77024638 A1 I 10 0 00 O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ‘1”1‘

) IO O T 0O O

International Bureau

(43) International Publication Date
1 March 2007 (01.03.2007)

(10) International Publication Number

WO 2007/024638 Al

(51) International Patent Classification:
GOGF 17/00 (2006.01) GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2006/032227

(22) International Filing Date: 16 August 2006 (16.08.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/213,553 26 August 2005 (26.08.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: GUENTER, Brian K.; One Microsoft Way,
Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(34)

[Continued on next page]

(54) Title: REPRESENTING IMPLICIT CURVES OF PROCEDURAL GEOMETRIC SURFACES

)

220

210

(57) Abstract: Compact and accurate piecewise parametric representations of implicit curves may be achieved by iteratively se-
lecting ranges of parameterizing regions and testing each for satisfying an intervalized super convergence test. In one aspect, the
& implicit curves is represented as a compact form of one or more representations of such convergence regions. For memory and
& bandwidth constrained applications, starting points of convergence regions may not be stored but instead calculated at runtime prior
to rendering a point on the implicit curve. Furthermore, not all endpoints relevant convergence regions of a selected implicit curve
need be stored. Instead, based on at least one endpoint, the other endpoints can be derived via Newton iterations. To further reduce
memory and bandwidth costs, coordinates can be stored in a quantized format and the points reflecting floating point accuracy can

be derived at runtime again by Newton iteration.

WO 2007/024638 A1 {0000 0T 0000 00 00O 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

REPRESENTING IMPLICIT CURVES OF
PROCEDURAL GEOMETRIC SURFACES

TECHNICAL FIELD
The technical field relates to modeling of graphical objects in computers graphics.
More particularly, the field relates to modeling implicit curves of intersection in

procedural geometric surfaces.

BACKGROUND

Procedural surface representations in computer graphics can be orders of
magnitude smaller than polygonal or patch-based surface representations, which may be a
desirable feature for memory constrained devices like game consoles and cell phones.
Compactness is increasingly important becanse of some current trends in computer
hardware. For instance, core processing speed has been increasing much faster than off
chip memory bandwidth, so fetching data from memory is steadily becoming more
expensive relative to computation. A compact representation can be faster to render than a
larger one, even if much more computation is required to process the compact
representation. Because of their compactness, procedural models would seem to be a
better fit to this trend than polygon meshes or polynomial surfaces.

Constructive Solid Geometry (CSG) is a method of modeling procedural graphical
surfaces, whereby more complex surfaces are modeled as a combination of simpler
surfaces. For instance, in computer graphics, CSG methods provide a powerful way for
defining surfaces of higher genus (e.g., a sphere with a hole) from surfaces of lower genus,
such as a plain cylinder and plain sphere. CSG components, including primitives such as
cylinders and spheres, can be described in terms of a procedure or a function that accepts
some number of parameters. For instance, a spherical three-dimensional (3D) surface can
be defined procedurally in terms of coordinates of its center and a value of its radius.

More complex objects can then be modeled through CSG operations performed using such
procedural objects. Virtually any manufactured object may be modeled using CSG
operations in combination with surfaces of revolution and generalized extrusions, both of
which are easily programmed procedurally. Also, the addition of CSG operations to
procedural surfaces dramatically increases the scope of objects that can be modeled

procedurally.

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

Defining parametric procedural surfaces of genus 0 (e.g., a sphere) and some
surfaces of genus 1 (e.g., a torus) is usually straightforward since complexities, such as
holes in the surface domain, are typically absent. However, for surfaces of higher genus, it
is much more difficult since domains of some parametric surfaces may have holes whose
boundaries are, in some sense, only implicitly defined (e.g., as an intersection of surfaces).
These boundaries are difficult to program manually.

For instance, CSG operations may require computing and representing curves of
intersection between the two or more surfaces being operated upon. These curves, in
general, are defined only implicitly as the solution to an equation of the form f(xi,..., Xn) =
0. These equations are not easy to evaluate and typically require a sophisticated, slow, and
computationally costly global zero finding solver. A more compact, exact, and resolution
independent representation of such curves on the other hand may be efficiently evaluated
at runtime on a graphics processing unit (GPU). Such representation may be a highly
desirable feature for memory constrained devices, like game consoles or for bandwidth
constrained applications. Also, such representations make it possible to represent high
genus surfaces in an entirely procedural way at a significantly reduced memory cost while
not significantly increasing the computational costs required for rendering sﬁch surfaces to
be displayed.

Nevertheless it is desirable to have the opportunity to have a trade-off between
reducing memory and bandwidth consumption and increasing computational costs. This
will continue to hold true, at least so long as the trend of increasing computation capability

of processors continues.

SUMMARY

Described herein are methods and systems for accurately generating compact
parametric representations of implicit functions. In one aspect, the implicit functions
relate to implicit curves of intersection generated by the way of constructive solid
geometric operations involving a plurality of procedural surfaces of graphical objects.

In yet another aspect, the implicit curve is divided into parameterization regions
comprising ranges of values of parameterization variables. In one aspect, an intervalized
super convergence test comprising applying a Kantorovich condition may be applied to

selected parameterization ranges in order to determine whether the dependent variables

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

associated therewith converge to a solution. Such ranges may be designated as
convergence regions and used to generate a compact and accurate representation of the
implicit curve.

In a further aspect, the compact representation of the implicit curve can be realized
by storing sparse data indicating the convergence regions and sparse data for indicating
starting points associated therewith. In one aspect, the sparse data related to starting
points comprise data indicating a suitable method for deriving the starting points at
runtime. In one aspect, runtime derivation of the starting points might involve retrieving
starting point coordinates based on midpoints of the parameterization regions involved. In
other aspects, the runtime derivation of the starting points might involve calculating the
starting points based on approximations of the implicit curves. The curve approximations
may be one of a straight-line approximation between known endpoints or a cubic
approximation between the known endpoints of the curve.

In further aspects, the coordinate data of points on the curve, including endpoints
of convergence regions or parameterization regions, can be stored in a compact manner.
For instance, among a plurality of endpoints related to a plurality of regions describing an
implicit curve, coordinates of just one endpoint may be sufficient. The coordinates of the
other points can be iteratively calculated at runtime by applying Newton iterations starting
with the known endpoint.

In one further aspect, stored coordinate information can be further pruned by
quantizing the coordinate data by rounding the coordinates to the nearest integer value.
Later, at runtime, the actual coordinates having floating point accuracy can be derived by
the way of applying Newton iterations starting from the point defined by the quantized
coordinates.

Additional features and advantages will become apparent from the following
detailed description of illustrated embodiments, which proceeds with reference to

accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a flow diagram describing exemplary overall methods for generating

parametric representations of implicit functions.

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

FIG. 2 is a block diagram illustrating exemplary implicit curves of intersection
generéted by the intersection of two exemplary procedural objects.

FIG. 3 is a block diagram illustrating exemplary partitioning of a domain for
determining parameterizing variables.

FIG. 4A is a flow diagram describing exemplary overall methods for generating
parametric representations of implicit curves.

FIG. 4B is a flow diagram describing exemplary overall methods for processing
parametric representations of implicit curves to render images comprising implicit curves
on a computer display.

FIG. 4C is a block diagram describing an exemplary system for generating and
processing parameterized representations of implicit curves to render images comprising
implicit curves on a computer display. ,

FIG. 5A is a flow diagram describing exemplary overall methods for generating
parametric representations of implicit curve functions comprising convergence regions.

FIG. 5B is a block diagram describing a system for generating parametric
representations of implicit curve functions comprising convergence regions.

FIG. 6 is a flow diagram describing exemplary overall methods for determining
convergence regions of selected parameterizing variables of an implicit function.

FIG. 7A is a block diagram for illustrating exemplary sub-divisions of exemplary
parameterization regions for determining convergence regions therein.

FIG. 7B is a block diagram for illustrating exemplary sub-divisions of exemplary
parameterization regions with different starting points identified for each new sub-division
for determining the convergence regions.

FIG. 8 is a flow diagram illustrating an exemplary method for determining
convergence regions using iteratively applied Newton steps to selected ranges.

FIG. 9 is a block diagram illustrating the use of Newton steps for determining the
convergence regions.

FIG. 10 is a listing describing an algorithm for determining convergence regions
based on applying a super convergence test to iteratively sub-divided portions of one or
more parameterization regions.

FIG. 11 is a listing describing an exemplary algorithm comprising a super

convergence test iteratively applied to determine convergence regions.

