

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
22 August 2013 (22.08.2013)

(10) International Publication Number

WO 2013/122573 A1

(51) International Patent Classification:
E21B 17/04 (2006.01) *E21B 19/16* (2006.01)

(21) International Application Number:
PCT/US2012/024996

(22) International Filing Date:
14 February 2012 (14.02.2012)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): HALIBURTON ENERGY SERVICES, INC. [US/US];
10200 Bellaire Boulevard, Houston, TX 77072 (US).

(72) Inventor; and

(71) Applicant : IVEY, Randy, C [US/US]; 16548 Donwick Drive, Coonroe, TX 77385 (US).

(72) Inventor; and

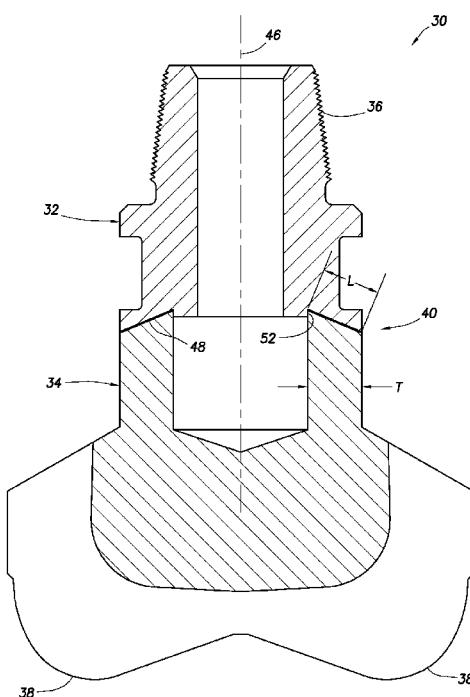
(75) Inventor/Applicant (for US only): BIRD, Jay, S [US/US];
16548 Donwick Drive, Coonroe, TX 77385 (US).

(74) Agent: SMITH, Martin, R.; Smith IP Services, P. C., P. O. Box 997, Rockwall, TX 75087 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))

(54) Title: ALIGNED ANGLED WELL TOOL WELD JOINT

(57) Abstract: A well tool can include multiple sections, one section having a mating weld surface formed thereon, and another section having another mating weld surface formed thereon. Engagement between the mating weld surfaces can prevent lateral displacement of the well tool sections relative to each other. The mating weld surfaces are welded to each other. A method of constructing a well tool can include engaging a mating weld surface on a section of the well tool with another mating weld surface on another section of the well tool, an interface between the mating weld surfaces being inclined relative to a longitudinal axis of the well tool extending through the sections, and welding the mating weld surfaces to each other along the interface.

- 1 -

5

ALIGNED ANGLED WELL TOOL WELD JOINT

10

TECHNICAL FIELD

This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in one example described below, more particularly provides an aligned and angled well tool weld joint.

15

BACKGROUND

Various types of well tools (such as, drill bits, completion tools, measurement-while-drilling tools, directional drilling tools, sleeves, etc.) include weld joints. It will be appreciated that improvements are continually needed in well tool weld joints, for example, to enhance strength, fatigue resistance, etc., of the weld joints.

- 2 -

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representative partially cross-sectional view of a well system and associated method which can embody principles of this disclosure.

FIG. 2 is an enlarged scale representative cross-sectional view of a drill bit which can embody principles of this disclosure.

FIG. 3 is a representative cross-sectional view of the drill bit after sections of the drill bit have been welded to each other.

FIG. 4 is a representative cross-sectional view of another configuration of the drill bit.

FIGS. 5-12 are representative cross-sectional views of additional configurations of weld joints which may be used in well tools embodying principles of this disclosure.

DETAILED DESCRIPTION

Representatively illustrated in FIG. 1 is a well system 10 and associated method which can embody principles of this disclosure. However, it should be clearly understood that the scope of this disclosure is not limited in any way to the details of the system 10 and method described herein or depicted in the drawings, since this disclosure's principles are applicable to a wide variety of different systems and methods. The system 10 and method of FIG. 1 comprise merely one non-limiting example of how those principles could be applied in actual practice.

- 3 -

As depicted in FIG. 1, a drill string 12 is used to drill a wellbore 14 into a subterranean formation 16. In this example, the drill string 12 includes a variety of well tools 18, 20, 22, 24, 26. The well tool 18 is a measurement-
5 while-drilling tool (comprising sensors and telemetry communication devices, etc.), the well tool 20 is an adjustable stabilizer, the well tool 22 is a motor (such as, a Moineau-type motor, a turbine, etc.), the well tool 24 is a directional drilling tool for steering the drilling of the
10 wellbore 14, and the well tool 26 is a drill bit.

Each of these well tools 18-26 can include a weld joint that can benefit from the principles described more fully below. However, the well tools 18-26 are merely a few examples of a wide variety of other well tools which can
15 embody those principles. Therefore, it should be clearly understood that the scope of this disclosure is not limited to only the types of well tools described herein or depicted in the drawings.

Any types of well tools can embody the principles of
20 this disclosure, whether or not those well tools are used in drilling operations. For example, packers, valves, side pocket mandrels, etc., used in completion operations could incorporate the weld joints described below.

Referring additionally now to FIG. 2, an enlarged scale
25 cross-sectional view of a drill bit 30 is representatively illustrated. The drill bit 30 may be used for the well tool 26 in the FIG. 1 system 10 and method, or the drill bit may be used in other systems and methods.

In the FIG. 2 example, the drill bit 30 comprises two
30 sections 32, 34. The section 32 includes a connector 36 for connecting the drill bit 30 at an end of a drill string (such as the drill string 12 in FIG. 1).

- 4 -

As depicted in FIG. 2, the connector 36 comprises tapered external threads (e.g., an American Petroleum Institute-specified pin connector), but other types of connectors could be used, if desired. However, it is not 5 necessary for the section 32 to include the connector 36 at all.

The section 34 includes cutters 38, e.g., for cutting into the formation 16 in the system 10 of FIG. 1. Although fixed cutters 38 are shown in FIG. 2, other types of cutters 10 (such as, roller cone cutters, etc.) may be used, if desired. However, it is not necessary for the section 34 to include the cutters 38 at all.

By joining the section 32 to the section 34, the cutters 38 are thereby fixed relative to the connector 36, 15 so that the drill bit 30 is fully assembled and can be connected in the drill string 12, whereby the cutters 38 can be used to drill the wellbore 14. A weld joint 40 is used for joining the sections 32, 34 to each other.

The weld joint 40 in this example includes mating weld 20 surfaces 42, 44 formed on facing ends of the respective sections 32, 34. The surfaces 42, 44 are each inclined relative to a longitudinal axis 46 of the drill bit 30.

The surfaces 42, 44 are oblique relative to the longitudinal axis 46, in that the surfaces are neither 25 parallel to, nor normal to, the longitudinal axis. The surfaces 42, 44 in this example are frusto-conical in shape.

