(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
15 November 2001 (15.11.2001) PCT WO 01/86489 A2
(51) International Patent Classification’: GO6F 17/20 (74) Agent: HARRIS, Scott, C.; Fish & Richardson P.C., Suite
500, 4350 La Jolla Village Drive, San Diego, CA 92122
(21) International Application Number: PCT/US01/15380 (US).

(22) International Filing Date: 11 May 2001 (11.05.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,

(25) Filing Language: English CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,

HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,

(26) Publication Language: English LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,

MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,

(30) Priority Data: TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
60/203,643 11 May 2000 (11.05.2000) US

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ,BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us 60/203,643 (CON)
Filed on 11 May 2000 (11.05.2000)

(71) Applicant (for all designated States except US): UNIVER-
SITY OF SOUTHERN CALIFORNIA [US/US]; 3716 S.

Hope Street, Suite 313, Los Angeles, CA 90007 (US). Published:
— without international search report and to be republished
(72) Inventors; and upon receipt of that report

(75) Inventors/Applicants (for US only): MARCU, Daniel
[CA/US]; 6420 Green Valley Circle, Apt. 303, Culver For two-letter codes and other abbreviations, refer to the "Guid-
City, CA 90230 (US). KNIGHT, Kevin [US/US]; 43 6th ance Notes on Codes and Abbreviations" appearing at the begin-
Street, Hermosa Beach, CA 90245 (US). ning of each regular issue of the PCT Gazette.

(54) Title: DISCOURSE PARSING AND SUMMARIZATION

100
o
/‘108
104 EVIDENCE
/‘706
108~ | _—
708
106 DACKEROUND | ~104 104~ ELABORATION 106
WATH 175 DISTANT ORBIT MARS EXPERIENCES FRIGID 108 108
(50 PERCENTFARTHER _ WEATHER ConDmons., 104~/ jour N 104 104 CONTRAST 104
0M THE SUN THAY EARTH-)
AND SLIM ATMOSPHERIC 102 SURFACE TEMPERATURES ANDCANDIP ONLY THE MIDDAY SUN 104~ 108
BLAKKET TYPICALLY AVERAGE TO-123DEGREES AT TROPIGAL LATITUDES CAUSE™ 106
o ABOUT-60 DEGREES CELSIUS NEAR 1S WARM ENOUGH TO THAW
CELSIUS {(-76 DEGREES ~_ THE POLES. IGE ON OCCASION, BUT ANY LIGUID WATER BECAUSE OF THE
f A”ng’g’jggé” THE S FORMEDINTHS WAY WOULD LOWATMOSPHERIC
EVAPORATE ALMOST INSTANTLY PRESSURE
102 — Y T
102 102

(57) Abstract: A discourse structure for an input text segment is determined by generating a set of one or more discourse parsing
decision rules based on a training set, and determining a discourse structure for the input text segment by applying the generated
set of discourse parsing decision rules to the input text segment. A tree structure is summarized by generating a set of one or more
summarization decision rules based on a training set, and compressing the tree structure by applying the generated set of summariza-
tion decision rules to the tree structure. Alternatively, summarization is accomplished by parsing an input text segment to generate a
parse tree for the input segment, generating a plurality of potential solutions, applying a statistical model to determine a probability
of correctness for each of potential solution, and extracting one or more high-probability solutions based on the solutions’ respective
determined probabilities of correctness.

01/86489 A2

WO 01/86489 PCT/US01/15380

TITLE

DISCOURSE PARSING AND SUMMARIZATION

Related Application

5 This application claims the benefit of, and
incorporates herein, U.S. Provisional Patent Application

No. 60/203,643, filed May 11, 2000.

Origin of Invention

10 The research and development described in this
application were supported by the NSA under grant number
MDA904-97-0262 and by DARPA / ITO under grant number
MDA904-99-C-2535. The US government may have certain
rights in the claimed inventions.

15

Field of the Invention

The present application relates to computational
linguistics and more particularly to technigques for parsing
a text to determine its underlying rhetorical, or
20 discourse, structure, and to techniques for summarizing, or

compressing, text.

Background and Summary

Computational linguistics is the study of the

25 applications of computers in processing and analyzing

10

15

20

25

WO 01/86489 PCT/US01/15380

language, as in automatic machine translation (“MT”) and
text analysis. In conjunction with MT research and related
areas in computational linguistics, researchers have
developed and frequently use various types of tree
structures to graphically represent the structure of a text
segment (e.g., clause, sentence, paragraph or entire
treatise). Two basic tree types include (1) the syntactic
tree, which can be used to graphically represent the
syntactic relations among components of a text segment, and
(2) the rhetorical tree (equivalently, the rhetorical
structure tree (RST) or the discourse tree), which can be
used to graph the rhetorical relationships among components
of a text segment. Rhetorical structure trees are
discussed in detail in William C. Mann and Sandra A.
Thompson, “Rhetorical structure theory: Toward a functional
theory of text organization,” Text, 8(3):243-281 (1988)
(hereinafter, “Mann and Thompson (1988)”). Discourse tree
structures find application in many areas including machine
translation, summarization, information retrieval,
automatic test scoring and the like.