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

FIG. 12 is a flow diagram describing an exemplary method for determining sparse
parameterized forms of an implicit curve.

FIG. 13 is a block diagram illustrating a plurality of options for calculating starting
points associated with convergence regions.

FIG. 14 is a block diagram illustrating starting points associated with convergence
regions calculated based on a straight line approximation of the implicit curve.

FIG. 15 is a block diagram illustrating starting points associated with convergence
regions calculated based on a cubic approximation of the implicit curve.
FIG. 16 is a block diagram illustrating advantages and disadvantages of selecting
one or more the different types of starting points associated with the convergence regions.
FIG. 17 is a flow diagram describing an overall method for determining an
appropriate sparse form of representing starting point data.

FIG. 18 is a block diagram illustrating a method of determining a sparse
representation of convergence regions by representing just one of the associated endpoints.

FIG. 19 is a block diagram illustrating a method of determining a sparse
representation of coordinates of points related to an implicit curve by quantizing the
coordinate values.

FIG. 20 is a diagram depicting a general-purpose computing device constituting an

exemplary system for implementing the disclosed technology.

DETAILED DESCRIPTION

Exemplary overall methods for generating representations of implicit functions

FIG. 1 illustrates an exemplary method for generating representations of functions
that are defined implicitly. According to this exemplary method, at 110, definitions of one
or more implicit functions are received and at 120, one or more parametric representations
corresponding to the one or more implicit functions are generated. Among other things,
such parametric representations allow for expressing implicit functions in an efficient
manner. Alternative implementations of implicit function representation generating

methods can include fewer or more operations.

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

Exemplary implicit curves of intersection

FIG. 2 illustrates an exemplary implicit function representation. As shown in FIG.
2, an exemplary sphere surface S; at 210 intersects an exemplary cylinder surface S; at
220 to form curves of intersection at 225 and 230. The function defining the curves 225
and 230 can be defined implicitly as an intersection of the sphere surface S; 210 and the
cylinder surface Sz at 220. For instance, if the sphere surface S; 210 is a function f; (uo,
u;) and the cylinder 220 is represented by some function f3 (uz, vs), then the intersection of
the two surfaces 225 and 230 are implicitly represented as some function F = fi (uo, vo) - f2
(w1, v1) =0. Thus, the primitives S; at 210 and S at 220 are defined procedurally in terms
of domain variables (uo, vo) and (uy, Vi), respectively. As a result, the function F(uo, vo, u1,
v;) can also be defined procedurally. Once such curves are defined procedurally they can
be manipulated much more easily by a Graphics Processing Unit (GPU) for accomplishing
animation, for instance. Identifying the intersection and representing the intersection are
typically computationally expensive, however, and may also consume large amounts of
memory for storage. However, it is possible to generate parametric representations of
such implicit curves that are exact, compact, resolution independent and easily evaluated

at runtime in a procedural way.

Exemplary parametric representations

Given the procedural function F(uo, Vo, 1, V1) as described above where F (%) is
such that (¥) is a range of values of the 4-dimensional (4D) domain variables (ug, vo, Ui,
vy) and suppose there is a function FP (¥,) = X, suchthat X, and X, partition the
domain X into parameterizing variables (also known as independent variables) and
dependent variables, respectively. If the F(¥) is such that F': R" —— R", then m-n may
denote the number of parameterizing variables in a transformation. Thus, the function
FP (x,) allows for the dependent variables X, to be expressed in terms of the

independent or parameterizing variables X,. The actual number of m variables compared

to n variables in a function F :R™ ——R" can vary. For instance, a 4 —> 3
transformation is one typical transformation in CSG. The ability to parameterize an

implicit function has the immediate advantage of reducing the memory needed to store a

WO 2007/024638 PCT/US2006/032227
representation of such a function, since values of dependent variables can be derived from

values of the independent or parameterizing variables.

Exemplary methods for determining parameterization

It may not be always possible to parameterize an implicit function. More
particularly, not every variable of an implicit function can be used in an expression as a
parameterizing variable to express other variables of the function. One way to prove the
possibility of a parameterization by any of the domain variables of an implicit function is
10 to apply a simple form of the implicit function theorem to determine which of the various

dependent derivative matrices of such a function approach non-singularity. For instance,

in the example above, wherein F is such that F : R* —— R* with 4 domain variables and
3 range variables and F(uo, vo, ui, vi) = F(f, fy, f;) will yield a derivative matrix as
follows:
15

o o o o

ou, Ov, Ou OV

o o o 9

Ou, Ovy, Ou Oy

o o o

ou, v, Ou Ov

Suppose a dependent derivative matrix with o as the independent variable is as
follows:
o o o
ov, Ou Ov
o, o
ov

20 —- =
ov, Ou,

o o %
ov, Ou Ov

According toa simple form of the implicit function theorem, if the above

dependent derivative matrix is non-singular such that no one column of the matrix can be

-7-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

expressed as a weighted sum of the others, then the implicit function can be expressed in a
parametric form with up in this instance as the parameterizing variable. Dependent
derivative matrices based on the other variables also may be non-singular, and thus,
indicate the possibility of parameterization of the function based on these other variables
such that these other variables also may serve as parameterizing variables. However, there
may be advantages in selecting one variable as the parameterzing variable over others to
parameterize different parts of a curve. As shown in FIG. 3, for instance, within a 2D
domain, such as (u, vo), parameterization regions, can be selected based on non-
singularity property of the relevant dependent derivative matrices. For instance, in FIG. 3,
at 310 (P), up is chosen as the parameterizing variable, whereas at 320 (P2) vo is chosen.
This is at least partially dependent on the fact that within the region 310 (P) every value
of the parameterizing or independent variable u is guaranteed to have just one
corresponding value of the dependent variable vo. The same principle can confirm the
choice of vo as the parameterizing variable within the P, region. The same holds true for
regions P and P4 having parameterizing variable choices of uo and vo, respectively.
However, if the whole curve in FIG. 3 was chosen as a single parameterizing region, no
one variable ug or v is guaranteed to have each of their values on the curve correspond to a
single value of the other variable that is dependent. As a result, the curve of FIG. 3 can be
divided into exemplary parameterizing regions P; ,P2, P3, and P4. The 2D
parameterization regions shown in FIG. 3 are merely illustrative. The same principle

holds true for domains with higher dimensionalities, as well.

Exemplary overall methods for representing implicit curves

Thus, based on determining the possibility of parameterization of implicit curve
functions and selecting parameterization regions and their corresponding parameterizing
variables, as described above, a parameterized representation of an implicit curve can be
calculated. FIG. 4A illustrates one such exemplary overall method for calculating
parameterized representations of an implicit curve. As shown in FIG. 44, at 410, a
function defining an implicit curve is received, and at 420, a parameterized representation
of the implicit curve is generated based on parameterizing the implicit curve function.
Alternative implementations of this exemplary method may optionally omit the operations

410 and 420 or include additional operations.

10

15

20

25

30

35

WO 2007/024638 PCT/US2006/032227

Exemplary methods for processing parameterized implicit curve
representations

FIG. 4B illustrates exemplary methods for processing parameterized implicit curve
representations by a GPU, for instance. According to this method, at 425, the GPU
receives a parameterized representation of an implicit curve, generated, for instance, as
shown in FIG. 4A. At 430, the GPU processes the parameterized representations of the
implicit curve to render an image comprising the implicit curves described by the
parameterized representation thereof. Alternative implementations of this exemplary
method may optionally omit the operations 425 and 430 or include additional operations.

Among other things, a compact representation of implicit curves reduces the
memory bandwidth needed to transfer data related to the procedural CSG surfaces
comprising the implicit curves based on which, the GPU renders images of the surface
comprising the implicit curves. Thus, compact representations of implicit curves allow the
GPU to process more image data at runtime to render a more rich set of images on a

computer display.

An exemplary system for generating and processing parameterized implicit
curve representations

FIG. 4C illustrates an exemplary system 400 for generating and processing a
compact parameterized representation of an implicit curve. The system comprises an
implicit curve representation generation processor 440, which receives data related to
procedural surface representations of one or more graphical objects 435 and generates data
450 related to one or more parameterized representations of implicit curves formed based
on the procedural representations of one or more graphical objects 435. For instance, the
implicit curve representation generation processor 440 can use the methods of FIG. 4A to
generate the data 450 related to one or more parameterized representations of implicit
curves.