In the lateral cross-section depicted in FIG. 2, the surfaces 42, 44 extend linearly in walls of the respective sections 32, 34. However, other shapes of the surfaces 42, 30 44 could be used if desired. For example, the surfaces 42, 44 could be curved, circular, parabolic or otherwise shaped.

- 5 -

The linear surfaces 42, 44 depicted in FIG. 2 are especially conducive to electron beam welding, since an electron beam is linear in form. Laser welding can also be used for welding together linear surfaces. Electron beam 5 welding and laser welding are types of radiant heat welding.

However, in other examples, nonlinear surfaces can be welded by methods such as friction welding, etc. Friction welding is a type of solid state welding.

Electron beam welding can also be used to weld together 10 nonlinear surfaces, e.g., by making multiple passes at incrementally changing depths, etc. Thus, it will be appreciated that the scope of this disclosure is not limited to any particular welding method used with any particular type of surfaces.

15 In the FIG. 2 example, when the surfaces 42, 44 are engaged with each other prior to welding, the sections 32, 34 are thereby axially aligned, due to the oblique shapes of the surfaces. Thus, contact between the surfaces 42, 44 prevents lateral displacement of the sections 32, 34 20 relative to each other.

This lateral securing and axial alignment conveniently enhances construction of the drill bit 30, since a separate alignment device and alignment procedure is not necessary. However, additional alignment devices and/or procedures may 25 be used if desired. For example, in the FIGS. 2 & 3 example, an alignment shoulder 52 can be used in addition to the engaged surfaces 42, 44 for axially aligning the sections 32, 34.

Referring additionally now to FIG. 3, the drill bit 30 30 is representatively illustrated after the surfaces 42, 44 have been engaged with each other, and a weld 48 has been formed between the surfaces 42, 44. The weld 48 extends

- 6 -

along an interface 50 (see FIGS. 4-12) between the engaged surfaces 42, 44.

Note that a length L of the weld 48 is greater than a thickness T of the wall of the section 34. This obtains 5 greater strength for the welded-together sections 32, 34. Thus, in addition to axially aligning the sections 32, 34, the surfaces 42, 44 also provide increased strength for the weld joint 40.

The weld length L may in other examples be greater than 10 the wall thickness T of each of the sections 32, 34, or of only the section 32, or of neither of the sections 32, 34. The scope of this disclosure is not limited to any particular length of the weld 48 in comparison to any wall thickness.

15 Referring additionally now to FIG. 4, another configuration of the drill bit 30 is representatively illustrated. The drill bit 30 is depicted after the surfaces 42, 44 have been engaged with each other, but prior to the surfaces being welded to each other.

20 In this view, it may be clearly seen that the interface 50 extends linearly in the wall of the drill bit 30, the interface is longer than the thickness T of the section 34, and an alignment ring 54 formed on the section 34 is received in an annular recess 56 formed in an end of the 25 section 32. However, in other examples, the interface 50 could be curved or otherwise nonlinear, the interface may be no longer than a wall thickness of either section 32, 34, and the alignment ring 54 and recess 56 may not be used.

Referring additionally now to FIGS. 5-12, additional 30 examples of the weld joint 40 are representatively illustrated, after the surfaces 42, 44 have been engaged, but prior to welding the surfaces to each other. Any of the

weld joints 40 described herein or depicted in the drawings may be used with any of the well tools 18, 20, 22, 24, 26 or the drill bit 30 described above, or with any other well tool.

5 In the FIG. 5 example, the alignment ring 54 is received in the recess 56, similar to the configuration of FIG. 4. However, the connector 36 is formed as a tapered internal thread (e.g., an American Petroleum Institute-specified box connection). Other types of connectors may be
10 used as desired, and it is not necessary for either of the sections 32, 34 to include any connector.

15 In the FIG. 6 example, the interface 50 (and the eventual weld 48) extends completely through the wall. In this example, the surfaces 42, 44 maintain alignment of the sections 32, 34 prior to welding, without use of any additional alignment device.

20 The FIGS. 7 & 8 examples are substantially similar to the respective FIGS. 5 & 6 examples. However, in the FIGS. 7 & 8 examples, the connectors 36 are externally threaded, instead of internally threaded as in the FIGS. 5 & 6 examples.

25 In the FIG. 9 example, the alignment shoulder 52 is formed on the section 34, instead of on the section 32 as in the example of FIGS. 2 & 3. In addition, the connector 36 is internally threaded.

30 In the FIG. 10 example, a separate alignment ring 58 is installed in bores 60, 62 of the respective sections 32, 34. In addition, the interface 50 (and the eventual weld 48) extends completely through the wall.

35 The FIGS. 11 & 12 examples are substantially similar to the respective FIGS. 9 & 10 examples. However, in the FIGS.

- 8 -

11 & 12 examples, the connectors 36 are externally threaded, instead of internally threaded as in the FIGS. 9 & 10 examples.

5 Note that, in the examples of FIGS. 6, 8, 10 and 12, each of the mating weld surfaces 42, 44 is equal in length to the interface 50 in the lateral cross-section. However, in other examples, either or both of the mating weld surfaces could be longer than the interface 50 in lateral cross-section.

10 It can now be fully appreciated that the above disclosure provides significant advancements to the art of constructing weld joints for well tools. The weld joints 40 described above can have increased strength, and can enhance economical production of the well tools in which they are 15 used.

In some examples, the weld joint 40 can be used to weld together magnetic and non-magnetic materials. The weld joints 40 can be located in close proximity to matrix materials of the type used in drill bits.

20 A small heat affected zone can enable shortening of well tool assemblies. The well tool assemblies can also be made shorter by eliminating a width of a weld joint V-groove typically used to weld sections of well tools to each other.

25 For directional drilling, a shorter drill bit can more readily be steered. Shorter well tools of any type in a bottom hole assembly (e.g., below and including a directional drilling tool) can enhance steering.

30 The above disclosure describes a well tool 18, 20, 22, 24, 26 and drill bit 30 (which is also a well tool). In some examples, the well tool can include first and second sections 32, 34 of the well tool, the first section 32

- 9 -

having a first mating weld surface 42 formed thereon, and the second section 34 having a second mating weld surface 44 formed thereon. Engagement between the first and second mating weld surfaces 42, 44 prevents lateral displacement of 5 the first and second sections 32, 34 relative to each other. The first and second mating weld surfaces 42, 44 are welded to each other.

At least one of the first and second mating weld surfaces 42, 44 can comprise a conical-shaped surface. Other 10 shapes may be used if desired.

A length L of a weld 48 between the first and second mating weld surfaces 42, 44 may be greater than a wall thickness T of at least one of the first and second sections 32, 34. Other lengths and thicknesses may be used in other 15 examples.

The first and second mating weld surfaces 42, 44 can be electron beam welded to each other. Other welding techniques may be used in other examples.

An interface 50 between the first and second mating 20 weld surfaces 42, 44 may be linear in a lateral cross-section of the first and second sections 32, 34. Nonlinear interfaces may be used in other examples.