The example in Fig. 1 shows the types of structures in
a discourse tree 100 for a text fragment. The leaves 102
of the tree correspond to elementary discourse units
(“edus”) and the internal nodes correspond to contiguous

text spans. Each node in a discourse tree 1is characterized

10

15

20

25

WO 01/86489 PCT/US01/15380

by a “status” (i.e., either “nucleus” or “satellite”) and a
“rhetorical relation,” which is a relation that holds
between two non-overlapping text spans. In Fig. 1, nuclei
104 are represented by straight lines while satellites 106
are represented by arcs.

The distinction between nuclei and satellites comes
from empirical observations that a nucleus expresses
information that is more essential than a satellite to the
writer’s intention, and that the nucleus of a rhetorical
relation is comprehensible independent of the satellite but
not vice versa. When spans are equally important, the
relation is said to be “multinuclear.”

Rhetorical relations reflect semantic, intentional
and/or textual relations that hold between text spans.
Examples of rhetorical relations include the following
types indicated in capitals: one text span may ELABORATE
on another text span; the information in two text spans may
be in CONTRAST; and the information in one text span may
provide JUSTIFICATION for the information presented in
another text span. Other types of rhetorical relations
include EVIDENCE, BACKGROUND, JOINT, and CAUSE. In Fig. 1,
the internal nodes of discourse tree 100 are labeled with
their respective rhetorical relation names 108.

In conventional practice, discourse trees either have

been generated by hand by trained personnel or have been

10

15

20

25

WO 01/86489 PCT/US01/15380

pieced together in a semi-automated manner using manually
generated instructions for a computer program. Development
of the discourse parsing systems and techniques described
below was based in part on the recognition that manually
generating discourse trees in either of these fashions is
time-consuming, expensive and prone to inconsistencies and
error. Accordingly, a computer-implemented discourse
parsing system and automated discourse parsing techniques
were developed for automatically generating a discourse
tree for any previously unseen text segment based on a set
of automatically learned decision rules.

Implementations of the disclosed discourse parsing
system and techniques may include various combinations of
the following features.

In one aspect, a discourse structure for an input text
segment (e.g., a clause, a sentence, a paragraph or a
treatise) 1is determined by generating a set of one or more
discourse parsing decision rules based on a training set,
and determining a discourse structure for the input text
segment by applying the generated set of discourse parsing
decision rules to the input text segment.

The training set may include a plurality of annotated
text segments (e.g., built manually by human annotators)
and a plurality of elementary discourse units (edus). Each

annotated text segment may be associated with a set of edus

10

15

20

25

WO 01/86489 PCT/US01/15380

that collectively represent the annotated text segment.

Generating the set of discourse parsing decision rules
may include iteratively performing one or more operations
(e.g., a shift operation and one or more different types of
reduce operations) on a set of edus to incrementally build
the annotated text segment associated with the set of edus.

The different types of reduce operations may include one
or more of the following six operations: reduce-ns,
reduce-sn, reduce-nn, reduce-below-ns, reduce-below-sn,
reduce-below—-nn. The six reduce operations and the shift
operation may be sufficient to derive the discourse tree of
any input text segment.

Determining a discourse structure may include
incrementally building a discourse tree for the input text
segment, for example, by selectively combining elementary
discourse trees (edts) into larger discourse tree units.
Moreover, incrementally building a discourse tree for the
input text segment may include performing operations on a
stack and an input list of edts, one edt for each edu in a
set of edus corresponding to the input text segment.

Prior to determining the discourse structure for the

input text segment, the input text segment may be segmented

‘into edus, which are inserted into the input list.

Segmenting the input text segment into edus may be

performed by applying a set of automatically learned

10

15

20

25

WO 01/86489 PCT/US01/15380

discourse segmenting decision rules to the input text
segment. Generating the set of discourse segmenting
decision rules may be accomplished by analyzing a training
set.

Determining the discourse structure for the input text
segment may further include segmenting the input text
segment into elementary discourse units (edus);
incrementally building a discourse tree for the input text
segment by performing operations on the edus to selectively
combine the edus into larger discourse tree units; and
repeating the incremental building of the discourse tree
until all of the edus have been combined.

In another aspect, text parsing may include generating
a set of one or more discourse segmenting decision rules
based on a training set, and determining boundaries in an
input text segment by applying the generated set of
discourse segmenting decision rules to the input text
segment. Determining boundaries may include examining each
lexeme in the input text segment in order, and, for
example, assigning, for each lexeme, one of the following
designations: sentence-break, edu-break, start-
parenthetical, end-parenthetical, and none. DMore
generally, determining boundaries in the input text segment
may include recognizing sentence boundaries, edu

boundaries, parenthetical starts, and parenthetical ends.

10

15

20

25

WO 01/86489 PCT/US01/15380

Examining each lexeme in the input text segment may include
associating features with the lexeme based on surrounding
context.

In another aspect, generating discourse trees may
include segmenting an input text segment into edus, and
incrementally building a discourse tree for the input text
segment by performing operations on the edus to selectively
combine the edus into larger discourse tree units. The
incremental building of the discourse tree may be repeated
until all of the edus have been combined into a single
discourse tree. Moreover, the incremental building of the
discourse tree is based on predetermined decision rules,
such as automatically learned decision rules generated by
analyzing a training set of annotated discourse trees.