The image rendering processor 460 (e.g., a GPU) receives the data 450 related to
one or more parameterized representations of implicit curves and processes the data 450 to
generate image data 470 for displaying images comprising the implicit curves on the
computer display 480. For instance, the image rendering processor 460 may be a GPU

programmed for transforming the parameterized representations of the implicit curves

-9

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

through tessellation methods for generating polygon-based representations of implicit
curves for displaying the implicit curves along with other image components on a

computer screen 480.

Exemplary methods for generating parameterized representations of implicit
curves comprising determining convergence regions

FIG. 5A illustrates a more detailed description of methods of calculating a
parameterized representation of an implicit curve (e.g., 225 and 230 of FIG. 2). For
instance, the implicit curve representation generation processor 440 in FIG. 4C can be
programmed to implement the methods described below. According to this method, at
510, a function defining a first object (e.g., S) at 210) is received and at 520, a function
defining a second object (e.g., S at 220) is received. Then at 530, for an implicit curve
function defined at least partially based on some operation on the functions of the first and
the second objects (e.g., fi (1o, uy) - £ (U2, us) = 0 defining a curve of intersection of
procedural surfaces Syand S;) parameterizing regions are first determined (e.g., as shown
above with reference to FIG. 3).

The implicit function theorem relying on the non-singularity property of the
appropriate dependent derivative matrices confirms that parameterization of dependent
variables using the parameterizing variables is possible. Thus, solving for a range of
values of the parameterizing variables over which parameterization of the dependent
variables is possible based on the non-singularity of the relevant dependent derivative
matrices yields parameterization regions. However, further calculations are needed to
solve for dependent variable values that yield f; (up, W) - £ (U, u3) = 0 for determining the
implicit curve described above over a range of the parameterizing variable. Such a range
of the parameterizing variable may be referred to as a convergence region.

For instance, if we have a parameterization region u; such that there is some
function g(u;) = ug wherein ug is a 3 vector of functions that define the dependent variables
in terms of scalar parameterizing variable w;. In that case, g(u;) would be a parametric
form of some implicit curve function, such as Fegg(uo, Vo, U1, V1) = f1(uo, Vo) - f2(uy, v1) = 0.
Suppose one can use the notation u = [ui, ug] to indicate a 4 vector point consisting of the

scalar ujc, then Fesg(uic, gc) = 0 can represent the implicit curve of intersection.

-10-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

In that case, given the parameterizing region 9__;, in order to solve for a point on
the curve corresponding to the parameter value ujc, such that Fege(uic, uac) = 0, we need to
find the unique 3 vector ug, that satisfies Fesg(Uic, Ugc) = 0. To do this, one could use
Interval Newton to solve this equation, but it is orders of magnitude too slow for real time
use. Conventional Newton iteration is faster and simpler, but in order to use it, two
questions need answers: 1) what starting point, [uic,us], should we use for a given ujcand 2)
for what range of values of the parameterzing variable E.: can the Newton iteration be

guaranteed to converge, starting from [z, € u,

ic?

U, u, Jto the correct point on the curve?
Based on these answers, the parametric function g(u;) for one parametric region E

can be constructed by partitioning E into intervals of guaranteed convergence E_r—k , each

of which has an associated starting point u;. To compute a point (., g on the curve first,

find such that ¢cr, lu, < cr , 50 that scalar value u;, is within the convergence region. Then,

use the 4 vector [u;., us] as the starting point for the Newton iteration as follows:
Ugys=Uy-D-! (f(uic: Uy))f(uicx udj)

‘On the average, three to four iterations may be enough. This Newton iteration is
evaluated at runtime to compute points on the implicit curve based on definitions of
convergence regions and associated starting points.

In one example, the entire parameterization region may also be the convergence
region. Alternatively, several convergence regions and several starting points
corresponding to these convergence regions may comprise a parameterization region. For
an efficient and compact representation of an implicit curve, the lesser the data defining
the convergence regions and their associated starting points, the better it is. As shown, at
540 in FIG. 5, one or more convergence regions are determined for at least one of the
parameterization regions. Upon which, at 550, a parameterized representation of the
implicit curve function is expressed in form of data representative of the parameterization
regions, convergence regions therein, and associated starting points.

As noted above, an implicit curve representation generation processor 440 in FIG.
4C can be programmed to implement the methods described with reference to FIG. 5A for
generating parameterized representation of implicit curves. For instance, the implicit
curve representation generation processor 440 is programmed to execute the instructions
of an exemplary implicit curve representation generator module 560 in FIG. 5B for

processing procedural graphical objects from a modeling program 555. Such an implicit

-11 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

curve representation generator module 560 comprises a parameterizatioﬁ region generator
562 for generating parameterizing regions and a convergence region generator 565 for
determining convergence regions from the parameterizing regions for representing implicit
curves. The parameterized representations of implicit curves are stored as parameterized
image data 570, which can be processed by an image rendering program 580 to display the

images on a computer display.

Exemplary methods for determining convergence regions

As noted above with respect to FIG. 5A, once parameterization regions are
determined, ranges of values of parameterizing variables within the parameterization
region are determined, which yield values of the dependent variables that converge to a
single solution (e.g., 540 and 550). FIG. 6 illustrates one overall method for determining
such convergence regions. At 610, a definition of a parameterization region is received.
Then at 620, starting with the entire parameterization region and with one starting point
chosen (e.g., middle of the range of values of the parameterization region) from within the
parameterization region, an intervalized super convergence test is conducted to determine
whether the entire parameterization region converges.

An intervalized super convergence test comprises an interval extension to the
simple single value form of the implicit function theorem. In general, an intervalized
super convergence test is applied over an interval of values of a parametrizing variable, as

opposed to a single value of the same.

Suppose, for instance, that the implicit function F(ug, vo, U3, vi) = F(¥)= 0 defines
an implicit curve of intersection and there is a function FP (¥ ,) = X, suchthat X, and
X, partition the domain X into parameterizing variables (also known as independent
variables) and dependent variables, respectively. Then taking a starting point on the curve
X,=(X,, x;) suchthat x,is a starting point value of dependent variables and X, is a
range of parameterizing variables if Kantorovich’s theorem holds frue for the starting
point x,, then the Newton iteration from the starting point will converge to a solution of
the implicit function for the values of the parameterizing variable within the range X,,.

For instance, Kantorovich’s theorem in this example may be stated as follows:

-12-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

If I fx,)‘ | D™ f(x,) |* m < ¥; where m is provided by the Lipschitz
given by ‘ Df (u,) — Df (vy) | <m* luo —v, forall up, and u; in U, thena
Newton Iteration stated as x;; = x; + |D f(x;)| f{x;) super converges to a

unique solution.

Also, the condition If]] f (E,,)

| D7 f(x,) |* m <V herein is referred to as

Kantorovich condition. If Kantorovich condition equals to %, that suggests a simple
convergence. On the other hand, super convergence is reached if the same expression

yields value < 4. Thus, as shown above, an intervalized super convergence test applies

_ the Kantorovich condition to a range of values.

Nevertheless, a conventional application of Kantorovich’s theorem to a range of
values yields convergence regions that are very small. This may be so because, in general,
Kantorovich’s theorem is very pessimistic. Also, the Kantorovich condition is not a
necessary condition, it is however a sufficient condition. Thus, if in a first iteration of the
application of the super convergence test the Kantorovich condition does not hold true,
then as shown at 630 in FIG. 6, the super convergence test, including the Kantorovich
condition, can be applied iteratively based on new intervals of the parameterizing variables
and new starting points or even the same starting point for that matter.

In one embodiment, new intervals are generated by sub-dividing the
parameterizing variable intervals of previous iterations until some maximum number of
iterations or until one sub-division of the intervals converges. Also, in one embodiment
such sub-dividing may be by half.

Also, in one embodiment, new starting points on the curve associated with the new
intervals can be selected by identifying a middle point of the new interval of the
parameterizing variable and the corresponding values of the dependent variables. The
sub-dividing and identification of new starting points is continued until one combination
of a range of parameterizing variables and an associated starting point therein is
determined that meets the super convergence test.

FIG. 7A illustrates one exemplary sub-division of the parameterization region that
can lead to a convergence region. For instance, the entire parameterization region C;, at
710, is tested for super convergence, and if the test is not satisfied, the region C; is sub-

divided further to regions C; 720 and C; 730 and each such region is further tested again

-13-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

for super convergence. Furthermore, as shown in FIG. 7B, newer starting points at x5 750
and xg3 740 are calculated to conduct further testing for super convergence. These
processes can be repeated until determining one combination of intervals that meet the

super convergence test or until some maximum number of iterations.

