PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

HO04L 12/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/43390

1 October 1998 (01.10.98)

(21) International Application Number: PCT/US98/05313

(22) International Filing Date: 17 March 1998 (17.03.98)

(30) Priority Data:

08/824,648 24 March 1997 (24.03.97) US

(71) Applicant: MCI COMMUNICATIONS CORPORATION
[US/US]; Technology Dpt.,, 1133 19th Street N.W.,
Washington, DC 20036 (US).

(72) Inventor: COWAN, Dan; 2455 Kittridge Avenue, Colorado
Springs, CO 80919 (US).

(74) Agents: DALEY-WATSON, Christopher, J. et al.; Seed and
Berry LLP, 6300 Columbia Center, 701 Fifth Avenue,
Seattle, WA 98104-7092 (US).

(81) Designated States: AU, CA, JP, MX, European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published ‘
Without international search report and to be republished
upon receipt of that report.

(54) Title: INTERFACE FOR INTERFACING CLIENT PROGRAMS WITH NETWORK DEVICES IN A TELECOMMUNICATIONS

NETWORK

Client
Application
{restoration)

Clien
Application
{maintanance)

Client
b Application

e

21

/24
Comm,
Gateway

/ZJ

(57) Abstract

A generic interface is provided for interfacing multiple client application programs with muitiple network devices. The client
application programs may differ from each other and may include application programs for performing a network restoration, network
maintenance, and network administration. The network devices may be of different device types. The interface converts communications
between the client application programs and the network devices so that the communications are compatible with the requirements of the
destination. The interface may include added functionality, such as an automatic auditing mechanism and a data link manager mechanism.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar T) Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Treland MN Mongolia UA Ukraine
Brazil IL Tsrael MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway VAL Zimbabwe
Cdte d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

WO 98/43390 PCT/US98/05313

INTERFACE FOR INTERFACING CLIENT PROGRAMS
WITH NETWORK DEVICES IN A TELECOMMUNICATIONS NETWORK

TECHNICAL FIELD
The present invention relates generally to telecommunications networks
and, more particularly, to an interface for interfacing client programs with network

devices in a telecommunications network.

BACKGROUND OF THE INVENTION

Telecommunication networks, such as telephone networks, include a
number of different components. Typically, telecommunication networks include
network devices that are interconnected by links that facilitate communications.
Examples of network devices are digital cross-connects (DXCs), multiplexing
equipment, line termination equipment, computer systems, and fiber transmission
systems. A “link,” as used herein, is a physical connection between network devices that
carry network traffic. A single link may include multiple trunks where a “trunk” is a
logical channel of communication with capacity that traverses one or more network
devices and/or one or more links between network devices.

As was mentioned above, network devices may be of many different
types. Consider a DXC that switches communication trunks based on external
commands. There are many different types of DXCs and there are many different
vendors who sell DXCs. Typically, each vendor’s device has its own command set and
its own format for data messages that contain commands.

Most telecommunication networks utilize a variety of network devices
and managing such devices with common control systems is difficult. For example, a
restoration system that restores traffic within a telecommunications network after a
failure must be able to communicate with each of the different types of devices that are
used to realize restoration. These devices include DXCs. The central control system
must be able to send commands to and receive messages from each DXC within the

affected area of the network. The central control system must be able to identify the

10

15

20

25

WO 98/43390 PCT/US98/05313

type of device and the format of commands for that device. In addition, the central
control system must be able to receive messages in different formats from different types
of devices and interpret these messages in a common generic manner. These difficulties
are complicated by many of the network devices being programmable devices that
execute a given version of software. Identical devices may execute different versions of

software and, hence, give rise to additional compatibility issues.

SUMMARY OF THE INVENTION

The present invention overcomes the difficulties of the prior art by
providing a common interface that may interface multiple client programs with multiple
network devices. The interface communicates with the client programs in a common
format and communicates with the network devices in device-specific formats. The
interface is able to convert communications from the device-specific formats of the
network device into the common format of the client programs. Likewise, the interface
is able to convert communications from the client programs in the common format into
communications in the device-specific formats of the network devices. The interface
may also include additional functionality, such as automatic auditing and monitoring of
data links to utilize optimal data links.

In accordance with a first aspect of the present invention, a method of
interfacing a program with network devices is performed by a computer system in a
telecommunications network. An interface is provided for interfacing the program with
the network devices, where each network devices has a device-specific communication
format. A first comrhunication, that is destined to selected network device, is received at
the interface from the program in a first format. The interface converts the first
communication from the first format to a second format that is the device-specific
communication format of the selected network device to which the communication is
destined. The converted communication is then forwarded in the second format from
the interface to the selected network device.

In accordance with another aspect of the present invention, a

telecommunication network includes a program that is run on a processor. The program

10

15

20

25

WO 98/43390 PCT/US98/05313

adopts a communication format for communications. The telecommunications network
also includes a number of network devices, where each network device has a
device-specific communication format. An interface is provided in the
telecommunications network for interfacing the program with the network devices to
facilitate communications between the program and the network devices. The interface
includes a converter for converting communications from the program that are destined
to network devices into the device-specific communication formats of the network
devices.

In accordance with a further aspect of the present invention, a
computer-implemented method is practiced in a telecommunications network that has a
network device, a processor that runs a program, and data links that lead to the network
device. An interface is provided that interfaces the program with the network device.
The interface determines which of the data links is most reliable and determines the data
link to be the primary link that is to be used for communications with the network
device. Another one of the data links is designated as a secondary link to be used for

communications with the network device when the primary link fails.

BRIEF DESCRIPTION OF THE DRAWINGS

An exemplary embodiment to the present invention will be described in
more detail below relative to the following figures.

Figure]| is a block diagram illustrating a portion of the
telecommunications network that is suitable for practicing a first option in accordance
with the present invention.

Figure 2 is a block diagram illustrating the computer system of Figure 1
in more detail.

Figure 3 is a block diagram of a portion of a telecommunications network
that is suitable for practicing a second option in accordance with the present invention.

Figure 4 illustrates the major components of the NIFTE of the exemplary

embodiment of the present invention.

10

15

20

25

WO 98/43390 PCT/US98/05313

Figure 5 is a data flow diagram for the common interface module of
Figure 4.

Figure 6 is a flow chart illustrating the steps that are performed by the
Queue_Input Cmds object of Figure 5.

Figure 7 is a flow chart illustrating the steps performed by the
Parse_Input_Cmds object of Figure 5.

Figure 8 is a flow chart illustrating the steps that are performed by the
NIFTE_Data_Manager object of Figure 5.

Figure 9 is a flow chart illustrating the steps that are performed by the
Administer Alarm_Subscriber_List object of Figure 5.

Figure 10 is a flow chart illustrating the steps that are performed by the
NIFTE_Shutdown object of Figure 5.

Figure 11A is a flow chart illustrating the steps that are performed by the
Process_State Changes object of Figure5 when it receives a
Change Readiness Mode Cmd command.

Figure 11B is a flow chart illustrating the steps that are performed by the
Process_State Changes object of Figure 5 when it receives a Change Ex_State Cmd
command.

Figure 12 is a flow chart illustrating the steps that are performed by the
Verify_Device_Cmds object of Figure 5.

Figure 13 is a data flow diagram for the components of the
device-specific interface module of Figure 4.

Figures 14A and 14B depict a flow chart of the steps performed by the
device-specific interface when an audit command is received.

Figures 15A, 15B, and 15C show a flow chart of the steps performed by
the device-specific interface module when a port connect or port disconnect command is
received.

Figure 16 is a flow chart illustrating the steps that are performed when an

unsolicited alarm is received by the NIFTE.

10

15

20

25

WO 98/43390 PCT/US98/05313

Figure 17 is a data flow diagram for the components of the initialization
module of Figure 4.
Figure 18 is a flow chart illustrating the steps performed by the

initialization module.

DETAILED DESCRIPTION OF THE INVENTION

The exemplary embodiment of the present invention described herein
provides a generic interface that interfaces client application programs with multiple
network devices. The client application programs may perform different functionality
including restoration, maintenance, and administration of a telecommunications network.
The interface is especially well adapted for use in a telephone network, and for purposes
of discussion below, it is assumed that the interface is utilized in a telephone network.
The interface converts communications originating in a common format shared by the
client application programs into device-specific formats of the network devices.
Conversely, the interface converts communications from the network devices in the
device-specific format into communications in the common format of the client
application programs. As a result, the interface enables free communication between the
client application programs and the network devices. The client application program
need not have code and configuration information for communicating with each of the
various network devices. Similarly, the network devices need not have added
components for communicating directly with the client application programs. The
interface, thus, greatly simplifies the ability of the client application programs to
communicate with the network devices.

The interface may be implemented in computer-executable instructions.
The interface may be implemented in software, hardware, firmware, or a combination
thereof. As will be described in more detail below, multiple instances of the interface
may be present within a given telecommunications network. The interface may include
additional functionality, such as an automatic auditing functionality that generates audit
requests at periodic intervals without external prompting. The audit request audits the

network devices to retrieve information regarding status and configuration of the

10

15

20

25

30

WO 98/43390 PCT/US98/05313

network devices. The interface may also include functionality for managing data links
that connect the interface with the network devices. This functionality enables the
interface to determine which of the data links leading to a given network device is most
reliable. This most reliable data link is designated as a primary link for carrying
communications to and from the network device. A secondary link is also designated to
serve as a backup link that becomes operational when the primary link fails. The
interface includes intelligence for changing what links are designated as the primary link
and the secondary link in response to changing events and conditions within the
telecommunications network.