In another aspect, a discourse parsing system may
include a plurality of automatically learned decision
rules; an input list comprising a plurality of edts, each
edt corresponding to an edu of an input text segment; a
stack for holding discourse tree segments while a discourse
tree for the input text segment is being built; and a
plurality of operators for incrementally building the
discourse tree for the input text segment by selectively
combining the EDTs into a discourse tree segment according
to the plurality of decision rules and moving the discourse

tree segment onto the stack. The system may further

10

15

20

WO 01/86489 PCT/US01/15380

include a discourse segmenter for partitioning the input
text segment into edus and inserting the edus into the
input list.

One or more of the following advantages may be
provided by discourse parsing systems and techniques as
described herein. The systems and techniques described
here result in a discourse parsing system that uses a set
of learned decision rules to automatically determine the
underlying discourse structure of any unrestricted text.

As a result, the discourse parsing system can be used,
among other ways, for constructing discourse trees whose
leaves are sentences (or units that can be identified at
high levels of performance). Moreover, the time, expense,
and inconsistencies associated with manually built
discourse tree derivation rules are reduced dramatically.

The ability to automatically derive discourse trees is
useful not only in its standalone form (e.g., as a tool for
linguistic researchers) but also as a component of a larger
system, such as a discourse-based machine translation
system. Accordingly, the systems and techniques described
herein represent an enabling technology for many different
applications including text, paragraph or sentence
summarization, machine translation, informational

retrieval, test scoring and related applications.

10

15

20

25

WO 01/86489 PCT/US01/15380

The rhetorical parsing algorithm described herein
implements robust lexical, syntactic and semantic knowledge
sources. Moreover, the six reduce operations used by the
parsing algorithm, along with the shift operation, are
mathematically sufficient to derive the discourse structure
of any input text.

Text summarization (also referred to as text
compression) is the process of a taking a longer unit of
text (e.g., a long sentence, a paragraph, or an entire
treatise) and converting it into a shorter unit of text
(e.g., a short sentence or an abstract) referred to as a
summary. Automated summarization - that is, using a
computer or other automated process to produce a summary -
has many applications, for example, in information
retrieval, abstracting, automatic test scoring, headline
generation, television captioning, and audio scanning
services for the blind. Fig. 10 shows a block diagram of
an automated summarization process. As shown therein, an
input text 1000 is provided to a summarizer 1002, which
generates a summary 1004 of the input text 1000.

Ideally, whether produced manually or automatically, a
summary will capture the most salient aspects of the longer
text and present them in a coherent fashion. For example,
when humans produce summaries of documents, they do not

simply extract sentences, clause or keywords, and then

10

15

20

WO 01/86489 PCT/US01/15380

concatenate them to form a summary. Rather, humans attempt
to summarize by rewriting the longer text, for example, by
constructing new sentences that are grammatical, that
cohere with one another, and that capture the most salient
items of information in the original document.

Conventional attempts at automated summarization, in
contrast, typically have focused on identifying relevant
items of information in the text being summarized,
extracting text segments (e.g., sentences, clauses or
keywords) corresponding to those identified items, and then
concatenating together the extracted segments. Moreover,
these conventional approaches typically rely on manually
generated sets of summarization rules.

Development of the summarizing systems and techniques
described below was based in part on the recognition (1)
that identification, extraction and concatenation of
relevant text segments typically will not generate a
coherent and/or grammatical summary and/or (2) that
manually generated summarization rules are prone to error
and inconsistencies, are time-consuming and expensive to
generate, and generally result in non-ideal summaries.
Accordingly, as described in detail below, automated
summarization systems and techniques were developed that

can generate a coherent summary of an input text by

10

10

15

20

25

WO 01/86489 PCT/US01/15380

generating new, grammatical sentences that capture the
salient aspects of the input text.

Implementations of the disclosed summarization systems
and techniques may include various combinations of the
following features.

In one aspect, a tree structure (e.g., a discourse
tree or a syntactic tree) is summarized by generating a set
of one or more summarization decision rules (e.g.,
automatically learned decision rules) based on a training
set, and compressing the tree structure by applying the
generated set of summarization decision rules to the tree
structure. The tree structure to be compressed may be
generated by parsing an input text segment such as a
clause, a sentence, a paragraph, or a treatise. The
compressed tree structure may be converted into a
summarized text segment that is grammatical and coherent.
Moreover, the summarized text segment may include sentences
not present in a text segment from which the pre-compressed
tree structure was generated.

Applying the generated set of summarization decision
rules comprises performing a sequence of modification
operations on the tree structure, for example, one or more
of a shift operation, a reduce operation, and a drop
operation. The reduce operation may combine a plurality of

trees into a larger tree, and the drop operation may delete

11

10

15

20

25

WO 01/86489 PCT/US01/15380

constituents from the tree structure.

The training set used to generate the decision rules
may include pre-generated long/short tree pairs.
Generating the set of summarization decision rules
comprises iteratively performing one or more tree
modification operations on a long tree until the paired
short tree is realized. A plurality of long/short tree
pairs may be processed to generate a plurality of learning
cases. In that case, generating the set of decision rules
may include applying a learning algorithm to the plurality
of learning cases. Moreover, one or more features may be
associated with each of the learning cases to reflect
context.

In another aspect, a computer-implemented
summarization method may include generating a parse tree
(e.g., a discourse tree or a syntactic tree) for an input
text segment, and iteratively reducing the generated parse
tree by selectively eliminating portions of the parse tree.

