these mismatches would be a change from either a G or C in miniswine to either an A or T in domestic pig.

RT-PCR Strategy

[0232] There are a number of commercially available RT-PCR Kits for routine amplification of fragments. Several primer pairs should be tested to confirm Tm and specificity. Location of primers within the sequence depends in part on what question is being answered. RT-PCR should answer questions about expression and presence of RV sequences. PCR will not necessarily answer the question of whether the retroviral sequence is full-length or encodes a replication competent retrovirus. A positive signal in these tests only says there is RV sequence present. Indication of the possibility of full-length viral genomes being present can be obtained by performing long PCR using primers in U5 and U3. A commercial kit for long RT-PCR amplification is available (Takara RNA LA PCR Kit). Confirmation of full-length viral genomes requires infectivity studies and/or isolation of viral particles.

[0233] Northern analyses would complement RT-PCR data. Detection of bands at the predicted size of full-length viral genomes with hybridization probes from env, U3 or U5 would provide stronger evidence. The presence of other small bands hybridizing would indicate the amount of defective viral fragments present.

ELISA-Based Assay to Detect the Presence of Porcine Retroviral Proteins, Polypeptides or Peptides

[0234] In addition to the use of nucleic acid-based, e.g., PCR-based assays, to detect the presence of retroviral sequences, ELISA based assays can detect the presence of porcine retroviral proteins, polypeptides and peptides.

[0235] The basic steps to developing an ELISA include (a) generation of porcine retroviral specific peptides, polypeptides and proteins; (b) generation of antibodies which are specific for the porcine retroviral sequences; (c) developing the assay.

[0236] Using the retroviral sequences disclosed herein, antigenic peptides can be designed using computer based programs such as MacVector or Geneworks to analyse the retroviral sequences. Alternatively, it is possible to express the porcine retroviral sequences in gene expression systems and to purify the expressed polypeptides or proteins. After synthesis, the peptides, polypeptides or proteins are used to immunize mice or rabbits and to develop serum containing antibodies.

[0237] Having obtained the porcine retroviral specific antibodies the ELISA can be developed as follows. ELISA plates

are coated with a volume of polyclonal or monoclonal antibody (capture antibody) which is reactive with the analyte to be tested. Such analytes include porcine retroviruses or retroviral proteins such as env or p24. The ELISA plates are then incubated at 4° C. overnight. The coated plates are then washed and blocked with a volume of a blocking reagent to reduce or prevent non-specific hybridization. Such blocking reagents include bovine serum albumin (BSA), fetal bovine serum (FBS), milk, or gelatin. The temperature for the blocking process is 37° C. Plates can be used immediately or stored frozen at -20° C. until needed. The plates are then washed, loaded with a serial dilution of the analyte, incubated at 37° C., and washed again. Bound analyte is detected using a detecting antibody. Detecting antibodies include enzyme-linked, fluoresceinated, biotin-conjugated or other tagged polyclonal or monoclonal antibodies which are reactive with the analyte. If monoclonal antibodies are used the detecting antibody should recognize an epitope which is different from the capture antibody.

OTHER EMBODIMENTS

[0238] In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral gag polypeptide.

[0239] In preferred embodiments: the nucleic acid is or includes the nucleotide sequence from nucleotides 2452-4839 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 2452-4839 of SEQ ID NO:1; the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000 bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1 due to degeneracy in the genetic code; the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

[0240] In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 2452-4839 of SEQ ID NO:1.

[0241] In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 2452-4839 of SEQ ID NO:1.

[0242] The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2452-4839 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Prefer-

ably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:32-37.

[0243] The invention involves nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

[0244] In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral pol polypeptide.

[0245] In preferred embodiments: the nucleic acid is or includes the nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 4871-8060 of SEQ ID NO:1; the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000 bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1 due to degeneracy in the genetic code; the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

[0246] In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 4871-8060 of SEQ ID NO:1.

[0247] In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 4871-8060 of SEQ ID NO:1.

[0248] The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 4871-8060 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Preferably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:38-47.

[0249] The invention involves nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

[0250] In another aspect, the invention provides a substantially pure nucleic acid having, or comprising, a nucleotide sequence which encodes a swine or miniature swine, e.g., a Tsukuba-1 retroviral env polypeptide.

[0251] In preferred embodiments: the nucleic acid is or includes the nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1; the nucleic acid is at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% homologous with a nucleic acid sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1; or by a sequence which, hybridizes under high stringency conditions to nucleotides 2-1999 of SEQ ID NO:1; the nucleic acid includes a fragment of SEQ ID NO:1 which is at least 25, 50, 100, 200, 300, 400, 500, or 1,000 bases in length; the nucleic acid differs from the nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1 due to degeneracy in the genetic code; the nucleic acid differs from the nucleic acid sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1 by at least one nucleotide but by less than 5, 10, 15 or 20 nucleotides and preferably which encodes an active peptide.

[0252] In yet another preferred embodiment, the nucleic acid of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1, or more preferably to at least 20 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1, or more preferably to at least 40 consecutive nucleotides from nucleotides 2-1999 of SEQ ID NO:1.

[0253] In another aspect, the invention features, a purified recombinant nucleic acid having at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% homology with a nucleotide sequence corresponding to nucleotides 2-1999 of SEQ ID NO:1.

[0254] The invention also provides a probe or primer which includes or comprises a substantially purified oligonucleotide. The oligonucleotide includes a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence from nucleotides 2-1999 of SEQ ID NO:1, or naturally occurring mutants thereof. In preferred embodiments, the probe or primer further includes a label attached thereto. The label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, and/or an enzyme co-factor. Preferably the oligonucleotide is at least 10 and less than 20, 30, 50, 100, or 150 nucleotides in length. Preferred primers of the invention include oligonucleotides having a nucleotide sequence shown in any of SEQ ID NOs:6-31.

[0255] The invention includes nucleic acids, e.g., RNA or DNA, encoding a polypeptide of the invention. This includes double stranded nucleic acids as well as coding and antisense single strands.

[0256] Included in the invention are: allelic variations, natural mutants, induced mutants, that hybridize under high or low stringency conditions to the nucleic acid of SEQ ID NO:1, 2, or 3 (for definitions of high and low stringency see Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989, 6.3.1-6.3.6, hereby incorporated by reference).

[0257] The invention also includes purified preparations of swine or miniature swine retroviral polypeptides, e.g., gag pol, or env polypeptides, or fragments thereof, preferably biologically active fragments, or analogs, of such polypeptides. In preferred embodiments: the polypeptides are miniature swine retroviruses polypeptides; the polypeptides are Tsukuba polypeptides; the polypeptides are gag, pol, or env polypeptides encoded by SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or naturally occurring variants thereof.

[0258] A biologically active fragment or analog is one having any in vivo or in vitro activity which is characteristic of the Tsukuba-1 polypeptides described herein, or of other naturally occurring Tsukuba-1 polypeptides. Fragments include those expressed in native or endogenous cells, e.g., as a result of post-translational processing, e.g., as the result of the removal of an amino-terminal signal sequence, as well as those made in expression systems, e.g., in CHO cells. A useful polypeptide fragment or polypeptide analog is one which exhibits a biological activity in any biological assay for Tsukuba-1 polypeptide activity. Most preferably the fragment or analog possesses 10%, preferably 40%, or at least 90% of the activity of Tsukuba-1 polypeptides, in any in vivo or in vitro Tsukuba-1 polypeptide assay.

[0259] In order to obtain a such polypeptides, polypeptide-encoding DNA can be introduced into an expression vector, the vector introduced into a cell suitable for expression of the desired protein, and the peptide recovered and purified, by prior art methods. Antibodies to the polypeptides can be made by immunizing an animal, e.g., a rabbit or mouse, and recovering antibodies by prior art methods.

[0260] The invention also features a purified nucleic acid, which has least 60%, 70%, 72%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, most preferably at least 98%, 99% or 100% sequence identity or homology with SEQ ID NO:1 or its complement, SEQ ID NO: 2 or its complement, or SEQ ID NO: 3 or its complement.

[0261] In preferred embodiments the nucleic acid is other than the entire retroviral genome of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, e.g., it is at least 1 nucleotide longer,

or at least 1 nucleotide shorter, or differs in sequence at least one position. E.g., the nucleic acid is a fragment of the sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, or it includes sequence additional to that of SEQ ID NO:1, or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement.

[0262] In preferred embodiments: the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by 1, 2, 3, 4, or 5 base pairs; the sequence of the nucleic acid differs from the corresponding sequence of SEQ ID NO:1 or its complement, SEQ ID NO:2 or its complement, or SEQ ID NO:3 or its complement, by at least 1, 2, 3, 4, or 5 base pairs but less than 6, 7, 8, 9, or 10 base pairs.

[0263] In other preferred embodiments: the nucleic acid is at least 10, more preferably at least 15, more preferably at least 20, most preferably at least 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length; the nucleic acid is less than 15, more preferably less than 20, most preferably less than 25, 30, 50, 100, 1000, 2000, 4000, 6000, or 8060 nucleotides in length.

EQUIVALENTS

[0264] Those skilled in the art will be able to recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 82

<210> SEQ ID NO 1
<211> LENGTH: 8060
<212> TYPE: DNA
<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 1