An accelerated super convergence test for determining convergence regions

FIG. 8 illustrates an exemplary method for determining convergence regions
comprising a technique for accelerating the process of determining convergence regions
with selected sub-divisions of the parameterization regions. At 810, super convergence
test is applied to intervals within the parameterization regions. At 820, the super
convergence test is re-applied to new intervals calculated, at least partially, based on
intervalized Newton iterates of a previous iteration. The choice of Newton iterates further
ensures that the range being evaluated is more likely to converge than a guess based on
just simple sub-divisions of the parameterization regions and selecting middle points of
sub-divisions as the starting points. Then, at 830, the process is continued for 2 maximum
number of iterations or until super convergence test is met for some region being tested.

FIG. 9 illustrates the progressive Newton iterate steps, such as hg at 915, to
determine new intervals with new starting points by starting at some point ap 910 and
progressing until identifying regions meeting the super convergence test. Newton iterate

steps (e.g., ho) are provided by Newton iteration expression stated as follows:

n[ou(r(em)] #(e3)

The regions that satisfy the convergence test are then used to represent a

parameterized form of an implicit curve.

Exemplary algorithms for determining convergence regions

FIGs. 10 and 11 illustrate an exemplary algorithm for determining convergence
regions by iteratively sub-dividing ranges of values of parameterization region and
applying the super convergence test, as described with reference to FIGs. 6,7, and 8. The
implicit curve representation generation processor 440 of FIG. 4C of the system 400 for

processing graphical data can be programmed to implement the methods described with

-14-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

reference to FIGs. 10 and 11 below. FIGs. 10 and 11 together illustrate two methods that
are recursively called for a selected number of iterations or until a convergence region that

satisfies the super convergence test is identified.

In one embodiment, as shown in FIG. 10, at 1010 the ConvergencelnRegion(:_.7;0)
method is called for a selected range of values io on the implicit curve for which
convergence is being determined. For instance, the range of values EU may be expressed
as (E »»%X4), Which comprises a range of values of the parameterizing variables and a
corresponding starting set of values for the dependent variables (e.g., those associated with
a midpoint of Ea). Then at 1020, the recursive test for super convergence, which is
referred to in this example as convergence(go) method (1100 in FIG. 11) is called. Ifat
1020, the convergence(__ygo) (1100 at FIG. 11) method returns ‘true’, then the range of
values E » identified as the range of parameterizing values associated with Eca is
determined to be the convergence region with x,as the starting point. A typical initial
value for §o= (Zc »»%,) may be one where E , is the entire parametrization region and x, is
associated with the midpoint of such a region. However, other ranges of values of 2 , and
their corresponding starting values of dependent variables x, may also be used. Ifat
1020, convergence(Ea) (1100) method returns false, then ranges of parameterizing
variables ;g , are iteratively sub-divided at 1030 and new starting points calculated for
), at 1040, upon which, ConvergencelnRegion(io)

and x

each region (e.g., x X priigh

A pLow
method is recursively called at 1050 for a selected number of times or until the
convergence regions are determined.

FIG. 11 illustrates an exemplary super convergence test for determining
convergence regions. In one embodiment, the super convergence test comprises applying
the Kantorovich condition iteratively to selected ranges of values on an implicit curve,
wherein the range may be changed iteratively by a Newton iterate step. Thus, as shown in
the exemplary super convergence test convergencé(Eo), at 1110, while (}c:i are shrinking)
is true, Newton iterate steps E may be used to change the potential convergence region
being tested and each new range is evaluated for compliance with the Kantorovich
condition at 1120, and if true, the range of parameterizing variable values associated with
the range 2,. changed by the Newton step (e.g., Zz,.) is identified as the convergence
region. If the Kantorovich condition 1120 does not hold true, then the range of values of
the parameterizing variables x , is sub-divided further at 1130 and the convergence()

method 1100 is called on the sub-divisions recursively at 1140 for each of the sub-

-15 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

divisions with the same starting point x,. This iteration can be continued up to a point
where the convergence region is too small and returned back to the process of FIG. 10 to
start with a new starting point.

The “while (x, are shrinking)” condition at 1110 allows for Newton steps to be
taken until some point when the steps become so small that any rounding errors related to
the floating point calculation would actually start to grow the x, range instead of
shrinking it. The “while (x, are shrinking)”, however, is an exemplary condition. Other
conditions may be used to determine how many Newton steps are to be taken and in which
direction.

In one alternative, the sub-divisions of ranges within parameterization regions
which are called within methods the ConvergenceIlnRegion() 1000 and convergence()
1100 may be % divisions of such ranges determined during previous iterations. However, '
such sub-divisions need not be restricted to dividing the previous ranges by half. Other

divisions (e.g., ¥4) may be used.

Exemplary convergence data

Once convergence regions are determined, data descriptive of such regions are
stored for later use. There are costs associated with storing and transferring such data
descriptive of the convergence regions including such as data indicative of the range of
values of the parmeterizing variable (e.g., C; and C; of FIG. 7B) and data indicative of the
associated starting points (e.g., X5z and X in FIG. 7B). It is based on this data that the
actual points on the related implicit curve will be derived at runtime. However, reducing
the costs of transferring such data to the processor evaluating points on a curve (e.g., 460
in FIG. 4C) can be advantageous for memory bandwidth constrained applications (e.g.,
cellular phones).

In addition to memory, related costs, computational costs are also of concern. For
instance, if the starting point guessed at the beginning of a convergence analysis, such as
the midpoint of parameterization region being analyzed, happens to be far away from the
point being evaluated, then it may take numerous Newton iteration steps to derive the
point on the curve, even if convergence has been proven in an offline calculation.

FIG. 12 describes one method 1200 for determining convergence data that can be
more accurate and sparse at the same time. At 1210, one or more convergence regions and

their associated starting points are determined for a selected parameterization region. At

-16 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

1220, descriptor data for regions of convergence and descriptor data of their associated
starting points are stored. The starting point data need not be in terms of domain
coordinates (€.g., Ugs, Vos, Uis, Vis), Which can be costly in terms of memory. Instead, it can
be stored in a sparse form during static processing 1225, such that, later during runtime
processing 1230 at step 1235, the actual starting point can be calculated, based at least in
part on the sparse descriptor, for applying Newton iteration to determine the points on the
associated curve.

FIG. 13 illustrates methods of selecting starting points that converge fast and can
be represented sparsely in memory, for instance. For an exemplary implicit curve 1300, as
shown with respect to FIGs. 7A-B one exemplary starting point 1315 relates to a midpoint
1315 of the parameterization region 1310. Typically, if convergence is proven for the
entire parameterization region, then data describing the endpoints EP; at 1320 and EP; at
1325 are stored along with the coordinates for the midpoint based starting point X,
midpoint at 1315. First of all, the coordinate data consumes memory. Secondly, even if
convergence is proven over the parameterization region 1300 from the starting point 1315,
it may take an inordinate number of Newton iterations to derive most of the curveA points,
such as ¢; (e.g., 1305), that are far away from the starting point 1315.

However, approximations of the actual implicit curve 1300, such as a straight line
approximation 1340 and a cubic approximation 1330, can yield starting points X5 1306
and X 1307, for instémce, which are much closer to the curve point (e.g., c; 1305) to be
determined. Thus, according to method 1200 of FIG. 12, one form of a sparse starting
point descriptor data is data describing the selection of one or more approximations (e.g.,
1330 and 1340) of the implicit curve, based on which, a starting point on the
approximation curve can be calculated at runtime and used to fully derive the point (e.g.,
¢; 1305) on the curve 1300. Even though this requires additional computation during
runtime, the savings in the reduced costs of memory required for storing convergence and
transmitting data including starting point data may make this a tradeoff that is worthwhile

for at least some graphics applications.

Exemplary implicit curve approximations

FIG. 14 illustrates a straight line approximation 1340 to the implicit curve 1300.

The example shows that in a (uo, Vo) domain, vo has appropriately been chosen as the

-17-

10

20

25

30

WO 2007/024638 PCT/US2006/032227

parameterizing variable of an implicit function defining the curve 1300. The straight line
approximation 1340 of such a curve is a straight line that is interpolated between the two
known endpoints EP; at 1320 and EP; at 1325. A linear interpolation function can be used
to calculate any point between the two known endpoints, EP; at 1320 and EP; at 1325.
Many linear interpolations techniques exist, one such linear interpolation for interpolating
between two known points say, exemplary (X,,¥.) and (Xp,ys), is given as follows:

X~Xp X-%,

f(x)= Va-

Xa=Xp Xa=Xp

Vb

Thus, at runtime, based on known values of the parameterizing variable (e.g.,
1341), the starting point X, at 1307 for converging to a solution of the curve point ¢; 1305
can be calculated and applied in a NeWton iteration analysis. At least because the starting
point X, at 1307 is closer to the curve point of interest ¢, at 1305, the Newton iteration
will converge faster. Also, since the starting point was calculated at runtime, any costs
associated with storing and retrieving data related to starting points is avoided.