The interface 50 may be inclined relative to a longitudinal axis 46 of the well tool extending through the 25 first and second sections 32, 34. The interface 50 may be longer in a lateral cross-section of the first and second sections 32, 34, as compared to a wall thickness T of at least one of the first and second sections 32, 34 in the lateral cross-section.

30 Also described above is a method of constructing a well tool 18, 20, 22, 24, 26, 30. In one example, the method can

- 10 -

include engaging a first mating weld surface 42 on a first section 32 of the well tool with a second mating weld surface 44 on a second section 34 of the well tool, an interface 50 between the first and second mating weld surfaces 42, 44 being inclined relative to a longitudinal axis 46 of the well tool extending through the first and second sections 32, 34; and welding the first and second mating weld surfaces 42, 44 to each other along the interface 50.

10 The engaging step may prevent lateral displacement of the first and second mating weld surfaces 42, 44 relative to each other.

15 The method can include installing an alignment ring 58 in the first and second sections 32, 34, prior to the welding step.

A method of constructing a drill bit 30 for drilling a subterranean well is also described above. In one example, the method can include engaging first and second mating weld surfaces 42, 44 formed on respective first and second sections 32, 34 of the drill bit 30, the engaging preventing lateral displacement of the first and second sections 32, 34 relative to each other; and welding the first and second mating weld surfaces 42, 44 to each other.

20 Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope

of this disclosure encompasses any combination of any of the features.

Although each example described above includes a certain combination of features, it should be understood 5 that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.

It should be understood that the various embodiments 10 described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles 15 of the disclosure, which is not limited to any specific details of these embodiments.

In the above description of the representative examples, directional terms (such as "above," "below," "upper," "lower," etc.) are used for convenience in 20 referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.

The terms "including," "includes," "comprising," "comprises," and similar terms are used in a non-limiting 25 sense in this specification. For example, if a system, method, apparatus, device, etc., is described as "including" a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term 30 "comprises" is considered to mean "comprises, but is not limited to."

- 12 -

Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions,
5 substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the
10 spirit and scope of the invention being limited solely by the appended claims and their equivalents.

WHAT IS CLAIMED IS:**1. A well tool, comprising:**

first and second sections of the well tool, the first
5 section having a first mating weld surface formed thereon,
and the second section having a second mating weld surface
formed thereon;

engagement between the first and second mating weld
surfaces prevents lateral displacement of the first and
10 second sections relative to each other; and

the first and second mating weld surfaces are welded to
each other.

2. The well tool of claim 1, wherein at least one of
15 the first and second mating weld surfaces comprises a
conical-shaped surface.

3. The well tool of claim 1, wherein a length of a
weld between the first and second mating weld surfaces is
20 greater than a wall thickness of at least one of the first
and second sections.

4. The well tool of claim 1, wherein the first and
second mating weld surfaces are electron beam welded to each
25 other.

5. The well tool of claim 1, wherein an interface
between the first and second mating weld surfaces is linear
in a lateral cross-section of the first and second sections.

6. The well tool of claim 1, wherein an interface between the first and second mating weld surfaces is inclined relative to a longitudinal axis of the well tool 5 extending through the first and second sections.

7. The well tool of claim 1, wherein an interface between the first and second mating weld surfaces is longer in a lateral cross-section of the first and second sections, 10 as compared to a wall thickness of at least one of the first and second sections in the lateral cross-section.

8. The well tool of claim 1, wherein the first and second mating weld surfaces are radiant heat welded to each 15 other.

9. The well tool of claim 1, wherein the first and second mating weld surfaces are solid state welded to each other.

20

10. The well tool of claim 1, wherein an interface between the first and second mating weld surfaces is equal in length to each of the first and second mating weld surfaces in a lateral cross-section of the first and second 25 sections.

11. A method of constructing a well tool, the method comprising:

engaging a first mating weld surface on a first section
5 of the well tool with a second mating weld surface on a second section of the well tool, an interface between the first and second mating weld surfaces being inclined relative to a longitudinal axis of the well tool extending through the first and second sections; and

10 welding the first and second mating weld surfaces to each other along the interface.

12. The method of claim 11, wherein the engaging prevents lateral displacement of the first and second mating
15 weld surfaces relative to each other.

13. The method of claim 11, further comprising installing an alignment ring in the first and second sections, prior to the welding.

20

14. The method of claim 11, wherein at least one of the first and second mating weld surfaces comprises a conical-shaped surface.

25 15. The method of claim 11, wherein a length of a weld between the first and second mating weld surfaces is greater than a wall thickness of at least one of the first and second sections.

- 16 -

16. The method of claim 11, wherein the welding comprises electron beam welding.

17. The method of claim 11, wherein the interface is
5 linear in a lateral cross-section of the first and second
sections.

18. The method of claim 11, wherein the interface is
longer in a lateral cross-section of the first and second
10 sections, as compared to a wall thickness of at least one of
the first and second sections in the lateral cross-section.

19. The method of claim 11, wherein the welding
comprises radiant heat welding.

15

20. The method of claim 11, wherein the welding
comprises solid state welding.

21. The method of claim 11, wherein the interface is
20 equal in length to each of the first and second mating weld
surfaces in a lateral cross-section of the first and second
sections.

22. A method of constructing a drill bit for drilling a subterranean well, the method comprising:

5 engaging first and second mating weld surfaces formed on respective first and second sections of the drill bit, the engaging preventing lateral displacement of the first and second sections relative to each other; and

welding the first and second mating weld surfaces to each other.

10

23. The method of claim 22, wherein at least one of the first and second mating weld surfaces comprises a conical-shaped surface.

15

24. The method of claim 22, wherein a length of a weld between the first and second mating weld surfaces is greater than a wall thickness of at least one of the first and second sections.

