(51) Int.CI.: A 61 H 31/00 A 61 M 16/00
(21) Patentansøgning nr.: PA 1990 02354
(22) Indleveringsdag: 1990-09-28
(24) Lebedag: 1989-03-31
(41) Alm. tilgængelig: 1990-09-28
(45) Patentets meddelelse bkg. den: 2001-04-23
(86) International ansøgning nr.: PCT/US90/01356
(86) International indleveringsdag: 1989-03-31
(85) Videreførelsesdag: 1989-03-31
(30) Prioritet: 1989-03-31 US 175810

(73) Patenthaver: Cardiopulmonary Corporation, 11 Business Park Drive, Branford, CT 06405, USA
(72) Opfinder: James W. Blondi, 1601 Ridge Road, North Haven, CT 06473, USA
Richard A. Mentelos, 105 Jackson Road, Hamden, CT 06517, USA

(74) Fuldmægtig: Chas. Hude A/S, H.C. Andersens Boulevard 33, 1780 København V, Danmark

(54) Benævnelse: Apparat til understøttelse af en patients åndedræts- og hjertefunktion

(56) Fremdragne publikationer:
US 4676232
E. Lundsgaard: Lærebog i Fysiologi, 1953, København, side 143-145

(57) Sammendrag:
En forbedret hjertecirkulationsunderstøtning er tilført til en patient ved at detektere påbegyndelsen af ventrikulær udskydning i en hjertecyklus af patienten og ved en selektiv forøgelse af trykket i thorax af patienten i relativ fase med hensyn til påbegyndelsen af ventrikulær udskydning. Hjertecirkulations-udgangssignalet kan observeres ved hjælp af en minutvolumemonitor (65), medens den relative fase af trykforøgelsen i thorax med hensyn til påbegyndelsen af ventrikulær udskydelse er justeret for maksimalt minutvolumen under styring af en mikrocomputer (12). En udgangstrykledning (62) anvendes til at interface systemet (10) til patienten. Patientinterfacet kan indeholde et apparat til tilførsel af højfrekvente respirationsimpulser i synkronisme med hjertecyklen. I en udførelsesform er impulserne anvendt til at oppuste en blære i kontakt med thorax.

fortsættes
Opfindelsen angår et apparat til understøttelse af en patients åndedræts- og hjertefunktion, omfattende detektororganer for detektion af påbegyndelsen af den ventrikulære uddrivning i hjerteslagsperioden, ventilationsorganer med trykforøgende organer indeholdende organer for periodisk tilførsel af et respirationsfluidum i patientens lunger samt styreorganer, der kan reagere på detektororganerne ved at aktivere de trykforøgende organer i relativ fase med hensyn til den ventrikulære uddrivning.

Mekanisk inspiration (positivt lungeopustningstryk) anvendes ved patienter med akut kardio-respirationssvigt, udspænder lungerne, øger luftvejstrykket og frembringer en forøgelse i det gennemsnitlige tryk i thorax. Effekten af den heraf følgende forøgelse af det funktionelle lungevolumen er i virkeligheden forskudt takket være trykforøgelsen i thorax, eftersom sidstnævnte giver en reduktion i den venøse tilbageføring til hjertet, en reduktion i transmuralt højre atrialtryk (højre ventrikulære fyldningstryk) og begrænsen højre ventrikulære udgangslag. Som følge af at den pulmonære cirkulation tjener som en ledning fra den højre til den venstre ventrikel og har en høj kapacitet i forhold til den højre del af hjertet, er det transmurale venstre atrialtryk (venstre ventrikulære fyldningstryk) og det højre ventrikulære udgangslag tilsvarende reduceret. Der er en faseforsinkelse på 2-5 slag af denne effekt i forhold til den højre del af hjertet. Dette er den primære mekanisme af reduceret minutvolumen i alle patienter under mekanisk ventilation, hvor en lungeopustning ved positivt tryk tilføres enten kontinuerligt eller intermittende.