Iterative reduction of the parse tree may be performed
based on a plurality of learned decision rules, and may
include performing tree modification operations on the
parse tree. The tree modification operations may include
one or more of the following: a shift operation, a reduce
operation (which, for example, combines a plurality of

trees into a larger tree), and a drop operation (which, for

12

10

15

20

25

WO 01/86489 PCT/US01/15380

example, deletes gonstituents from the tree structure).

In another aspect, summarization is accomplished by
parsing an input text segment to generate a parse tree
(e.g., a discourse tree or a syntactic tree) for the input
segment, generating a plurality of potential solutions,
applying a statistical model to determine a probability of
correctness for each of potential solution, and extracting
one or more high-probability solutions based on the
solutions’ respective determined probability of
correctness. Applying a statistical model may include
using a stochastic channel model algorithm that, for
example, performs minimal operations on a small tree to
create a larger tree. Moreover, using a stochastic channel
model algorithm may include probabilistically choosing an
expansion template. Generating a plurality of potential
solutions may include identifying a forest of potential
compressions for the parse tree.

The generated parse tree may have one or more nodes,
each node having N.children (wherein N is an integer). 1In
that case, identifying a forest of potential compressions
may include generating 2% - 1 new nodes, one node for each
non-empty subset of the children, and packing the newly
generated nodes into a whole. Alternatively, or in
addition, identifying a forest of potential compressions

may include assigning an expansion-template probability to

13

10

15

20

25

WO 01/86489 PCT/US01/15380

each node in the forest.

Extracting one or more high-probability solutions may
include selecting one or more trees based on a combination
of each tree’s word-bigram and expansion-template score.
For example, a list of trees may be selected, one for each
possible compression length. The potentials solutions may
be normalized for compression length. For example, for
each potential solution, a log-probability of correctness
for the solution may be divided by a length of compression
for the solution.

One or more of the following advantages may be
provided by summarization systems and techniques as
described herein.

The systems and techniques described here result in a
summarization system that can take virtually any longer
text segment (sentence, phrase, paragraph or treatise) and
compress it into a shorter version that is both grammatical
and coherent. 1In contrast to the conventional “extract and
concatenate” summarization techniques, the disclosed
summarizer generates new grammatical sentences that more
closely resemble summarizations prepared by trained human
editors.

Moreover, the disclosed summarizer generates summaries
automatically, e.g., in a computer-implemented manner.

Accordingly, the inconsistencies, errors, time and/or

14

10

15

20

WO 01/86489 PCT/US01/15380

expense typically incurred with conventional approaches
that require manual intervention are reduced dramatically.

The two different embodiments of the summarizer
(channel-based and decision-based) both generate coherent,
grammatical results but also potentially provide different
advantages. On the one hand, the channel-based summarizer
provides multiple different solutions at varying levels of
compression. These multiple solutions may be desirable if,
for example, the output of the summarizer was being
provided to a user (e.g., human or computer process) that
could make use of multiple outputs. On the other hand, the
decision-based summarizer is deterministic and thus
provides a single solution and does so very quickly.
Accordingly, depending on the objectives of the user, the
decision-based summarizer may be advantageous both for its
speed and for its deterministic approach.

Moreover, the channel-based summarizer may be
advantageous depending on a user’s objectives because its
performance can be adjusted, or fine-tuned, to a particular
application by replacing or adjusting its statistical
model. Similarly, performance of the decision-based
summarizer can be fine-tuned to a particular application by
varying the training corpus used to learn decision rules.

For example, a decisilon-based summarizer could be tailored

15

WO 01/86489 PCT/US01/15380

to summarize text or trees in a specific discipline by
selecting a training corpus specific to that discipline.
The details of one or more embodiments are set forth
in the accompanying drawings and the description below.
5 Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

Drawing Descriptions

The above and other aspects will now be described in
10 detail with reference to the accompanying drawings,
wherein:
Fig. 1 shows and example of a discourse tree.
Fig. 2 is a flowchart of generating a discourse tree
for an input text.
15 Fig. 3 is a block diagram of a discourse tree
generating system.
Fig. 4 shows an example of shift-reduce operations
performed in discourse parsing a text.
Fig. 5 shows the operational semantics of six reduce
20 operations.
Fig. 6 is a flowchart of generating decision rules for
a discourse segmenter.
Fig. 6A shows examples of automatically derived

segmenting rules.

16

10

15

20

25

WO 01/86489 PCT/US01/15380

Fig. 7 is a graph of a learning curve for a discourse
segmenter.

Fig. 8 is a flowchart of generating decision rules for
a discourse segmenter.

Fig. 8A shows examples of automatically derived shift-
reduce rules.

Fig. 8B shows a result of applying Rule 1 in Fig. 8A
on the edts that correspond to the units in text example
(5.1).

Fig. 8C shows a result of applying Rule 2 in Fig.8A on
the edts that correspond to the units in text example
(5.2).

Fig. 8D shows an example of a CONTRAST relation that
holds between two paragraphs.

Fig. 8E shows a result of applying Rule 4 in Fig.8A on
the on the trees that subsume the two paragraphs in Fig.
8D.

Fig. 9 is a graph of a learning curve for a shift-
reduce action identifier.