20

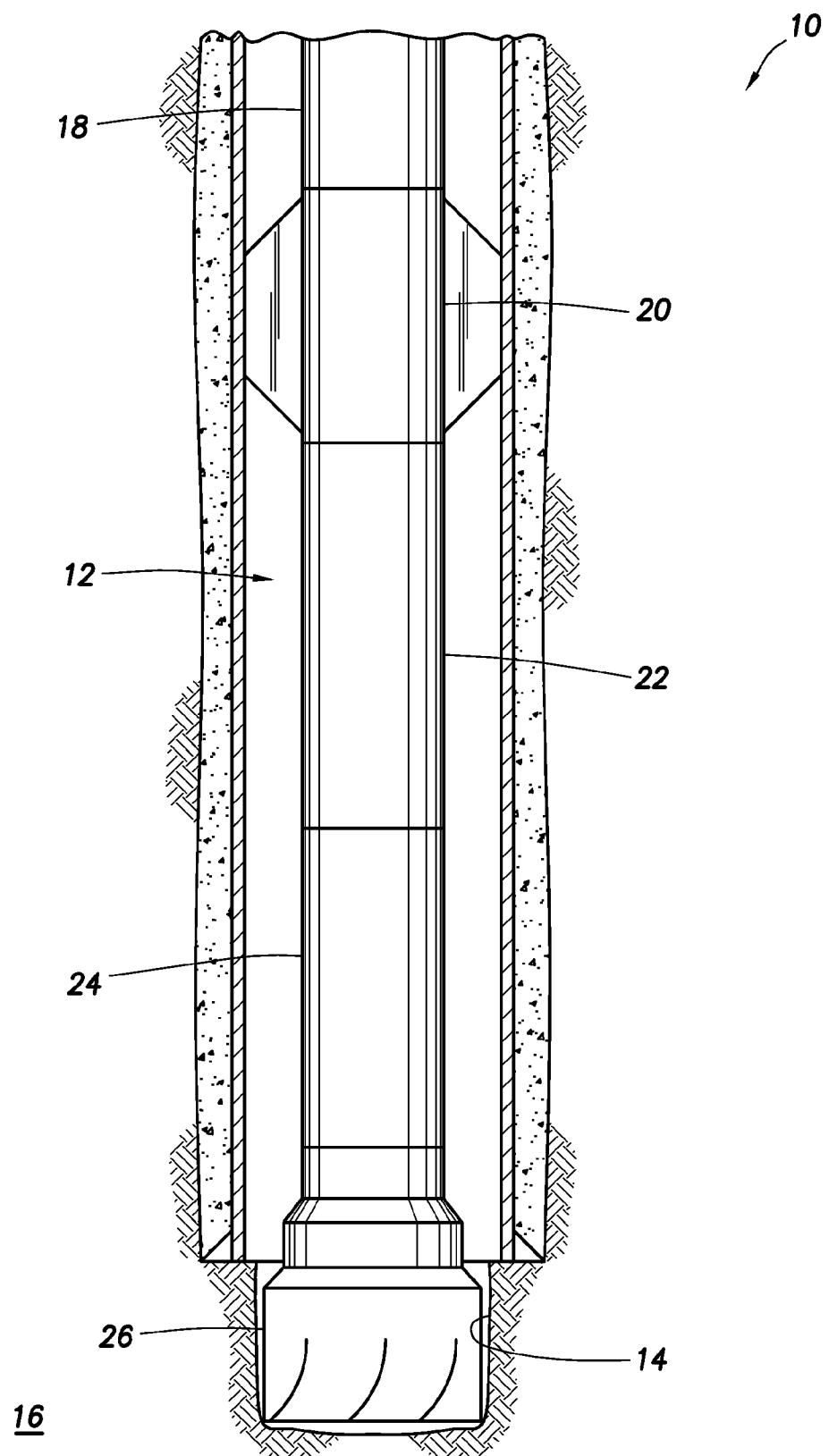
25. The method of claim 22, wherein the welding comprises electron beam welding.

25

26. The method of claim 22, wherein an interface between the first and second mating weld surfaces is linear in a lateral cross-section of the first and second sections.

30

27. The method of claim 22, wherein an interface between the first and second mating weld surfaces is inclined relative to a longitudinal axis of the well tool extending through the first and second sections.


28. The method of claim 22, wherein an interface between the first and second mating weld surfaces is longer in a lateral cross-section of the first and second sections, 5 as compared to a wall thickness of at least one of the first and second sections in the lateral cross-section.

29. The method of claim 22, wherein the welding comprises radiant heat welding.

10

30. The method of claim 22, wherein the welding comprises solid state welding.

31. The method of claim 22, wherein an interface 15 between the first and second mating weld surfaces is equal in length to each of the first and second mating weld surfaces in a lateral cross-section of the first and second sections.