Figure 1 depicts a portion of a telecommunications network that
represents a first option under the present invention. A second option will be discussed
in more detail below. A computer system 10 is interfaced with network resources 12.
The computer system 10 executes a number of client application programs 14A-14N,
which may include an application program 14A for performing dynamic network
restoration of the telecommunications system. The restoration application program 14A
receives alarms from network devices and sends commands to the devices to restore
traffic on the telecommunications network after a failure. The client application
programs may also include a maintenance application program 14B that sends
maintenance commands to network devices within the telecommunications system.
Those skilled in the art will appreciate that different client application programs may be
run on the computer.system 10 and that additional client application programs may also
be run on the computer system. Moreover, the application programs need not be run on
a single computer system, but rather may be run on multiple computer systems that are
in communication with each other.

The computer system stores real-time network device data that reflects
the current configuration and topology in the network. This data may be organized in a
separate database 16. The computer system 10 also executes an interface known as the
network item front end (NIFTE). The NIFTE 18 serves as the common interface
between the application programs and network devices. The details of the NIFTE 18

will be described below.

10

15

20

25

WO 98/43390 PCT/US98/05313

The network resources 12 communicate with the computer system 10 via
the NIFTE 18. The network resources 12 includes a number of network devices
20A-20N. Those skilled in the art will appreciate that the network devices may be any
of a number of different types of telecommunication devices, including digital cross
connects (DXC). As discussed above, DXCs are devices that switch trunks among

various ports in order to route trafficc. DXCs play a critical function in network

restoration. They are able to monitor traffic on their ports and generate alarms when an

outage is detected. In addition, DXCs may receive and process commands from the
restoration client application program 14A to restore network traffic. For purposes of
the discussion below, it is assumed that the network devices 20A-20N are DXCs.

The NIFTE 18 has a backup communication path to each network device
via communication gateway 24. The gateway 24 serves as a network concentrator
interface between thé NIFTE 18 and the network resources 12. Communication links 21
and 23 provide connectivity between the communication gateway 24 and the NIFTE 18
and the site controllers 22A-22N and the NIFTE, respectively. The communication links
21 and 23 may be standard X.25 connections. The site controllers 22A-22N provide
access to the network devices 20A-20N. A separate site controller is located at each
site.

Figure 2 shows a computer system configuration that is suitable for the
computer system 10 of Figure 1. The computer system includes a central processing
unit (CPU) 26 that communicates with a number of peripheral devices, including a video
display 28, a mouse 30, and a keyboard 32. The CPU 26 also has access to a memory
34 and a secondary storage 36. Objects for implementing the NIFTE 18 are stored in
the memory 34 along with the client application programs 14A-14N. The real-time
network device data 16 may be stored within a secondary storage 36 or resident within
the primary memory 34. The computer system 10 may further include a modem 38 for
enabling the computer system to send communications and receive communications over
a telephone line. The computer system 10 may also include a network adapter 40 for

interfacing with a network having computing resources.

10

15

20

25

WO 98/43390 PCT/US98/05313

Those skilled in the art will appreciate that the computer system
configuration depicted in Figure 2 is intended to be merely illustrative and not limiting of
the present invention. The present invention may be practiced with other computer
system configurations. As was discussed above, the client programs 14A-14N and the
NIFTE 18 may reside on different machines. Moreover, the computer system 10 may be

implemented as a distributed computing system rather than a single processor or

~ personal computer system.

Figure 3 depicts a second option under the present invention wherein
multiple instances of the NIFTE are provided. In the embodiment depicted in Figure 3,
NIFTEs 18A-18N are provided such that each network device 20A-20N has its own
corresponding NIFTE. [Each instance of the NIFTE includes the same code but is
implemented as a separate process by the computer system 10. Each client application
program 14A-14N may communicate with a given network device 20A-20N via the
NIFTE that is associated with the network device. As shown in Figure 3, each client
application program has a connection with each NIFTE. Moreover, each NIFTE has
access to the real-time network device data database 16.

Each NIFTE 18A-18N is connected to its corresponding network device
20A-20N via two redundant data links 42A-42N and 44A-44N, which may be, for
example, X.25 data links. Each such data link 42A-42N and 44A-44N is designated as
being a primary link or a secondary link for the associated network device 20A-20N.
Communications between the NIFTE 18A-18N and the network device 20A-20N are
performed over one link at a time where the link that is not being used serves as a
backup secondary link. For each link pair, the NIFTE designates one of the links as a
primary link and the other link as a secondary link. Preferably, the NIFTE designates the
more reliable link as the primary link. In general, when the NIFTE establishes
communication with a network device 20A-20N, the connection request is sent over
both links in the pair of links leading to a particular network device, and the first link to
respond with a connection is designated as the primary link wherein the other link is

designated as a secondary link. If a primary link fails, the NIFTE automatically shifts its

10

15

20

25

30

WO 98/43390 PCT/US98/05313

communication to the designated secondary link and changes the designation of the link
so that the secondary link is a new primary link.

It should be appreciated that each of the binary data links 42A-42N and
44A-44N may include multiple logical channels of communications. For instance, an
Alcatel DXC device supports four logical channels per link. The number of logical
channels may depend upon the type of network device.

As was mentioned above, the communication gateway 24 serves as a
backup communication path in the event that the data links 42A-42N and 44A-44N for a
particular network device 20A-20N fail.

Each NIFTE 18A-18N is capable of providing administrative and
maintenance functions to the network devices 18A-18N. The maintenance system 14B
generates commands to perform maintenance functions such as the enablement and
disablement of binary links, the dynamic configuration of binary links, and the changing
of internal configuration parameters. Each NIFTE may also generate automatic audits of
network devices at periodic intervals.

Figure 4 depicts a high-level internal architectural diagram of the NIFTE
18. Each instance of a NIFTE 18 is comprised of three main software modules: a
common interface module 50, a device-specific interface module 52, and an initialization
module 54. The common interface module 50 is responsible for receiving commands
from client application programs 14A-14N in a common format syntax. It
communicates with the device-specific interface module 52 to forward commands to the
network devices 20A-20N. In addition, the common interface module 50 receives
responses to the commands from the network devices 20A-20N via the device-specific
interface module 52 and forwards the responses in a converted format to the client
application programs 14A-14N. The common interface module 50 performs automated
auditing and administration by generating its own commands. The device-specific
interface module 52 converts commands from the common format to a device-specific
format that is required by the destination network device 20A-20N. The device-specific
interface module 52 also receives responses from the network devices 20A-20N and

converts the responses into the common format so that the responses may be forwarded

10

15

20

25

30

WO 98/43390 PCT/US98/05313

10

to the appropriate client application programs 14A-14N via the common interface
module 50. The initialization module 54 performs initialization upon the startup of the
NIFTE 18. These functions include the initialization of binary data links 42A-42N and
44A-44N in determining network device configuration information.

In the preferred embodiment, the common interface module 50 is
implemented as a number of different objects. Figure 5 is a data flow diagram that
shows data flow among the respective objects of the common interface module 50. The
discussion below details the functions performed by these objects. The
Queue Input Cmds object 62 is responsible for receiving commands from the client
application programs 14A-14N and queuing these commands for distribution to other
objects within the common interface module 50. As can be seen in Figure 5, the
commands 60 received by the Queue_Input Cmds object 62 are placed in the
Input Cmd_Queue 64. The following commands may be received at the

Queue_Input_Cmds object 62.

Change Ex_ State Cmd
Change_Readiness Mode Cmd
NIFTE Force Audit Cmd
NIFTE_Alarm_Registration_Cmd
NIFTE Port Connect Cmd
NIFTE_Port_Disconnect Cmd
NIFTE_Data_Update Cmd
NIFTE_Stop NIFTE Cmd

The Change Ex_State Cmd command is responsible for changing the
execution state of the NIFTE 18. The execution state will be described in more detail
below. The Change Readiness Mode Cmd command changes the readiness mode of
the NIFTE 18. The readiness mode will also be described in more detail below. The
NIFTE_Force_Audit_Cmd command causes an audit of a network device to be initiated.

The NIFTE_Alarm_Registration_Cmd command requests that certain unsolicited alarms

10

15

20

25

30

WO 98/43390 PCT/US98/05313

11

originating from the network devices 20A-20N be sent to a client application program.
The NIFTE_Port_Connect_ Cmd command instructs a network device 20A-20N to
connect a port. Conversely, the NIFTE_Port_Disconnect_ Cmd command instructs the
network device to disconnect a port. The NIFTE_Data_Update Cmd command updates
data within the NIFTE’s internal configuration or within the real-time network device
data. The NIFTE Data Request Cmd command requests that data be retrieved either
from the NIFTE’s internal configuration or from the real-time network device data.
Lastly, the NIFTE_Stop_ NIFTE_Cmd command causes the NIFTE 18 to shut down.

Figure 6 is a flowchart illustrating the steps that are performed when one
of the above-described commands is received by the Queue Input Cmds object 62.
Initially, the command is received from one of the client application programs 14A-14N
(step 140 in Figure 6). The Queue Input Cmds object 62 then adds the received
command to the Input Cmd_Queue 64 (step 142 in Figure 6). Upon receipt of the
command, the Queue Input Cmds object 62 also dispatches a Set Event message 66 to
wake up 68 the Parse_Input Cmds object 70 (step 144 in Figure 6). The dispatching of
the Set Event message 66 causes a wake up 68 of the Parse Input Cmds object 70
(step 146 in Figure 6).