Fig. 10 i1s a block diagram of an automated
summarization system.

Fig. 11 shows examples of parse (or syntactic) trees.

Fig. 12 shows examples of text from a training corpus.

Fig. 13 is a graph of adjusted log-probabilities for

top scoring compressions at various compression lengths.

17

WO 01/86489 PCT/US01/15380

Fig. 14 shows an example of incremental tree
compression.
Fig. 15 shows examples of text compression.
Fig. 16 shows examples of summarizations of varying
5 compression lengths.
Fig. 17 is a flowchart of a channel-based
summarization process.
Fig. 18 is a flowchart of a process for training a
channel-based summarizer.
10 Fig. 18A shows examples of rules that were learned
automatically by the C4.5 program
Fig. 19 is a flowchart of a decision-based
summarization process.
Fig. 20 is a flowchart of a process for training a

15 decision-based summarizer.

Detailed Description

DISCOURSE PARSING
As described herein, a decision-based rhetorical
20 parsing system (equivalently, a discourse parsing system)
automatically derives the discourse structure of
unrestricted texts and incrementally builds corresponding
discourse trees based on a set of learned decision rules.
The discourse parsing system uses a shift-reduce rhetorical

25 parsing algorithm that learns to construct rhetorical

18

10

15

20

25

WO 01/86489 PCT/US01/15380

structures of texts from a corpus of discourse-parse action
sequences. The rhetorical parsing algorithm implements
robust lexical, syntactic and semantic knowledge sources.

In one embodiment, the resulting output of the
discourse parsing system is a rhetorical tree. This
functionality is useful both in its standalone form (e.g.,
as a tool for linguistic researchers) and as a component of
a larger system, such as in a discourse-based machine
translation system, as described in Daniel Marcu et al.,
“The Automatic Translation of Discourse Structures,”
Proceedings of the First Annual Meeting of the North
American Chapter of the Association for Computational
Linguistics, pp. 9-17, Seattle, Washington, (April 29 --
May 3, 2000), and Daniel Marcu, “The Theory and Practice of
Discourse Parsing and Summarization,” The MIT Press (2000),
both of which are incorporated herein.

Fig. 2 shows a flowchart of a discourse parsing
process 200 that generates a discourse tree from an input
text. Upon receiving the input text in step 202, the
process 200 breaks the text into elementary discourse
units, or “edus.” Edus are defined functionally as clauses
or clause-like units that are unequivocally the nucleus or
satellite of a rhetorical relation that holds between two
adjacent spans of text. Further details of edus are

discussed below.

19

10

15

20

25

WO 01/86489 PCT/US01/15380

Next, in step 206, the edus are put into an input
list. 1In step 208, the process 200 uses the input list, a
stack, and a set of learned decision rules to perform the
shift-reduce rhetorical parsing algorithm, which eventually
yields the discourse structure of the text given as input.

In step 21Q, performing the algorithm results in the
generation of a discourse tree that corresponds to the
input text.

Fig. 3 shows a block diagram of a discourse tree
generating system 300 that takes in input text 301 and
produbes discourse tree 305. The system 300 as shown
includes two sub-systems: (1) a discourse segmenter 302
that identifies the edus in a text, and (2) a discourse
parser 304 (equivalently, a shift-reduce action
identifier), which determines how the edus should be
assembled into rhetorical structure trees.

The discourse segmenter 302, which serves as a front-
end to the discourse parser 304, partitions the input text
into edus. The discourse segmenter processes an input text
one lexeme (word or punctuation mark) at a time and
recognizes sentence and edu boundaries and beginnings and
ends of parenthetical units.

The discourse parser 304 takes in the edus from the
segmenter 302 and applies the shift-reduce algorithm to

incrementally build the discourse tree 305. As indicated

20

10

15

20

25

WO 01/86489 PCT/US01/15380

in Fig. 3, in this embodiment, each of the discourse
segmenter 302 and the discourse parser 304 performs its
operations based on a set of decision rules that were
learned from analyzing a training set, as discussed in
detail below. An alternative embodiment is possible,
however, in which substantially the same results could be
achieved using probabilistic rules.

Further details of the discourse parser and the
parsing process that it performs are provided with
reference to Figs. 4 and 5. Details on generating
discourse segmenter decision rules and discourse parser
decision rules appear below with reference to Figs. 6-9.
What follows is a description of the training corpus that
was used in generating decision rules for the discourse

segmenter and for the discourse parser.

The Training Corpus

The training corpus (equivalently, the training set)
used was a body of manually built (i.e., by humans)
rhetorical structure trees. This corpus, which included 90
texts that were manually annotated with discourse trees,
was used to generate learning cases of how texts should be
partitioned into edus and how discourse units and segments
should be assembled into discourse trees.

A corpus of 90 rhetorical structure trees were used,

21

10

15

20

25

WO 01/86489 PCT/US01/15380

which were built manually using rhetorical relations that
were defined informally in the style of Mann et al.,
“Rhetorical structure theory: Toward a functional theory of
text organization, Text, 8(3):243-281 (1988): 30 trees
were built for short personal news stories from the MUC7
co-reference corpus (Hirschman et al., MUC-7 Coreference
Task Definition, 1997); 30 trees for scientific texts from
the Brown corpus; and 30 trees for editorials from the Wall
Street Journal (WSJ). The average number of words for each
text was 405 in the MUC corpus, 2029 in the Brown corpus
and 878 in the WSJ corpus. Each MUC text was tagged by
three annotators; each Brown and WSJ text was tagged by two
annotators.