FIG. 1

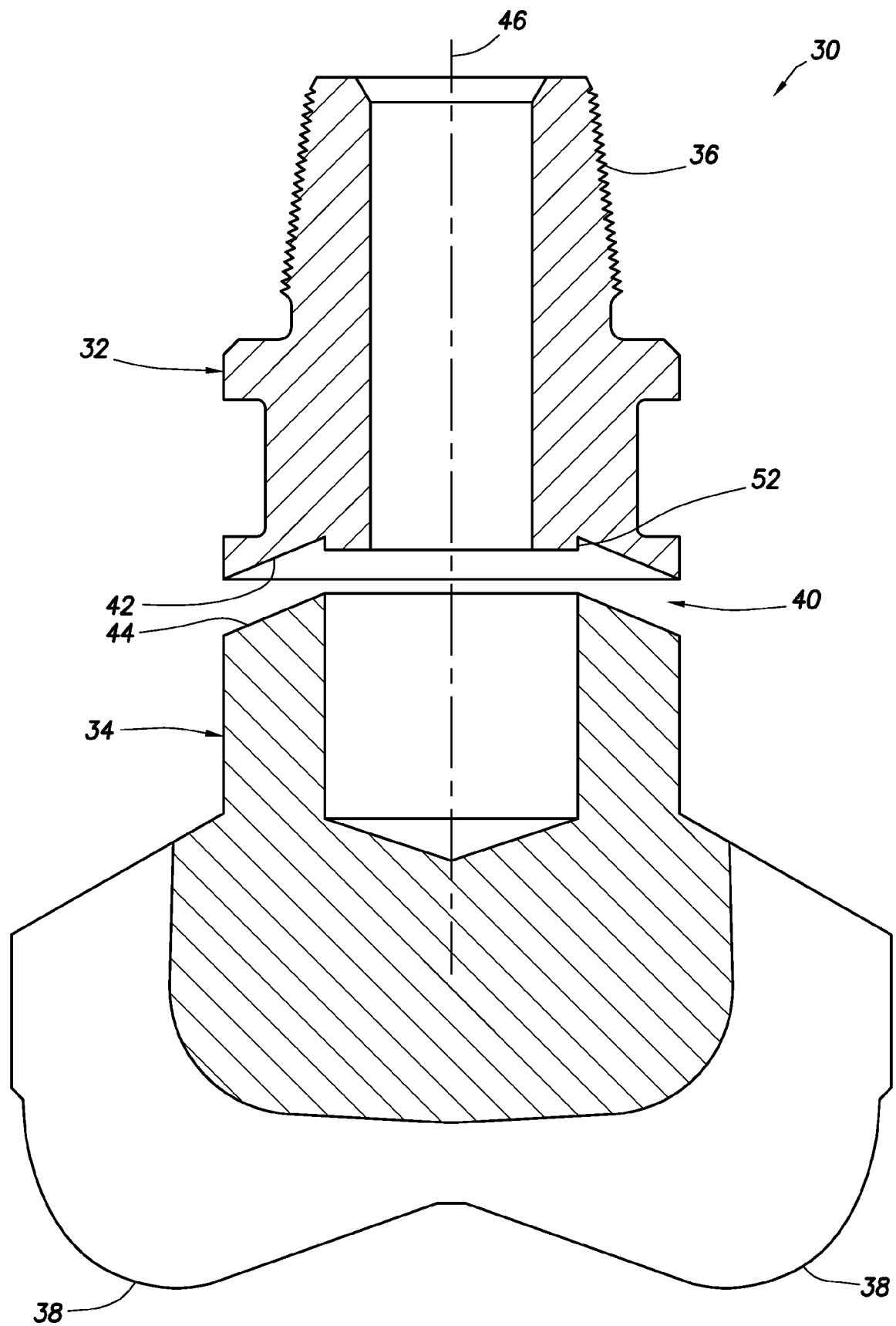


FIG.2

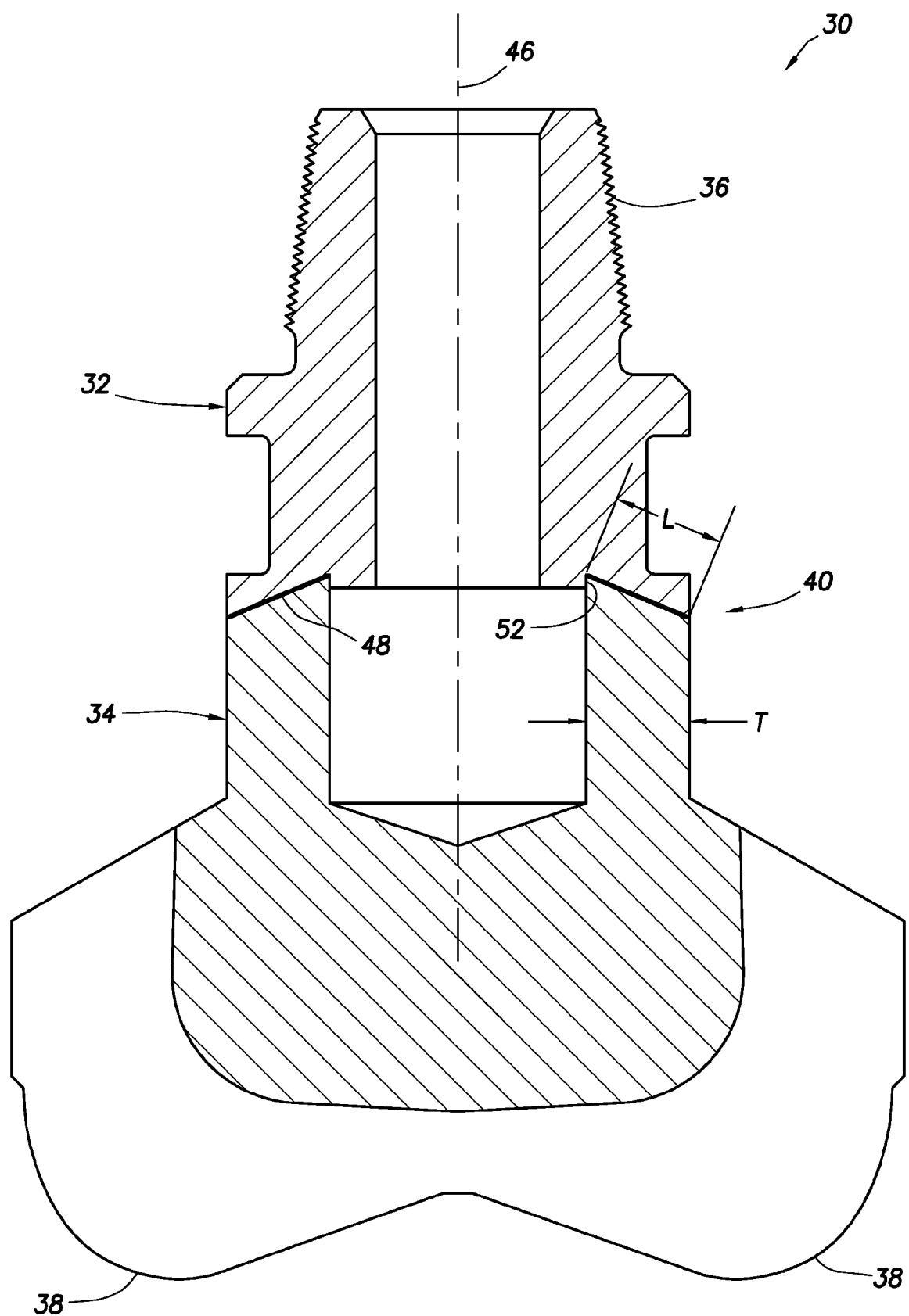


FIG.3

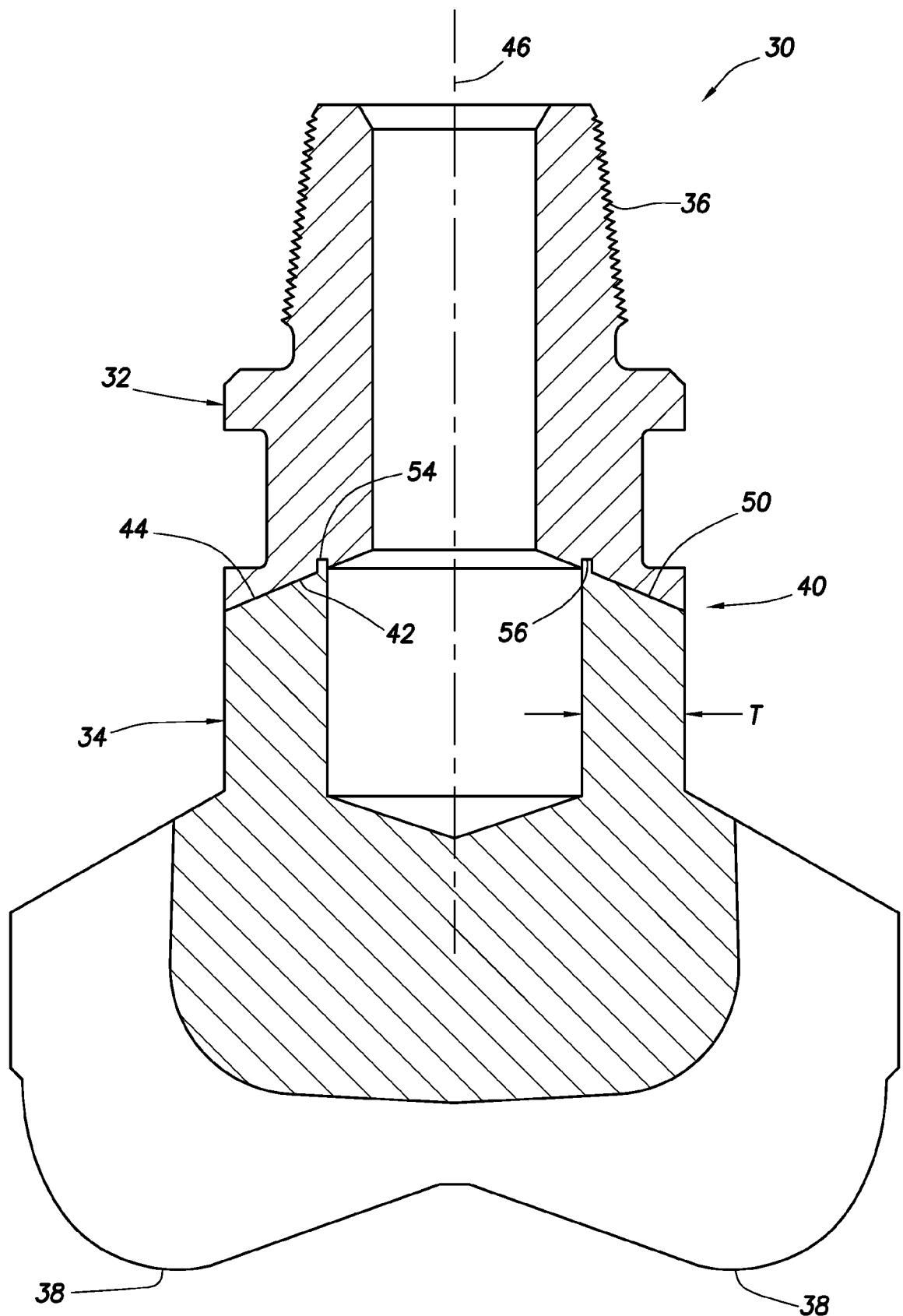