I almindelighed kan minutvolumenet reduceres med 50-75% under mekanisk inspiration, hvilket kan indvirke på blodgennemstrømningen i organer, vævsgennemstrængning og patientoverlevelse. Fald i minutvolumenet vil yderligere blive accentueret i tilfælde af funktionel hypovolemi, myocardic ischemi og infarkt, reduceret vasomotorotonus, åndedræt med stort respirationsvolumen, forlænget inspirationstid og ved anvendelse af positivt slutudåndingstryk (anvendt ved patienter med akutte respirationsfejl til opretholdelse af oxygenering og pulmonar gasudveksling).
Ændringer i aorta pulstryk og gennemsnitligt arterieblodtryk kan også opstå under positiv trykinspiration. F.eks. giver en positiv trykinspiration en forøgelse i seriemodstanden af den pulmonare cirkulation. Som følge af at den pulmonare cirkulation kobler til højre og venstre hjerteudgang, vil en forøgelse i pulmonar, vaskulær modstand, såsom den, der opstår under en konventionel langsom mekanisk ventilation med højt volumen, hæmme højre ventrikulære uddrivning og øge højre ventrikulære dimension og vægspænding og kunne give anledning til myocardie ischemi. En reduceret højre ventrikulær uddrivning vil decellerere den pulmonare blodgennemstrømning og reducere fyldningen af venstre ventrikel og etablerer en tilstand af højre og venstre ventrikulær interferens.

Dette resulterer i en reduceret venstre hjerteforbelastning (reduceret venstre ventrikulær fyldning som følge af indtrængning i det venstre ventrikulære volumen af den overudspillede højre ventrikel) og en reduceret venstre hjerteuddrivning. På denne måde kan en konventionel mekanisk inspiration frembringe en dyb kardiocirkulær fejlfuncion ved at ændre både serie- og parallelrelationen af højre og venstre ventrikulære funktion. (Som følge af indtrængning i det venstre ventrikulære volumen af den overudspillede højre ventrikel)

Man har søgt at afhjælpe de skadelige virkninger af mekanisk inspiration på cirkulationen ved momentant at reducere trykket af respirationsgassen ved hjælp af et pulssynkroniseret signal under udbredelsen af pulsbølgen i den alveolare strømningsvej, og derefter umiddelbart genetablere det tryk, der eksisterede inden trykfaldet. En passende synkronisering af impulser understøtter fyldningen af venstre atrium af hjertet. Dette er i nogen grad en fordel, men omhandler ikke det samlede problem i forbindelse med en reduceret biventrikulær forbelastning, der følger af en forøget middelværdi af trykket i thorax.

Fra US patentskrift 4.676.232 kendes et apparat til understøttelse af en patients åndedræts- og hjertefunktion, hvilket apparat omfatter udstyr til at detektere starten af den ventrikulære uddrivning i patientens hjertecyklus, ventilationsudstyr til periodisk tilførsel af respirationsgas under tryk til patientens lunger, kontroludstyr til automatisk
at generere et trykstyrsignal til at styre ventilationsudstyrets trykfremspringelse ved tilførsel af respirationsgas og til at aktivere ventilationsudstyrets trykfremspringelse med en faseforskuel i forhold til den ventrikulære uddrivning og udstyr, der på indstilleligh måde kan regulere faseforskellen. Apparatet gør brug af en vest, der er anbragt omkring patientens bryst, og som ved tilførsel af luft bringes til at ekspandere for at øge det thorakale tryk i patienten.

Formålet med opfindelsen er at tilvejebringe et apparat til understøttelse af en patients åndedræts- og hjertefunction, hvor tilførslen af åndingsgas under tryk styres tidsmæssigt i forhold til tidspunktet for den ventrikulære uddrivning for at forbedre hjerteaktiviteten, men hvor dette sker uden at skulle gøre brug af en vest, der er anbragt omkring patientens bryst, og som ved tilførsel af luft bringes til at ekspandere for at øge det thorakale tryk i patienten.

Et apparat af den indledningsvis nævnte art er ifølge opfindelsen ejendommeligt ved, at det omfatter kardiocirkulationsovervågningsorganer for kontinuerligt eller periodisk at overvåge blodvolumenstrømmen afgivet fra hjertet under en åndingscyklus for tilvejebringelse af udgangssignaler til indikation deraf og styreorganer, der på grundlag af udgangssignalerne forsinker starten og regulerer formen af trykstyrresignalerne til ventilationsudstyret, sådan at volumenstrømmen fra hjertet maksimeres ved reduktion af den ventrikulære efterbelastning, og oprettholdelse af den ventrikulære forbelastning. Kortvarige, hurtige åndedrag vil derved, i tilfælde af at de synkroniseres med hjerteuddrivningen, kunne understøtte hjertefyldningen og uddrivningen og derigennem forøge volumenet.