ctcgagactc ggtgaaaggg cccttatctc gtactttga ccacaccaac ggctgtgaaa 60
gtcgaaggaa tctccacctg gatccatgca tcccacgtta agccggcgcc acctcccgat 120
tcggggtggaa aagccgaaaaa gactgaaaaat ccccttaagc ttgcctccca tcgcgtggtt 180
ccttactctg tcaataaacct ctcagactaa tggtatgcgc ataggagaca gcctgaactc 240
ccataaaaccc ttatctctca cctggtaat tactgactcc ggcacaggtt ttaatataa 300
caacactcaa ggggagggttc ctttaggaac ctgggtggct gatctatacg tttgcctcag 360
atcagtttatt cctagttctga cctcaccccc agatatccctc catgttcacg gattttatgt 420
ttgcccagggaa ccaccaaata atggaaaaaca ttgcggaaat cccagagatt tctttgtaa 480
acaatggaaac tgtgttaacct ctaatgatgg atattggaaa tggccaaacct ctcagcagga 540
tagggtaagt ttttctttagt tcaacaccta taccagctct ggacaattta attacctgac 600
ctggattaga actggaaagcc ccaagtgctc tccttcagac ctagattacc taaaataa 660
tttcactgag aaaggaaaaac aagaaaaatat cctaaaatgg gtaaatggta tgtcttgggg 720

```

-continued

aatgggtat tatggggct cgggtaaaca accaggctcc attctaacta ttgcctcaa 780
aataaaccag ctgggcctc caatggctat aggaccaaatac acggcttga cgggtcaaag 840
acccccaacc caaggaccag gaccatccctc taacataact tctggatcag accccactga 900
gtctagcagc acgactaaaaa tgggggcaaa actttttagc ctcatccagg gagtttca 960
agctcttaac tccacgactc cagaggctac ctcttcttgc tggctatgct tagtttggg 1020
cccacccctac tatgaaggaa tggctagaag agggaaattc aatgtgacaa aagaacatag 1080
agaccaatgc acatggggat cccaaataa gcttaccctt actgagggtt ctggaaaagg 1140
cacctgcata ggaaagggtc ccccatccca ccaacacctt tgtaaccaca ctgaagcctt 1200
taatcaaacc tctgaaagtc aatatctggt acctgggtt gacagggtgtt gggcatgtaa 1260
tactggatta acccccttgc ttccacccctt ggtttttaac caaactaaag attttgcatt 1320
tatggtccaa attgttcccc gagggttata ctatcccgaa aaagcaatcc ttgtatgata 1380
tgactacaga aatcatcgac aaaagagaga acccataatct ctgacacttg ctgtgtatgt 1440
cggaacttgggat gtggcagcag gtgttaggaac aggaacagct gcccctggtca cgggaccaca 1500
gcagctagaac acaggactta gtaacctaca tcgaattgtta acagaagatc tccaaaggcc 1560
agaaaaatct gtcagtaacc tggaggaatc cctaaccctcc ttatctgaag tagtcttaca 1620
gaatagaaga gggtagatt tattatttctt aaaagaagga ggattatgtg tagccttga 1680
ggaggaatgc tggtttatg tggatcattc aggggcccattc agagactccaa tgaacaaact 1740
tagagaaagg ttggagaagc gtcgaaggaa aaaggaaact actcaagggtt gggtttgaggg 1800
atggttcaac aggttcctt ggtggctac cctacttttctt gcttaacacag gacccttaat 1860
agtcccttcctc ctgttactca cagttggccat atgttattttaaacaatgtttaa ttgccttcat 1920
tagagaacga ataagtgcag tccagatcat ggtactttaga caacagttacc aaagcccg 1980
tagcaggaa gctggccgct agtctacca gttctaagat tagaactatt aacaagagaa 2040
gaagtggggaa atgaaaggat gaaaatacaa cctaagctaa tgagaagctt aaaattgttca 2100
tgaattccag agttttgtcc ttataggtta aagatttagt tttttgtgt tttttttat 2160
gcggaaagtaa aataggccct ggttacatgt ctcttaggcat gaaacttctt gaaactattt 2220
gagataacaa gaaaaggggag tttcttaactg cttgttttagc ttctgtaaaaa ctgggtgcgc 2280
ctaaaagatg ttgaaatgtt gatacacata tcttgggtac aacatgttcc ccccaaaaa 2340
aaacatgcgc aatgtgtaa ctctaaaaca atttaaattttaa atgggtccac gaagcgccgg 2400
ctctcgaagt tttaatttgc ctgggtttgtt atatttgtt aatgttgggtt tgtaagcgc 2460
ggggctttgtt gtgaacccca taaaagctgtt cccgactccaa cactcggggc cgcagtcctc 2520
tacccctgcg tgggttacga ctgtggccccc cagcgcgtt ggaataaaaaa ttcttttgc 2580
gtttgtatca agaccgcttc tcgttgcgtt gtaaggggag tggcctttc cgagctggaa 2640
ggttctttt gctggtctta catttggggg ctctggggg atctgtcgcg gccaccccta 2700
acacccgaga accgacttgg aggtttttttt gatcctttt ttaacgtgtt tgcatgtacc 2760
ggccggccgtc tctgttctga gtgtctgtt tcagttgtgc ggcgtttcg tttgcagctg 2820
tcctctcagg ccgtaaaggcc tgggggactg tgatcagcag acgtgttgcagg aggttcc 2880
gtgtgtgtcc tgggggacgc cccggggaggtt gaggagagcc agggacgcctt ggtggctcc 2940
tactgtcggtt cagaggaccc aattctgtt ctgttgcgtt gatcttttttccgcggcc 3000

-continued

tccgactctt ttgcctgctt gtgaaatacg tggacgggtc acgtgtctt ggtatctgtt	3060
gtttctgttt tgggtgtt tgccttggtc acatgtttaa tatggacag	3120
acgggtacga cccctcttag tttgactctc gaccatttga ctgaagttaa atccagggt	3180
cataatttgt cagttcaggtaaagaaggga ctttggcaga ctttctgtgt ctctgaatgg	3240
ccgacattcg atgttggatg gccatcagag gggacctta attctgagat tatcctggct	3300
gttaaagcaa ttattttca gactggaccg ggctctcatc ccgatcagga gcccataatc	3360
cttacgtggc aagatggc agaggatctt ccgcccatttga tttaaccatg gctgaataag	3420
ccaagaaagc caggcccccg aattctggctt cttggagaga aaaacaaaca ctggctgaa	3480
aaagtcaagc cctctccctca tatctacccc gagatttggg aaccaccggc ttggccggaa	3540
ccccaatctg ttccccccacc cccttatctg gcacagggtt ccggcagggg accctttgccc	3600
cctctggag ctccggcggt ggagggaccc tctgcaggga ctggagccg gggggcgcc	3660
accccgagc ggacagacga gatcgcgaca ttaccgctgc gcacgtacgg ccctccacaca	3720
cggggggggc aatttgcagcc cttccagttat tggccctttt ttctgttggaa tctctataat	3780
tggaaaacta accatcccc tttctcgagatcccaac gcctcacggg gttgggtggag	3840
tcccttatgt tctctcacca gctacttgg gatgattgtc aacagctgtc gcagacactc	3900
ttcacaaccc agggcgaga gagaatttcta ttagaggctt gaaaaatgt tccctggggcc	3960
gacggcgac ccacgcgggtt gcaaaatggg attgacatgg gatttccctt aactcgcccc	4020
gtttggggact acaacacggc tgaaggtagg gagatgttga aatctatcg ccaggctctg	4080
gtggcggttcc tccggggcgcc ctcaagacgg cccactaattt tggcttaaggtaaagatgt	4140
atgcaggggac cgaatgaacc cccctctgtt tttcttgaga ggctcttggaa agccttcagg	4200
cggtaacacc ctttgcatttccaccc cacctcagag gcccggggcc cttcagttggc tttggcttt	4260
ataggacagt cagccttggatcc tattagaaag aagcttcaga gacttggaaagg gttacaggag	4320
gctgagttac gtgtatctgtt gaaaggaggca gagaaggatatttacaaaag ggagacagaa	4380
gaagaaaggaa aacaaagaaa agagagagaaa agagaggaaa gggaggaaa acgtataaaa	4440
cggcaagaga agaatttgc taagatcttgc gctgcagggtt ttgaaggaa aagcaatacg	4500
gaaagagaga gagattttag gaaaatttggatcc gacagtccagg gaaacctgggc	4560
aataggaccc cactcgacaa ggaccaatgt gcatattgtt aagaaaggagg acactggca	4620
aggaactgcc ccaagaaggaa aaacaaaggaa ccaaggatcc tagctctaga agaagataaaa	4680
gattaggggaa gacgggggttcc ggaccccttc cccgagccca gggtaactttt gaagggtggag	4740
ggcaaccagg ttgatgttccctt ggttgcatttcc gggcgaaac attcgtgtt actacagccca	4800
ttaggaaaac taaaagataa aaaatcttggatcc gttatgggtt cacaggcaaa caacagtatc	4860
catggactac ccgaagacag ttgacttggatcc ggtggacgg gtaacccactt cgtttctgtt	4920
catacctgatcc tggccagcac ccctcttggatcc tagacttgcata ttgaccaaga tggggcaca	4980
aattttttttaaacaaggaa aaccagaagt gtctgcataat aacaaacacta tcactgtgtt	5040
gaccctccaa tttagatgcg aatatgcactt atactctccctt ctagttaaggcc ctgtatcaaaa	5100
tatacaatttgc tgggtggaaac agttttccca agcctggca gaaaccgcg ggtatgggttt	5160
ggcaagcaaa gttcccccac aagtttattca actgaaggcc agtgcacac cagtgctcgtt	5220
cagacagtac cccttgcgtt aagaagctca agaaggaaattt ccggccgcattt tccaaagattt	5280

-continued

aatccaacag	ggcatcctag	ttcctgtcca	atctccctgg	aatactcccc	tgctaccgg	5340
tagaaagcct	gggactaatg	actatcgacc	agtacaggac	ttgagagagg	tcaataaac	5400
ggtcaggat	atacacccaa	cagtcccga	cccttataac	ctcttgtgt	ctctccacc	5460
cacaacggagc	tggtatacag	tattggact	aaaggatgcc	ttcttctgcc	tgagattaca	5520
ccccactagc	caaccacttt	ttgccttcga	atggagagat	ccaggtacgg	gaagaaccgg	5580
gcagctcacc	tggacccgac	tggcccaagg	gttcaagaac	tccccgacca	tctttgacga	5640
agccctacac	agagacctgg	ccaaacttcag	gatccaacac	cctcagggtga	ccctccctcca	5700
gtacgtggat	gacctgcttc	tggccggagc	caccaaacag	gactgcttag	aaggcacgaa	5760
ggcactactg	ctggaattgt	ctgacctagg	ctacagagcc	tctgctaaga	aggcccagat	5820
ttgcaggaga	gaggttaacat	acttggggta	cagtttacgg	gacgggcagc	gatggctgac	5880
ggaggcacgg	aagaaaactg	tagtccagat	accggcccca	accacagcc	aacaaatgag	5940
agagtttttg	gggacagctg	gattttgcag	actgtggatc	ccggggtttg	cgaccttagc	6000
agccccactc	tacccgctaa	ccaaagaaaa	aggggaattc	tcctgggctc	ctgagaccca	6060
gaaggcattt	gatgctatca	aaaaggccct	gctgagcgc	cctgctctgg	ccctccctga	6120
cgttaactaaa	ccctttaccc	tttatgtgga	tgagcgtaag	ggagtagccc	ggggagttt	6180
aacccaaacc	ctaggaccat	ggagaagacc	tgtcgctac	ctgtcaaaga	agctcgatcc	6240
tgtagccagt	ggttggccca	tatgcctgaa	ggctatcgca	gctgtggcca	tactggtcaa	6300
ggacgctgac	aaattgactt	tgggacaaga	atataactgt	aatagcccc	catgcattgg	6360
agaacatcgt	tcggcageccc	ccagaccgat	ggatgaccaa	cgccccgat	acccactatc	6420
aaaggctgtc	tctcacagag	agggtcacgt	tgcgtccacc	aaccgctctc	aaccctgcca	6480
ctcttcgtcc	tgaagagact	gatgaaccag	tgactcatga	ttgcccataa	ctattgattg	6540
aggagactgg	ggtccgcaag	gaccttacag	acataccgct	gactggagaa	gtgctaacct	6600
gttcaactga	cggaagcagc	tatgtggtgg	aaggtaagag	gatggctggg	gcgggggtgg	6660
tggacgggac	ccgcacgatc	tggccagca	gcctgcccc	aggaacttca	gcacaaaagg	6720
ctgagctcat	ggccctcactg	caagcttgc	ggctggccga	agggaaatcc	ataaacattt	6780
atacggacag	caggtatgcc	tttgcactg	cacacgtaca	tggggccatc	tataaaca	6840
gggggttgc	tacctcagca	gggagggaaa	taaagaacaa	agaggaaatt	ctaagcttat	6900
tagaaggcgt	acatttacca	aaaaggctag	ctatttataca	ctgtcctgga	catcagaaag	6960
ctaaagatct	cataccaga	ggaaaccaga	tggctgaccc	gggtgccaag	caggcagccc	7020
agggtgttaa	ccttctgect	ataatagaaa	tgcacaaacgc	cccagaaccc	agacgacagt	7080
acaccctaga	agactggcaa	gagataaaaa	agatagacca	ttctctgaga	ctccggaaagg	7140
gacctgctat	acctcagatg	ggaaggaaat	cctgccccac	aaagaagggt	tagaatatgt	7200
ccaacaagat	acatcgctca	acccacctag	gaactaaaca	cctgcagcag	ttggtcagaa	7260
catcccccta	tcatgttctg	aggcttaccc	gagtggtctga	ctcggtggc	aaacattgt	7320
tgcctgcca	gctggtaat	gctaattcctt	ccagaatgcc	tccagggaaag	agactaagg	7380
gaagccaccc	aggcgctcac	tggaaagtgg	acttcactga	ggtaaagccg	gctaaatatg	7440
gaaacaaata	cctattgggt	ttttagaca	cctttcagg	atggtagag	gcttattccta	7500
ctaagaaaga	gacttcaacc	gtggtagcta	aaaaataact	ggaagaaatt	tttccaagat	7560

-continued

ttgaaatacc taaggtaata gggtcagaca atggtccagc ttttgggcc caggtaagtc	7620
agggactggc caagatattg gggattgatt ggaaactgca ttgtgcatac agacccaaa	7680
gctcaggaca ggttagagagg atgaatagaa ccattaaaga gaccctact aaattgaccg	7740
cggagactgg cgttaatgtat tggatagctc tcctgccc ttgtgtttt agggtagga	7800
acacccctgg acagtttggg ctgacccccc atgaattact ctacggggg cccccccat	7860
tggtagaaat tgcttctgtat catagtgctg atgtgctgtt ttcccaagct ttgttctcta	7920
ggctcaaggc acttgagtgg gtgagacaac gagcgtggag gcaactccgg gaggctact	7980
caggaggagg agacttgcag atcccacatc gtttccaagt gggagattca gtctacgtta	8040
gacgccaccg tgcaaggaaac	8060

<210> SEQ_ID NO 2

<211> LENGTH: 7333

<212> TYPE: DNA

<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 2

ctacccctgc tggtgtacg actgtggcc ccagcgcgct tggaataaaa atccctttgc	60
tgtttgcata aagaccgctt cttgtgagtg atttgggtg tcgccttcc cgagcccgaa	120
cgagggggat tggttttta ctggccttcc atttggtgcg ttggccggaa aatcctgcga	180
ccacccctta cacccgagaa ccgacttggg ggtaaaggga tcccctttgg aacataatgtg	240
tgtgtcgccg ggcgtcttg ttctgagtgt ctgttttgg tgatgcgcgc ttccggttt	300
cagctgtcct ctcagaccgt aaggacttggg ggactgtgtat cagcagacgt gctaggagga	360
tcacaggctg ccacccctggg ggacgcggcc ggaggtgggg agagccaggg acgcctggcg	420
gtctctact gtccgtcaga ggaccgagtt ctgttggta agcgaagat tccccctccg	480