FIG. 15 illustrates a cubic approximation 1330 for the implicit curve 1300. The
cubic approximation is a curved line that is also interpolated between two known points
EP; at 1320 and EP; at 1325 based on the known tangents T} at 1521 and T, at 1526.
Calculating the tangents (e.g., tangents T at 1521 and T at 1526) at runtime is not an
additional runtime computational cost since it is part of any Newton iteration analysis
(e.g., FIGs. 10 and 11). The curve approximation 1330 in one embodiment can be based
on a Hermite curve spline that interpolates points between two know endpoints (e.g., EP;
at 1320 and EP; at 1325) and their respective curves. The Hermite form consists of two
control points and two control tangents (e.g., T1 at 1521 and T, at 1526), one each for each
polynomial. On each subintetval, given a starting point (e.g., EP; at 1320) and an ending
point (e.g., EP; at 1525) with starting tangents (e.g., T; at 1521) and ending tangent (e.g.,
T, at 1326), the polynomial can be defined as follows:

p(t)=(2t:-312+ 1) pp+(t3-202+ 1) my+(- 215+ 382) p+(13-12) my

Thus, based on the cubic curve approximation and a known value 1342 of the
parameterizing variable vy, the starting point 1306 can be calculated at runtime. In this
example, choosing to calculate a starting point based on a cubic approximation appears to
be the better choice.

-18 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

However, the choice of how best to calculate and, thereby, represent convergence
regions and associated starting points is not always as clear as shown with respect to FIG.
13, for instance. In FIG. 13, the starting point X; 1306 generated by the way of the cubic
approximation 1330 to the implicit curve 1300 appears to be the best overall choice for
converging to most points along the curve 1300 including c; at 1305. This is so at least
because the starting point X at 1306 appears to be closest to the curve point ¢; at 1305.
Thus, the cubic approximation can be chosen to calculate the starting points even though it
appears that at least for some points of the curve 1300 the midpoint based starting point
1315 will be a better choice. Nevertheless, cubic approximation based starting point
calculation is the better overall choice.

Among other factors, the shape of the implicit curve (e.g., 1300) affects the choice
of how best to calculate and represent starting points associated with convergence regions.
FIG. 16 illustrates this reasoning. For example, the curve 1600 can be divided into several
parameterization regions. For instance, in this example, with up as the parameterizing
variable, it is possible to have a parameterizing region between the endpoints EPy at 1610
and EP, at 1620. The choice of an appropriate parametering region in this example is
merely illustrative and does not consider all possible criteria for how best to divide an
implicit curve into parameterizing regions as described with reference to FIG. 3, for
instance. Nevertheless, suppose the curve point to be evaluated c; is at 1625, the starting
point Xpq based on the parameterization region midpoint is at 1630, the starting point
X calculated from the straight line approximation 1635 is at 1632, and the starting point
X, calculated from the cubic approximation 1640 is at 1642. In this example, calculating
the starting point (e.g., Xs2 at 1642) based on the cubic approximation 1640 appears to be a
poor choice. However, the starting point Xmiq at 1630 based on the midpoint of the
parameterization region 1600 may be a better choice for at least some points on the curve
and finally, calculating a starting point (e.g., X at 1632) based on the straight line
approximation 1635 appears to be the best choice in this example. This is so not only
because it yields a starting point X; at 1632 closest to the curve point ¢ at 1625, but it
also appears to yield the closer starting points for most other points on the curve 1600.

Such analysis related to determining how best to calculate starting points can be
performed prior to runtime. Once this analysis is complete, some data indicating the
choice of how best to calculate and represent convergence data, including starting points,

can be stored so that at runtime, based on this descriptor data, a processor can calculate the

-19-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

starting point, or retrieve it in case of a midpoint (e.g., Xmig at 1630), to begin the process
of applying Newton iteration to converge to a point on the implicit curve (e.g., 1600).
FIG. 17 illustrates one such method 1700 of static processing of convergence data.
At 1710, for a selected parameterizing region an appropriate type of starting point
descriptor data including a method of determining starting point data for runtime
evaluation of the implicit curve using the Newton iteration is selected. Based on this
selection, starting point data descriptors are stored that indicate the selected method of
calculating starting point data. In one embodiment, the choices for starting point
calculation methods include, retrieving a parameterization region midpoint based starting
point, calculating a starting point based on a straight-line approximation of the implicit
curve between two known curve points and calculating a starting point based on a cubic
approximation of the implicit curve between two known curve points. Once a choice is
identified, at 1720, data descriptive of the choice of how starting points descriptor data is
stored in conjunction with the data (e.g., endpoints) of the associated convergence regions.
Data indicating a choice may be in form of a bitstream. For instance, for
identifying among three different exemplary choices described above, two bits would
suffice. In one embodiment, a midpoint based starting point choice is indicated by a value
of “00”, a straight line approximation based calculation is indicated by a value of “01”,
and a cubic curve approximation choice is indicated by a value of “10”. Thus,
convergence region data, including its endpoints, can be transferred to the processor at
runtime along with a choice of how its associated starting point is to be determined. If it is
“00”, then the processor will be operable to retrieve a stored midpoint based starting point,
which adds to the cost of memory bandwidth. However, if the choice is indicated as “01”
or “10”, for instance, then the actual starting point will be calculated at runtime based on
the appropriate implicit curve approximation. Here, in this instant case (e.g., with choices
of “01” and “10”), the memory bandwidth costs of transferring coordinate data of starting

points can be avoided.

Exemplary sparse representations of implicit curve regions

Reducing costs associated with storing, transferring, and retrieving data related to
regions of implicit curves, such as parameterization regions and convergence regions, for
instance, is beneficial (e.g., for bandwidth constrained applications). As noted above,

even with having starting points being calculated at runtime, instead of being stored and

-20 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

later retrieved, the cost of storing and retrieving curve points, such as endpoints (e.g., EP;
at 1810 and EP; at 1820 in FIG. 18), remain. In one exemplary improvement, not every
endpoint of the various parameterization regions need be stored and later retrieved for
runtime use. For instance, a first selected starting point (e.g., EP; at 1810) may be stored
and transferred to the appropriate processor. At runtime, the rest of the endpoints (e.g.,
EP; at 1820, EPs at 1830 and EP, at 1840) can be calculated by the way of applying
Newton iterations with the known point (e.g., EP; at 1810) as the starting point. However,
the entire range Wy at 1850 may not converge with EP; at 1810 as the starting point. For
instance, the range may need to be sub-divided further to first find a solution of an
intermediate point, such as IP; at 1855 and it then may be used as a starting point to solve
for EP; at 1820, for instance. This process may be continued to until all the required
endpoints are calculated. This does add computational complexity at runtime. However,
it also substantially reduces the amount of data that needs to be stored and later retrieved
at runtime. In fact, in one embodiment, all that needs to be stored is a first endpoint (e.g.,
EP; at 1810) and a range Wy at 1850 of the parameterizing variable vo. Based on this
information, the rest of the needed points can be derived.

For the rest of the parameterization regions (e.g., P2, P3, and P4 in FIG. 18) even
the information regarding which are the parameterizing variables associated with the
respective parameterization regions need not be stored and retrieved at-runtime. Instead,! it
can be deciphered from the parameterization region associated with the first endpoint (EP;
at 181.0) because, typically, the parameterizing variables alternate between the domain
variables (ug, vo) for consecutive parameterization regions.

In one further improvement, costs associated with storing data related to regions of
the implicit curve can be further reduced by quantizing the coordinate values of any point
of relevance related to the implicit curves. FIG. 19 illustrates this further. For instance, if
coordinate points of endpoints, such as EP; at 1810 and EP; at 1820, are to be stored.
They need not be stored in a data structure floating points data type. Instead, they can be
quantized to an integer data type. This might result in the stored point EP’; at 1910 not
being exactly on the curve 1800, but offset a bit due to any rounding needed for
quantization. The exact endpoint EP; at 1810 on the curve 1800 can be derived at
runtime, as needed, by applying Newton iterations with the quantized endpoint EP’; at
1910 as the starting point. Again, this does add to the computation cost at runtime.