The Parse Input Cmds object 70 is responsible for distributing
commands that are stored in the Input_Cmd_Queue 64 to the appropriate destination
objects. Figure 7 is a flowchart of the steps performed for a single retrieve command by
the Parse_Input_Cmds object 70. Initially, the Parse_Input_Cmds object 70 retrieves a
command from Input_Cmd_Queue 64 (step 148 in Figure 7). The Parse_Input_Cmds
object 70 then identifies the type of the command (step 150 in Figure 7). Based upon
the type of command, the Parse Input Cmds object 70 determines where to distribute
the command for proper processing. If the command is a NIFTE Data Update Cmd
command or a NIFTE Data Request Cmd command (see step 152 in Figure 7), the
Parse_Input Cmds object sends the command to the NIFTE Data Manager object 72
(step 154 in Figure7). If the command is the NIFTE Alarm Registration Cmd
command (see step 156 in Figure 7), the Parse Input Cmds object 70 sends the
command NIFTE_Alarm_Registration_Cmd to the Administer Alarm_Subscriber List

10

15

20

25

WO 98/43390 PCT/US98/05313

12

object 82 (step 158 in Figure 7). If the command is a NIFTE Stop NIFTE_Cmd
command (see step 160 in Figure 7), the Parse Input Cmds object 70 sends the
command to the NIFTE_Shutdown object 92 (step 162 in Figure 7). If the command is
a Change Ex_State_Cmd command or a Change Readiness Mode_Cmd command (see
step 164 in Figure 7), then the command is sent to the Process_State_Changes object 96
(step 166 in Figure 7). If the command is a NIFTE_Force Audit Cmd command, a
NIFTE Port Connect_ Cmd command or a NIFTE Port Disconnect Cmd command,
the command is sent to the Verify_Device Cmds object 120 (step 168 in Figure 7).

As was discussed above, NIFTE Data Update Cmd commands and
NIFTE Data Request Cmd commands get sent to the NIFTE Data Manager object
72. Figure 8 is a flowchart of the steps performed by this object. [Initially, the
NIFTE Data Manager object 72 receives the command from the Parse_Input_Cmds
object 70 (step 170 in Figure 8). The NIFTE_Data_Manager object 72 then accesses
the data to update or retrieve the data, depending upon the command (step 172 in
Figure 8). If the data update or request is for internal NIFTE configuration information,
the NIFTE Data Manager object 72 will access the NIFTE’s internal data tables to
make the update. If the request or update is not for internal NIFTE configuration
information, the RealTime Network Device Data 126 is accessed from the real-time
network device data database 16 (Figure 1) to gain access to the appropriate data. The
NIFTE Data Manager object 72 then sends a response to the client application program
14A-14N that sent the command (step 174 in Figure 8). A NIFTE Data_Update Resp
response 74 is sent for each NIFTE_Data_Update_Cmd command that is received, and a
NIFTE Data Request_Resp response 75 is sent for each NIFTE Data_Request_Cmd
command that is received. In addition, data is returned in response to the
NIFTE Data Request_Cmd. The responses 74 and 75 confirm that the corresponding
command was received and processed. In generating these responses 74 and 75, the
NIFTE Data_Manager object 72 uses a Respondent_List 90 that holds a list of all client
application programs 14A-14N and the logical addresses for such client application

programs.

10

15

20

25

WO 98/43390 PCT/US98/05313

13

The NIFTE_Data_Manager object 72 may generate a status message
(Status_Msg) 78 from time to time when certain qualifying events are performed or
detected. Examples of qualifying events include detection of an error or completion of a
task that a user wishes to know about. Such status messages are kept in an internal log
for the NIFTE 18 and are available to users to view a report. Other objects within the
common interface module 50 (Figure 4) also generate such status messages. For
example, the Parse Input_Cmds object 70 generates a Status Msg message 80 when
qualifying events occur.

Figure 9 depicts the steps that are performed by the
Administer Alarm_Subscriber List. Figure 9 is a flowchart illustrating the steps
performed by the Administer Alarm_Subscriber_List object 82 when it receives a

NIFTE_Alarm_Registration_Cmd command from the Parse_Input_Cmds object 70.

Initially, the command is received (step176 in Figure9). The
Administer Alarm_Subscriber_List object 82 then registers the alarm request with the
Alarm_Subscriber_List 84 (step 178 in Figure 9). The
NIFTE_Alarm_Registration_Cmd commands are sent to the

Administer Alarm_Subscriber_List object 82 for a client application program to register
unsolicited alarms such that the client application program receives alarms from the
network devices 20A-20N that would not usually be forwarded to the client application
programs. The Alarm_Subscriber_List 84 is a list of client application programs that are
registered by request to receive unsolicited alarms, and the list is updated and maintained
by the Administer Alarm_Subscriber List object 82. The
Administer Alarm_Subscriber_List object 82 generates a response,
NIFTE Alarm Registration_Resp 86 to the registered client application programs
14A-14N (step 180 in Figure 9). The response confirms that the alarm registration
command was received and processed. The Administer Alarm_Subscriber List object
82 uses the Respondent List 90 to locate the name and address of the client application

program to which the response is sent.

10

15

20

25

WO 98/43390 PCT/US98/05313

14

Like other objects in the common interface module 50, the
Administer_Alarm_Subscriber_List object 82 will generate a Status_Message 88 when
certain triggering events occur.

The NIFTE_Shutdown object 92 may receive NIFTE_Stop NIFTE Cmd
commands from the Parse Input Cmds object 70. Figure 10 is a flowchart illustrating
the steps that are performed in such an instance. Initially, the NIFTE Shutdown object
97 receives the NIFTE_Stop NIFTE_Cmd command (step 182 in Figure 10). The
NIFTE_Shutdown object 92 generates a response (i.e., NIFTE_Stop NIFTE_Resp 94)
that it sends to the client application program 14A-14N that initiated the command
(step 184 in Figure 10). The NIFTE_Shutdown object 92 then proceeds to shutdown
the NIFTE (step 186 in Figure 10).

Each NIFTE operates in one of two execution states: primary or backup.
To enhance fault tolerance, the preferred embodiment provides two instances of the
NIFTE, one that serves as the active or primary NIFTE and one that serves as backup
NIFTE. Preferably, these instances of the NIFTE are run on separate computer systems.
When a NIFTE transitions from the primary execution state to the backup execution
state, the NIFTE closes its communications with the rest of the network and brings
down its binary links 42A-42N and 44A-44N. While the NIFTE transitions from the
backup execution state to the primary execution state, the NIFTE opens its binary links
42A-42N and 44A-44N and begins communications. Such transitions in execution state
are triggered by a Change Ex_State_Cmd command.

The primary NIFTE 18 may also operate in one of two readiness modes:
normal and alert. The normal mode is the nominal mode of operation in which the
NIFTE performs route auditing, administration, and other functions. When unsolicited
alarms are received that indicate a network outage, the restoration system application
program 14A sends a Change Readiness Mode Cmd command to the NIFTE. This
command triggers a change in the readiness mode such that the NIFTE transitions to the
alert readiness mode. In the alert readiness mode, all auditing and background

processing ceases, and the NIFTE 18 stands ready to receive and process

10

15

20

25

30

WO 98/43390 PCT/US98/05313

15

NIFTE_Port Connect_Cmd and NIFTE_Port Disconnect Cmd commands from the
restoration 14A.

Figure 11A illustrates the steps that are performed by the
Process_State Changes object 96 when it receives a Change Readiness Mode Cmd
command. Initially, the command is received at the Process_State Changes object 96
(step 190 in Figure 11A). The Process_State_Changes object 96 then updates the state
that is held in the Current_NIFTE_State 98 to reflect the change in readiness mode state.
If the readiness mode state is changing from normal to alert (see step 194 in
Figure 11A), the Process_State_Changes object 96 sends an Audit_Interval message 100
to the Audit_Interval_Timer 102 to cease all automatic auditing operations, which are
described in more detail below (step 196 in Figure 11A). When the change is from the
normal state to the alert state or vice versa, the Process State Changes object 96
proceeds to suspend all audits that are currently in progress (step 198 in Figure 11A).
Incomplete initial device audits that are performed during initialization, however, are not
suspended. The Process_State Changes object 96 then sends a
Change Readiness_Mode Resp response 106 to the client application program that sent
the initial command (step 200 in Figure 11A).

Figure 11B shows the steps that are performed by the
Process_State Changes object 96 when a Change Ex_State_ Cmd command is received.
Initially, the object receives the Change Ex State Cmd command (step 202 in
Figure 11B). The Process_State Changes object 96 then checks the System Logicals
108, which constitutes data from the operating system of the computer that indicates
status and performance conditions of the computer, to ensure that the state change may
be executed (step 204 in Figure 11B). The state held in Current NIFTE_State 98 is
then modified to note the change in execution state (step 206 in Figure 11B). If the
command is for a change in execution state from primary to backup (see step 208 in
Figure 11B), commands 112 are sent to the binary links to close the binary links
(step 210 in Figure 11B). In addition, an Audit_Interval message 100 is sent to the
Audit_Interval Timer 102 to stop automated auditing (step 212 in Figure 11B). In this
case, the Process_State Changes object 96 then sends a Change Ex_State Resp

10

15

20

25

30

WO 98/43390 PCT/US98/05313

16

response 108 to the client application program that sent the initial command (step 218 in
Figure 11B).

If the command for a change from backup to primary (see step 208 in
Figure 11B), the Process State Changes object 96 reads in the
Realtime Network Device Data 110 to obtain information that will be needed to open
the binary links 42A-42N and 44A-44N (step 214 in Figure 11B). A command 112 is
then sent to open the binary links and an Audit_Interval message 100 is sent to the
Audit_Interval Timer 102 to initiate automatic auditing (step 216 in Figure 11B). A
Change Ex_State Resp response 108 is sent to the client application program that sent
the initial command (step 218 in Figure 11B).