ccggccgtccg actctttgc ctgcttggg aagacgcggg cgggtcgctgt gtgtctggat	540
ctgttggttt ctgtttcgat tgcctttgtc ttgtgcgtcc ttgtctacag ttttaatatg	600
ggacagacag tgactacccc ctttagttt actctcgacc attggactga agtttagatcc	660
agggctcata atttgcagt tcaggtaag aagggacctt ggcagactt ctgtgcctct	720
gaatggccaa cattcgatgt tggatggccca tcagaggggaa cctttatcc tgaaattatc	780
ctggctgtta aggcaatcat ttttcagact ggacccggct ctcacccgtc tcaggagccc	840
tatatcctta cgtggcaaga ttggcagaa gatccctccgc catgggtta accatggcta	900
aataaaaccaa gaaagccagg tccccgaatc ctggctctg gagagaaaaaa caaacactcg	960
gccgaaaaag tcgagccctc tctcgtatc taccggaga tcgaggagcc gccgacttgg	1020
ccggaaacccc aacctgttcc cccacccccc tatccagcac agggtgcgtt gaggggaccc	1080
tctggccctc ctggagctcc ggtgggtggag ggacctgcgtc cggggactcg gagcgggaga	1140
ggcgccaccc cggagccggac agacgagatc gcatattac cgctgcgcac ctatggccct	1200
cccatggccag gggcccaatt gcagccctc cagtttggc ctttttcc tcagatctc	1260
tataatttggaa aaactaacca tcccccttc tcggaggatc cccaacgcct cacggggttt	1320
gtggagttccc ttatgttctc tcaccagctt acttgggtatg attgtcaaca gctgcgtcag	1380
acactcttca caaccgagga gcgagagaga attctgttag aggttaaaaaaa aatgttcc	1440
ggggccgacg ggcgacccac gcagttgcaaa aatgagatg acatgggatt tcccttact	1500

-continued

cgccccgggtt	gggactacaa	cacggctgaa	ggttagggaga	gcttgaaaat	ctatgccag	1560
gctctggtgg	cgggtctccg	gggcgcctca	agacggccca	ctaatttgc	taaggtaaga	1620
gagggtatgc	agggaccgaa	cgaacctccc	tcggtatttc	ttgagaggct	catggaagcc	1680
ttcaggcggt	tcacccctt	tgatcctacc	tcagaggccc	agaaagccctc	agtggccctg	1740
gccttcattt	ggcagtcggc	tctggatatac	aggaagaaac	ttcagagact	ggaagggtta	1800
caggaggctg	agttacgtga	tctagtgaga	gaggcagaga	aggtgttata	cagaaggggag	1860
acagaagagg	agaaggaaca	gagaaaagaa	aaggagagag	aagaaaggga	ggaaagacgt	1920
gatagacggc	aagagaagaa	tttgactaag	atcttggccg	cagtggttga	agggaaagac	1980
agcagggaga	gagagagaga	ttttaggaaa	attaggtcag	gccctagaca	gtcagggAAC	2040
ctgggcaata	ggaccccact	cgacaaggac	cagtgtcggt	attgtaaaga	aaaaggacac	2100
tgggcaagga	actgccccaa	gaaggggaaac	aaaggaccga	aggtcctagc	tctagaagaa	2160
gataaaggatt	aggggagacg	gggttcggac	ccctcccccg	agcccagggt	aactttgaag	2220
gtggaggggc	aaccagttga	gttcctgggt	gataccggag	cgaggacat	agtgtgtcta	2280
caaccattag	gaaaactaaa	agaaaaaaaaa	tcctgggtga	tgggtgcac	agggcaacgg	2340
cagtatccat	ggactacccg	aagaaccgtt	gacttgggag	tgggacgggt	aacccactcg	2400
tttctggtca	tccctgagtg	cccagtaccc	cttcttagta	gagacttact	gaccaagatg	2460
ggagctcaaa	tttcttttga	acaaggaaga	ccagaagtgt	ctgtgaataa	caaaccatc	2520
actgtgttga	ccctccaatt	agatgtatgaa	tatcgactat	attctcccca	agtaaagcct	2580
gatcaagata	tacagtccctg	gttggagcag	tttccccaaag	cctgggcaga	aaccgoaggg	2640
atggggttgg	caaagcaagt	tcccccacag	gttattcaac	tgaaggccag	tgctacacca	2700
gtatcagtca	gacagtaccc	ctttagttaga	gaggctcgag	aaggaatttg	gccgcgtt	2760
caaagattaa	tccaacaggg	catcctagt	cctgtccaat	cccctggaa	tactccctg	2820
ctaccgggta	ggaaggcctgg	gaccaatgat	tatcgaccag	tacaggactt	gagagaggc	2880
aataaaaggg	tgcaggacat	acacccaacg	gtcccgaacc	cttataacct	cttgagcgcc	2940
ctcccgctg	aacggaaactg	gtacacagta	ttggacttaa	aagatgcctt	cttctgcctg	3000
agattacacc	ccactagcca	accactttt	acttcgaat	ggagagatcc	aggtacggga	3060
agaaccgggc	agtcacactg	gacccgactg	ccccaaagggt	tcaagaactc	cccgaccatc	3120
tttgacgaag	ccctacacag	ggacctggcc	aacttcagga	tccaacaccc	tcaggtgacc	3180
ctccctccagt	acgtggatga	cctgtttctg	gccccggcaca	ccaaacagga	ctgtttagaa	3240
ggtacgaagg	cactactgct	ggaatttgct	gactaggtct	acagagcctc	tgctaaagaag	3300
gcccaagatt	gcaggagaga	ggtAACatac	ttggggtaca	gtttgggggg	cgggcagcga	3360
tggctgacgg	aggcacggaa	gaaaactgt	gtccagatac	cgccccaaac	cacagccaaa	3420
caagtgagag	agtttttgggg	gacagctgaa	ttttgcagac	tgtggatccc	ggggtttgcg	3480
accttagcag	ccccactcta	cccgctaaacc	aaagaaaaag	ggggttgtct	acctcagcag	3540
ggagggaaat	aaagaacaaa	gaggaaattc	taagcctatt	agaagcctta	catttgccaa	3600
aaaggctagc	tattatacac	tgtcctggac	atcagaaagc	caaagatctc	atatctagag	3660
ggaaccagat	ggctgaccgg	gttgccaaagc	aggcagccca	ggctgttaac	cttctgcctt	3720
taatagaaac	gccccaaagcc	ccagaaccca	gacgacagta	caccctagaa	gactggcaag	3780

-continued

agataaaaaaa	gatagaccag	ttctctgaga	ctccggaggg	gacctgctat	acctcatatg	3840
ggaaggaaat	cctgccccac	aaagaagggt	tagaatatgt	ccaacagata	catcgctaa	3900
cccacctagg	aactaaacac	ctgcagcagt	tggtcagaac	atccccttat	catgttctga	3960
ggctaccagg	agtggctgac	tcgggtggta	aacattgtgt	gccctgccag	ctggtaatg	4020
ctaattcctc	cagaataacct	ccagggaaaga	gactaagggg	aagccaccca	ggcgctcact	4080
gggaagtgg	cttcactgag	gtaaagccgg	ctaaatacgg	aaacaaatat	ctattggttt	4140
ttttagacac	ctttcagga	tgggttagagg	cttattcctac	taaaaaagag	acttcaaccg	4200
tggggctaa	gaaaatactg	gaggaaattt	ttccaagat	tggaaatacct	aaggtaatag	4260
ggtcagacaa	tggtccagct	ttcggtgcc	aggttaagtca	gggactggcc	aagatattgg	4320
ggattgattt	aaaactgcat	tgtgcataca	gaccccaaag	ctcaggacag	gtagagagga	4380
tgaatagaac	cattaaagag	acccttacca	aattgaccac	agagactggc	attaatgatt	4440
ggatggctct	cctgcccctt	gtgtttttt	gggtgaggaa	cacccctgga	cagtttggc	4500
tgaccccta	taaattgttc	tacggggac	ccccccctt	ggcagaaatt	gcctttgcac	4560
atagtgtga	tgtgtgtt	tcccagectt	tgttctctag	gctcaaggcg	ctcgagtgg	4620
tgaggcageg	agcgtggaag	cagctccggg	aggcctactc	aggaggagac	ttgcaagttc	4680
cacatcgctt	ccaaagtgg	gattcagtct	atgttagacg	ccaccgtgca	ggaaacactcg	4740
agactcggt	gaagggacct	tatctcgta	ttttgaccac	accaacggct	gtgaaagtcg	4800
aaggaatccc	cttaagcttc	gcctccatcg	cgtgggttct	tactctgtca	ataactcctc	4860
aagttaatgg	taaacgcctt	gtggacagcc	cgaactccca	taaaccctta	tctctoacct	4920
gtttaacttac	tgactccgg	acaggtatta	atattaacag	cactcaaggg	gagggccct	4980
tggggacctg	gtggcctgaa	ttatatgtct	gccttcgatc	agtaatccct	ggtctcaatg	5040
accaggccac	accccccgt	gtactccgt	cttacgggtt	ttacgttgc	ccaggacccc	5100
caaataatga	agaatattgt	ggaaatcctc	aggatttctt	ttgcaagcaa	tggagctgca	5160
taacttctaa	tgtggaaat	tggaaatggc	cagtctctca	gcaagacaga	gtaagtact	5220
cttttgttaa	caatcctacc	agttataatc	aatttaatta	tggccatggg	agatggaaag	5280
atggcaaca	gcgggtacaa	aaagatgtac	gaaataagca	aataagctgt	cattcgtag	5340
acctagatta	ctaaaaata	agtttcaactg	aaaaaggaaa	acaagaaaat	attcaaaagt	5400
gggttaatgg	tatatcttgg	ggaatagtgt	actatggagg	ctctggaga	aagaaaggat	5460
ctgttctgac	tattcgccct	agaatagaaa	ctcagatgg	acctccgg	gtataggac	5520
caaataaggg	tttggccgaa	caaggacctc	caatccaaga	acagaggcca	tctcctaacc	5580
cctctgatta	caataacaacc	tctggatcag	tccccactga	gcctaacatc	actattaaaa	5640
cagggcgaa	actttttacg	ctcatccagg	gagttttca	agctttaac	tccacgactc	5700
cagaggctac	cttttcttgt	tggctttgt	tagcttcgg	cccacccat	tatgagggaa	5760
tggcttagagg	aggaaattc	aatgtgacaa	aggaacatag	agaccaatgt	acatgggtat	5820
ccaaaataa	gcttaccctt	actgagggtt	ctggaaaagg	cacctgcata	gggatggttc	5880
ccccatccca	ccaaacaccc	tgttaaccaca	ctgaagcctt	taatcgaacc	tctgagagtc	5940
aatatctggt	acctgggtat	gacaggtgg	gggcgtatgaa	tactggat	acccctgtg	6000
tttccacctt	ggtttcaac	caaactaaag	acttttgcgt	tatggtccaa	attgtcccc	6060

-continued

gggtgtacta ctatccccaa aaagcagtcc ttgatgaata tgactataga tataatccgc	6120
caaaaagaga gccccatatcc ctgacactag ctgtaatgct cggattggga gtggctgcag	6180
gcgtggAAC aggaacggct gcccataatca caggaccgca acagctggag aaaggactta	6240
gtaacctaca tcgaattgt a cggaaagatc tccaaggccct agaaaaatct gtca gtaacc	6300
tggaggaatc cctaaccctcc ttatctgaag tggttctaca gaacagaagg gggtagatc	6360
tgttatttct aaaagaagga gggttatgtg tagccttaaa agagaaatgc tgcttctatg	6420
tagatca ctc aggagccatc agagactcca tgagcaagct tagagaaagg ttagagaggc	6480
gtcgaaggga a aagagaggct gaccagggtt ggttgaagg atggttcaac aggtctccctt	6540
ggatgaccac cctgctttct gctctgacgg ggcccttagt agtcctgctc ctgttactta	6600
cagttggcc ttgcttaatt aataggttt tgcctttagt tagagaacga gtgagtgcag	6660
tccagatcat ggtacttagg caacagtacc aaggccttct gagccaagga gaaactgacc	6720
tctagccttc ccaggctctaa gattagaact attaacaaga caagaagtgg ggaatgaaag	6780
gatgaaaatg caacctaacc ctc cagaac ccaggaagtt aataaaaagc tctaaatgcc	6840
cccgaattcc agaccctgtt ggtgccagt aaataggttag aaggtcacac ttccatttgc	6900
tccaggccct gctatcctgg cctaagtaag ataacaggaa atgagttgac taatcgctt	6960
tctggattct gtaaaactga ctggcacat agaagaattt attacacatt gacagccctt	7020
gtgacctatc tcaactgcaa tctgtcactc tgcccaggag cccacgcaga tgcggaccc	7080
cgaggatctt taaaatgtat tggccacgg agcgccggct ctcgatattt taaaatgatt	7140
ggtccatgga gcgccggctc tcgatatttt aaaaatgtt gtttgcacg cacaggctt	7200
gttgcgacc ccataaaagc tgcctccattt cgcactcgg ggccgcagtc ctctaccctt	7260
gcgtgggtgt a cgactgtggg ccccagegcgc cttggataaa aatcccttt gctgtttgca	7320
tcaaaaaaaaaaaa aaa	7333

<210> SEQ ID NO 3

<211> LENGTH: 8132

<212> TYPE: DNA

<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 3

gcgtgggtgt a cgactgtggg ccccagegcgc cttggataaa aatcccttt gctgtttgca	60
tcaagaccgc ttctcgtag tgattaaggg gagtcgcctt ttccgagctt ggaggctt	120
tttgctggtc ttacatttgg gggctcgcc gggatctgtc gcccaccc ctaacaccc	180
agaaccgact tggaggtaaa aaggatcctc ttttaacgt gtatgcattt accggccggc	240
gtctctgttc tgagtgtctg tttcagtgg tgccgcgtt cgggttgcag ctgtctctc	300
aggccgtaaag ggctggggga ctgtgatcag cagacgtgtt aggaggatca caggtgtct	360
ccctggggga cgcggggggaa ggtgaggaga ggcaggacg cctgggtgtc tcctactgtc	420
ggtcagagga ccgaattctg ttgtgtaaacgc gaaagcttcc ccctccgcga ccgtccact	480
ctttgcctg cttgtggaaac acgtggacgg gtcacgtgtc tctggatctg ttggttctg	540
ttttgtgtgt cttgtcttg tttgtgtttt ttttacgtttt taatatggga cagacgggtga	600
cgaccctctt tagtttgcact ctcgaccattt ggactgaagt taaatccagg gctcataatt	660
tgtcagttca ggttaagaag ggacccctggc agactttctg tgcgtctgaa tggccgacat	720

-continued

tcgatgttgg atggccatca gaggggacct ttaattctga gattatcctg gctgttaag	780
cagttatccc tcagactgga cccggctctc atcccgtatca ggagccctat atccttacgt	840
ggcaagattt ggcagaggat cctccgcat gggtaaacc atggctgaat aagccaagaa	900
agccaggctcc ccgaattctg gctcttggag agaaaaacaa acactcggt gaaaaagtca	960
agccctctcc tcatatctac cccgagattt aggagccacc ggcttggccg gaaccctaat	1020
ctgttccccc acccccttctt ctggcacagg gtgcccgcgag gggaccctttt gcccctcctg	1080
gagctccggc ggtggagggc cctgctgcag ggactcggag ccggaggggc gccaccctgg	1140
agcggacaga cgagatcgcg acattaccgc tgccgcacgtt cggccctccc acaccgggg	1200
gccaatttgc gccccctccag tattggccct tttttcttc agatctctat aattggaaaa	1260
ctaaccatcc ccctttctcg gaggatcccc aacgcctcac ggggttggtg gatccctta	1320
tgttctctca ccagcctact tgggatgatt gtcaacagct gctgcagaca ctcttacaa	1380
ccgaggagcg agagagaattt ctattagagg ctagaaaaaa tggccctggg gccgacgggg	1440
gaccacacgcg gttgcaaaat gagattgaca tgggatttcc cttaactcgc cccgggtgg	1500
actacaacac ggctgaaggt agggagact tgaaaatcta tcgcccggct ctgggtggcg	1560
gtctccgggg cgccctcaaga cggccacta atttggctaa ggtaagagaa gtatgcagg	1620
gaccgaatga accccctctt gtttttttg agaggctttt ggaagccctt aggccgtaca	1680