Fremdeles kan ifølge en første udførelsesform for opfindelsen kardiocirkulationsovervågningsorganerne indeholde organer til bestemmelse af strømningshastigheden af blodet fra hjertet.
Endvidere kan ifølge en anden udførelsesform for opfindelsen kardiocirkulationsovervågningsorganerne indeholde et organ til overvågning af oxygenforbrug til bestemmelse af hastigheden af patientens oxygenforbrug.

Desuden kan ifølge en tredje udførelsesform for opfindelsen organet til overvågning af oxygenforbruget omfatte organer for tilførsel af en oxygenstrøm til patienten, et første organ til måling af koncentrationen af oxygen i oxygenstrømmen, et andet måleorgan til måling af koncentrationen af oxygen i strømmen ved et punkt indeholdende patientens udnængedgasser og strømningsmåleorganer til måling af strømningshastigheden af gasser i strømmen.

Opfindelsen skal nærmere forklares i det følgende under henvisning til tegningen, hvor

fig. 1 viser et blokdiagram af et apparat ifølge opfindelsen,

fig. 2 en kontinuert minutvolumen-overvågningsenhed i det i fig. 1 viste apparat,

fig. 3A-3E en illustration af relationerne imellem de fysiologiske parametre ved påbegyndelse af en første driftstilstand af apparatet i fig. 1,

fig. 4A-4E svarer til fig. 3A-3E, men illustrerer en ændring fra første driftstilstand til en anden driftstilstand af apparatet i fig. 1,

fig. 5A og 5B rutediagrammer af et program anvendt af en mikroprocessor i apparatet i fig. 1,

fig. 6 et rutediagram af en første subrutine i rutediagrammet i fig. 5A og 5B, og

fig. 7 en anden subrutine i rutediagrammet i fig. 5A og 5B.

Udgangen af isolationsforstærkeren 38 tilføres til en A/D-omsætter 46. A/D-omsætteren 46, der har en analog multiplekserindgang, anvendes til at konvertere mere end et analogt signal til digital form. A/D-omsætteren 46 har en tilstrækkelig høj omsætnings-

Udgangen af R-bølgedetektoren 48 er endvidere ført til et solenoidedriverkredsløb 52. Driverkredsløbet 52 driver en solenoide af en solenoidestyret ventil 56 til momentan åbning for at tillade, at et kvantum gas fra udgangen af en trykregulator 58 føres gennem ventilen 56. Højtryksindgangen til regulatoren 58 er forbundet til en luft/oxygen blandingsskilde (ikke vist).
Driverkredsløbet 52 reagerer på signaler fra mikrocomputeren 12 tilvejebragt på databussen 44. Som før nævnt er udgangen af R-bølgedetektorer 48 endvidere ført til driverkredsløbet 52. En impuls fra R-bølgedetektorer 48 vil ikke i sig selv aktivere driverkredsløbet 52. I stedet startes et forudbestemt forsinkelsesinterval, i hvilket driverkreds-
løbet 52 vil aktivere solenoideventilen 56, hvis et passende signal bliver modtaget af kredsløbet 52 via databussen 44. Logiske kredsløb til udførelse af denne funktion er velkendte.

Udgangen af ventilen 56 er forbundet til en trykledning 60. Et trykreservoir eller en ballast 61 er også forbundet til ledningen 60 til tilvejebringelse af en vis udglatning af luftimpulserne fra ventilen 56. Derved tilvejebringes en bedre komfort for patienten.