The rhetorical structure assigned to each text is a
(possibly non-binary) tree whose leaves correspond to
elementary discourse units (edu)s, and whose internal nodes
correspond to contiguous text spans. Each internal node is
characterized by a rhetorical relation, such as ELABORATION
and CONTRAST. Each relation holds between two non-
overlapping text spans called NUCLEUS and-SATELLITE;

(There are a few exceptions to this rule: some relations,
such as SEQUENCE and CONTRAST, are multinuclear.) As noted
above, the distinction between nuclei and satellites comes
from the empirical observation that the nucleus expresses

what is more essential to the writer’s purpose than the

22

10

15

20

25

30

WO 01/86489 PCT/US01/15380

satellite. Each node in the tree is also characterized by
a promotion set that denotes the units that are important
in the corresponding subtree. The promotion sets of leaf
nodes are the leaves themselves. The promotion sets of
internal nodes are given by the union of the promotion sets
of the immediate nuclei nodes.

As noted above, edus are defined functionally as
clauses or clause-like units that are unequivocally the
NUCLEUS or SATELLITE of a rhetorical relation that holds
between two adjacent spans of text. For example, “because
of the low atmospheric pressure” in the text (1), below, is
not a fully fleshed clause. However, since it is the
SATELLITE of an EXPLANATION relation, it is treated as
elementary.

(1) [Oniy the midday sun at tropical
latitudes is warm enough] [to thaw ice
on occasion,] [but any liquid water
formed in this way would evaporate
almost instantly] [because of the low
atmospheric pressure.]

Some edus may contain parenthetical units, i.e.,
embedded units whose deletion does not affect the
understanding of the edu to which they belong. For
example, the unit shown in italics in text (2), below, is
parenthetic.

(2) This book, which I have received from

John, is the best book that I have read
in a while.

23

10

15

20

25

WO 01/86489 PCT/US01/15380

The annotation process involved assigning edu and
parenthetical unit boundaries, assembling edusand spans into
discourse trees, and labeling the relations between edus
and spans with rhetorical relation names from a taxonomy of
71 relations. No explicit distinction was made between
intentional, informational, and textual relations. In
addition, two constituency relations were marked that were
ubiquitous in the corpus and that often subsumed complex
rhetorical constituents. These relations were ATTRIBUTION,
which was used to label the relation between a reporting
and a reported clause, and APPOSITION. The rhetorical
tagging tool used - namely, the RST Annotation Tool
downloadable from, and described at:

http://www.isi.edu/~marcu/software.html

maintains logs of all tree-construction operations. As a
result, in addition to the rhetorical structure of 90
texts, a corpus of logs was created that reflects the way
that human judges determine edu and parenthetical unit
boundaries. The following two publications - Daniel Marcu,
Estibaliz Amorrortu, and Magdalena Romera, “Experiments in
Constructing a Corpus of Discourse Trees,” The ACL'99
Workshop on Standards and Tools for Discourse Tagging,
Maryland, June 1999; and Daniel Marcu, Magdalena Romera,

and Estibaliz Amorrortu, “Experiments in Constructing a

24

10

15

20

WO 01/86489 PCT/US01/15380

Corpus of Discourse Trees: Problems, Annotation Choices,
Issues,” The Workshop on Levels of Representation in
Discourse, pages 71-78, Edinburgh, Scotland, July 1999 -
both of which are incorporated by reference, discuss in
detail the annotation tool and protocol and assess the
inter-judge agreement and the reliability of the

annotation.

The Discourse Parsing Model

The discourse parsing process is modeled as a sequence
of shift-reduce operations. The input to the parser is an
empty stack and an input list that contains a sequence of
elementary discourse trees (“edts”), one edt for each edu
produced by the discourse segmenter. The status and
rhetorical relation associated with each edt is
“UNDEFINED”, and the promotion set is given by the
corresponding edu. At each step, the parser applies a
“Shift” or a “Reduce” operation. Shift operations transfer
the first edt of the input list to the top of the stack.
Reduce operations pop the two discourse trees located on
the top of the stack; combine them into a new tree updating
the statuses, rhetorical relation names, and promotion sets
associated with the trees involved in the operation; and

push the new tree on the top of the stack.

25

10

15

20

25

30

35

WO 01/86489 PCT/US01/15380

Assume, for example, that the discourse segmenter
partitions a text given as input as shown in text (3) below
(only the edus numbered from 12 to 19 are shown):

(3) .. [Close parallels between tests
and practice tests are common, ?]
[some educators and researchers
say.”] [Test preparation
booklets, software and worksheets
are a booming publishing
subindustry. [But some practice
products are so similar to the
tests themselves that critics say
they represent a form of school-
sponsored cheating. 151

[“If they took these

preparatlon booklets into my

classroom,*®] [I’d have a hard time

justifying to my students and

parents that it wasn’t

cheating,” 171 [says John

Kamlnsky,s] [a Traverse City,

Mich., teacher who has studied

test coachlng 1
Fig. 4 shows the actions taken by a shift-reduce discourse
parser starting with step i. At step i, the stack contains
4 partial discourse trees, which span units [1,11],
[12,15], [16,17], and [18], and the input list contains the
edts that correspond to units whose numbers are higher than
or equal to 19. At step i the parser decides, based on its
predetermined decision rules, to perform a Shift operation.
As a result, the edt corresponding to unit 19 becomes the
top of the stack. At step i+I, the parser performs a