ccccctttga tcccacacta gaggccaaa aagcctcagt ggctttggcc tttataggac	1740
agtcaagcctt ggttattttaga aagaagcttc agagactgga agggtttacag gaggctgagt	1800
tacgtgatct agtgaaggag gcagagaaag tatattacaa aaggagaca gaagaagaaa	1860
ggaaacaaaag aaaagagaga gaaagagagg aaagggagga aagacgtat aaacggcaag	1920
agaagaattt gactaagatc ttggctgcag tggtaagg gaaaagcaat acggaaagag	1980
agagagattt tagaaaaattt aggtcaggcc ctagacagtc agggAACCTG ggcaatagga	2040
ccccactcga caaggaccaa tgtgcattt gtaaagaaag aggacactgg gcaaggaact	2100
ggcccaagaa gggaaacaaa ggaccaaggg tcctagctt agaagaagat aaagattagg	2160
ggagacgggg tteggacccc ctccccgagc ccaggtaac tttgaaggtg gaggggcaac	2220
cagttgagtt cctgggttcat accggagcga aacattcagt gctactacag ccattaggaa	2280
aactaaaaga taaaaaatcc tgggtgatgg gtgccacagg gcaacaacag tatccatgg	2340
ctacccgaag aacagttgac ttgggagttt gacgggttac ccactcgat ttggtcatac	2400
ctgagtgccc agcacccctc ttagtgatgg acttatttgc caagatggg gacaaattt	2460
cttttgaaca agggaaacca gaagtgtctt caaataacaa acctatctt gtgtgaccc	2520
tccaaatttgc tgacgaatat cgactatact ctccccctgtt aaagcctgtat caaaatatac	2580
aattctgggtt ggaacagttt ccccaagctt gggcagaaac cgcaggatg ggtttggca	2640
agcaagttcc cccacaagttt attcaactga agggcagtgc cacaccgtt tcagtcagac	2700
agtacccctt ggtttaagaa gctcaagaag gaattcggcc gcatgtccaa agattaatcc	2760
aacagggcat ccttagttctt gtccaaatctc cctggataac tccccctgtt ccgggttagaa	2820
agcctggac taatgactat cgaccagtac aggacttggag agaggtaat aaacgggtgc	2880
aggatataca cccaaacagtc ccgaaccctt ataaccttctt gtgtgctctc ccaccccaac	2940
ggagctggta tacagtattt gacttaaagg atgccttctt ctgcctgaga ttacacccca	3000

-continued

ctagccaacc	acttttgcc	ttcgaatgga	gagatccagg	tacgggaaga	accgggcagc	3060
tcacctggac	ccgactgcc	caagggttca	agaactcccc	gaccatctt	gacgaagccc	3120
tacacagaga	cctggccaac	ttcaggatcc	aacaccctca	ggtgaccctc	ctccagtagc	3180
tggatgac	cttctggcg	ggagccacca	aacaggactg	cttagaaggc	acgaaggcac	3240
tactgctgga	attgtctgac	ctaggctaca	gaggctctgc	taagaaggcc	cagattgca	3300
ggagagaggt	aacatactg	gggtacagt	tgccggacgg	gcagcgatgg	ctgacggagg	3360
cacggaagaa	aactgttagtc	cagataccgg	ccccaaaccac	agccaaacaa	atgagagagt	3420
ttttgggac	agctggattt	tgcaagactgt	ggatccggg	gtttgcgacc	ttagcagccc	3480
cactctaccc	gctaaccaa	aaaaaagggg	aattctctg	ggctctgag	caccagaagg	3540
catttgatgc	tatcaaaaag	gccctgtca	gcccacactc	tctggccctc	cctgacgtaa	3600
ctaaaccctt	taccctttat	gtggatgagc	gtaaggaggt	agcccgggg	gttttaaccc	3660
aaacccttagg	accatggaga	agacctgtcg	cctacctgtc	aaagaagctc	gatcctgtag	3720
ccagtggttg	gccccatatgc	ctgaaggcta	tgcagactgt	ggccataactg	gtcaaggacg	3780
ctgacaaaatt	gactttggga	cagaataata	ctgttaatagc	cccccatgca	ttggagaaca	3840
tcgttcggca	gcccccaagac	cgtggatga	ccaacgccc	catgaccac	tatcaaagcc	3900
tgcttctcac	agagagggtc	acgttcgctc	caccagccgc	tctcaaccc	gccactttc	3960
tgccctgaaga	gactgatgaa	ccagtgtactc	atgattgcca	tcaactattg	attgaggaga	4020
ctggggtccg	caaggacctt	acagacatac	cgctgactgg	agaagtgtca	acctggttca	4080
ctgacggaag	cagctatgt	gtggaaggta	agaggatggc	tggggggcg	gtgggtggacg	4140
ggacccgcac	gatctggcc	agoagcctgc	cggaaggaac	ttcagcaca	aggctgagc	4200
tcatggccct	cacgcaagct	ttgcggctgg	ccgaaggaa	atccataaaac	atttatacgg	4260
acagcaggta	tgcctttgc	actgcacacg	tacatggggc	catctataaa	caaagggggt	4320
tgcttacctc	agcagggagg	gaaataaaga	acaaagagga	aattctaagc	ctattagaag	4380
cctgtacattt	acaaaaaagg	ctagctatta	tacactgtcc	tggacatcg	aaagctaaag	4440
atctcatatc	cagagaaac	cagatggctg	accgggttgc	caagcaggca	gcccgagggt	4500
ttaaccttct	gcctataata	gaaatgccc	aagccccaga	accagacga	cagtacaccc	4560
tagaagactg	gcaagagata	aaaaagatag	accagttctc	tgagactccg	gaagggacct	4620
gctatactc	agatggaaag	gaaatctgc	cccacaaaga	agggttagaa	tatgtccaac	4680
agatacatcg	tctaaacccac	ctaggaacta	aacacctgca	gcagtgtgc	agaacatccc	4740
ctttatcatgt	tctgaggeta	ccaggagtgg	ctgactcggt	ggtcaaacat	tgtgtccct	4800
gccagctggt	taatgcta	ccttccagaa	tgcctccagg	gaagagacta	aggggaagcc	4860
acccaggcgc	tcactggaa	gtggacttca	ctgaggtaaa	gccggctaa	tacggaaaca	4920
aataacctatt	ggttttgt	gacaccttt	caggatgggt	agaggcttat	cctactaaga	4980
aagagacttc	aaccgtggtg	gctaaaaaaa	tactggaga	aattttcca	agatttggaa	5040
tacctaaggt	aatagggtca	gacaatggtc	cagctttgt	tgcccaggt	agtcaaggac	5100
tggccaagat	attggggatt	gattggaaac	tgcattgtgc	atacagaccc	caaagctcag	5160
gacaggtaga	gaggatgaat	agaaccatta	aagagaccct	tactaaattg	accgcggaga	5220
ctggcgtaa	tgattggata	gctctctgc	ccttgtgct	ttttagggtt	aggaacaccc	5280

-continued

ctggacagtt	tgggctgacc	cccttatgaat	tactctacgg	gggacccccc	ccattggtag	5340	
aaattgcttc	tgtacatagt	gctgacgtgc	tgctttccca	gcctttgttc	tctaggctca	5400	
aggcacttga	gtgggtgaga	caacgagcgt	ggaggcaact	ccgggaggcc	tactcaggag	5460	
gaggagactt	gcagatccca	catcgttcc	aagtgggaga	ttcagtcac	tttagacgcc	5520	
accgtgcagg	aaacctcgag	actcggtgga	agggcccta	tctcgtaactt	ttgaccacac	5580	
caacggctgt	gaaagtgcga	ggaatctcca	cctggatcca	tgcatcccac	gttaaaccgg	5640	
cgccacctcc	cgattcgggg	tggaaagccg	aaaagactga	aatcccctt	aagcttcgccc	5700	
tccatcgctg	ggttccttac	tctgtcaata	acctctca	ctaattgtat	gcgcataagga	5760	
gacagcctga	actcccataa	acccttatct	ctcacctgg	taattactga	ctccggcaca	5820	
ggttataata	tcaacaacac	tcaaggggag	gctcctttag	gaacctggtg	gcctgatcta	5880	
tacgtttgc	tcaagatcagt	tattccttagt	ctgacctcac	ccccagatata	cctccatgct	5940	
cacggatttt	atgtttgcc	aggaccacca	aataatggaa	aacattgcgg	aaatcccaga	6000	
gatttcttt	gtaaaacaatg	gaactgtgt	acctcta	atggatattt	gaaatggcca	6060	
acctctcagc	aggatagggt	aagttttct	tatgtcaaca	cctataccag	ctctggacaa	6120	
ttaatttacc	tgacctggat	tagaactgga	agccccaa	gctccttcc	agaccttagat	6180	
taccta	aaaaaa	taagtttac	tgagaaaggaa	aaacaagaaa	atatcctaaa	atggtaat	6240
ggtatgtctt	ggggaatgg	atattatgga	ggctcgggt	aacaaccagg	ctccattcta	6300	
actattcgcc	tcaaaataaa	ccagctggag	cctccatgg	ctataggacc	aaatacggc	6360	
ttgacgggtc	aaagacccccc	aacccaagga	ccaggaccat	cctcta	acat	6420	
tca	gacccca	ctgagtc	taaaatgggg	caaaactttt	tagcctcata	6480	
caggagctt	ttaaagctt	taactccac	actccagagg	ctaccttcc	ttgttggcta	6540	
tgcttagctt	cggggccacc	ttactatgaa	ggaatggcta	gaagaggaa	attcaatgt	6600	
acaaaagaac	atagagacca	atgcacatgg	ggatccaaa	ataagettac	ccttactgag	6660	
gtttctggaa	aaggcacctg	catagggaa	gttccccc	cccaccaaca	cctttgtaac	6720	
cacactgaag	cctttaatca	aacctctgag	agtcaatata	tgttacctgg	ttatgacagg	6780	
tggtggcat	gtaatactgg	attaacccct	tgtgtttcc	ccttggttt	taaccaaact	6840	
aaagat	tttt	gcattatgg	ccaaattgtt	ccccgagtgt	attactatcc	cgaaaaagca	6900
atccttgatg	aatatgacta	cagaaatcat	cgacaaaaga	gagaaccat	atctctgaca	6960	
cttgctgtga	tgctcggact	tggagtggt	gaacaggaac	agctgcctg		7020	
gtcacgggac	cacagcagct	agaaacagga	cttagtaacc	tacatgaaat	tgtaacagaa	7080	
gatctccaag	ccctagaaaa	atctgtcagt	aacctggagg	aatcccta	ac	7140	
gaagtagtcc	tacagaatag	aagagggta	gatttattat	ttctaaaaga	aggaggatta	7200	
tgtgttagctt	tgaaggagga	atgctgtttt	tatgtggatc	attcaggggc	catcagagac	7260	
tccatgaaca	agcttagaga	aagggtggag	aagcgtcgaa	gggaaaagga	aactactcaa	7320	
gggtggttt	agggatggtt	caacaggct	cttgggttgg	ctaccctact	ttctgttta	7380	
acaggaccct	taatagtct	cctcctgtt	ctcacagtg	ggccatgtat	tattaacaag	7440	
ttaattgcct	tcattagaga	acgaaataagt	gcagtcaga	tcatggta	ct tagacaacag	7500	
taccaaagcc	cgtctagcag	ggaagctggc	cgctagctct	accagttcta	agattagaac	7560	

-continued

tattaacaag agaagaagtg gggaatgaaa ggatgaaaat acaacctaag ctaatgagaa	7620
gcttaaaatt gttctgaatt ccagagtttgc ttccttatacg taaaagatt aggttttttgc	7680
ctgttttaaa atatgcggaa gtaaaatagg ccctgagttac atgtctctag gcatgaaact	7740
tcttgaaact atttgagata acaagaaaag ggagtttcta actgcttgc tagcttctgt	7800
aaaactgggtt ggcgcataaa gatgttgc tttgtatata catatcttgc tgacaacatgt	7860
tctccccac cccgaaacat ggcgcataaa gatgttgc tttgtatata catatcttgc tgacaacatgt	7920
ccacgaagcg cgggctctcg aagttttaaa ttgactgggtt tttgtatattt tgaaatgtt	7980
ggtttgc tttgtatata catatcttgc tgacaacatgt	8040
ggccgcgtt cctctatcccc tttgtatata catatcttgc tgacaacatgt	8100
aaaatccctct tttgtatata catatcttgc tgacaacatgt	8132

<210> SEQ ID NO 4
 <211> LENGTH: 19
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 4

tgccttagaga catgtactc 19

<210> SEQ ID NO 5
 <211> LENGTH: 21
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 5

cctcttctag ccattcccttc a 21

<210> SEQ ID NO 6
 <211> LENGTH: 22
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 6

tcgagactcg gtggaaaggcc cc 22

<210> SEQ ID NO 7
 <211> LENGTH: 22
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 7

ggcccttcc accgagtctc ga 22

<210> SEQ ID NO 8
 <211> LENGTH: 22
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Primer

-continued

<400> SEQUENCE: 8
acctggatcc atgcatccca cg 22

<210> SEQ ID NO 9
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 9
cgtgggatgc atggatccag gt 22

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 10
ggcgccaccc cccgattcgg 20

<210> SEQ ID NO 11
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 11
ccgaatcggg aggtggcgcc 20

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 12
tcccccttaag cttcgccctcc 20

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 13
ggaggcgaag cttaaaggggaa 20

<210> SEQ ID NO 14
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 14
aaaagcacaagggcaggag agc 23

-continued

<210> SEQ ID NO 15
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 15

gctctcctgc cctttgtgt ttt

23

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 16

ccttttaggaa cctgggtggcc

20

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 17

ggccaccagg ttcctaaagg

20

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 18

cccccagata tcctccatgc

20

<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 19

gcatggagga tatctgggggg

20

<210> SEQ ID NO 20
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 20

gcagtttcca atcaatcccc aa

22

<210> SEQ ID NO 21
<211> LENGTH: 22

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 21
ttggggattg attggaaact gc                                22

<210> SEQ ID NO 22
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 22
tttatgtttg cccaggacca cca                                23

<210> SEQ ID NO 23
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 23
tgggtgtcct gggcaaacat aaa                                23

<210> SEQ ID NO 24
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 24
gggaggtggc gccggcttaa cgt                                23

<210> SEQ ID NO 25
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 25
acgttaagcc ggccggcacct ccc                                23

<210> SEQ ID NO 26
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 26
cccccaaccc aaggaccagg acca                                24

<210> SEQ ID NO 27
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
```