Trykledningen 60 er forbundet til en trykmonitor 64. Monitoren 64 indeholder en trans-

En enhed 66 til kontinuerlig overvågning af minutvolumenent tilvejebringer et analogt signal til den ene indgang af A/D-omsætteren 46. Ligesom i forbindelse med trykover-
vågningsenheden 64 kan udgangsovervågningsenheden 66 anvendes til at give en alarm-
funktion eller igangsætte forudbestemte driftsændringer af apparatet 10, hvis udgangssig-
nalerne fra overvågningsenheden 66 er af en sådan karakter, at de indikerer tilstande, der er skadelige for patientens sundhed.
Fig. 2 illustrerer en metode til interfacing af apparatet 10 til patienten. Denne interfacing omfatter en enhed 66 til kontinuert overvågning af minutvolumenat. En første oxygenkonzentrationsmåler 74 måler oxygenkoncentrationen i luft/oxygenblandingen i ledningen 62. Et patientfastgørelsesrør 76, der har en åbning til ledningen 62, er på sin side forbundet til et endotrachealrør (ikke vist), der anvendes til at tilvejebringe mekanisk understøttet respiration til patienten. En anden oxygenføler 78 i ledningen 62 bestemmer oxygenkoncentrationen i luftstrømmen afgivet via ledningen 62, som er en kombination af luftstrømmen fra trykovervågningsenheden 64 (fig. 1) og gassen fra patientens lungar. En strømningsmåler 80 bestemmer volumeøf gassen afgivet fra rør 62. Strømningsmåleren 80 tjener desuden til at tilvejebringe en lille strømningsmodstand, således at en del af gasserne af impulserne - når trykimpulserne er tilvejebragt ved en åbning af ventilen 56 (fig. 1) - føres til patientens lungar gennem røret 76 og det endotracheale rør.

Oxygenfølerne 74 og 76 kan være følere, der står i forbindelse med et polarografisk oxygenanalysesystem eller ved tekniker af optisk fluorescens, der hver især kan tilvejebringe de aktuelle indgangssignaler til mikrocomputeren 12. Strømningsmåleren 80 kan være en ud af flere kendte anordninger, såsom en pneumotachanordning og står i forbindelse med en passende elektronik til tilvejebringelse af et indgangssignal til mikrocomputeren 12.

Enheden 66 i fig. 2 til overvågning af minutvolumen indeholder endvidere organer til bestemmelse af differensen imellem den arterielle og den venøse blodoxxygenkonzentration. En fizerspidsføler 82 til oxygenmåling (med dertil hørende elektronik) anvendes til at bestemme oxygenindholdet i arterieblodet. En optisk oxygenkonzentrationsføler 84, der er anbragt i den pulmonare arterie ved enden af et pulmonart arteriekateter 86 (med dertil hørende elektronik) anvendes til bestemmelse af det venøse oxygenindhold.

Signaler fra den første oxygenføler 74, den anden oxygenføler 78, strømningsmåleren 80 og elektronikken i forbindelse med følerne 82 og 84 tilføres til mikrocomputeren 12.
Under anvendelse af en variation af Fick's ligning vil mikrocomputeren 12 på åndedræt til åndedræts basis, dvs. næsten øjeblikkeligt, kunne overvåge hastigheden af oxygenoptagelsen og differensen imellem arteriel og venøs oxygenkoncentration til bestemmelse af minutvolumen.

Overvågning foretages ved at multiplicere differensen i oxygenkoncentration ved fælten 74 og fælten 78 med strømningshastighedsmålingen af fælten 80, og dividere dette produkt med differensen imellem arteriel og venøs oxygenkoncentration, bestemt ved hjælp af fælterne 82 og 84. Successive koefficienter lagres i en del af RAM 16, der er programmeret til at operere som en først ind/først ud hukommelse. Når summen af de lagrede værdier falder under en forudbestemt grænse, aktiveres en alarm. Derved indikerer, at patientens minutvolumen er aftaget.

Selv om minutvolumen-overvågningen heden 66 i fig. 2 er beregnet til at tilvejebringe en forholdsvis nøjagtig bestemmelse af minutvolumen, vil andre systemer også kunne anvendes i stedet for apparatet i fig. 2. Relative indikationer af minutvolumen kan tilføres til mikrocomputeren 12 ved hjælp af en "dvælende" optisk strømningsføler, en Doppler strømningsmåler, et elektromagnetisk strømningsmåler eller en impedansstrømningsføler. De elektroniske systemer i forbindelse med disse fælter kan reagere på strømningshastighed snarere end minutvolumen og udgangssignalerne (typisk midlet over en tidsperiode ved hjælp af integrationsorganer inkorporeret i mikrocomputeren 12 og
operativt forbundet med først ind/først ud hukommelsesdelen af RAM 16) tilvejeebringer en relativ snarere end en absolut repræsentation af minutvolumenet.