The Process_State_Changes object 96 generates a Status Msg message
114 when certain events are triggered.

The Auto_Audit object 105 performs an automated auditing process for
the NIFTE 18. The auditing process automatically generates NIFTE_Force_Audit_Cmd
commands 116 at specified time intervals. These commands are sent to various ones of
the network devices 20A-20N. The commands trigger response from the network
devices 20A-20N such that the devices specify their internal configuration.

The Audit_Interval Timer 102 triggers execution of the sending of such
NIFTE Force Audit Cmd commands 116. The timer 102 sends Audit Interrupt
messages 104 to the Auto_Audit object 105 to cause the Auto_Audit object to generate
the NIFTE Force Audit Cmd commands. Such commands are forwarded to the
Queue Input Cmds object 62. After generating such a command, the Auto_Audit
object 105 resets the Audit_Interval_Timer 102 by sending an Audit_Interval message.

The Verify Device Cmds object 120 receives and processes commands
to connect ports, disconnect ports, and force audits from the Parse Input Cmds object
70. Specifically, the Verify Device Cmds object 120 receives
NIFTE Port_Connect_Cmd, NIFTE Port_Disconnect_Cmd, and
NIFTE Force Audit Cmd commands from the Parse_Input_Cmds object 70. The
Verify Device Cmds object 120 verifies that commands of the type it receives include

the proper arguments and can be currently processed by device-specific interfaces.

10

15

20

25

30

WO 98/43390 PCT/US98/05313

17

Figure 12 is a flow chart of the steps performed by the
Verify Device Cmds object 120 in processing received commands. Initially, the
Verify_Device_Cmds object 120 receives a port connect, port disconnect, or force audit
command (step 220 in Figure 12). The Verify_Device Cmds object 120 then accesses
the Current NIFTE_State to ensure that the current operational mode 122 and
execution state 124 are proper for processing of the command (step 222 in Figure 12).
For example, for the port connect and port disconnect commands, the appropriate
execution state is the primary execution state and either readiness mode is acceptable.
However, with the force audit command, the proper execution state is the primary
execution state and the proper readiness mode is the normal mode. If the proper mode
and state cannot be verified, the command is not further processed. If the proper
operational mode 122 and execution state 124 have been verified in step 222 in
Figure 12, the Realtime_Network_Device_Data 126 is read in to verify arguments of the
command (step 224 in Figure 12). For example, for the port connect and port
disconnect commands, the port range specified in the commands must be valid. The data
is also used to obtain a network address for the network device 20A-20N to which the
command is destined. If the arguments are verified, the command 128 is sent to the
Queue Device Cmds object (which will be discussed in more detail below) for
processing by the device-specific interface module (step 226 in Figure 12). The
Verify Device Cmds object 120 then sends an appropriate response 130, 132, or 134 to
the client application program that initiated the command (step 228 in Figure 12). If the
command cannot be sent to the device-specific interface module for some reason, the
Verify Device Cmds object 120 sends a response message indicating the inability to
send the command. If the command is successfully sent; however, a response is sent to
the client application program 14A-14N when the response is received from the network
device 20A-20N.

Figure 13 illustrates the architecture of the device-specific interface
module 52 (Figure 4) in more detail. In particular, Figure 13 depicts a data flow diagram
showing the data flow among the objects that comprise-specific interface module 52. As

was discussed above, the device-specific interface module 52 receives client commands

10

15

20

25

30

WO 98/43390 PCT/US98/05313

18

from the common interface module 50 in the common format and converts the
commands into formats that are specific to destination network devices 20A-20N. The
converted commands are forwarded to the destination network devices 20A-20N using
the data links 42A-42N or 44A-44N. The device-specific interface module 52 receives
responses and unsolicited messages from the network devices 20A-20N and converts the
responses and messages into a common format. The device-specific interface module 52
is additionally responsible for managing the binary data links 42A-42N and 44A-44N.

Among the objects in the device-specific interface module 52 is the
Queue_Device_Cmds object 230. This object is responsible for enqueing the device
commands into appropriate queues. The discussion below will focus on the steps that
are performed when different types of commands are received by the
Queue_Device_Cmds object 230. Figures 14A and 14B illustrates the steps that are
performed when an audit command is received by the Queue_Device Cmds object 230.
Initially, the Queue Device Cmds object 230 assigns a sequence number to the audit
command that uniquely identifies the instance of the command (step 330 in Figure 14A).
The sequence numbers are obtained from the Next Sequence Number server 234,
which is maintained internally by the NIFTE 18. Since the command is an audit
command, the Queue Device Cmds object 230 places the audit command in the
Audit Cmd_Queue 236 (step332 in Figure 14A). Subsequently, the
Format And_Submit_Cmds object 252 retrieves the audit command from
Audit_Cmd_Queue 236 (step 334 in Figure 14A). The Format_And Submit Cmds
object 52 retrieves commands from various queues and converts the commands from the
common format used by the client application programs 14A-14N to the device-specific
formats used by the network devices 20A-20N.

The Format_And_Submit_Cmds object 252 then retrieves specific
device-type information about the destination device and version information from the
Device_Status file 254 (step 336 in Figure 14A). The Device Status file 254 holds
information regarding device type and version information for each of the network
devices 20A-20N. The Format And Submit Cmds object 252 retrieves device

configuration information about the destination network device from the

10

15

20

25

30

WO 98/43390 PCT/US98/05313

19

Realtime Network Device Data 256 that is stored in the real-time network device data
database 16 (Figure 1) to verify that the destination network device is properly
configured and can receive the command (step338 in Figure 14A). The
Format_And_Submit_Cmds object 252 proceeds to create an audit command in the
device-specific format (step 340 in Figure 14A). A copy of the device-specific command
is then placed in the Audit_Cmd__Queue 236 (step 342 in Figure 14A).

The Format And Submit Cmds object 252 sends a request for status
regarding an audit channel 260 to the Manage Binary_Links object 258 (step 344 in
Figure 14A). It is worth noting that there may be, for example, multiple channels for
binary link to most of the network devices 20A-20N. In such a case, one channel is used
for audit commands and is designated as the audit_channel 260. Another channel is used
for administration commands and is designated as admin_channel 261. An additional
channel used is used for connect/disconnect commands and is designated as the
connect_channel 282. A normalization_channel 271 may also be provided. The
Message Binary_Links object 258 then checks the status of the Audit_Channel 261
(step 346 in Figure 14A). The Manage Binary Links object 258 then sends a
Binary Link Status message 262 to the Format_And_Submit_Cmds object 252 that
specifies if the audit channel 260 is available or not (step 348 in Figure 14A). If the
audit_channel 281 is not available for either of the binary links (see step 350 in
Figure 14B). The Format_And_Submit Cmds object 252 rejects the command and
sends a response to the client application program indicating that the command cannot
be processed (step 352 in Figure 14B). If, however, the audit_channel on the binary link
is available (see step 350 in Figure 14B), the Format And_Submit_Cmds object 252
sends the formatted audit command to the Manage Binary Links object 258 (step 354
in Figure 14B). The Manage Binary Links object 258 then sends the audit command as
a Binary Device Cmd command 264 to the destination network device (step 256 in
Figure 14B).

The destination network device receives the formatted audit command
and generates configuration information in the form of Binary Device_Data 266 that is

received by the Queue_Binary_Device Data object 268 (step 358 in Figure 14B). The

10

15

20

25

30

WO 98/43390 PCT/US98/05313

20

Queue_Binary Device_Data object 268 places the response in the
Binary Device Data Queue 270 (step 360 in Figure 14B). The
Parse_Binary Device Data object 272 retrieves and parses the data stored in the
Binary Device Data_Queue 270 (step 362 in Figure 14B). The data is' sent to the
Process_Audit_Response object 274 by the Parse Binary Device Data object 272
(step 364 in Figure 14B). The Process_Audit_Response object 274 places a copy of the
retrieved data in the Audit_Cmd_Queue 236 and matches the data with the original audit
command (step 366 in Figure 14B). The Audit_ Cmd_Queue 236 is the same queue in
which audit commands are placed by the Queue Device Cmds object 230. The
matching of the response with the original command is achieved by matching sequence
numbers. In particular, the response includes the same sequence number that was added
by the Queue_Device_Cmds object 230. The Process_Audit Response object 234
controls the submission of audit commands by ensuring that a command to a particular
network device is not submitted until response to the last audit command is received.
The Process_Audit_Response object 274 has access to the
Realtime Network Device_Data 256 and updates this data in response to the received
response data. The Process_Audit Response object 274 sends the response,
NIFTE_Force Audit Resp 278 to the client application program that sent the original
command. The Respondent Mailbox_List 308 is used to determine where to send the
response (step 368 in Figure 14B).

The Queue_Device_Cmds object 230 may also receive port connect and
port disconnect commands from the Verify Device Cmds object 120 (Figure 5).
Figures 15A-15C provide a flowchart of the steps that are performed in processing such
port connect and port disconnect commands within the device-specific interface module
52 (Figure 4). Initialiy, the Queue_Device_Cmds object 230 assigns a sequence number
to the received port connect or port disconnect command (step 370 in Figure 15A). The
sequence numbers are obtained from the Next Sequence Number server 234, which
was discussed above. The Queue_Device_ Cmds object 230 then places the connect or
disconnect command in the Connect Disconnect Cmd Queue 238 (step 372 in

Figure 15A). This queue is dedicated to the destination network device to which the

10

15

20

25

30

WO 98/43390 PCT/US98/05313

21

command is destined. For purposes of efficiency, multiple connect/disconnect
commands are bundled together and received and forwarded to network devices
20A-20N in bundles. The maximum bundle size is the maximum number of commands
that a particular network device 20A-20N can handle. The maximum bundle interval is
the time that the Queue Device Cmds object 230 is instructed to wait prior to
submitting a next bundle of commands for processing. This prevents excess waiting to
collect a sufficient number of connect/disconnect commands to realize the maximum
bundle size.