“Reduce-Apposition-NS” operation, that combines edts 18 and

19 into a discourse tree whose nucleus is unit 18 and whose

26

10

15

20

25

WO 01/86489 PCT/US01/15380

satellite is unit 19. The rhetorical relation that holds
between units 18 and 19 is APPOSITION. At step i+2, the
trees that span over units [16,17] and [18,19] are combined
into a larger tree, using a “Reduce-Attribution-NS”
operation. As a result, the status of the tree [16,17]
becomes “nucleus” and the status of the tree [18,19]
becomes “satellite.” The rhetorical relation between the
two trees is SMALL ATTRIBUTION. At step i+3, the trees at
the top of the stack are combined using a “Reduce-
Elaboration-NS” operation. The effect of the operation is
shown at the bottom of Fig. 4.

In order to enable a shift-reduce discourse parser to
be able to derive any discourse tree, it is sufficient to
implement one Shift operation and six types of Reduce
operations, whose
operational semantics are shown in Fig. 5. In other words,
the shift operation and the six reduce operations shown in
Fig. 5 are mathematically sufficient to derive the
discourse tree of any unrestricted input text.

For each possible pair of nuclearity assignments
“nucleus-satellite” (ns), “satellite-nucleus” (sn), and
“nucleus-nucleus” (nn) there are two possible ways to
attach the tree located at position top in the stack to the
tree located at position top-l1. To create a binary tree

whose immediate children are the trees at top and top-I, an

27

10

15

20

25

WO 01/86489 PCT/US01/15380

operation of type “reduce-ns”, “reduce-sn”, or “reduce-nn”
is used. To attach the tree at position top as an extra-
child of the tree at top-1, thus creating or modifying a
non-binary tree, an operation of type “reduce-below-ns”,
“reduce-below-sn”, or “reduce-below-nn” is used. Fig. 5
illustrates how the statuses and promotion sets associated
with the trees involved in the reduce operations are
affected in each case.

Because the labeled data in the training corpus used
was relatively sparse, the relations that shared some
rhetorical meaning were grouped into clusters of rhetorical
similarity. For example, the cluster named “contrast”
contained the contrast-like rhetorical relations of
ANTITHESIS, CONTRAST, and CONCESSION. The cluster named
“evaluation-interpretation” contained the rhetorical
relations EVALUATION and INTERPRETATION. And the cluster
named “other” contained rhetorical relations such as
question-answer, proportion, restatement, and comparison,
which were used very seldom in the corpus. The grouping
process yielded 17 clusters, each characterized by a
generalized rhetorical relation name. These names are as
follows: APPOSITION-PARENTHETICAL, ATTRIBUTION, CONTRAST,
BACKGROUND-CIRCUMSTANCE, CAUSE-REASON~EXPLANATION,
CONDITION, ELABORATION, EVALUATION-INTERPRETATION,

EVIDENCE, EXAMPLE, MANNER~-MEANS, ALTERNATIVE, PURPOSE,

28

10

15

20

WO 01/86489 PCT/US01/15380

TEMPORAL, LIST, TEXTUAL, and OTHER.

If a sufficiently large number of texts were labeled
manually, however, the clustering described above would be
unnecessary.

In developing the discourse parser, one design
parameter was to automatically derive rhetorical structures
trees that were labeled with relation names that
corresponded to the 17 clusters of rhetorical similarity.
Since there are 6 types of reduce operations and since each
discourse tree uses relation names that correspond to the
17 clusters of rhetorical similarity, it follows that the
discourse parser needs to learn what operation to choose
from a set of 6 X 17 + 1 = 103 operations (the 1

corresponds to the SHIFT operation).

The Discourse Segmenter

Fig. 6 is a flowchart of a generalized process 600 for
generating decision rules for the discourse segmenter. The
first step in the process was to build, or otherwise
obtain, the training corpus. As discussed above, this
corpus was built manually using an annotation tool. In
general, human annotators looked at text segments and for
each lexeme (word or punctuation mark) determined whether

an edu boundary existed at the lexeme under consideration

29

10

15

20

25

WO 01/86489 PCT/US01/15380

and either marked it with a segment break or not, depending
on whether an edu boundary existed.

Next, in step 604, for each lexeme, a set of one or
more features was associated to each of the edu boundary
decisions, based on the context in which these decisions
were made. The result of such association is a set of
learning cases - essentially, discrete instances that
capture the edu-boundary decision-making process for a
particular lexeme in a particular context. More
specifically, the leaves of the discourse trees that were
built manually were used in order to derive the learning
cases. To each lexeme in a text, one learning case was
associated using the features described below. The classes
to be learned, which are associated with each lexeme, are
“sentence-break”, “edu-break”, “start-paren”, and “end-
paren”, and “none”. Further details of the features used in
step 604 for learning follow.