Respirationen induceret ved hjælp af patientinterfacet i overensstemmelse med fig. 2 består af kortvarige, hurtige åndedrag. Dette er en markeret afvigelse fra driften af konventionelle respiratorer, hvori den naturlige åndedrætscyklus af patienten er udnyttet. De kortvarige hurtige åndedrag vil i tilfælde af, at de synkroniseres til hjertedrætscyklus, som beskrevet nedenfor, tilvejeebringe en ekstrem signifikant forøgelse af minutvolumen.

Arrangementet i fig. 2 kan anvendes uafhængigt som en enhed til overvågning af minutevolumen ved forbindelse til en konventionel respirator. Selv om kun patientinterfacet er anvendt for cirkulationsunderstøttning i overensstemmelse med opfindelsen af blæren, kan minutvolumen-overvågningsenheden i fig. 2 med fordel anvendes til overvågning af driften således, som det vil blive mere fuldstændigt beskrevet i forbindelse med fig. 5.

Der refereres nu til fig. 3A-3E, hvor relationen imellem de fysiologiske parametre og driften af apparatet i fig. 1 er illustreret. Fra top til bund repræsenterer de viste spor aortatrykket A₀, elektrokardiogrammet EKG, firkantbølgen SQ, der aktivere solenoiden af ventilen 56, ventilationsåndedraget Q₉ og minutvolumenet Qₑ målt ved hjælp af en elektromagnetisk strømningssonde. Driften af apparatet 10 starter til tidspunktet T. Inden dette tidspunkt er aortatrykket A₀ lavt, hvilket indikerer en utilstrækkelighed i minutvolumen således, som det kan være tilfældet i en patient med cirkulations- eller kreds-løbssygdomme. Forekomsten af et første QRS kompleks i EKG efter tidspunktet T trigger begyndelsen af et tidsforsinkelsesinterval t₀. Ved afslutningen af dette tidsinterval (der kan være fra omkring 40 msek. til omkring 200 msek., men typisk er af størrelsesordenen 100 msek.) er en firkantbølge tilført til solenoiden af ventilen 56, der derved åbnes. Ventilen 56 forbliver åben i en tidsperiode tᵩ (en inspiratorisk plateautid, der typisk er på 120 msek.) bestemt ved hjælp af mikrocomputeren 12. For hver QRS
kompleks i EKG signalet efter tiden T, er der tilvejebragt en anden firkantbølge, der er forsinket tiden t_δ og er af bredden t_φ. De resulterende trykimpulser i ledningen 62 giver anledning til, at patientens respiration ændres fra den normale respirationcyklus inden tidspunktet T til korte højfrekvente åndedrag, der forekommer med en hastighed, der er lig med hjertehastigheden efter tiden T. Efter starten af en sådan højfrekvent respiration (forsinket i tid med hensyn til ventrikulær uddrivning med en tid svarende til intervallet t_δ) observeres en betydelig forøgelse i minutvolumet Q_F.

Brugen af 1:2 tilstanden er mest passende, når patienten har en forholdsvis hurtig hjertytme. Som følge af inerti i forbindelse med massetransport af gas i lungerne, er det at foretrække, at apparatet 10 opererer ved en udgangsimpulshastighed på tilnærmelsesvis 40-60 pr. min. Hvis patienten har en hjertytme, der er større end tilnærmelsesvis 85 slag pr. min., kan drift i 1:2 tilstanden være passende. Som illustreret i fig. 4E, øges minutvolumenet Q_F yderligere, når apparatet skifter fra 1:1 tilstanden til 1:2 tilstanden.