In step 374 of Figure 15A, the Queue_Device_Cmds object 230 retrieves
the maximum bundle size (i.e., max_batch size), maximum bundle interval (i.e.,
max_batch_interval) 280, and the number of unsubmitted commands in the
Connect_Disconnect_Cmd_Queue 238, which is designated as
Num_Unsubmitted Cmds 242. The Queue Device Cmds object 230 determines
whether the maximum bundle size has been reached by comparing the
Num_Unsubmitted Cmds 242 with the retrieved maximum bundle size and also
determines whether the maximum bundle interval has been reached (step376 in
Figure 15A). If the maximum bundle size has not been reached or the maximum bundle
interval has not been reached, the object must wait for the next connect/disconnect
command (step 378 in Figure 15A). However, if the maximum bundle size has been
reached or if the maximum bundle interval has been reached (as checked in step 376 of
Figure 15A), the Queue_Device_Cmds object 230 submits the bundle of commands to
the Format And Submit_Cmds object 252 for future processing (step 380 in
Figure 15A). The Format_And_Submit_Cmds object 252 sends the max_batch_interval
to an interrupt generator 273 that generates a wakeup_interrupt 275 when the maximum
interval has been reached.

The Format_And_Submit_Cmds object 252 also looks at some additional
values 277 in determining whether to send a command or not. The
Max_Cmd_Age Before_ Resending specifies the maximum amount of time that may be
waited after a command is initially sent out before resending due to the lack of a

response. The Max Resend Retries value specifies how many times a command may be

10

15

20

25

WO 98/43390 PCT/US98/05313

22

resent before efforts are exhausted. The Cmd Metering value specifies a maximum
number of commands that may be concurrently outstanding.

The Format And_Submit_Cmds object 252 retrieves device-type and
version information for the destination device from the Device Status file 254 (step 382
in Figure 15A). This information is used to determine the device type and current
version information for the destination network device 20A-20N. The
Format_And_Submit_Cmds object 252 subsequently retrieves device configuration
information from the Realtime Network_Device_Data 256 (step 384 in Figure 15A) to
determine if the network device is properly configured and can receive the
connect/disconnect command. The Format_And_Submit Cmds object 252 creates a
connect/disconnect command in the device-specific format of the destination network
device 20A-20N (step 386 in Figure 15A).

A copy of the device-specific command is placed in the
Connect Disconnect Cmd_Queue 238 (step 388 in Figure 15A). The
Format And_Submit_Cmds object 252 sends a request to the Manage Binary Links
object 258 to examine connect channel status for the binary links 42A-42N and
44A-44A (step 390 in Figure 15A). The Manage Binary Links object 258 checks the
status of the connect-channels 282 of the binary links (step 392 in Figure 15A) and sends
this information in a Binary Link_Status message 262 that is sent to the
Format_And_Submit_Cmds object 252 (step 394 in Figure 15A).

Connect/disconnect commands can be sent over the primary
communication pathway or the backup communication pathway that passes through
communication gateway 24 (Figures 1 and 3). If the connect channels on both the
primary links are unavailable, the backup link may be utilized.

In step 396 of Figure 15B, the Format And Submit Cmds object 252
determines whether the connect channel on the binary links is available or not. If the
connect channel on the primary or backup binary link is available, the
Format_And_Submit_Cmds object 252 sends the formatted connect/disconnect

command to the Manage Binary Links object 258 (step 398 in Figure 15B). The

10

15

20

25

30

WO 98/43390 PCT/US98/05313

23

Manage Binary Links object 258 sends the command as a Binary Device Cmd
command 264 to the destination network device (step 400 in Figure 15B).

The destination network device receives the connect/disconnect
command and generates a response. This response is forwarded to the
Queue Binary Device Data object 268 (step402 in Figure 15B). The
Queue Binary Device Data object 268 places the response in the
Binary Device Data_Queue 270 (step 404 in Figure 15B). The
Parse_Binary_Device Data object 272 retrieves the response from the
Binary Device Data_Queue 270 and parses the response (step 406 in Figure 15B). The
Parse Binary Device Data object 272 sends a response command to the
Process_Connection_Response object 304 (step 408 in Figure 15B). The
Process_Connection_Response object 304 places a copy of the response in the
Connect_Disconnect Cmd_Queue 238, where the response is matched with the original
command on the basis of the sequence number (step 410 in Figure 15B). The
Process_Connection;Response object 304 updates the Realtime Network Device_Data
256 in view of the response. The Process_Connection Response object then generates a
response 310 or 312 that is sent to the client application program that sent the initial
command (step 412 in Figure 15B).

If in step 396 of Figure 15B it is determined that the connection channel
on either of the binary links is not available, the Format And_Submit Cmds object 252
sends a request for the status of the connection channel to the Send_Cmd_IDCS_Link
object 284 (step 414 in Figure 15B). In response, the Send_Cmd_IDCS Link object
284 checks the status of the connect channel 283 on the backup link (step 416 in
Figure 15B), and it sends an IDCS message 286 that contains information regarding the
status of the connect channel 283 on the backup link to the Format And_Submit Cmds
object 252 (step 418 in Figure 15B). Thus, in step 420 of Figure 15B, the
Format_And Submit_Cmds object 252 makes a determination of whether the connect
channel on the backup link is available.

If the connect channel 283 on the backup link is available, the

Format_And_Submit_Cmds object 252 sends a formatted connect/disconnect command

10

15

20

25

WO 98/43390 PCT/US98/05313

24

to the Send Cmd IDCS Link object 284 (step422 in Figure 15B). The
Send Cmd_IDCS Link object 284 sends the connect/disconnect command as an
IDCS_Gateway Cmd command 290 to the destination network device (step 424 in
Figure 15B). The destination network device receives the command and attempts to
connect or disconnect the port depending on the nature of the command.

A response is sent from the destination network device. This response,
IDCS_Gateway RESP 294, is received by the Queue IDCS_GW _Responses object 292
(step 426 in Figure 15B). This object 292 places the response in the
IDCS_GW_Data_Queue 296 (step 428 in Figure 15B). The
Parse IDCS_GW_Responses object 300 retrieves and parses the response that was
placed in the IDCS_GW_Data Queue 296 (step430 in Figure 15B). The
Parse IDCS_GW_Responses object 300 sends the command to the
Process_Connection_Response object 304 (step 432 in Figure 15B) where it is
processed as discussed above beginning at step 410.

It should be noted that if the response that was retrieved from the queue
296 were instead a response to an administrative command, the response would be
forwarded to the Process IDCS GW_Admin Responses object 302, which would
process the response.

If it is determined in step 420 of Figure 15B that the connect channel 283
in the backup link is not available, the Format_And Submit_Cmds object 252 rejects the
connect/disconnect command (step 434 in Figure 15C). The
Format_And_Submit_Cmds object 252 then sends a response to the client application
program indicating the rejection (step 436 in Figure 15C).

Commands that are received by the Queue_Device_Cmds object may be
administrative commands as well. These commands are immediately placed in the
Administration Cmd. Queue 240 where they are immediately submitted by the
Format And_Submit Cmds object 252. The administration commands are generated by
the NIFTE at startup to configure the binary links 42A-42N, 44A-44N, network device

identifiers, and alarm filter tables. Such administrative commands may be sent over the

10

15

20

25

30

WO 98/43390 PCT/US98/05313

25

admin_channel 261 to the Manage Binary Links object 258, that sends the commands
to the appropriate destination.

The Manage_Binary_Links object 258 manages the binary links 42A-42N
and 44A-44N by monitoring such links and determining the most reliable link of each
pair which it designates as the primary link. The Manage Binary Links object 258 is
also responsible for switching communications from one link to another when one fails,
dynamically configuring links, and providing maintenance.

The Manage_Binary_Links object 258 ensures that links are available by
sending keepalive commands to network devices 20A-20N at regular intervals. The
keepalive commands cause the network devices to perform no action, but solicit
responses from the network devices and the corresponding link if both are still properly
functioning. A Keepalive_Timer 263 triggers the Manage Binary Links object 258 to
send a keepalive command at specified time intervals. The Manage Binary Links object
258 requeues the Keepalive-Timer 263 after the sending of a keepalive command by
sending a Keepalive Timer_Interval message 265 to the Keepalive Timer 263. If a
response to a keepalive command is not received after a certain interval of time, the
Manage Binary Links object 258 will disconnect and reconnect the link. The responses
to keepalive commands are sent via the Queue Binary Device Data object 268, which
sends a Keepalive_Timer_Interval message 265 to the Keepalive_Timer 263 to confirm
the availability of the associated link.

As mentioned above, the Manage Binary Links object 258 determines
the most reliable link of a binary link pair and designates the most reliable link as the
primary link. The other pair is designated as the secondary link. If the primary link fails,
the Manage Binary Links object 258 switches communications to the secondary link.