However, rounded integer data types typically require less memory than associated

-21-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

floating point data types, and thus, the quantization as described above can reduce the
costs associated with storing and retrieving coordinate data. This trade-off may be
worthwhile for some memory constrained applications.

The memory saving features described, with reference to FIG. 18 and FIG. 19
above, can be used in combination with each other and in combination with any of the
other methods described herein with respect to deriving and representing implicit curves.
For instance, the memory costs for storing information related to parameterization region
1800 in FIG. 18 can be reduced by orders of magnitude, if the entire curve 1800 can be
represented in terms of a single endpoint (e.g., EP; at 1810) by quantizing the coordinates
therewith. The rest of the information can be derived at runtime based on this sparse
information. This can present an enormous advantage to applications within environments

where bandwidth and memory are not only expensive but, in fact, may be unavailable.

Exemplary computing environment

FIG. 20 and the following discussion are intended to provide a brief, general
description of an exemplary computing environment in which the disclosed technology
may be implemented. Although not required, the disclosed technology was described in
the general context of computer-executable instructions, such as program modules, being
executed by a personal computer (PC). Generally, program modules include routines,
programs, objects, components, data structures, etc., that perform particular tasks or
implement particular abstract data types. Moreover, the disclosed technology may be
implemented with other computer system configurations, including hand-held devices,
multiprocessor systems, microprocessor-based or programmable consumer electronics,
network PCs, minicomputers, mainframe computers, and the like. The disclosed
technology may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in
both local and remote memory storage devices.

With reference to FIG. 20, an exemplary system for implementing the disclosed
technology includes a general purpose computing device in the form of a conventional PC
2000, including a processing unit 2002, a system memory 2004, and a system bus 2006

that couples various system components including the system memory 2004 to the

=22 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

processing unit 2002. The system bus 2006 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any
of a variety of bus architectures. The system memory 2004 includes read only memory
(ROM) 2008 and random access memory (RAM) 2010. A basic input/output system
(BIOS) 2012, containing the basic routines that help with the transfer of information
between elements within the PC 2000, is stored in ROM 2008.

The PC 2000 further includes a hard disk drive 2014 for reading from and writing
to a hard disk (not shown), a magnetic disk drive 2016 for reading from or writing to a
removable magnetic disk 2017, and an optical disk drive 2018 for reading from or writing
to a removable optical disk 2019 (such as a CD-ROM or other optical media). The hard
disk drive 2014, magnetic disk drive 2016, and optical disk drive 2018 are connected to
the system bus 2006 by a hard disk drive interface 2020, a magnetic disk drive interface
2022, and an optical drive interface 2024, respectively. The drives and their associated
computer-readable media provide nonvolatile storage of computer-readable instructions,
data structures, program modules, and other data for the PC 2000. Other types of
computer-readable media which can store data that is accessible by a PC, such as magnetic
cassettes, flash memory cards, digital video disks, CDs, DVDs, RAMs, ROMs, and the
like, may also be used in the exemplary operating environment.

A number of program modules may be stored on the hard disk 2014, magnetic disk
2017, optical disk 2019, ROM 2008, or RAM 2010, including an operating system 2030,
one or more application programs 2032, other program modules 2034, and program data
2036. A user may enter commands and information into the PC 2000 through input
devices such as a keyboard 2040 and pointing device 2042 (such as a mouse). Other input
devices (not shown) may include a digital cémera, microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input devices are often connected to the
processing unit 2002 through a serial port interface 2.044 that is coupled to the system bus
2006, but may be connected by other interfaces such as a parallel port, game port, or
universal serial bus (USB). A monitor 2046 or other type of display device is also
connected to the system bus 2006 via an interface, such as a video adapter 2048. Other
peripheral output devices, such as speakers and printers (not shown), may be included.

The PC 2000 may operate in a networked environment using logical connections to
one or more remote computers, such as a remote computer 2050. The remote computer

2050 may be another PC, a server, a router, a network PC, or a peer device or other

-23 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

common network node, and typically includes many or all of the elements described above
relative to the PC 2000, although only a memory storage device 2052 has been illustrated
in FIG. 20. The logical connections depicted in FIG. 20 include a local area network
(LAN) 2054 and a wide area network (WAN) 2056. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.

When used in a LAN networking environment, the PC 2000 is connected to the
LAN 2054 through a network interface 2058. When used in a WAN networking
environment, the PC 2000 typically includes a modem 2060 or other means for
establishing communications over the WAN 2056, such as the Internet. The modem 2060,
which may be internal or external, is connected to the system bus 2006 via the serial port
interface 2044. In a networked environment, program modules depicted relative to the
personal computer 2000, or portions thereof, may be stored in the remote memory storage
device. The network connections shown are exemplary, and other means of establishing a
communications link between the computers may be used.

Having described and illustrated the principles of the invention with reference to
the illustrated embodiments, it will be recognized that the illustrated embodiments can be
modified in arrangement and detail without departing from such principles.

For instance, many of the examples used above describe algorithms for
determining implicit curves of intersection of two or more procedural surfaces with known
functions. However, the principles described herein may be applied to any implicitly
defined functions. For instance, these same principles may be applied to motion in a
machine with different functions defining different motions of different parts of the
machine, which may need to be synchronized.

Furthermore, many of the examples illustrate functions wherein parametrization
functions show a R* —— R® domain to range transformation indicating that a single
parameterizing variable parameterizes the expression of the dependent variables.
However, other transformations are possible. For instance, two parameterizing variables
may be chosen to parameterize the expression of the rest of the variables as dependent
variables.

In addition to representing implicit curves, the principles described herein may be

applied equally effectively to calculate compact piecewise parametric inverses of arbitrary

-24 .-

10

WO 2007/024638 PCT/US2006/032227

functions and to compute exact efficient representations of arbitrary differentiable
functions.

Furthermore, elements of the illustrated embodiment shown in software may be
implemented in hardware and vice-versa. Also, the technologies from any example can be
combined with the technologies described in any one or more of the other examples. In
view of the many possible embodiments to which the principles of the invention may be
applied, it should be recognized that the illustrated embodiments are examples of the |
invention and should not be taken as a limitation on the scope of the invention. For
instance, various components of systems and tools described herein may be combined in
function and use. We therefore claim as our invention all subject matter that comes within
the scope and spirit of these claims.

Also, the alternatives specifically addressed in this sections are merely exemplary

and do not constitute all possible alternatives to the embodiments described herein.

-25-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

CLAIMS
I claim:

1. A computer implemented method for determining at least some coordinates
of at least some points on an implicit curve resulting from an intersection of a plurality of
graphical objects, the method comprising:

receiving a sparse parameterized representation of at least a portion of the implicit
curve, the representation comprising: sparse convergence region descriptor data for
describing one or more convergence regions of the implicit curve and sparse starting point
descriptor data for deriving starting points associated with the one or more convergence
regions;

at runtime, based at least on the sparse starting point descriptor data of the starting
points associated with the one or more convergence regions, deriving the coordinates of at
least some of the starting points associated with the one or more convergence regions; and

applying Newton iteration starting from the derived coordinates of the at least
some of the starting points to determine at least some coordinates of one or more points on

the implicit curve.

2. The computer implemented method of claim 1, wherein the sparse starting
point descriptor data for determining starting points associated with the one or more
convergence regions comprises data indicative of selection of a method for deriving the

starting points at runtime.

3. The computer implemented method of claim 2, wherein the method for
deriving the starting points at runtime comprises retrieving stored coordinates of one or

more midpoints of one or more parameterization regions of the implicit curve.

4. The computer implemented method of claim 2, wherein the method for
deriving the starting points at runtime comprises calculating coordinates of the starting

points based on a straight line approximation of the implicit curve.

5. The computer implemented method of claim 2, wherein the method for
deriving the starting points at runtime comprises calculating coordinates of the starting

points based on a cubic approximation of the implicit curve.

-26 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

6. The method of claim 5, wherein the cubic approximation of the implicit

curve is a Hermite curve approximation.

7. The method of claim 1, wherein the sparse convergence region descriptor
data for describing one or more convergence regions of the implicit curve comprises

coordinates of just one known endpoint of one of the one or more convergence regions.

8. The method of claim 7, further comprising: calculating at runtime,
endpoints of at least one of the one or more convergence regions by applying Newton

iterations starting from the one known endpoint.

9. The method of claim 7, wherein the one know endpoint is represented in a

quantized integer data type.