Idet der refereres til fig. 5A og 5B kan et program til eksekvering ved hjælp af mikroprocessoren 20 af mikrocomputeren 12 indføres fra en disk (ikke vist) til RAM 16 eller være permanent lagret i RAM 18. Ved trin 100 er - når programmet kaldes ved anven-

Ved trin 106 startes en sløjfe (ikke separat vist) for overvågning af udgangen af minutvolumen-overvågningsenheden 66, som er forbundet til patienten (MVO-sløjfe). Som beskrevet ovenfor under henvisning til fig. 2, er overvågningen foretaget ved at tilføre indføringerne til en først ind/først ud hukommelse til bestemmelse af minutvolumenatet af patienten. Denne sløjfe opererer kontinuerligt fra dette punkt, idet den øjeblikkelige værdi vurderes fra tid til anden således, som det vil blive beskrevet i det følgende.

Mikrocomputeren 12 kan programmeres således, at hvis enheden 66 til kontinuer overvågning af minutvolumenet ikke er forbundet, så tillades der kun en kontinuer manual drift.

Antag, at det understøttede minutvolumen er større end det ikke-understøttede minutvolumen. Programmet forgrener da til trin 120, hvor det fastslås, om der er valgt manuel eller automatisk drift. Antag, at der er valgt manuel drift. Programmet forgrener da til trin 121, hvor udgangen af minutvolumen-overvågningsenheden 66 (bestemt ved hjælp af sløjfen, der kontinuerligt løber fra afviklingstiden af trin 106) er kontinuerligt overvåget. Så længe minutvolumenet er større end 0,7 gange det understøttede minutvolumen bestemt efter trin 114, vil driften af apparatet fortsætte, uden at der slås alarm. Dette tillader en vis reduktion i det understøttede minutvolumen, hvilket f.eks. skyldes, at patienten falder i søvn. Hvis minutvolumenet ikke falder under 0,7 gange den understøttede værdi, vil programmet forgrene til trin 118, og der lyder en alarm. I dette tilfælde er kardiocirkulationsunderstøtningen ikke automatisk afsluttet.

Selv om det ikke er vist i fig. 5A og 5B, er det en fordel at tilvejebringe en programafbrydelse ved et punkt, eksempelvis under overvågning ved hjælp af trin 122, således, at indgangsdataene ved hjælp af tastaturet 30 kan justeres manuelt til optimering af minutvolumenet. Dette kan med fordel ske, medens apparatet tilvejebringer en cirkulationsunderstøtning, og minutvolumenet overvåges og vises. Efter en sådan manuel optimering er det passende at genindføre programmet, idet der startes ved trin 108.
Hvis den automatiske driftstilstand vælges, sker der fra trin 120 en forgrening til trin 122, hvor en subroutine til automatisk optimering af forsinkelsestiden t_d beskrevet i det følgende under henvisning til fig. 6 er initieret. Når forsinkelsen er optimeret, udføres ved trin 124, en subroutine, der optimerer inspirationspulsvidden t_v, som beskrevet i det følgende under henvisning til fig. 7. Optimeringsværdierne af forsinkelsestiden t_d, pulsvidden t_v og minutvolumet Q_t lagres ved 126.

Ved trin 138 fastslås, om minutvolumet er aftaget til under 0,7 gange den maksimale værdi Q_{MAX} (den maksimale værdi af værdierne lagret ved trin 126), der forekom siden cirkulationsunderstøtningen blev påbegyndt snarere end den sidst lagrede værdi. Så
længde svaret er nej, vil programmet sløjfe tilbage til trin 122, og der foretages en ny optimering. Hvis svaret er ja, aktiveres en alarm ved trin 140 inden sløjfning tilbage til trin 122, eftersom en reduktion på mere end 30% i minutvolumenet anses for at være tilstrækkeligt til at forårsage en berettiget undersøgelse snarere end blot at logge data.