As was also mentioned above, the Manage Binary Links object 258 is
able to dynamically configure a binary link. If configuration or maintenance of a primary
link is required, this object switches communications to the secondary link, designates a
secondary link to be the new primary link, and brings down the old primary link. When
this configuration is complete, the newly designated secondary link is brought back up,

but communications remain with the newly designated primary link. This approach

10

15

20

25

30

WO 98/43390 PCT/US98/05313

26

ensures availability of communications even during configuration and maintenance
activities.

The discussion above has talked about instances where the
Queue_Binary Device Data object 268 has received either a response to a
connect/disconnect message, a response to a keepalive command, or a response to an
audit command. If the message is an unsolicited message indicating that disconnection
of a binary link, a Binary Link Status message 267 indicating the receipt of such a
response is sent to the Manage_Binary_Links object 258.

The Queue_Binary_Device Data object 268 may also receive unsolicited
alarms from network devices 20A-20N. Figure 16 is a flowchart illustrating the steps
that are performed in such instances. Initially, the Queue Binary Device Data object
268 receives a unsolicited alarm from a network device 20A-20N (step 440 in
Figure 16). The Queue_Binary Device Data object 268 places the unsolicited alarm in
the Binary Device Data Queue 270 (step442 in Figure 16). The
Parse Binary Device Data object 272 retrieves the unsolicited alarm from the queue
and parses the alarm (step 444 in Figure 16). The Parse Binary Device Data object
272 sends the parsed alarm to the Process Unsolicited Alarms object 318 (step 446 in
Figure 16). This object 318 queries the Alarm_Subscriber List 320 to identify any client
application programs that have registered to receive such an unsolicited alarm (step 448
in Figure 16). The Process_Unsolicited_Alarms object 318 then formats the unsolicited
alarm and sends the unsolicited alarm to the client application programs by sending a
NIFTE_Alarm_Notification message 322 (step450 in Figure 16). The
Process_Unsolicited_Alarms object 318 updates the Realtime Network Device Data
256 with the alarm status information (step 452 in Figure 16).

Figure 17 shows the architecture of the initialization module 54
(Figure 4). Specifically, Figure 17 shows a data flow diagram of the objects that make
up the initialization component. As can be seen in Figure 17, the initialization module
includes the Initialize NIFTE object 460. This object 460 is responsible for starting the
initialization process. As shown in Figure 18, the Initialize NIFTE object 460 receives a

start message to start initialization with a specified device number, Device Num, 462

10

15

20

25

30

WO 98/43390 PCT/US98/05313

27

(step 500 in Figure 18). The Device Num in the start message identifies a particular
network device 20A-20N with which the current instance of the NIFTE is to establish
communications. The Initialize NIFTE object 460 begins initialization and reads the
Realtime Network Device Data 256 to obtain configuration information that is needed
to open the binary links 42A-42N and 44A-44N (step 502 in Figure 18). The
Initialize NIFTE object 460 also reads in the System Logicals 108 from the operating
system for later use (step 504 in Figure 18). The Current NIFTE_State 98 is established
and sent out by the Initialize NIFTE object 460 (step 506 in Figure 18). In addition, the
Initialize NIFTE object 460 sends an Audit Interval message 464 to the
Audit_Interval Timer 102 (Figure5) to establish the audit interval (step 508 in
Figure 18). Lastly, the Initialize NIFTE object 460 triggers the execution of the
Initialize_Binary_Links object 466, the Initialize IDCS Link object 468, and the
Configure Device object 470 (step 510 in Figure 18).

The Initialize Binary Links object 466 retrieves information that is
needed to open the binary links 42A-42N and 44A-44N from the Initialize NIFTE
object 460. This 1s the information that was retrieved from the
Realtime_Network_Device Data 256 by the Initialize NIFTE object 460. The
Initialize Binary Links object 466 sends a message with the configuration data to the
Manage Binary Links object 258 (Figure 13) to open the binary links (step 512 in
Figure 18).

The Initialize IDCS Link object 468 receives data from the
Initialize NIFTE object 460 to open backup link. The Initialize IDCS Link object 468
then sends a message with this data to the Send Cmd IDCS Link object 284
(Figure 13) to open the backup link (step 514 in Figure 18).

The Configure_Device object 470 initiates administrative processing,
This object 470 sends administrative commands 474 to the network devices 20A-20N to
solicit information from such devices (step 516 in Figure 18). The commands include
the Set Node ID command, the Retrieve Software Version command, and the
Configure_Alarm_Filters command. = Responses 472 to these commands are

subsequently received by the Configure Device object.

WO 98/43390 PCT/US98/05313

28

From the foregoing it will be appreciated that, although specific
embodiments of the invention have been described herein for purposes of illustration,
various modifications may be made without deviating from the spirit and scope of the

invention. Accordingly, the invention is not limited except as by the appended claims.

WO 98/43390 PCT/US98/05313

29

CLAIMS

1. In a telecommunications network having network devices and a
processor, wherein the processor runs at least one program for communicating with the
network devices and each network device has a device-specific communication format, a
method of interfacing the program with network devices, comprising the
computer-implemented steps of’

providing an interface for interfacing the program with the network devices;

receiving a first communication destined to a selected one of the network
devices from the program of the interface in a first format;

with the interface, converting the first communication from the first format to a
second format that is the device-specific communication format of the selected network
device; and

forwarding the converted first communication in the second format from the

interface to the selected network device.

2. The method of claim 1, comprising the steps of:

receiving a second communication from the program at the interface, said
second communication being destined to a given one of the network devices that is a different
one of the network devic.es than the first communication, and said second communication
being in the first format;

with the interface, converting the second communication from the first format
to a third format that is the device-specific communication format of the given network device;
and

forwarding the converted second communication in the third format from the

interface to the given network device.

3. The method of claim 2 wherein the selected network device and the

given network device are different types of network devices.

WO 98/43390 PCT/US98/05313

30

4, The method of claim 2 wherein the selected network device and the
given network device are a same type of network device that executes programmable
instructions but the selected network device and the given network device execute different

versions of the programmable instructions.

5. The method of claim 1, further comprising the steps of:

receiving a second communication that is destined to the program from a given
one of the network devices at the interface, said second communication being in a
device-specific communication format of the given network device;

with the interface, converting the second communication from the
device-specific communication format of the given network device to a format that is
compatible with the program; and

forwarding the converted second communication to the program from the

interface.

6. The method of claim 5 wherein the second communication is a response

from the given network device to a communication sent from the program.

7. The method of claim 5 wherein the second communication is an

unsolicited alarm indicating a problem in the telecommunications network.

8. The method of claim 1 wherein the telecommunications network is a

telephone network.

9. The method of claim 1 wherein the processor runs multiple programs

and the interface interfaces the multiple programs with the network devices.

10. The method of claim 1 wherein multiple instances of the interface are

provided such that a separate instance of the interface is provided for each network device.

11. The method of claim 1 wherein the first communication is a command

to request the selected network device to perform an action for the program.

WO 98/43390 PCT/US98/05313

31

12. The method of claim 11 wherein the command is an audit command
asking the selected network device to provide information about status of the selected

network device.

13. The method of claim 1 wherein the selected network device is a digital

cross connect (DXC).

14. The method of claim 1 wherein the program is a restoration program

for restoring the network from a failure.

15. In a telecommunications network having network devices and a
processor, wherein the processor runs at least one program for communicating with the
network devices and each network device has a device-specific communication format, a
computer-readable medium holding computer-executable instructions for performing a method
of interfacing the program-with network devices, comprising the computer-implemented steps
of:

providing an interface for interfacing the program with the network devices;

receiving a first communication destined to a selected one of the network
devices from the program of the interface in a first format;

with the interface, converting the first communication from the first format to a
second format that is the device-specific communication format of the selected network
device; and

forwarding the converted first communication in the second format from the

interface to the selected network device.

16. The computer-readable medium of claim 15 wherein the method further
comprises the steps of’

receiving a second communication from the program at the interface, said
second communication being destined to a given one of the network devices that is a different
one of the network devices than the first communication, and said second communication

being in the first format;

WO 98/43390 PCT/US98/05313

32

with the interface, converting the second communication from the first format
to a third format that is the device-specific communication format of the given network device;
and

forwarding the converted second communication in the third format from the

interface to the given network device.

17. The computer-readable medium of claim 15 wherein the method further
comprises the steps of:

receiving a second communication that is destined to the program from a given
one of the network devices at the interface, said second communication being in a
device-specific communication format of the given network device;

with the interface, converting the second communication from the
device-specific communication format of the given network device to a format that is
compatible with the program; and

forwarding the converted second communication to the program from the

interface.

18. The computer-readable medium of claim 15 wherein the

telecommunications network is a telephone network.

19. The computer-readable medium of claim 15 wherein the processor runs

multiple programs and the interface interfaces the multiple programs with the network devices.

20. The computer-readable medium of claim 15 wherein multiple instances
of the interface are provided such that a separate instance of the interface is provided for each

network device.

21. A telecommunications network, comprising:

a program run on a processor, said program having a communication format
for communications;

network devices, each network device having a device-specific communication

format for communications; and

WO 98/43390 PCT/US98/05313

33

an interface for interfacing the program with the network devices to facilitate
communications between the program and the network devices, said interface including:

a first converter for converting communications from the program that

are destined to network devices into the device-specific communication formats of the

network devices.

22. The telecommunications network of claim 21 wherein the interface
further includes a second converter for converting communications from the network devices

into the communication format of the program.

23. The telecommunications network of claim 21 wherein the network is a

telephone network.

24. The telecommunications network of claim 21, further comprising at
least one additional program run on the processor that communicates with the network

devices and wherein the interface interfaces the programs with the network devices.

25. The telecommunications network of claim 21 wherein the program is a

restoration program for restoring the network from a failure.