FIG. 4

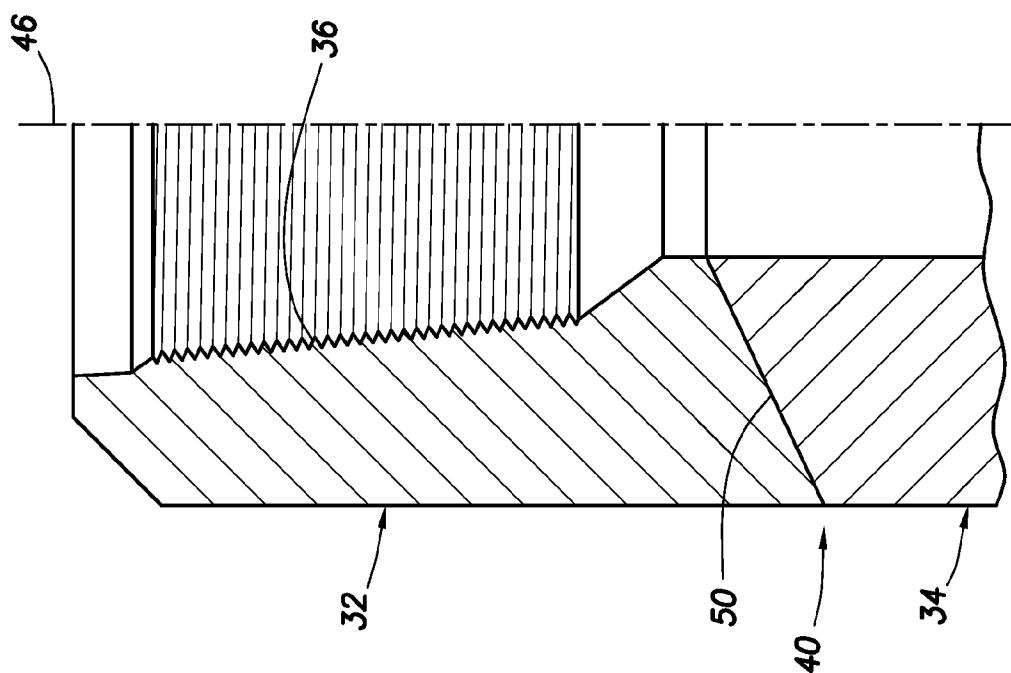


FIG. 6

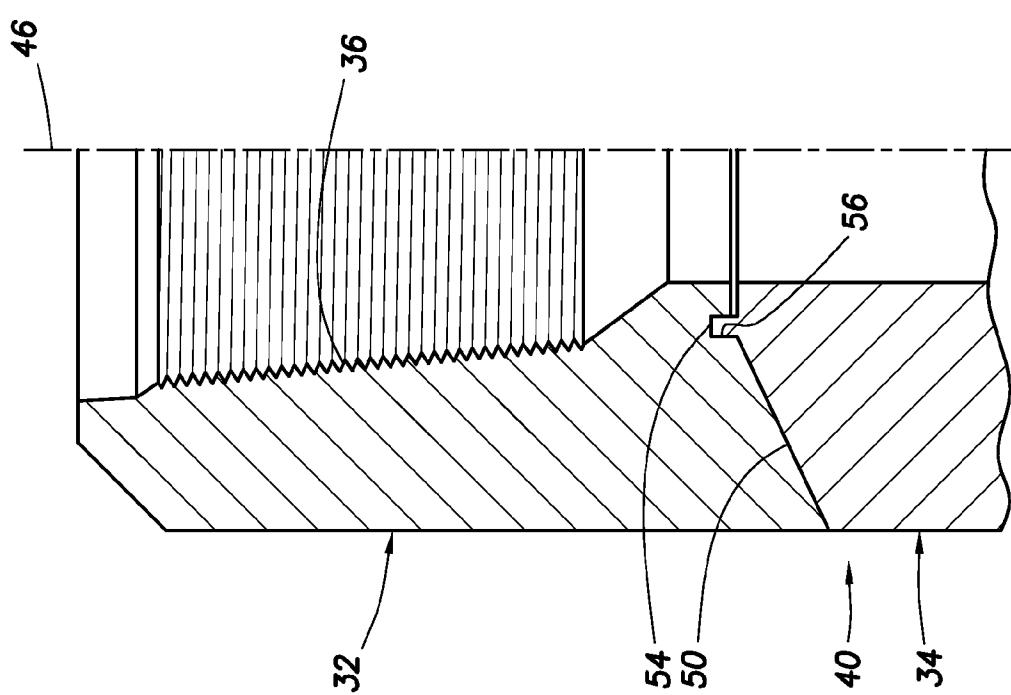
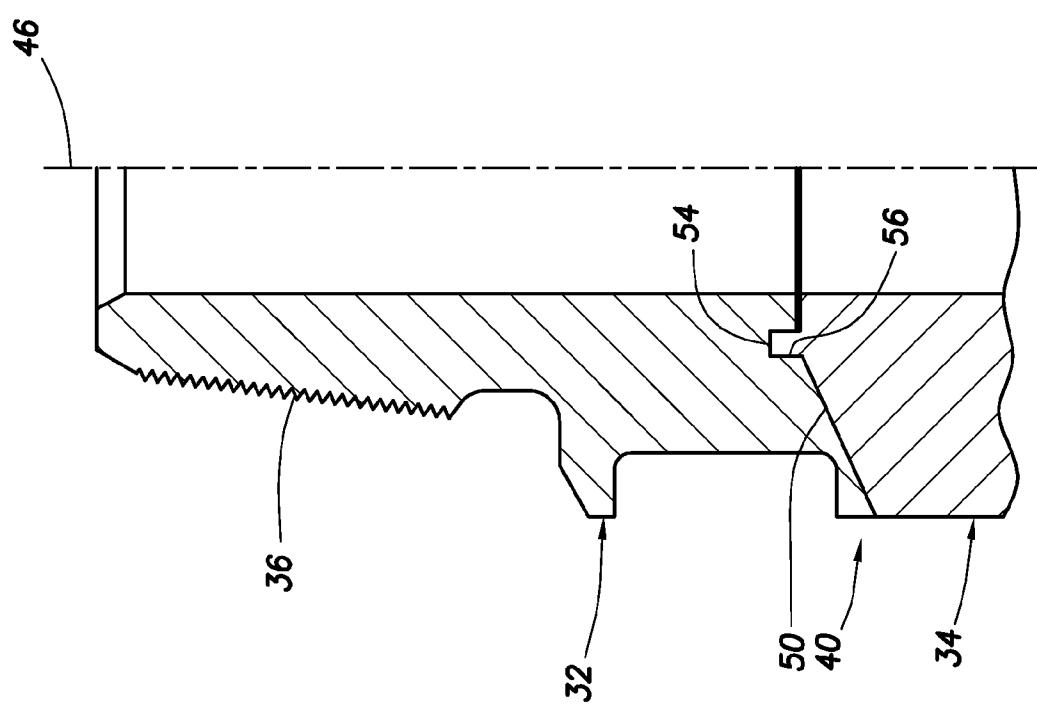