-continued

<400> SEQUENCE: 27
tggtcctggt ccttgggttg gggg 24

<210> SEQ ID NO 28
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 28
gcagcacgac taaaatgggg gc 22

<210> SEQ ID NO 29
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 29
gccccccattt tagtcgtgct gc 22

<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 30
cccccatccc accaacaacct 20

<210> SEQ ID NO 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 31
agggtgttggt gggatggggg 20

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 32
tctcccccac cccgaaacat 20

<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 33
atgtttcgaa gtgggggaga 20

-continued

<210> SEQ ID NO 34
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 34

agccaagaaa gccaggtccc cgaa

24

<210> SEQ ID NO 35
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 35

ttcggggacc tggctttttt ggct

24

<210> SEQ ID NO 36
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 36

aggctctggc ggccgggtctc c

21

<210> SEQ ID NO 37
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 37

ggagacccgc caccagagcc t

21

<210> SEQ ID NO 38
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 38

ccgcaggat gggtttggca

20

<210> SEQ ID NO 39
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 39

tgcctaaaccc atccctgcgg

20

<210> SEQ ID NO 40
<211> LENGTH: 22

-continued

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 40
gctcacctgg acccgactgc cc                                22

<210> SEQ ID NO 41
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 41
gggcagtcgg gtccaggtga gc                                22

<210> SEQ ID NO 42
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 42
gtttagggga cgggcagcga tggc                                24

<210> SEQ ID NO 43
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 43
ccatcgctg cccgtccctg aaac                                24

<210> SEQ ID NO 44
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 44
tggctggggc ggccgtgggtg gacggg                                26

<210> SEQ ID NO 45
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 45
cccggtccacc accggccggcc cagcca                                26