10. The method of claim 1, wherein the sparse convergence region descriptor
data for describing the one or more convergence regions of the implicit curve comprises at
least one endpoint of at least one of the one or more convergence regions represented in
quantized integer data types and coordinates of the at least one endpoint is calculated at
runtime by applying Newton iterations starting from the quantized representation of the at

least one endpoint.

11. A computer implemented method for rendering an implicit curve of
intersection related to a plurality of graphical objects by generating a parameterized
representation of the implicit curve of intersection, the method comprising:

determining one or more parameterization regions of the implicit curve of
intersection;

applying an intervalized super convergence test to determine one or more
convergence regions of the one or more parameterization regions;

storing a parameterized representation of at least a portion of the implicit curve of
intersection, the representation comprising: convergence region descriptor data for
describing the one or more convergence regions and sparse starting point descriptor data

for determining starting points associated with the one or more convergence regions;

-27-

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

at runtime, based at least on the sparse starting point descriptor data of the starting
points associated with the one or more convergence regions, determining coordinates of
the starting points associated with the one or more convergence regions; and

applying Newton iteration starting from the starting points to determine at least
some coordinates of one or more points of the implicit curve of intersection for rendering

at Jeast some of the one or more points of the implicit curve of intersection on a display.

12. The method of claim 11, wherein the implicit curve is derived by a

constructive solid geometry operation involving a plurality of geometric surfaces.

13. The method of claim 11, wherein applying the intervalized super
convergence ﬁest comprises determining whether the selected ranges satisfy Kantorovich

condition.

14. The method of claim 11, wherein the sparse starting point descriptor data
for determining starting points associated with the one or more convergence regions
comprises data indicative of a method for runtime determination of the starting points

associated with the one or more convergence regions.

15. A computer system for processing parameterized representations of at least
a portion of an implicit curve of intersection of a plurality of graphical objects to render
the implicit curve of intersection on a display, the system comprising:
memory;
the memory communicative with a processor operable to:
receive the parameterized representation of at least a portion of the implicit
curve from the memory, the representation comprising:
sparse convergence region descriptor data for describing one or
more convergence regions of the implicit curve and data indicative of a
selection of a method for a runtime calculation of starting points associated
with the one or more convergence regions of the implicit curve; and
at runtime, to calculate coordinates of at least some of the starting points
associated with the one or more convergence regions of the implicit curve by the

method indicated in the parameterized representation.

228 -

10

15

20

25

30

WO 2007/024638 PCT/US2006/032227

16. The system of claim 15, wherein the processor is further operable to apply
Newton iteration starting at the at least some of the runtime calculated starting points
associated with the one or more convergence regions to derive at least some points on the

implicit curve for rendering the at least some points on the implicit curve on the display.

17. The system of claim 15, wherein the method for the runtime calculation of
the starting points associated with the one or more convergence regions of the implicit
curve is selected from a group of starting point calculation methods consisting of
retrieving stored coordinates of one or more midpoints of one or more parameterization
regions of the implicit curve, calculating coordinates of the starting points based on a
straight line approximation of the implicit curve and calculating coordinates of the starting

points based on a Hermite cubic approximation of the implicit curve.

18. The system of claim 15, wherein the sparse convergence region descriptor
data for describing the one or more convergence regions of the implicit curve comprises a
quantized integer data type representation of at least one endpoint of at least one of the one
or more convergence regions based on which coordinates of the at least one endpoint
having floating point accuracy can be calculated at runtime by applying Newton iterations

starting from the quantized representation of the at least one endpoint.

19. At least one computer-readable storage medium having stored thereon
computer-executable instructions that describe a parameterized representation of at least a
portion of an implicit curve of intersection of a plurality of graphical objects, the
parameterized representation of the at least a portion of the implicit curve operable to be
used by a processor for runtime processing related to rendering the implicit curve on a
display, the parameterized representation comprising:

sparse convergence region descriptor data for describing one or more convergence
regions of the implicit curve; and

sparse starting point descriptor data that indicates to the processor of a selection of
a method for a runtime calculation to be performed by the processor of starting points

associated with the one or more convergence regions of the implicit curve.

-29-

WO 2007/024638 PCT/US2006/032227

20. The at least one computer-readable storage medium of claim 19, wherein
the method for the runtime calculation of the starting points associated with the one or
more convergence regions of the implicit curve is selected from a group of runtime
calculations of starting points consisting of retrieving stored coordinates of one or more
midpoints of one or more parameterization regions of the implicit curve, calculating
coordinates of the starting points based on a straight line approximation of the implicit
curve and calculating coordinates of the starting points based on a Hermite cubfc

approximation of the implicit curve.

-30-

WO 2007/024638 PCT/US2006/032227

1/20

RECEIVE ONE OR MORE IMPLICIT 110
FUNCTION DEFINITIONS [

l

GENERATE A PARAMETRIC
REPRESENTATION OF THE ONE OR MORE f~_- 120
IMPLICIT FUNCTIONS

FIG. 1

‘ 220

210

FIG. 2

WO 2007/024638 PCT/US2006/032227

2/20

Vo

Uo

FIG. 3

RECEIVE A FUNCTION DEFININGAN |~ 410
[IMPLICIT CURVE

!

GENERATE A PARAMETERIZED
REPRESENTATION OF THE
IMPLICIT CURVE

I~ 420

FIG. 4A

WO 2007/024638 PCT/US2006/032227

3/20

RECEIVE PARAMETERIZED
REPRESENTATIONS OF IMPLICIT [~ 425
CURVES

PROCESS THE PARAMETERIZED
REPRESENTATIONS OF IMPLICIT [~ 430
CURVES TO RENDER ONE OR MORE
IMAGES COMPRISING THE IMPLICIT
CURVES ON A COMPUTER DISPLAY

FIG. 4B

PCT/US2006/032227

WO 2007/024638

4/20

Q¥ 9ld

viva JoVAI

0¥

087 1 AV1ASIA ¥ILNAINOD

00%

V1va
NOILVLINISTHdTY
0l e onan
a3ZI¥3 LINYSvVd
r 05y —~
09y

{

H0SS3004d NOILYHS

0by-~~ NIONOILVINISIddF

AAAND LD

3

viva
NOILVINISTddd

Sev VAL

vdNad3a00dd

O

WO 2007/024638

510
y,

PCT/US2006/032227

520
_J

RECEIVE A FUNCTION
DEFINING A FIRST
GRAPHICAL OBJECT

RECEIVE A FUNCTION
DEFINING A SECOND
GRAPHICAL OBJECT

FOR AN IMPLICIT FUNCTION BASED ON THE
OBJECT FUNCTIONS
DETERMINE ONE OR MORE
PARAMETERIZATION REGIONS

L 530

FOR AT LEAST ONE OF THE ONE OR MORE
PARAMETERIZATION REGIONS COMPUTE |~ 540
ONE OR MORE CONVERGENCE REGIONS

GENERATE A PARAMETERIZED REPRESENTATION OF THE
IMPLICIT FUNCTION COMPRISING AT LEAST SOME OF THE
PARAMETERIZATION REGIONS AND AT LEAST SOME OF
THE CONVERGENCE REGIONS THEREIN

~ 550

FIG. 5A

PCT/US2006/032227

WO 2007/024638

6/20

gg Ol

089
Id

WYHO0dd
ONIHIANTH FOVINI

0.8

vY.1vd IOV
CEVAIENEI /e

5957

HO1VdINTD
NOIO3Y FONIOHIANOD

2967

HOLVHINIO NOIO3Y
NOILYZIH3 1INV

096 ™

HOLVHINED
NOILYINASTdJT
FAEND LD

GGG

dOLVHINID
T4A0OW 1o3rdo
TYOIHAVYHO TVHNd300dd

WO 2007/024638 PCT/US2006/032227

7120

RECEIVE A PARAMETERIZATION REGION DEFINITION |~ 610

'

STARTING WITH THE PARAMETERIZATION
REGION, CONDUCT INTERVALIZED SUPER
CONVERGENCE TEST FOR SELECTED INTERVALS ~ 620
OF THE PARAMETERIZATION REGION FOR
DETERMINING CONVERGENCE REGIONS

!