5 Der refereres nu til fig. 6, hvor en subrutine ved trin 122 til optimering af forsinkelsen er beskrevet. Efter initialisering af de respektive registre i forbindelse med subrutinen ved start ved trin 142, er den øjeblikkelige værdi af minutvolumenet \(Q_n \) lagret ved trin 144. Ved trin 146 er en begyndelsesværdi af forsinkelsestiden \(t_{ia} \) inkrementeret med 10 msek. til tilvejebringelse af en ny værdi. Begyndelsesværdien kan indføres manuelt ved trin 108 eller være en udeblivelsesværdi. I hvert tilfælde skal denne begyndelsesværdi vælges således, at den er mindre end det, der forventes at være optimal. Hvis dette er tilfældet vil der, når tidsforsinkelsen er inkrementeret ved trin 146, være en forøgelse i minutvolumen, som derefter tilvejebringes som indgangsværdi \(Q_{n+1} \) ved trin 148 efter en forsinkelse på mindst to minutter for at muliggøre en etablering af en ny ligevægtstilstand. Så længe minutvolumenet ikke er faldet, vil programmet sløjfe til trin 152, hvor den nye værdi af \(Q_n \) sættes lig med værdien bestemt ved trin 148. Igen er forsinkelsestiden inkrementeret ved trin 146, og der er opnået adgang til den sidste værdi af minutvolumenet ved trin 148. Bestemmelsen ved trin 150 er igen foretaget. Sløjfens indeholdende trinnene 146, 148, 150 og 152 fortsætter, indtil en forøgelse giver anledning til, at minutvolumenet falder en smule. Til denne tid vil programmet forlade subrutinen ved 154. Selv om det ikke er vist, er det i givet fald muligt at dekrementere tidsforsinkelsen med 10 msek. umiddelbart inden afgang.

Der refereres nu til fig. 7. En tilsvarende rutine følges med hensyn til pulsvidden \(t_p \). Efter start ved trin 156 er det øjeblikkelige minutvolumen \(Q_n \) tilvejebragt som et indgangssignal ved trin 158. Begyndelsesinspirationsplateautiden \(t_p \) (begyndelsespulsvidde eller inspirationstid) er inkrementeret med en fikseret værdi I, såsom 10 msek. Ved trin 162 er der opnået adgang til en ny værdi for minutvolumenet \(Q_{n+1} \). Ved trin 164 foretages en bestemmelse svarende til den, der er foretaget ved trin 150. Hvis minutvolumenet
ikke er aftaget, vil programmet forgrene til trin 166, hvor den øjeblikkelige værdi af minutvolumenet Q_{n+1} indlæses som den nye værdi af Q_n. Pulsvidden er igen inkrementeret ved trin 160, og programmet fortsætter til trin 162 og trin 164. Sløjfen indeholdende trinnene 160, 162, 164 og 166 fortsætter, indtil det tidspunkt, hvor minutvolumenet bestemmes ved trin 164, til at være aftaget i forhold til den tidligere værdi. Subrutinen aktiveres derefter ved 168. Som før nævnt i forbindelse med fig. 6 og inden afgang fra subrutinen kan inspirationspulsbredden dekrementeres med en værdi, der er lig med den tidligere forøgelse således, at minutvolumenet maksimeres. I lyset af de forholdsvis små ændringer, der foretages, er dette trin ikke anset for at være kritisk, især ikke med hensyn til pulsvidden.

Flere modifikationer vil være nærliggende for fagfolk på området. Selv om det ikke er beskrevet, er det indlysende, at en automatisk udvælgelse af værdien af N vil kunne implementeres. Hvis patientens hjerteslag øges over en forudbestemt hastighed, kan det være ønskværdigt at ændre fra en 1:1 tilstand til en 1:2 tilstand. En opslagstabel af pulshastighed vs. N kan være tilvejebragt. Det skal imidlertid erkendes, at en vis hysterese kan indbygges således, at tilstandsændringen ikke er hurtig og repetitiv, hvilket i givet fald kunne give gener for patienten. Hvis tilstanden ændres, må der ske en ændring i pulsvidden t_p, til tilvejebringelse af en passende ventilering, hvis apparatet ifølge opfindelsen er interfacet til patienten, der anvender arrangementet i fig. 2.