26. The telecommunications network of claim 21 wherein the interface
includes an audit mechanism for automatically auditing at least one of the network devices to
obtain information regarding the status of the network device without a request originating

outside of the interface for the auditing.

27. The telecommunications network of claim 21 wherein at least one of

the network devices is a digital cross-connect.

28. The telecommunications network of claim 21 wherein the network

devices include devices of different types.

WO 98/43390 PCT/US98/05313

34

29. In a telecommunications network having a network device, a processor
that runs a program, and data links that lead to the network device, a method comprising the
computer-implemented steps of:

providing an interface that interfaces the program with the network device;

with the interface, determining which of the data links is most reliable;

designating the link that was determined to be most reliable as a primary link to
be used for communications with the network device; and

designating another of the data links as a secondary link to be used for

communications with the network device when the primary link fails.

30. The method of claim 29, further comprising the step of changing
designation of links to designate another of the data links as the primary link in response to a

change in conditions in the network.

PCT/US98/05313

WO 98/43390

4

Aomajpg
"Wwo?)

901A3(]
HIOMJaN

991A3(]
HIOMI3N

uoypayddy
jusiy

81

LN

vie

291A8(]
HIOMJBN

pjpq #91A8(
JI0M|aN

(soupuajuipw)
uoyyoayddy
jusly

oL - 03y

4

(uoyyp.ojsal)
uoyjpay ddy
jusiy

voc

=0/

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

2/23

g oy

N#I-VP !
VLv@ 301A30 L SHYH904d
| OMLIN IN3ND
9 J| It way
- LN
E\
VTTNEY WIQON »m&nw%m
C OOMLIN i I " AYOWIN
o’ o’ o’ ye!
AVdSIa 0
[Q4v08AIN " 3SNON 030IA [
%\ %\ mw\ .&\

0!

SUBSTITUTE SHEET (RULE 26)

(92 37NY) L33HS 31n111SENS

16

._____________._____J_____.._I

Fig. 3

Real-Time

Device Data

Network

21

14A 148
Client / Client / Clent /
- Applicoiion Ap'p|icuiion oo Application
(restoration) (maintenance)
/ 184 / 186 / 18N

NIFTE NIFTE oo NIFTE
wh 1o am—| s v e
204 \ /203 /ZON |

Network Network .. Network

Device Device Device

224

24

cZ/s

Comm.
Gateway

23

06€€Y/86 OM

£1£50/86S0/1L.Dd

(92 37nW) L33HS 31n11L1SANS

To Clients 14A-14N
1

78\

NIFTE 30

Common
Interface

(Figure 5)

Initialization
(Figure 17)

Device-specific
Interface
(Figure 13)

Y
To Network Devices
20A-20N

Fig. 4

ct/y

06£€P/86 OM

€1€50/86S0/1LDd

PCT/US98/05313

WO 98/43390

0]
o~
~

u

—_— " i 24
— — |sI7"juapuodsay —— ~ A
|SI7Jaquasqng T uLjy - 92! ” A4 s71 3j0JS~ JL4IN _._2:5/~ SUO01jI8UU0Y
~ ré N 4 /zvno:w:c m\ v 26 8alAap
2% amwmlut_z ~oj"spwd 8|D|S™ UOINIBX3 mmo_o\:wao of
789 1N ~dojS™IL4IN ‘apow~|puoljpsado 80!
~18quasqng c6 9} v m\l \>
mmN “uojy <! oc bjogsomag : 5|paiboT " WwajsAg
B —~ - spw) TYIOM{BNTOWI}|D3 sabupyy
mw‘\ snjp” \Jajsiuiwpy | BTsis —an HOMBN dtuipay -l QA\
spu) “hjusp Bsp~sn{DIS ~$580014 LT EERITE]Y]
dsay "uoypujsibay ~indy & T)JomjaN"awwljjo3y
Rl 3L Tasing PEIS_ dsay™ypny~sosoy 31N + 7 901 dsayapo
9 08 - Bssniois) 261~ dsayjoaunodsiq™od ILIIN + esouposy-sbuoiy |
T~ 2L / 0/ N\Qf4~dsaypounogThod LN dsay~ajois—x3-s6uDy)
8/ \ O\ 5\
~ 1aBuDp oAsBUTEPY 90/
*+—Bsysnyojs ~y0(214
971 - CILIN N b souny
S~ DipgTaomeg pwy~jipny [oAssul jipny ~|oAsaju)
[YOheN S ~8010§"3LJIN iy |
dsey"jsenbay oo I HIN + f N ' \
o) s "aopt o 3L 94 PRy ojny 701 <o
v / PL~ILIN"dOIS"ILAIN +)
pury fsenbay pioq_3L4IN + ¢!
pwyajopdn Tojoq 3N +
e
pw) ™ uoljpjsibay” WD)y LN + /%
_pwy jipny 8dio4 JLYIN +
pw)~apopssaulppay~ebuoyy +
pw)~ajpys~ x3abupy)

¢ Iy |

\

SUBSTITUTE SHEET (RULE 26)

WO 98/43390 PCT/US98/05313

6/23

o)

!

Receive command [740
from client
application

!

Add command to 742
input_Cmd_Queue

Y

Dispatch Set_Event (744
message to wakeup
Parse_Input_Cmds

Y

Parse_Input_Cmds |- 146
wakes up

]

(Return)

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 98/43390 PCT/US98/05313

[Begin) 7/23

|

Retrieve Command | ~_ 148
from
input_Cmd_Queue

!

dentify type of 150
command

152 154

/

Send to
NIFTE_Data_Manager

NIFTE_Data_Update_Cmd or
NIFTE_Data_Request_Cmd
?

158
156 /
Send to
ReNIisFTiEaiA:\”Er_n d Yes = Administer_Alarm_ -
9 5 Subscriber_List
160 /752
NIFTE_Stop_ Send to

|

NIFTE_Shutdown

NIFTE_Cmd
?

164 fee

/

Change_Ex_State_Cmd or b Send Sitot -
Change_Readdress_Mode_Cmd rocess_otate_ -—
2 Changes

Send to o
Verify_Device_Cmds o

!

Hg 7 (Return)

SUBSTITUTE SHEET (RULE 26)

WO 98/43390

8/23

T)

!

Receive
command

170

|

Access data to
refrieve or update

—~~ 172

!

Send Response
Message

— 174

!

(Return)

Fig. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

PCT/US98/05313

9/23

o)

Y

Receive NIFTE_Alarm_ [176
Registration_Cmd
command

|

register alarm request |~ 178
with
Alarm_Subscriber_List

|

Send NIFTE_Alarm_ 180
Registration_Resp 1o
client application

Y

(Return)

Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 98/43390

10/23

o)

Y

Receive
NIFTE_Stop_NIFTE_Cmd
command

182

!

Send
NIFTE_Stop_NIFTE_Cmd
to client application

—— 184

Y

Shut down
NIFTE

186

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

196

~

o)

Y

PCT/US98/05313

Receive
Change_Readiness_
Mode_Cmd command

—~— 190

Y

Update state in
Current_NIFTE_State

192

Send Audit_Interval
message to
Audit_interval_Timer

Change from
“normal” to
“Gle””

194

Suspend audits

in progress

198

!

Send Change_
Readiness_Mode_Resp
to client application

200

!

(Return)

Fir. 114

SUBSTITUTE SHEET (RULE 26)

WO 98/43390

210

/

PCT/US98/05313
12/23
(Begin j
\
Receive 202
Change_Ex_State_Cmd
command
!
Check 204
System_Logicals to
ensure can execute
state change
!
Update 206
Current_NIFTE _State
208

Send close
message to binary
links

|

Send Audit_Inferval
message fo stop
quditing

212

Yes

Changing
from primary to
backup?

Read in Realtime_
Network_Device_Data

214

]

Send open message fo
Manage_Binary_Links
and send
Audit_Interval message
to begin aquditing

216

Fie. 11R

\

Send
Change_Ex_State_Resp
to client program

218

Y

[Return)

SUBSTITUTE SHEET (RULE 26)

WO 98/43390 PCT/US98/05313

13/23

o)

Y

Receive
NIFTE_Port_Connect_Cmd, [420
NIFTE_Port_Disconnect_Cmd
or NIFTE_Force_Audit_Cmd

command

\

Refrieve readiness mode and
execution state from | 222

Current_NIFTE_State to verify
proper mode and state

!

Read in Realtime_

Network_Device_Date to 224

verify arguments of
command

|

Send command to L~ 226
Queue_Device_Cmds

!

Send response to ~_ 228
client application

!