<210> SEQ ID NO 46
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
```

-continued

<400> SEQUENCE: 46
gccccaaagcc ccagaaccca gacg 24

<210> SEQ ID NO 47
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 47
cgtctgggtt ctggggcttt gggc 24

<210> SEQ ID NO 48
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 48
gatgaacagg cagacatctg 20

<210> SEQ ID NO 49
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 49
cgcttacaga caagctgtga 20

<210> SEQ ID NO 50
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 50
agaacaaagg ctgggaagg 19

<210> SEQ ID NO 51
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 51
ataggagaca gcctgaactc 20

<210> SEQ ID NO 52
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 52
ggaccattgt ctgaccctat 20

-continued

<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 53

gtcaaacacct ataccagctc

20

<210> SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 54

catctgaggt atagcaggtc

20

<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 55

gcaggtgttag gaacagggac

20

<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 56

acctgttgaa ccatccctca

20

<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 57

cgaatggaga gatccaggta

20

<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 58

cctgcatcac ttctcttacc

20

<210> SEQ ID NO 59
<211> LENGTH: 20

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 59

ttgcctgctt gtggaatacg

20

<210> SEQ ID NO 60
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 60

caagagaaga agtgggaaat g

21

<210> SEQ ID NO 61
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 61

cacagtcgta caccacgcag

20

<210> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 62

gggagacaga agaagaaagg

20

<210> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 63

cgatagtcat tagtcccagg

20

<210> SEQ ID NO 64
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 64

tgctggtttg catcaagacc g

21

<210> SEQ ID NO 65
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

-continued

<400> SEQUENCE: 65

gtcgcaaagg catacctgct

20

<210> SEQ ID NO 66

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 66

acagagcctc tgctaagaag

20

<210> SEQ ID NO 67

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 67

gcagctgttg acaatcata

19

<210> SEQ ID NO 68

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 68

tatgaggaga gggtttgact

20

<210> SEQ ID NO 69

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 69

agcagacgtg ctaggaggt

19

<210> SEQ ID NO 70

<211> LENGTH: 19

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 70

tcctcttgct gtttgcatc

19

<210> SEQ ID NO 71

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 71

cagacactca gaacagagac

20

-continued

<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 72

acatcgtctaaaccacacccatag

20

<210> SEQ ID NO 73
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 73

ctcggttctgtgtcataccatcgaa

21

<210> SEQ ID NO 74
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 74

gagtagatctctcttagggca

19

<210> SEQ ID NO 75
<211> LENGTH: 524
<212> TYPE: PRT
<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 75

Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Asp His Trp
1 5 10 15

Thr Glu Val Arg Ser Arg Ala His Asn Leu Ser Val Gln Val Lys Lys
20 25 30

Gly Pro Trp Gln Thr Phe Cys Ala Ser Glu Trp Pro Thr Phe Asp Val
35 40 45

Gly Trp Pro Ser Glu Gly Thr Phe Asn Ser Glu Ile Ile Leu Ala Val
50 55 60

Lys Ala Ile Ile Phe Gln Thr Gly Pro Gly Ser His Pro Asp Gln Glu
65 70 75 80

Pro Tyr Ile Leu Thr Trp Gln Asp Leu Ala Glu Asp Pro Pro Pro Trp
85 90 95

Val Lys Pro Trp Leu Asn Lys Pro Arg Lys Pro Gly Pro Arg Ile Leu
100 105 110

Ala Leu Gly Glu Lys Asn Lys His Ser Ala Glu Lys Val Glu Pro Ser
115 120 125

Pro Arg Ile Tyr Pro Glu Ile Glu Glu Pro Pro Thr Trp Pro Glu Pro
130 135 140

Gln Pro Val Pro Pro Pro Tyr Pro Ala Gln Gly Ala Val Arg Gly
145 150 155 160

Pro Ser Ala Pro Pro Gly Ala Pro Val Val Glu Gly Pro Ala Ala Gly

-continued

165	170	175	
Thr Arg Ser Arg Arg Gly Ala Thr Pro Glu Arg Thr Asp Glu Ile Ala			
180	185	190	
Ile Leu Pro Leu Arg Thr Tyr Gly Pro Pro Met Pro Gly Gly Gln Leu			
195	200	205	
Gln Pro Leu Gln Tyr Trp Pro Phe Ser Ser Ala Asp Leu Tyr Asn Trp			
210	215	220	
Lys Thr Asn His Pro Pro Phe Ser Glu Asp Pro Gln Arg Leu Thr Gly			
225	230	235	240
Leu Val Glu Ser Leu Met Phe Ser His Gln Pro Thr Trp Asp Asp Cys			
245	250	255	
Gln Gln Leu Leu Gln Thr Leu Phe Thr Thr Glu Glu Arg Glu Arg Ile			
260	265	270	
Leu Leu Glu Ala Lys Lys Asn Val Pro Gly Ala Asp Gly Arg Pro Thr			
275	280	285	
Gln Leu Gln Asn Glu Ile Asp Met Gly Phe Pro Leu Thr Arg Pro Gly			
290	295	300	
Trp Asp Tyr Asn Thr Ala Glu Gly Arg Glu Ser Leu Lys Ile Tyr Arg			
305	310	315	320
Gln Ala Leu Val Ala Gly Leu Arg Gly Ala Ser Arg Arg Pro Thr Asn			
325	330	335	
Leu Ala Lys Val Arg Glu Val Met Gln Gly Pro Asn Glu Pro Pro Ser			
340	345	350	
Val Phe Leu Glu Arg Leu Met Glu Ala Phe Arg Arg Phe Thr Pro Phe			
355	360	365	
Asp Pro Thr Ser Glu Ala Gln Lys Ala Ser Val Ala Leu Ala Phe Ile			
370	375	380	
Gly Gln Ser Ala Leu Asp Ile Arg Lys Lys Leu Gln Arg Leu Glu Gly			
385	390	395	400
Leu Gln Glu Ala Glu Leu Arg Asp Leu Val Arg Glu Ala Glu Lys Val			
405	410	415	
Tyr Tyr Arg Arg Glu Thr Glu Glu Lys Glu Gln Arg Lys Glu Lys			
420	425	430	
Glu Arg Glu Glu Arg Glu Glu Arg Arg Asp Arg Arg Gln Glu Lys Asn			
435	440	445	
Leu Thr Lys Ile Leu Ala Ala Val Val Glu Gly Lys Ser Ser Arg Glu			
450	455	460	
Arg Glu Arg Asp Phe Arg Lys Ile Arg Ser Gly Pro Arg Gln Ser Gly			
465	470	475	480
Asn Leu Gly Asn Arg Thr Pro Leu Asp Lys Asp Gln Cys Ala Tyr Cys			
485	490	495	
Lys Glu Lys Gly His Trp Ala Arg Asn Cys Pro Lys Lys Gly Asn Lys			
500	505	510	
Gly Pro Lys Val Leu Ala Leu Glu Glu Asp Lys Asp			
515	520		

<210> SEQ ID NO 76

<211> LENGTH: 401

<212> TYPE: PRT

<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 76

-continued

Met Gly Ala Thr Gly Gln Arg Gln Tyr Pro Trp Thr Thr Arg Arg Thr
 1 5 10 15

Val Asp Leu Gly Val Gly Arg Val Thr His Ser Phe Leu Val Ile Pro
 20 25 30

Glu Cys Pro Val Pro Leu Leu Gly Arg Asp Leu Leu Thr Lys Met Gly
 35 40 45

Ala Gln Ile Ser Phe Glu Gln Gly Arg Pro Glu Val Ser Val Asn Asn
 50 55 60

Lys Pro Ile Thr Val Leu Thr Leu Gln Leu Asp Asp Glu Tyr Arg Leu
 65 70 75 80

Tyr Ser Pro Gln Val Lys Pro Asp Gln Asp Ile Gln Ser Trp Leu Glu
 85 90 95

Gln Phe Pro Gln Ala Trp Ala Glu Thr Ala Gly Met Gly Leu Ala Lys
 100 105 110

Gln Val Pro Pro Gln Val Ile Gln Leu Lys Ala Ser Ala Thr Pro Val
 115 120 125

Ser Val Arg Gln Tyr Pro Leu Ser Arg Glu Ala Arg Glu Gly Ile Trp
 130 135 140

Pro His Val Gln Arg Leu Ile Gln Gln Gly Ile Leu Val Pro Val Gln
 145 150 155 160

Ser Pro Trp Asn Thr Pro Leu Leu Pro Val Arg Lys Pro Gly Thr Asn
 165 170 175

Asp Tyr Arg Pro Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val Gln
 180 185 190

Asp Ile His Pro Thr Val Pro Asn Pro Tyr Asn Leu Leu Ser Ala Leu
 195 200 205

Pro Pro Glu Arg Asn Trp Tyr Thr Val Leu Asp Leu Lys Asp Ala Phe
 210 215 220

Phe Cys Leu Arg Leu His Pro Thr Ser Gln Pro Leu Phe Thr Phe Glu
 225 230 235 240

Trp Arg Asp Pro Gly Thr Gly Arg Thr Gly Gln Leu Thr Trp Thr Arg
 245 250 255

Leu Pro Gln Gly Phe Lys Asn Ser Pro Thr Ile Phe Asp Glu Ala Leu
 260 265 270

His Arg Asp Leu Ala Asn Phe Arg Ile Gln His Pro Gln Val Thr Leu
 275 280 285

Leu Gln Tyr Val Asp Asp Leu Leu Leu Ala Gly Ala Thr Lys Gln Asp
 290 295 300

Cys Leu Glu Gly Thr Lys Ala Leu Leu Leu Glu Leu Ser Asp Leu Gly
 305 310 315 320

Tyr Arg Ala Ser Ala Lys Lys Ala Gln Ile Cys Arg Arg Glu Val Thr
 325 330 335

Tyr Leu Gly Tyr Ser Leu Arg Gly Gly Gln Arg Trp Leu Thr Glu Ala
 340 345 350

Arg Lys Lys Thr Val Val Gln Ile Pro Ala Pro Thr Thr Ala Lys Gln
 355 360 365

Val Arg Glu Phe Leu Gly Thr Ala Gly Phe Cys Arg Leu Trp Ile Pro
 370 375 380

Gly Phe Ala Thr Leu Ala Ala Pro Leu Tyr Pro Leu Thr Lys Glu Lys
 385 390 395 400

-continued

<210> SEQ ID NO 77
 <211> LENGTH: 271
 <212> TYPE: PRT
 <213> ORGANISM: Porcine endogenous retrovirus

 <400> SEQUENCE: 77

 Lys Arg Gly Leu Leu Thr Ser Ala Gly Arg Glu Ile Lys Asn Lys Glu
 1 5 10 15

 Glu Ile Leu Ser Leu Leu Glu Ala Leu His Leu Pro Lys Arg Leu Ala
 20 25 30

 Ile Ile His Cys Pro Gly His Gln Lys Ala Lys Asp Leu Ile Ser Arg
 35 40 45

 Gly Asn Gln Met Ala Asp Arg Val Ala Lys Gln Ala Ala Gln Ala Val
 50 55 60

 Asn Leu Leu Pro Ile Ile Glu Thr Pro Lys Ala Pro Glu Pro Arg Arg
 65 70 75 80

 Gln Tyr Thr Leu Glu Asp Trp Gln Glu Ile Lys Lys Ile Asp Gln Phe
 85 90 95

 Ser Glu Thr Pro Glu Gly Thr Cys Tyr Thr Ser Tyr Gly Lys Glu Ile
 100 105 110

 Leu Pro His Lys Glu Gly Leu Glu Tyr Val Gln Gln Ile His Arg Leu
 115 120 125

 Thr His Leu Gly Thr Lys His Leu Gln Gln Leu Val Arg Thr Ser Pro
 130 135 140

 Tyr His Val Leu Arg Leu Pro Gly Val Ala Asp Ser Val Val Lys His
 145 150 155 160

 Cys Val Pro Cys Gln Leu Val Asn Ala Asn Pro Ser Arg Ile Pro Pro
 165 170 175

 Gly Lys Arg Leu Arg Gly Ser His Pro Gly Ala His Trp Glu Val Asp
 180 185 190

 Phe Thr Glu Val Lys Pro Ala Lys Tyr Gly Asn Lys Tyr Leu Leu Val
 195 200 205

 Phe Val Asp Thr Phe Ser Gly Trp Val Glu Ala Tyr Pro Thr Lys Lys
 210 215 220

 Glu Thr Ser Thr Val Val Ala Lys Lys Ile Leu Glu Glu Ile Phe Pro
 225 230 235 240

 Arg Phe Gly Ile Pro Lys Val Ile Gly Ser Asp Asn Gly Pro Ala Phe
 245 250 255

 Val Ala Gln Val Ser Gln Gly Leu Ala Lys Ile Leu Gly Ile Asp
 260 265 270

<210> SEQ ID NO 78
 <211> LENGTH: 139
 <212> TYPE: PRT
 <213> ORGANISM: Porcine endogenous retrovirus

 <400> SEQUENCE: 78

 Lys Leu His Cys Ala Tyr Arg Pro Gln Ser Ser Gly Gln Val Glu Arg
 1 5 10 15

 Met Asn Arg Thr Ile Lys Glu Thr Leu Thr Lys Leu Thr Thr Glu Thr
 20 25 30

 Gly Ile Asn Asp Trp Met Ala Leu Leu Pro Phe Val Leu Phe Arg Val
 35 40 45

-continued