PATENTKRAV

1. Apparat til understøttelse af en patients åndedræts- og hjertefunction, omfattende detektionsorganer til detektion af påbegyndelsen af den ventrikulære uddrivning i hjerteslagsperioden, ventilationsorganer med trykforøgende organer indeholdende organer for periodisk tilførsel af et respirationsfluid i patientens lunger, samt styreorganer, der kan reagere på detektionsorganerne ved at aktivere de trykforøgende organer i relativ fase med hensyn til den ventrikulære uddrivning, kendetegnet ved,

kardiocirkulations-overvågningsorganer (66) for kontinuerligt eller periodisk at overvåge blodvolumenstrømmen afgivet fra hjertet under en åndingscyklus for tilvejebringelse af udgangssignaler til indikation deraf og styreorganer (20, 42, 48, 52), der på grundlag af udgangssignalerne forsinker starten og regulerer formen på trykstyreresignalerne til ventilationsudstyret (56, 58, 60, 61, 62), sådan at volumenstrømmen fra hjertet maksimeres ved reduktion af den ventrikulære efterbelastning, og opretholdelse af den ventrikulære forbelastning.

2. Apparat ifølge krav 1, kendetegnet ved, at kardiocirkulations-overvågningsorganerne (66) indeholder organer til bestemmelse af strømningshastigheden af blodet fra hjertet.
3. Apparat ifølge krav 1, kende etegnet ved, at kardiocirkulations-overvågningsorganerne (66) indeholder organer (74, 78, 80) til overvågning af oxygenforbruget til bestemmelse af hastigheden af patientens oxygenforbrug.

4. Apparat ifølge krav 3, kende etegnet ved, at organerne til overvågning af oxygenforbruget omfatter organer for tilførsel af en oxygenstrøm til patienten, et første organ (74) til måling af oxygenkoncentrationen i oxygenstrømmen,

et andet måleorgan (78) til måling af oxygenkoncentrationen i strømmen ved et punkt indeholdende patientens udåndingsgasser, og

strømningsmåleorganer (80) til måling af strømningshastigheden af gasser i strømmen.

5. Apparat ifølge krav 4, kende etegnet ved, at det omfatter blodoxxygenmåleorganer (82, 84) til måling af differencen imellem den arterielle oxygenkoncentration og veneoxxygenkoncentrationen af patienten og tilvejebringelse af et differenssignal, der indikerer differencen imellem den arterielle oxygenkoncentration og veneoxxygenkoncentrationen.

6. Apparat ifølge krav 5, kende etegnet ved, at det omfatter beregningsorganer (12, 16) til bestemmelse af hjerteafgivelsen, hvilke beregningsorganer indeholder differensorganer til bestemmelse af differensen mellem oxygenkoncentrationen målt ved hjælp af det første og det andet kontructionsåleorgan (74, 78),

organer (12) til at multiplicere differencen i oxygenkoncentration med strømningshastigheden målt ved hjælp af strømningsmåleorganerne (80) til bestemmelse af det øjeblikkelige oxygenforbrug.
organer (12) til at dividere værdien af det øjeblikkelige oxygenforbrug med differensafgivelsen af blodoxygennåleorganet (82, 84) til bestemmelse af en værdi af hjerteafgivelsen.

7. Apparat ifølge krav 6, kendte gnet ved, at det desuden omfatter organer (12) til integration af værdierne af hjerteafgivelsen til bestemmelse af en gennemsnitlig hjerteafgivelse.

8. Apparat ifølge krav 7, kendte gnet ved, at integrationsorganerne (12) omfatter en først ind/ud-hukommelse (FIFO) for lagring af værdierne af hjerteafgivelsen og organer til bestemmelse af summen af værdierne i hukommelsen.

9. Apparat ifølge krav 1, kendte gnet ved, at det omfatter divisionsorganer (12), der kan reagere på detektionsorganerne (74, 78, 80, 82, 84), hvilke divisionsorganer producerer et udgangssignal for hver N kardiacyklar, hvor N er et positivt helttal, idet styreorganerne kan reagere på udgangssignalet fra divisionsorganerne.

10. Apparat ifølge krav 9, kendte gnet ved, at det omfatter vælgerorganer til at vælge det positive hele tall N.

11. Apparat ifølge krav 10, kendte gnet ved, at det positive hele tall N ved hjælp af vælgerorganerne kan vælges til at være én eller to.

12. Apparat ifølge krav 1, kendte gnet ved, at det trykforøgende organ omfatter en kilde af respirationsfluidum under tryk, trykpulsorganer (56) for tilvejebringelse af pulser af respirationsfluidum under tryk og et patientinterfaceorgan (62) til udnyttelse af pulserne til at forøge det intrathorakale tryk.
FIG. 5A
FIG. 5B