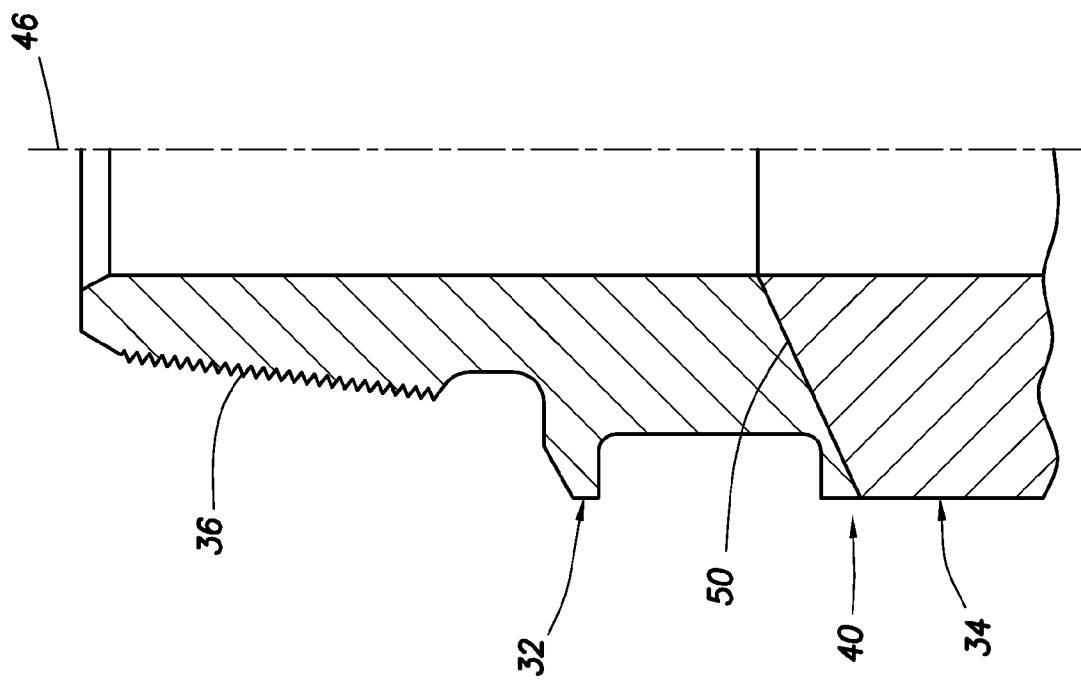
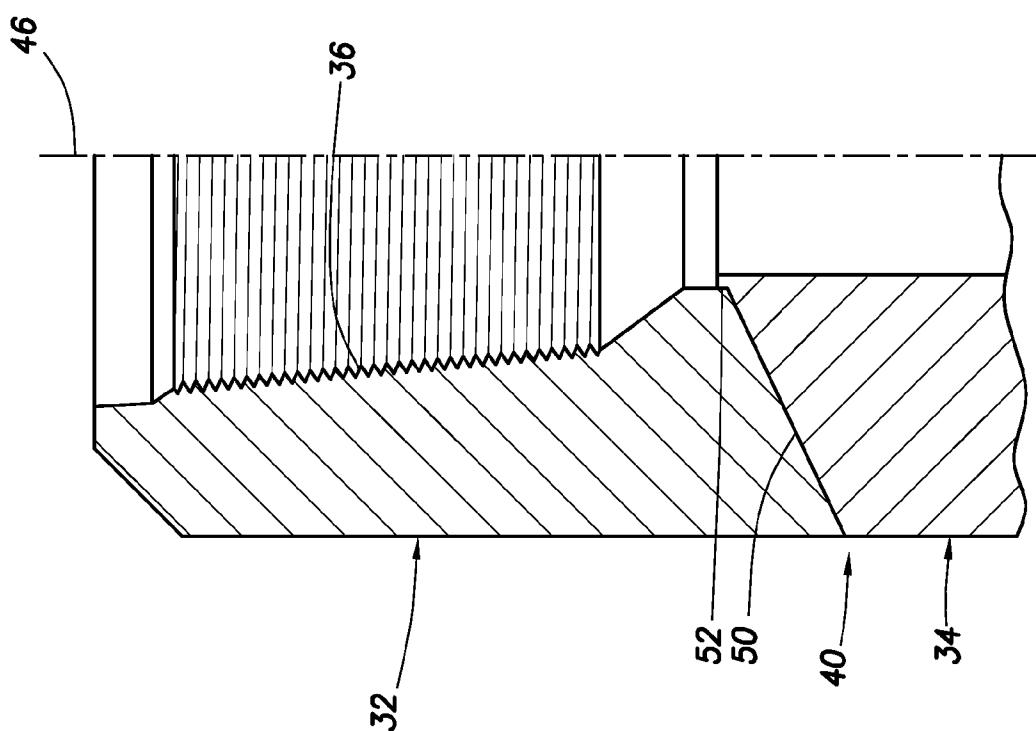
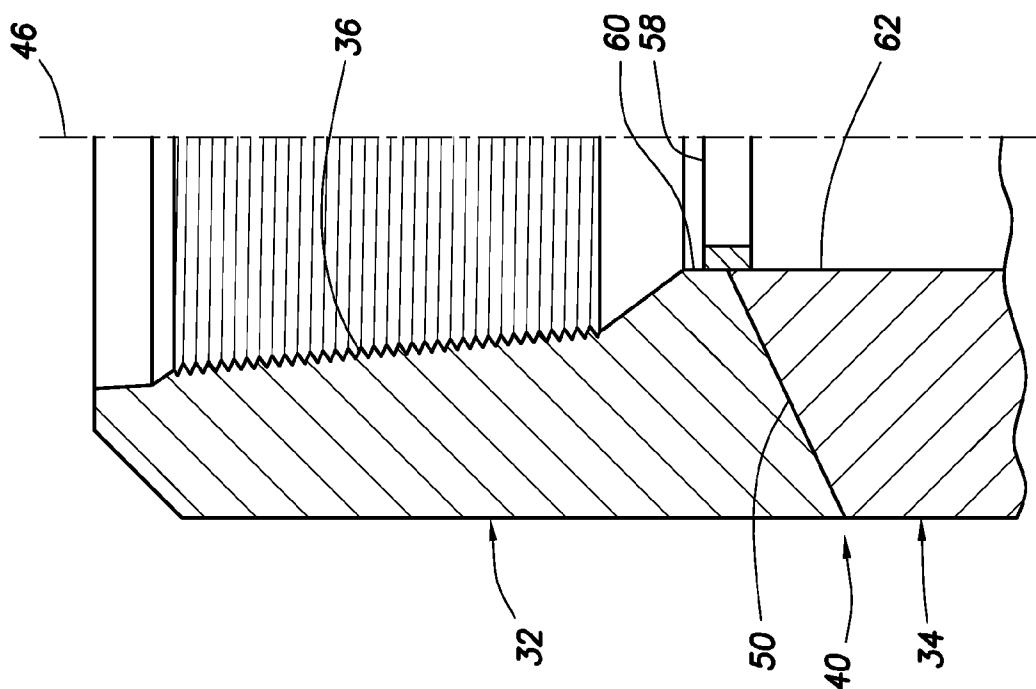
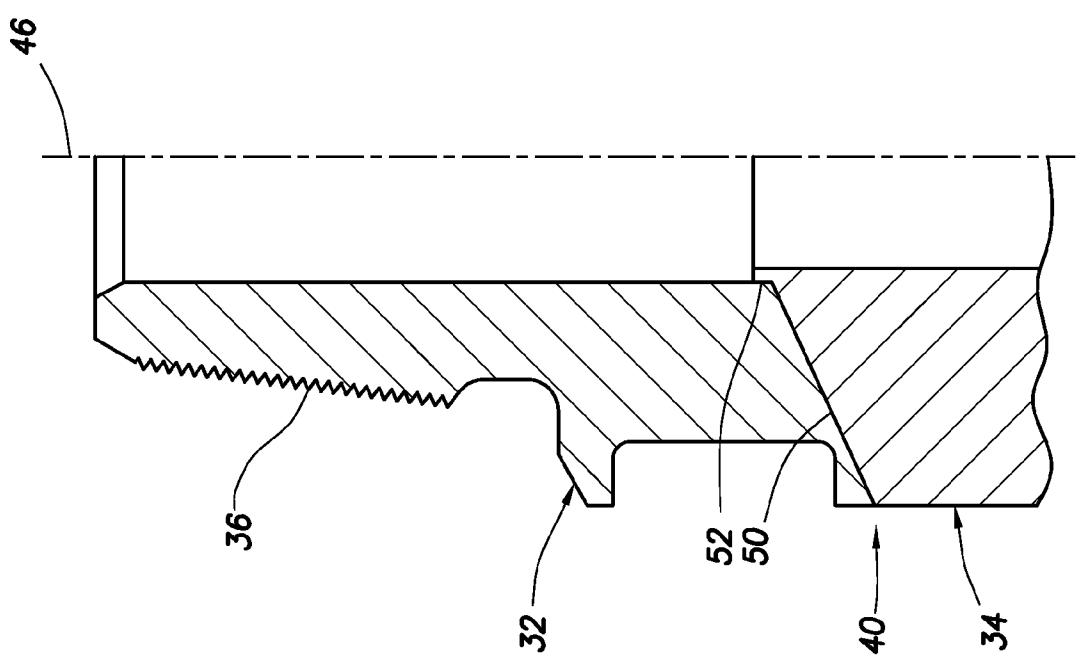








FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2012/024996

A. CLASSIFICATION OF SUBJECT MATTER

E21B 17/04(2006.01)i, E21B 19/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E21B 17/04; E21B 19/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: weld, joint, alignment, inclined, angled, surface, electron, beam, friction and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2010-0133805 A1 (STEVENS, JOHN H. et al.) 03 June 2010 See paragraphs 42, 51 and figure 3.	1-31
Y	US 7472764 B2 (ZAHRADNIK, ANTON F. et al.) 06 January 2009 See column 10 lines 34-41 and figures 3C, 3D.	1-31
Y	US 4333364 A (VAREL, DANIEL W.) 08 June 1982	1-31
X	See column 3 lines 34-46 and figures 2-4.	11, 15-19, 21
Y	US 2005-0050726 A1 (ANDERSON, MARK WILSON et al.) 10 March 2005 See paragraphs 2, 14 and figure 1.	9, 20, 30
X		1, 3, 7, 9, 10

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
30 OCTOBER 2012 (30.10.2012)

Date of mailing of the international search report

31 OCTOBER 2012 (31.10.2012)Name and mailing address of the ISA/KR
 Korean Intellectual Property Office
 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
 Facsimile No. 82-42-472-7140

Authorized officer

LEE, Eunju

Telephone No. 82-42-481-5469

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2012/024996

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2010-0133805 A1	03.06.2010	WO 2010-056478 A1	20.05.2010
US 7472764 B2	06.01.2009	CA 2602020 A1 CA 2602020 C CA 2690456 A1 CN 101218413 A0 EP 1861577 A2 EP 1861577 B1 RU 2007139282 A US 2006-0213693 A1 US 2008-0066581 A1 US 2008-0066970 A1 US 2010-0012392 A1 US 7594454 B2 US 7600589 B2 US 7861806 B2 WO 2006-104885 A2 WO 2006-104885 A3 WO 2006-104885 A8	05.10.2006 20.03.2012 05.10.2006 09.07.2008 05.12.2007 30.11.2011 27.04.2009 28.09.2006 20.03.2008 20.03.2008 21.01.2010 29.09.2009 13.10.2009 04.01.2011 05.10.2006 19.07.2007 20.03.2008
US 4333364 A	08.06.1982	None	
US 2005-0050726 A1	10.03.2005	AT 387980 T AU 2003-254369 A1 AU 2003-254369 B2 AU 2003-254369 B9 CA 2492476 A1 CN 1668410 A CN 1668410 C0 DE 60319545 D1 DE 60319545 T2 DK 1531959 T3 EA 006464 B1 EP 1531959 A1 EP 1531959 B1 NO 20050821 A UA 81771 C2 US 2007-0158390 A1 US 7181821 B2 US 7774917 B2 WO 2004-007134 A1	15.03.2008 02.02.2004 27.07.2006 27.07.2006 22.01.2004 14.09.2005 02.04.2008 17.04.2008 02.04.2009 16.06.2008 29.12.2005 25.05.2005 05.03.2008 12.04.2005 11.02.2008 12.07.2007 27.02.2007 17.08.2010 22.01.2004