Arg Asn Thr Pro Gly Gln Phe Gly Leu Thr Pro Tyr Lys Leu Leu Tyr
 50 55 60

Gly Gly Pro Pro Pro Leu Ala Glu Ile Ala Phe Ala His Ser Ala Asp
 65 70 75 80

Val Leu Leu Ser Gln Pro Leu Phe Ser Arg Leu Lys Ala Leu Glu Trp
 85 90 95

Val Arg Gln Arg Ala Trp Lys Gln Leu Arg Glu Ala Tyr Ser Gly Gly
 100 105 110

Asp Leu Gln Val Pro His Arg Phe Gln Val Gly Asp Ser Val Tyr Val
 115 120 125

Arg Arg His Arg Ala Gly Asn Leu Glu Thr Arg
 130 135

<210> SEQ_ID NO 79

<211> LENGTH: 657

<212> TYPE: PRT

<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 79

Lys Gly Pro Tyr Leu Val Leu Leu Thr Thr Pro Thr Ala Val Lys Val
 1 5 10 15

Glu Gly Ile Pro Leu Ser Phe Ala Ser Ile Ala Trp Phe Leu Thr Leu
 20 25 30

Ser Ile Thr Pro Gln Val Asn Gly Lys Arg Leu Val Asp Ser Pro Asn
 35 40 45

Ser His Lys Pro Leu Ser Leu Thr Trp Leu Leu Thr Asp Ser Gly Thr
 50 55 60

Gly Ile Asn Ile Asn Ser Thr Gln Gly Glu Ala Pro Leu Gly Thr Trp
 65 70 75 80

Trp Pro Glu Leu Tyr Val Cys Leu Arg Ser Val Ile Pro Gly Leu Asn
 85 90 95

Asp Gln Ala Thr Pro Pro Asp Val Leu Arg Ala Tyr Gly Phe Tyr Val
 100 105 110

Cys Pro Gly Pro Pro Asn Asn Glu Glu Tyr Cys Gly Asn Pro Gln Asp
 115 120 125

Phe Phe Cys Lys Gln Trp Ser Cys Ile Thr Ser Asn Asp Gly Asn Trp
 130 135 140

Lys Trp Pro Val Ser Gln Gln Asp Arg Val Ser Tyr Ser Phe Val Asn
 145 150 155 160

Asn Pro Thr Ser Tyr Asn Gln Phe Asn Tyr Gly His Gly Arg Trp Lys
 165 170 175

Asp Trp Gln Gln Arg Val Gln Lys Asp Val Arg Asn Lys Gln Ile Ser
 180 185 190

Cys His Ser Leu Asp Leu Asp Tyr Leu Lys Ile Ser Phe Thr Glu Lys
 195 200 205

Gly Lys Gln Glu Asn Ile Gln Lys Trp Val Asn Gly Ile Ser Trp Gly
 210 215 220

Ile Val Tyr Tyr Gly Gly Ser Gly Arg Lys Lys Gly Ser Val Leu Thr
 225 230 235 240

Ile Arg Leu Arg Ile Glu Thr Gln Met Glu Pro Pro Val Ala Ile Gly
 245 250 255

Pro Asn Lys Gly Leu Ala Glu Gln Gly Pro Pro Ile Gln Glu Gln Arg

-continued

260	265	270	
Pro Ser Pro Asn Pro	Ser Asp Tyr Asn Thr	Thr Ser Gly Ser Val Pro	
275	280	285	
Thr Glu Pro Asn Ile	Thr Ile Lys Thr Gly Ala	Lys Leu Phe Ser Leu	
290	295	300	
Ile Gln Gly Ala Phe Gln Ala Leu Asn Ser	Thr Thr Pro Glu Ala Thr		
305	310	315	320
Ser Ser Cys Trp Leu Cys Leu Ala Ser Gly	Pro Pro Tyr Tyr Glu Gly		
325	330	335	
Met Ala Arg Gly Gly Lys Phe Asn Val Thr	Lys Glu His Arg Asp Gln		
340	345	350	
Cys Thr Trp Gly Ser Gln Asn Lys Leu Thr	Leu Thr Glu Val Ser Gly		
355	360	365	
Lys Gly Thr Cys Ile Gly Met Val Pro Pro	Ser His Gln His Leu Cys		
370	375	380	
Asn His Thr Glu Ala Phe Asn Arg Thr Ser	Glu Ser Gln Tyr Leu Val		
385	390	395	400
Pro Gly Tyr Asp Arg Trp Trp Ala Cys Asn	Thr Gly Leu Thr Pro Cys		
405	410	415	
Val Ser Thr Leu Val Phe Asn Gln Thr Lys	Asp Phe Cys Val Met Val		
420	425	430	
Gln Ile Val Pro Arg Val Tyr Tyr Pro Glu	Lys Ala Val Leu Asp		
435	440	445	
Glu Tyr Asp Tyr Arg Tyr Asn Arg Pro Lys	Arg Glu Pro Ile Ser Leu		
450	455	460	
Thr Leu Ala Val Met Leu Gly Leu Gly Val	Ala Ala Gly Val Gly Thr		
465	470	475	480
Gly Thr Ala Ala Leu Ile Thr Gly Pro Gln	Gln Leu Glu Lys Gly Leu		
485	490	495	
Ser Asn Leu His Arg Ile Val Thr Glu Asp	Leu Gln Ala Leu Glu Lys		
500	505	510	
Ser Val Ser Asn Leu Glu Glu Ser Leu Thr	Ser Leu Ser Glu Val Val		
515	520	525	
Leu Gln Asn Arg Arg Gly Leu Asp Leu Leu	Phe Leu Lys Glu Gly Gly		
530	535	540	
Leu Cys Val Ala Leu Lys Glu Glu Cys Cys	Phe Tyr Val Asp His Ser		
545	550	555	560
Gly Ala Ile Arg Asp Ser Met Ser Lys Leu	Arg Glu Arg Leu Glu Arg		
565	570	575	
Arg Arg Arg Glu Arg Glu Ala Asp Gln Gly	Trp Phe Glu Gly Trp Phe		
580	585	590	
Asn Arg Ser Pro Trp Met Thr Leu Leu Ser	Ala Leu Thr Gly Pro		
595	600	605	
Leu Val Val Leu Leu Leu Leu Thr Val	Gly Pro Cys Leu Ile Asn		
610	615	620	
Arg Phe Val Ala Phe Val Arg Glu Arg Val	Ser Ala Val Gln Ile Met		
625	630	635	640
Val Leu Arg Gln Gln Tyr Gln Gly Leu Leu	Ser Gln Gly Glu Thr Asp		
645	650	655	
Leu			

-continued

<210> SEQ_ID NO 80
<211> LENGTH: 524
<212> TYPE: PRT
<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 80

Met Gly Gln Thr Val Thr Thr Pro Leu Ser Leu Thr Leu Asp His Trp
1 5 10 15

Thr Glu Val Lys Ser Arg Ala His Asn Leu Ser Val Gln Val Lys Lys
20 25 30

Gly Pro Trp Gln Thr Phe Cys Val Ser Glu Trp Pro Thr Phe Asp Val
35 40 45

Gly Trp Pro Ser Glu Gly Thr Phe Asn Ser Glu Ile Ile Leu Ala Val
50 55 60

Lys Ala Val Ile Phe Gln Thr Gly Pro Gly Ser His Pro Asp Gln Glu
65 70 75 80

Pro Tyr Ile Leu Thr Trp Gln Asp Leu Ala Glu Asp Pro Pro Pro Trp
85 90 95

Val Lys Pro Trp Leu Asn Lys Pro Arg Lys Pro Gly Pro Arg Ile Leu
100 105 110

Ala Leu Gly Glu Lys Asn Lys His Ser Ala Glu Lys Val Lys Pro Ser
115 120 125

Pro His Ile Tyr Pro Glu Ile Glu Glu Pro Pro Ala Trp Pro Glu Pro
130 135 140

Gln Ser Val Pro Pro Pro Tyr Leu Ala Gln Gly Ala Ala Arg Gly
145 150 155 160

Pro Phe Ala Pro Pro Gly Ala Pro Ala Val Glu Gly Pro Ala Ala Gly
165 170 175

Thr Arg Ser Arg Arg Gly Ala Thr Pro Glu Arg Thr Asp Glu Ile Ala
180 185 190

Thr Leu Pro Leu Arg Thr Tyr Gly Pro Pro Thr Pro Gly Gly Gln Leu
195 200 205

Gln Pro Leu Gln Tyr Trp Pro Phe Ser Ser Ala Asp Leu Tyr Asn Trp
210 215 220

Lys Thr Asn His Pro Pro Phe Ser Glu Asp Pro Gln Arg Leu Thr Gly
225 230 235 240

Leu Val Glu Ser Leu Met Phe Ser His Gln Pro Thr Trp Asp Asp Cys
245 250 255

Gln Gln Leu Leu Gln Thr Leu Phe Thr Thr Glu Glu Arg Glu Arg Ile
260 265 270

Leu Leu Glu Ala Arg Lys Asn Val Pro Gly Ala Asp Gly Arg Pro Thr
275 280 285

Arg Leu Gln Asn Glu Ile Asp Met Gly Phe Pro Leu Thr Arg Pro Gly
290 295 300

Trp Asp Tyr Asn Thr Ala Glu Gly Arg Glu Ser Leu Lys Ile Tyr Arg
305 310 315 320

Gln Ala Leu Val Ala Gly Leu Arg Gly Ala Ser Arg Arg Pro Thr Asn
325 330 335

Leu Ala Lys Val Arg Glu Val Met Gln Gly Pro Asn Glu Pro Pro Ser
340 345 350

Val Phe Leu Glu Arg Leu Leu Glu Ala Phe Arg Arg Tyr Thr Pro Phe
355 360 365

-continued

Asp Pro Thr Ser Glu Ala Gln Lys Ala Ser Val Ala Leu Ala Phe Ile
 370 375 380
 Gly Gln Ser Ala Leu Asp Ile Arg Lys Lys Leu Gln Arg Leu Glu Gly
 385 390 395 400
 Leu Gln Glu Ala Glu Leu Arg Asp Leu Val Lys Glu Ala Glu Lys Val
 405 410 415
 Tyr Tyr Lys Arg Glu Thr Glu Glu Arg Glu Gln Arg Lys Glu Arg
 420 425 430
 Glu Arg Glu Glu Arg Glu Glu Arg Arg Asn Lys Arg Gln Glu Lys Asn
 435 440 445
 Leu Thr Lys Ile Leu Ala Ala Val Val Glu Gly Lys Ser Asn Thr Glu
 450 455 460
 Arg Glu Arg Asp Phe Arg Lys Ile Arg Ser Gly Pro Arg Gln Ser Gly
 465 470 475 480
 Asn Leu Gly Asn Arg Thr Pro Leu Asp Lys Asp Gln Cys Ala Tyr Cys
 485 490 495
 Lys Glu Arg Gly His Trp Ala Arg Asn Cys Pro Lys Lys Gly Asn Lys
 500 505 510
 Gly Pro Arg Ile Leu Ala Leu Glu Glu Asp Lys Asp
 515 520

<210> SEQ_ID NO 81
 <211> LENGTH: 1145
 <212> TYPE: PRT
 <213> ORGANISM: Porcine endogenous retrovirus
 <400> SEQUENCE: 81

Met Gly Ala Thr Gly Gln Gln Gln Tyr Pro Trp Thr Thr Arg Arg Thr
 1 5 10 15
 Val Asp Leu Gly Val Gly Arg Val Thr His Ser Phe Leu Val Ile Pro
 20 25 30
 Glu Cys Pro Ala Pro Leu Leu Gly Arg Asp Leu Leu Thr Lys Met Gly
 35 40 45
 Ala Gln Ile Ser Phe Glu Gln Gly Lys Pro Glu Val Ser Ala Asn Asn
 50 55 60
 Lys Pro Ile Thr Val Leu Thr Leu Gln Leu Asp Asp Glu Tyr Arg Leu
 65 70 75 80
 Tyr Ser Pro Leu Val Lys Pro Asp Gln Asn Ile Gln Phe Trp Leu Glu
 85 90 95
 Gln Phe Pro Gln Ala Trp Ala Glu Thr Ala Gly Met Gly Leu Ala Lys
 100 105 110
 Gln Val Pro Pro Gln Val Ile Gln Leu Lys Ala Ser Ala Thr Pro Val
 115 120 125
 Ser Val Arg Gln Tyr Pro Leu Ser Lys Glu Ala Gln Glu Gly Ile Arg
 130 135 140
 Pro His Val Gln Arg Leu Ile Gln Gln Gly Ile Leu Val Pro Val Gln
 145 150 155 160
 Ser Pro Trp Asn Thr Pro Leu Leu Pro Val Arg Lys Pro Gly Thr Asn
 165 170 175
 Asp Tyr Arg Pro Val Gln Asp Leu Arg Glu Val Asn Lys Arg Val Gln
 180 185 190
 Asp Ile His Pro Thr Val Pro Asn Pro Tyr Asn Leu Leu Cys Ala Leu

-continued

195	200	205	
Pro Pro Gln Arg Ser Trp Tyr Thr Val Leu Asp Leu Lys Asp Ala Phe			
210	215	220	
Phe Cys Leu Arg Leu His Pro Thr Ser Gln Pro Leu Phe Ala Phe Glu			
225	230	235	240
Trp Arg Asp Pro Gly Thr Gly Arg Thr Gly Gln Leu Thr Trp Thr Arg			
245	250	255	
Leu Pro Gln Gly Phe Lys Asn Ser Pro Thr Ile Phe Asp Glu Ala Leu			
260	265	270	
His Arg Asp Leu Ala Asn Phe Arg Ile Gln His Pro Gln Val Thr Leu			
275	280	285	
Leu Gln Tyr Val Asp Asp Leu Leu Leu Ala Gly Ala Thr Lys Gln Asp			
290	295	300	
Cys Leu Glu Gly Thr Lys Ala Leu Leu Leu Glu Leu Ser Asp Leu Gly			
305	310	315	320
Tyr Arg Ala Ser Ala Lys Lys Ala Gln Ile Cys Arg Arg Glu Val Thr			
325	330	335	
Tyr Leu Gly Tyr Ser Leu Arg Asp Gly Gln Arg Trp Leu Thr Glu Ala			
340	345	350	
Arg Lys Lys Thr Val Val Gln Ile Pro Ala Pro Thr Thr Ala Lys Gln			
355	360	365	
Met Arg Glu Phe Leu Gly Thr Ala Gly Phe Cys Arg Leu Trp Ile Pro			
370	375	380	
Gly Phe Ala Thr Leu Ala Ala Pro Leu Tyr Pro Leu Thr Lys Glu Lys			
385	390	395	400
Gly Glu Phe Ser Trp Ala Pro Glu His Gln Lys Ala Phe Asp Ala Ile			
405	410	415	
Lys Lys Ala Leu Leu Ser Ala Pro Ala Leu Ala Leu Pro Asp Val Thr			
420	425	430	
Lys Pro Phe Thr Leu Tyr Val Asp Glu Arg Lys Gly Val Ala Arg Gly			
435	440	445	
Val Leu Thr Gln Thr Leu Gly Pro Trp Arg Arg Pro Val Ala Tyr Leu			
450	455	460	
Ser Lys Lys Leu Asp Pro Val Ala Ser Gly Trp Pro Ile Cys Leu Lys			
465	470	475	480
Ala Ile Ala Ala Val Ala Ile Leu Val Lys Asp Ala Asp Lys Leu Thr			
485	490	495	
Leu Gly Gln Asn Ile Thr Val Ile Ala Pro His Ala Leu Glu Asn Ile			
500	505	510	
Val Arg Gln Pro Pro Asp Arg Trp Met Thr Asn Ala Arg Met Thr His			
515	520	525	
Tyr Gln Ser Leu Leu Leu Thr Glu Arg Val Thr Phe Ala Pro Pro Ala			
530	535	540	
Ala Leu Asn Pro Ala Thr Leu Leu Pro Glu Glu Thr Asp Glu Pro Val			
545	550	555	560
Thr His Asp Cys His Gln Leu Leu Ile Glu Glu Thr Gly Val Arg Lys			
565	570	575	
Asp Leu Thr Asp Ile Pro Leu Thr Gly Glu Val Leu Thr Trp Phe Thr			
580	585	590	
Asp Gly Ser Ser Tyr Val Val Glu Gly Lys Arg Met Ala Gly Ala Ala			
595	600	605	

-continued

Val Val Asp Gly Thr Arg Thr Ile Trp Ala Ser Ser Leu Pro Glu Gly