[Return)

Fig. 12

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

14/23

e

DjD(~201A8GAiDuIg
99¢

97 §9¢

| LISEIUTET] _|m>mc%$_

cLe

| snjpjg~yurAipuig anany Djog

! f ~a01n8(" Aiouig
~ (92 -
_ 042 N

dsay~Apbmajpg~soq

f

sasuodsay

“M9 Sadl
anany

vis

00§

asuodsay
~Ulwpy
7559204

A

sasuodsay

“M3 Sadl

asing anand~ojogd~ M9~ SOl

| enanp pu) - 96¢
uolypysiuIupy QONLY 206
| 9l 967 asuodsay\ 7/
~U01j93uu0) w 517 asuodsay
_ anan)” pw) §582044 dsay~}oauuodsig _ dpny
“ }23UU00SI(}03UU0) ~pod "IN + $582044
— dsay~jasuu0) o4 IL4IN
857 p0s ~ N4
01§ 9¢7
QONLY
jSi~xoq|Ipw " juapuodsay 205 —Tggz

dsay~jipny 82104 314IN

Vel oI

swJoy

~pajioijosu
nl*wm.wuew 443
\
UOLDIIILON
Tuuoy 314N
“a

{SI19qU9SQNS T WLID|Y

—
0cs

T
44

anany” pwy {ipny

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

£9¢

1S

L

¢ _\
N dooy \@N ENN \

15/23

anljpdaay

Jawiy [DAJBJU| T JBWI| T RAID

pwy~ad1A8q " Aouig

[DAJaju|Jawi) ~anypdaay

<

§9¢

S 197 (2%
e apo—C Snipls Ui Aioug 98¢
jauunyd -
1474 lco_BN__ﬂ&wm“ Toauuoy =y, SIS Sadl
B N |auupyo |auuDyp
SN|DIS801A8(44 pno Tjoauud
v _ 58
LLE™ e puw) + " //S@&E 2z
SolIjay ~puasay XN + ,/ jdnuiaju—dnaxop
Buipuasay ~ai0jegaby T pwyTXoN S/ 252 f//(\\\\\
0s¢ s (74
DJDQ301N8Q 1\ / _ 8nenppuy
THIOMIN Bl DY enanp~Ajdwy _UOHDHSIUIWIPY _
-~ w / Jowc:SM_ﬂ_ﬁw@%&w
anan)—pw)~ipn ' :
oc? 0PI S
174

SpWo T pajjiugnsun T wNu
//l/
444

82IS™Y0}pq_ XDW +
Bbﬂ&;;m%ﬁé& 0£C Jaquiny~aouanbagT|xeN
~ 901A3p ~AJLIBAT WO TSPLUD f

%N
xz / A

v8c

06

/

pw)~Aomeiog TSIl

] N

SUBSTITUTE SHEET (RULE 26)

WO 98/43390

16/23

oo)

!

Queue_Device_Cmds assigns sequence
number to audit command

330

J

Queue_Device_Cmds places audit
command in Audit_Cmd_Queue

332

J

Format_And_Submit_Cmds retrieves aqudit
command from Audit_Cmd_Queue

334

|

Format_And_Submit_Cmds retrieves specific
device type and version from Device_Status

336

!

Format_And_Submit_Cmds refrieves device
configuration from Realfime Network Device
Data

338

|

Format_And_Submit_Cmds creates audit
command in device-specific format

340

|

Format_And_Submit_Cmds places copy of
device-specific formatted command with
common formatted command in
Audit_Cmd_Queue

342

!

Format_And_Submit_Cmds sends request for
audit channel status to Manage_Binary_Links

344

!

Manage_Binary_Links checks status of
audit channel on binary links

346

Y

Manage_Binary_Links sends
Binary_Link_Status message to
Format_And_Submit_Cmds

348

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

Fig. 144

WO 98/43390

|

channel on binary
link available?

Format_And_Submit_Cmds sends formaited
audit command to Manage_Binary_Links

?

Manage_Binary_Links sends audit command
as Binary_Device_Cmd to network device

356
!

|

PCT/US98/05313

350

' — 352

Format_And_Submit_Cmds rejects command;
sends response to Client Application

J

End

Queue_Binary_Device_Data receives response
fo audit command from network device

358
S

?

Queue_Binary_Device_Data piaces response
in Binary_Device_Data_Queue

360
’

!

Parse_Binary_Device_Data retrieves and
parses command

362
S

!

Parse_Binary_Device_Data sends command
fo Process_Audit_Response

364
’

1

Process_Audit_Response places copy of
response in Audit_Cmd_Queue; matches
with original audit command

366
S

|

Process_Audit_Response formats and
sends response to Client Application

368
S

!

End

Fie. 14B

SUBSTITUTE SHEET (RULE 26)

~WO 98/43390

18/23

Queue_Device_Cmds assigns sequence
number to command

370
S

!

Queue_Device_Cmds places command in
Connect_Disconnect_CMD_Queue

572
S

!

Queue_Device_Cmds retrieves max bundle
size, max bundle interval,
num_unsubmitted_cmds

574
’

376

max bundie size No

PCT/US98/05313

or inferval been

Queue_Device_Cmds submits bundle to
Format_And_Submit_Cmds for processing

380

!

Format_And_Submit_Cmds retrieves specific
device type and version from Device_Status

382

- Wait for next connect
disconnect command

/ j378

/

!

Format_And_Submit_Cmds retrieves device
configuration from Realtime Network
Device Data

384

|

Format_And_Submit_Cmds creates
command in device—specific format

386

/

Y

Format_And_Submit_Cmds places copy of
device-specific formatted command with
common formatted command in
Connect_Disconnect_Cmd_Queue

388

!

|

V

Format_And_Submit_Cmds sends request

for connect ch
Manage_Bi

annel status to
nary_Links

390

J

\

!

Manage_Binary_Links checks status of

connect channel

on binary links

392

Y

|

!

Manage_Binary_Links sends

Binary_Link_Sta
Format_And_

tus message to
Submit_Cmds

394

®

Fig. 154

SUBSTITUTE SHEET (RULE 26)

‘WO 98/43390

Yes

|

Format_And_Submit_Cmds sends formatted
command fo Manage_Binary_Links

!

Manage_Binary_Links sends command as
Binary_Device_Cmd fo network device

400

|/

!

Queue_Binary_Device_Data receives
response fo command from network device

402

|/

V

Queue_Binary_Device_Data places
response in Binary_Device_Data_Queue

404

!

Parse_Binary_Device_Data refrieves and
parses command

406

!

Parse_Binary_Device_Data sends command
to Process_Connection_Response

408

connect channe
on binary link

PCT/US98/05313

396

No

!

Format_And_Submit_Cmds sends request
for connect channel status to
Send_Cmd_IDCS_Link

414

!

Send_Cmd_IDCS_Link checks status of
connect channel on backup link

Y

Send_Cmd_IDCS_Link sends IDCS_Status
message to Format_And_Submit_Cmds

420

connect channel
on backup link
available?

Format_And_Submit_Cmds sends formatted
command o Send_Cmd_IDCS_Link

422

J

Y

!

Process_Connection_Response places copy
of response in Connect_Disconnect_Cmd_
Queue; matches with original command

410

/

!

Process_Connection_Response formats and
sends response to Client Application

1

End

Fic. 158

Send_Cmd_IDCS_Link sends command as
IDCS_Gateway_Cmd to network device

424

|/

!

Queue_IDCS_GW_Responses receives
response to command from network device

426

J

Y

Queue_IDCS_GW_Responses places
response in IDCS_GW_Data_Queue

428

\

Parse_IDCS_GW_Responses retrieves
and parses command

430

J

\

Parse_IDCS_GW_Responses sends
command to Process_Connection_Response

432

SUBSTITUTE SHEET (RULE 26)

WO 98/43390 PCT/US98/05313

20/23

i

434
Format_And_Submit_Cmds j
rejects command

\

6
Format_And_Submit_Cmds sends response _f 4
to Client Application

Y
End

Fie. 15C

SUBSTITUTE SHEET (RULE 26)

WO 98/43390

21/23

Co)

|

PCT/US98/05313

Queue_Binary_Device_Data receives
unsolicited alarm from network device

440
S

1

Queue_Binary_Device_Data places alarm
in Binary_Device_Data_Queue

442
J

!

Parse_Binary_Device_Data retrieves and
parses alarm

444
’

!

Parse_Binary_Device_Data sends alarm
to Process_Unsolicited_Alarms

446
’

\

Process_Unsolicited_Alarms queries
Alarm_Subscriber_List to identify Client
Applications to receive alarm

448
S

\

Process_Unsolicited_Alarms formats and
sends alarms to Client Applications

450
’

!

Process_Unsolicited_Alarms updates Realtime j 452

Network Device Data with alarm status

|

End

Fig. 16

SUBSTITUTE SHEET (RULE 26)

PCT/US98/05313

WO 98/43390

22/23

LT ol o
86T o
: dsas"uwpossa204d " wol)
qun ﬁ
-ac_:: 897 ~sadl 44
bulg ~9z||oly|
997 azjjojul
86 0Ly 391A8(]
f ~aJnbyjuo)
9JDjS™ ILAIN fuang
09y
201 s18)|1{"wiojy~ainbiyuo) +
96¢c - UOISISA 9IDMIJOSTaASLIBY +
“\=pjpg201haQ / x 151) 80N mc_lmvorw__wm 24 4
THOM|BN T BWINDSY \ s|paibo] " waysAg
— N /

WNN"231A8(

‘Hojs

h_ctw_c_..%é WV t/*/

97 \ / NOZ-V02

SUBSTITUTE SHEET (RULE 26)

WO 98/43390 PCT/US98/05313

23/23

Cow)

Y
Inifialize_NIFTE receives sfart message j500
with Device_Num

Y
Initialize_NIFTE reads in Realtime Network J502
Device Data

Y
Initialize_NIFTE reads in J504
System_Logicals

Y
Initialize_NIFTE sends out J 506
Current_NIFTE_State

Y
Initialize_NIFTE sends Audit_Inferval fo j503
Audit_Interval_Timer

|

Inifialize_NIFTE friggers execution of 510
Inifialize_Binary_Links, Initialize_IDCS_Link, |
Configure_Device

Y

Inifialize_Binary_Links sends message to j 512

Manage_Binary_Links to open the
binary links

!

Inifialize_IDCS_Link sends message to J 514

Send_Cmd_IDCS_Link to open the
backup link

|

Configure_Device initiates administration J 316
processing; sends admin commands to
Network Devices

Y
End

Fie. 18

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