CONTINUE TO APPLY THE INTERVALIZED SUPER
CONVEREGENCE TEST ITERATIVELY TO NEW
INTERVALS WHICH ARE DETERMINED BASED ON
SUB-DIVIDING THE INTERVALS OF PREVIOUS ~ 630
ITERATIONS AND ONE OR MORE NEW STARTING
POINTS THEREIN UNTIL THE TEST IS MET OR A FOR
SELECTED NUMBER OF ITERATIONS

FIG.6

WO 2007/024638

8/20
XpHigh f (x)=0
X C1 X, Mid
LpLow\
710
750
XpHigh | f (x)=0
Xs2
Lo X, Mid
Xs3
Xp Low |
740

PCT/US2006/032227

C 2 ’\/720

C 3 "\/730

FIG. 7A

FIG. 7B

WO 2007/024638 PCT/US2006/032227

9/20

STARTING WITH THE PARAMETERIZATION REGION APPLY
THE SUPER CONVERGENCE TEST TO INTERVALS WITHIN |~810
THE PARAMETERIZATION REGION

l

CONTINUE TO ITERATIVELY APPLY THE SUPER
CONVERGENCE TEST TO NEW INTERVALS CALCULATED
BASED ON INTERVALIZED NEWTON ITERATES OF
INTERVALS OF A PREVIOUS ITERATION

l

STOP APPLYING THE SUPER CONVERGENCE TEST AFTER
REACHING A MAXIMUM NUMBER OF ITERATIONS OR UNTIL
THE SUPER CONVERGENCE TEST IS MET FOR AT LEAST
ONE INTERVAL

~-820

- 830

FIG. 8

910

FIG. 9

WO 2007/024638 PCT/US2006/032227

10/20
bool ConvergencelnRegion (g) —~—~ 1010 1000
input: starting point (g):(g,xd)
if convergence (x,) return true —~_- 1020 /
else

//subdivide x,
xlow=(x,x,. mid) x,high=(x,.midx,)~— 1030
//compuyte new starting points using Interval Newton

start low=Interval Newton (Z low.mid)

start high=Interval Newton (x, high.mid) ~—1040

g low ==r(x_‘,,~ low, start low)
x, high = (x, high, start high) 1050

return ConvergencelnRegion (g low) && ConvergencelnRegion (;c; high)

FIG. 10

WO 2007/024638 PCT/US2006/032227

11/20
bool convergence (E = (g, X4)) 1100
5= %o
Zv_hile(i,arz shrinking){ —~— 1110
h=D-1p f(x)f (%)

Xy =% -
U= expand (%.;, h)
M = Lipshitz Constant (U)
iflf(x)11D-1f(x)| M<1/2 ~ 1120
return true;

} //didn’t prove convergence so have to subdivide

//subdivide region but keep same starting poipt
510w=([xl,x_p.mid],xd) 1130
x high=([x, mid, x,],%,) «—

return convergence (x low) && convergence (x high) ~— 1140

FIG. 11

WO 2007/024638

1225~ STATIC PROCESSING

PCT/US2006/032227

12/20

1200

¥

FOR A SELECTED PARAMETERIZATION REGION OF AN
IMPLICIT CURVE OF INTERSECTION, DETERMINE ONE
OR MORE CONVERGENCE REGIONS AND THEIR
ASSOCIATED STARTING POINTS

— 1210

DETERMINE AND STORE CONVERGENCE REGIONS
DESCRIPTOR DATA AND THE SPARSE STARTING
POINT DESCRIPTOR DATA OF ASSQCIATED STARTING
POINTS

— 1220

1230 ~— RUNTIME PROCESSING

J

BASED AT LEAST ON THE SPARSE STARTING POINT
DESCRIPTOR DATA, CALCULATE THE ASSOCIATED
STARTING POINTS AT RUNTIME FOR APPLYING
NEWTON ITERATIONS TO DETERMINE POINTS ON THE
(IMPLICIT CURVE

— 1235

FIG. 12

WO 2007/024638 PCT/US2006/032227

13/20
/1325
Vo A EP,
1 _
1310
~—1340
Xo

1307

/

A A
-
Uo

FIG. 13

WO 2007/024638 PCT/US2006/032227

14/20
") 13
. EP, 1
A , A
|
|
|
[
|
|
|
|
_ |
X I Vo
~ 1340
|
I
I
: oo
1341
1 Xs2
[(Uosz .1)
|
|
v y 0
- EP4
1320
-
Uo

FIG. 14

WO 2007/024638 PCT/US2006/032227

15/20
v
i \ 1325
/

EPs 1

A A

1300

X Vo

_v Yy 0
S~ EP;

FIG. 15

WO 2007/024638 PCT/US2006/032227

16/20

FIG. 16

WO 2007/024638 PCT/US2006/032227

17/20

1700

<

FOR A SELECTED PARAMETERIZATION REGION OF AN
IMPLICIT CURVE, DETERMINE AT LEAST ONE APPROPRIATE
TYPE OF STARTING POINT DESCRIPTOR DATA FOR DESCRIBING
ONE OR MORE STARTING POINTS ASSOCIATED WITH ONE OR
MORE OF ITS CONVERGENCE REGIONS

— 1710

'

STORE THE CONVERGENCE REGIONS
DATA IN CONJUNCTION WITH THE
APPROPRIATE STARTING POINT DESCRIPTOR
DATA FOR SELECTED CURVE POINTS

~ 1720

FIG. 17

WO 2007/024638 PCT/US2006/032227

VoA

1850
Wo = Vg

FIG. 18

WO 2007/024638

Vo

PCT/US2006/032227

19/20

A
Wo =E
1910
/
EF’4
Y
EP4
1800

FIG. 19

Uo

PCT/US2006/032227

WO 2007/024638

20/20

0¢ 9Old

0¥0¢2 ~\
o T ﬁmu ..J T .Fm.
1 @ ANARmEn R
2502 mSN
n_m_<om_>m_v_
omON 9502 OQON N—.ON
mmSn_s_oo Aw.,v NSN
310N3d sm_m_os_ oL0Z
wS 9102 ﬁl
_ _ I/ A\
o Il
22 v.iva
WYHO0dd ggoz
JOVAHILINI | | IOV4HIINI || FOVIYTLINI || FOVIHTLNI :
JOVAHILNI 140d JIAINA MSIa JAINA _\m,_w.w__@n%b
¥502 AHOMLAN Vi3S TVOILdO JILIANOYIN MSIQ a¥VYH ve0c
8502’ E\ON\D 202~ p\/ﬂ NNONML\4 omog SNYNO0Nd
‘ . NOILVYOI'lddY 27§80z
SNg WILSAS v
ONILYHIdO 0£02
\ Holdvavy LINN 0107+ VY
HOLINOW O3dIA ONISSIDOHd
. ; SOoIg s1h5
\ 807/ 2002 +0¢
3007+ oy
, AHOWZW W3LSAS
[¥002

\
0002

International application No.
PCT/US2006/032227

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 17/00(2006.01)i, GOOF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F, GO6Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Patents and applications for inventions since 1975

Korean Utility models and applications for Utility models since 1975

Japanese Utility models and applications for Utility models since 1975

PAJ, FPD, USPAT, eKIPASS(KIPO internal)

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract; claims 1, 2, 4

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6,300,958 B1 (T-SURF CORP.) 09 October 2001 1-20
See abstract; claim 1
A WO 2004-44689 A2 (METRIC INFORMATICS INC.) 27 May 2004 1-20
See abstract; claim 1
A US 6,806,875 B2 (RENESAS TECHNOLOGY CORP.) 19 October 2004 1-20
See abstract; claim 1
A KR 2005-44964 A (LG ELECTRONICS INC.) 16 May 2005 1-20

|:| Further documents are listed in the continuation of Box C.

|E See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of citation or other

special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

"o

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

ey

ng"

Date of the actual completion of the international search

28 DECEMBER 2006 (28.12.2006)

Date of mailing of the international search report

28 DECEMBER 2006 (28.12.2006)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

TR {50
PARK, Sung Woo *;QF\TEE%
=2

Telephone No. 82-42-481-5790

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2006/032227

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6,300,958 BT 09.10.2001 None

WO 2004-44689 A2 27.05.2004 AUZ2003286922A1 03.06.2004
CN1781111A 31.05.2006
EPO1559060A2 03.08.2005
JP2006518886T2 17.08.2006
KR2005084991A 29.08.2005
US20060013505A1 19.01.2006

US 6,806,875 B2 19.10.2004 US20020154116A1 24.10.2002
US2005041489A1 24.02.2005
US2006202992AA 14.09.2006
US7064756BB 20.06.2006

KR 2005-44964 A 16.05.2005 CN1614637A 11.05.2005
EPO1530165A2 11.05.2005
RU2004131630A 10.04.2006
US2005099415AA 12.05.2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