 610 615 620
 Thr Ser Ala Gln Lys Ala Glu Leu Met Ala Leu Thr Gln Ala Leu Arg
 625 630 635 640
 Leu Ala Glu Gly Lys Ser Ile Asn Ile Tyr Thr Asp Ser Arg Tyr Ala
 645 650 655
 Phe Ala Thr Ala His Val His Gly Ala Ile Tyr Lys Gln Arg Gly Leu
 660 665 670
 Leu Thr Ser Ala Gly Arg Glu Ile Lys Asn Lys Glu Glu Ile Leu Ser
 675 680 685
 Leu Leu Glu Ala Val His Leu Pro Lys Arg Leu Ala Ile Ile His Cys
 690 695 700
 Pro Gly His Gln Lys Ala Lys Asp Leu Ile Ser Arg Gly Asn Gln Met
 705 710 715 720
 Ala Asp Arg Val Ala Lys Gln Ala Ala Gln Gly Val Asn Leu Leu Pro
 725 730 735
 Ile Ile Glu Met Pro Lys Ala Pro Glu Pro Arg Arg Gln Tyr Thr Leu
 740 745 750
 Glu Asp Trp Gln Glu Ile Lys Lys Ile Asp Gln Phe Ser Glu Thr Pro
 755 760 765
 Glu Gly Thr Cys Tyr Thr Ser Asp Gly Lys Glu Ile Leu Pro His Lys
 770 775 780
 Glu Gly Leu Glu Tyr Val Gln Gln Ile His Arg Leu Thr His Leu Gly
 785 790 795 800
 Thr Lys His Leu Gln Gln Leu Val Arg Thr Ser Pro Tyr His Val Leu
 805 810 815
 Arg Leu Pro Gly Val Ala Asp Ser Val Val Lys His Cys Val Pro Cys
 820 825 830
 Gln Leu Val Asn Ala Asn Pro Ser Arg Met Pro Pro Gly Lys Arg Leu
 835 840 845
 Arg Gly Ser His Pro Gly Ala His Trp Glu Val Asp Phe Thr Glu Val
 850 855 860
 Lys Pro Ala Lys Tyr Gly Asn Lys Tyr Leu Leu Val Phe Val Asp Thr
 865 870 875 880
 Phe Ser Gly Trp Val Glu Ala Tyr Pro Thr Lys Lys Glu Thr Ser Thr
 885 890 895
 Val Val Ala Lys Lys Ile Leu Glu Glu Ile Phe Pro Arg Phe Gly Ile
 900 905 910
 Pro Lys Val Ile Gly Ser Asp Asn Gly Pro Ala Phe Val Ala Gln Val
 915 920 925
 Ser Gln Gly Leu Ala Lys Ile Leu Gly Ile Asp Trp Lys Leu His Cys
 930 935 940
 Ala Tyr Arg Pro Gln Ser Ser Gly Gln Val Glu Arg Met Asn Arg Thr
 945 950 955 960
 Ile Lys Glu Thr Leu Thr Lys Leu Thr Ala Glu Thr Gly Val Asn Asp
 965 970 975
 Trp Ile Ala Leu Leu Pro Phe Val Leu Phe Arg Val Arg Asn Thr Pro
 980 985 990
 Gly Gln Phe Gly Leu Thr Pro Tyr Glu Leu Leu Tyr Gly Pro Pro
 995 1000 1005

-continued

Pro Leu Val Glu Ile Ala Ser Val His Ser Ala Asp Val Leu Leu Ser
 1010 1015 1020

Gln Pro Leu Phe Ser Arg Leu Lys Ala Leu Glu Trp Val Arg Gln Arg
 1025 1030 1035 1040

Ala Trp Arg Gln Leu Arg Glu Ala Tyr Ser Gly Gly Asp Leu Gln
 1045 1050 1055

Ile Pro His Arg Phe Gln Val Gly Asp Ser Val Tyr Val Arg Arg His
 1060 1065 1070

Arg Ala Gly Asn Leu Glu Thr Arg Trp Lys Gly Pro Tyr Leu Val Leu
 1075 1080 1085

Leu Thr Thr Pro Thr Ala Val Lys Val Glu Gly Ile Ser Thr Trp Ile
 1090 1095 1100

His Ala Ser His Val Lys Pro Ala Pro Pro Pro Asp Ser Gly Trp Lys
 1105 1110 1115 1120

Ala Glu Lys Thr Glu Asn Pro Leu Lys Leu Arg Leu His Arg Val Val
 1125 1130 1135

Pro Tyr Ser Val Asn Asn Leu Ser Asp
 1140 1145

<210> SEQ_ID NO 82

<211> LENGTH: 638

<212> TYPE: PRT

<213> ORGANISM: Porcine endogenous retrovirus

<400> SEQUENCE: 82

Met His Pro Thr Leu Asn Arg Arg His Leu Pro Ile Arg Gly Gly Lys
 1 5 10 15

Pro Lys Arg Leu Lys Ile Pro Leu Ser Phe Ala Ser Ile Ala Trp Phe
 20 25 30

Leu Thr Leu Ser Ile Thr Ser Gln Thr Asn Gly Met Arg Ile Gly Asp
 35 40 45

Ser Leu Asn Ser His Lys Pro Leu Ser Leu Thr Trp Leu Ile Thr Asp
 50 55 60

Ser Gly Thr Gly Ile Asn Ile Asn Asn Thr Gln Gly Glu Ala Pro Leu
 65 70 75 80

Gly Thr Trp Trp Pro Asp Leu Tyr Val Cys Leu Arg Ser Val Ile Pro
 85 90 95

Ser Leu Thr Ser Pro Pro Asp Ile Leu His Ala His Gly Phe Tyr Val
 100 105 110

Cys Pro Gly Pro Pro Asn Asn Gly Lys His Cys Gly Asn Pro Arg Asp
 115 120 125

Phe Phe Cys Lys Gln Trp Asn Cys Val Thr Ser Asn Asp Gly Tyr Trp
 130 135 140

Lys Trp Pro Thr Ser Gln Gln Asp Arg Val Ser Phe Ser Tyr Val Asn
 145 150 155 160

Thr Tyr Thr Ser Ser Gly Gln Phe Asn Tyr Leu Thr Trp Ile Arg Thr
 165 170 175

Gly Ser Pro Lys Cys Ser Pro Ser Asp Leu Asp Tyr Leu Lys Ile Ser
 180 185 190

Phe Thr Glu Lys Gly Lys Gln Glu Asn Ile Leu Lys Trp Val Asn Gly
 195 200 205

Met Ser Trp Gly Met Val Tyr Tyr Gly Gly Ser Gly Lys Gln Pro Gly
 210 215 220

-continued

Ser Ile Leu Thr Ile Arg Leu Lys Ile Asn Gln Leu Glu Pro Pro Met
 225 230 235 240
 Ala Ile Gly Pro Asn Thr Val Leu Thr Gly Gln Arg Pro Pro Thr Gln
 245 250 255
 Gly Pro Gly Pro Ser Ser Asn Ile Thr Ser Gly Ser Asp Pro Thr Glu
 260 265 270
 Ser Asn Ser Thr Thr Lys Met Gly Ala Lys Leu Phe Ser Leu Ile Gln
 275 280 285
 Gly Ala Phe Gln Ala Leu Asn Ser Thr Thr Pro Glu Ala Thr Ser Ser
 290 295 300
 Cys Trp Leu Cys Leu Ala Ser Gly Pro Pro Tyr Tyr Glu Gly Met Ala
 305 310 315 320
 Arg Arg Gly Lys Phe Asn Val Thr Lys Glu His Arg Asp Gln Cys Thr
 325 330 335
 Trp Gly Ser Gln Asn Lys Leu Thr Leu Thr Glu Val Ser Gly Lys Gly
 340 345 350
 Thr Cys Ile Gly Lys Val Pro Pro Ser His Gln His Leu Cys Asn His
 355 360 365
 Thr Glu Ala Phe Asn Gln Thr Ser Glu Ser Gln Tyr Leu Val Pro Gly
 370 375 380
 Tyr Asp Arg Trp Trp Ala Cys Asn Thr Gly Leu Thr Pro Cys Val Ser
 385 390 395 400
 Thr Leu Val Phe Asn Gln Thr Lys Asp Phe Cys Ile Met Val Gln Ile
 405 410 415
 Val Pro Arg Val Tyr Tyr Pro Glu Lys Ala Ile Leu Asp Glu Tyr
 420 425 430
 Asp Tyr Arg Asn His Arg Gln Lys Arg Glu Pro Ile Ser Leu Thr Leu
 435 440 445
 Ala Val Met Leu Gly Leu Gly Val Ala Ala Gly Val Gly Thr Gly Thr
 450 455 460
 Ala Ala Leu Val Thr Gly Pro Gln Gln Leu Glu Thr Gly Leu Ser Asn
 465 470 475 480
 Leu His Arg Ile Val Thr Glu Asp Leu Gln Ala Leu Glu Lys Ser Val
 485 490 495
 Ser Asn Leu Glu Glu Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln
 500 505 510
 Asn Arg Arg Gly Leu Asp Leu Leu Phe Leu Lys Glu Gly Gly Leu Cys
 515 520 525
 Val Ala Leu Lys Glu Glu Cys Cys Phe Tyr Val Asp His Ser Gly Ala
 530 535 540
 Ile Arg Asp Ser Met Asn Lys Leu Arg Glu Arg Leu Glu Lys Arg Arg
 545 550 555 560
 Arg Glu Lys Glu Thr Thr Gln Gly Trp Phe Glu Gly Trp Phe Asn Arg
 565 570 575
 Ser Leu Trp Leu Ala Thr Leu Leu Ser Ala Leu Thr Gly Pro Leu Ile
 580 585 590
 Val Leu Leu Leu Leu Thr Val Gly Pro Cys Ile Ile Asn Lys Leu
 595 600 605
 Ile Ala Phe Ile Arg Glu Arg Ile Ser Ala Val Gln Ile Met Val Leu
 610 615 620

-continued

Arg Gln Gln Tyr Gln Ser Pro Ser Ser Arg Glu Ala Gly Arg
625 630 635

1-26. (canceled)

27. A method for screening a tissue for the presence or expression of a swine or miniature swine retrovirus, the method comprising:

contacting a tissue sample with an antibody specific for a retroviral polypeptide, wherein the retroviral polypeptide is encoded by a nucleic acid molecule having at least 95% identity to a sequence selected from the group consisting of:

- (a) nucleotides 2-1999 of SEQ ID NO:1 (env);
- (b) nucleotides 2452-4839 of SEQ ID NO:1 (gag);
- (c) nucleotides 4871-8060 of SEQ ID NO:1 (pol);
- (d) nucleotides 598-2169 of SEQ ID NO:2 (gag);
- (e) nucleotides 2320-4737 of SEQ ID NO:2 (pol);
- (f) nucleotides 4738-6722 of SEQ ID NO:2 (env);
- (g) nucleotides 585-2156 of SEQ ID NO:3 (gag);
- (h) nucleotides 2307-5741 of SEQ ID NO:3 (pol); and
- (i) nucleotides 5620-7533 of SEQ ID NO:3 (env);

thereby determining whether the retroviral polypeptide is present, the presence of the retroviral polypeptide being indicative of the presence or expression of a swine or miniature swine retrovirus.

28. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 2-1999 of SEQ ID NO:1.

29. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 2452-4839 of SEQ ID NO:1.

30. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 4871-8060 of SEQ ID NO:1.

31. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 598-2169 of SEQ ID NO:2.

32. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 2320-4737 of SEQ ID NO:2.

33. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 4738-6722 of SEQ ID NO:2.

34. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 585-2156 of SEQ ID NO:3.

35. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 2307-5741 of SEQ ID NO:3.

36. The method of claim 27, wherein the retroviral polypeptide is encoded by nucleotides 5620-7533 of SEQ ID NO:3.

37. The method of claim 27, wherein the tissue is selected from the group consisting of: heart, lung, liver, bone marrow, kidney, brain, neural tissue, pancreas, thymus, and intestine.

38. The method of claim 27, wherein the method comprises an enzyme-linked immunosorbent assay (ELISA).

39. An antibody specific for a retroviral polypeptide, wherein the retroviral polypeptide is encoded by a nucleic acid molecule having at least 95% identity to a sequence selected from the group consisting of:

- (a) nucleotides 2-1999 of SEQ ID NO:1 (env);
- (b) nucleotides 2452-4839 of SEQ ID NO:1 (gag);
- (c) nucleotides 4871-8060 of SEQ ID NO:1 (pol);
- (d) nucleotides 598-2169 of SEQ ID NO:2 (gag);
- (e) nucleotides 2320-4737 of SEQ ID NO:2 (pol);
- (f) nucleotides 4738-6722 of SEQ ID NO:2 (env);
- (g) nucleotides 585-2156 of SEQ ID NO:3 (gag);
- (h) nucleotides 2307-5741 of SEQ ID NO:3 (pol); and
- (i) nucleotides 5620-7533 of SEQ ID NO:3 (env).

40. The antibody of claim 39, wherein the antibody is a polyclonal antibody.

41. The antibody of claim 39, wherein the antibody is a monoclonal antibody.

42. A method of producing an antibody specific for a retroviral polypeptide, the method comprising:

immunizing an animal with a purified polypeptide encoded by a sequence comprising at least 100 nucleotides of a nucleic acid molecule comprising at least 95% identity to a sequence selected from the group consisting of:

- (a) nucleotides 2-1999 of SEQ ID NO:1 (env);
- (b) nucleotides 2452-4839 of SEQ ID NO:1 (gag);
- (c) nucleotides 4871-8060 of SEQ ID NO:1 (pol);
- (d) nucleotides 598-2169 of SEQ ID NO:2 (gag);
- (e) nucleotides 2320-4737 of SEQ ID NO:2 (pol);
- (f) nucleotides 4738-6722 of SEQ ID NO:2 (env);
- (g) nucleotides 585-2156 of SEQ ID NO:3 (gag);
- (h) nucleotides 2307-5741 of SEQ ID NO:3 (pol); and
- (i) nucleotides 5620-7533 of SEQ ID NO:3 (env),

thereby producing an antibody.

* * * * *