To partition a text into edus and to detect
parenthetical unit boundaries, features were relied on that
model both the local and global contexts. The local
context consists of a window of size 5 (1 + 2 +2) that
enumerates the Part-Of-Speech (POS) tags of the lexeme
under scrutiny and the two lexemes found immediately before
(2) and after it (2). The POS tags are determined

automatically, using the “Brill Tagger,” as described in

30

10

15

20

25

WO 01/86489 PCT/US01/15380

Eric Brill, “Transformation-based error-driven learning and
natural language processing: A case study in part-of-speech
tagging, ” Computational Linguistics, 21(4):543—-565, which
is incorporated by reference. Because discourse markers,
such as “because” and “and”, typically play a major role in
rhetorical parsing, also considered was a list of features
that specify whether a lexeme found within the local
contextual window is a potential discourse marker; hence,
for each lexeme under scrutiny, it is specified whether it
is a special orthographical marker, such as comma, dash,
and parenthesis, or whether it is a potential discourse

4

marker, such as “accordingly,” “afterwards,” and “and.”
The local context also contains features that estimate
whether the lexemes within the window are potential
abbreviations. In this regard, a hard-coded list of 250
potential abbreviations can be used.

The global context reflects features that pertain to
the boundary identification process. These features
specify whether there are any commas, closed parentheses,
and dashes before the estimated end of the sentence,
whether there are any verbs in the unit under
consideration, and whether any discourse marker that
introduces expectations was used in the sentence under

consideration. These markers include phrases such as

Although and With.

31

10

15

20

25

WO 01/86489 PCT/US01/15380

The decision-based segmenter uses a total of twenty-
five features, some of which can take as many as 400
values. When we represent these features in a binary
format, we obtain learning examples with 2417 binary
features/example.

In step 606, a learning algorithm such as the C4.5
algorithm as described in J. Ross Quinlan, “C4.5: Programs
for Machine Learning,” Morgan Kaufmann Publishers (1993),
to learn a set of decision rules from the learning cases.
The result is set of discourse segmenter decision rules 608
that collectively define whether a previously unseen
lexeme, given its particular context, represents an edu
boundary within its particular context in the text segment
under consideration.

Figure 6A shows some of the rules that were learned by
the C4.5 program using a binary representation of the
features and learning cases extracted from the MUC corpus.

Rule 1 specifies that if the POS tag of the lexeme that
immediately precedes the lexeme under scrutiny is a closed
parenthesis and the previous marker recognized during the
processing or the current sentence was an open parenthesis,
then the action to be taken is to insert an end of
parenthetic unit. Rule 1 can correctly identify the end of
the parenthetic unit at the location marked with the symbol

¢+ in sentence (4.1) below.

32

10

15

20

25

30

35

WO 01/86489 PCT/US01/15380

(4.1) Surface temperatures typically average about
-60 degrees Celsius (-76 degrees Fahrenheit)
1 at the equator.

Rule 2 can correctly identify the beginning of the
parenthetic unit 44 years old in sentence 4.2 because the
unit is preceded by a comma and starts with a numeral (CD)
followed by a plural noun (NNS).

(4.2) Ms. Washington, t 44 years old, would
be the first woman and the first black
to head the five-member commission that
oversees the securities markets.

Rule 3 identifies the end of a sentence after the
occurrence of a DOT (period, questions mark, or exclamation
mark) that is not preceded or followed by another DOT and
that is not followed by a DOUBLEQUOTE. This rule will
correctly identify the sentence end after the period in
example 4.3, but will not insert a sentence end after the
period in example 4.4. However, another rule that is
derived automatically will insert a sentence break after
the double quote that follows the t mark in example 4.4.
(4.3) The meeting went far beyond Mr.

Clinton’s normal weekly gathering of
business leaders. t Economic advisor
Gene Sperling described it as “a true
full-court press” to pass the deficit-
reduction bill, the final version of
which is now being hammered out by
House and Senate Negotiators.

(4.4) The executives “are here, just as I am,
not because anyone agrees with every
last line and jot and title of this
economic program,” Mr. Clinton

acknowledged, but “because it does far
more good than harm.t1” Despite

33

10

15

20

25

30

35

WO 01/86489 PCT/US01/15380

resistance from some lawmakers I his
own party, the president predicted the
bill would pass.

Rule 4 identifies an edu boundary before the
occurrence of an “and” followed by a verb in the past tense
(VPT). This rule will correctly identify the marked edu
boundary in sentence 4.5.

(4.5) Ashley Boone ran marketing and
distribution t and left the company
late last year.

Rule 5 inserts edu boundaries before the occurrence of
the word “until”, provided that “until” is followed not
necessarily by a verb. This rule will correctly insert an
edu boundary in example 4.6.

(4.06) Several appointees of President Bush
are likely to stay in office at least
temporarily,+ until permanent
successors can be names.

Rule 6 is an automatically derived rule that mirrors
the manually derived rule specific to COMMA-like actions in
the surface-based unit identification algorithm. Rule 6
will correctly insert an edu boundary after the comma
marked in example 4.7, because the marker “While” was used
at the beginning of the sentence.

(4.7) While the company hasn’t commented on
the probe, t persons close to the board
said that Messrs. Lavin and Young,
along with some other top Woolworth
executives were under investigation by
the special committee for their

possible involvement in the alleged
irregularities.

34

10

15

20

25

WO 01/86489

PCT/US01/15380

Rule 7 specifies that no elementary or parenthetical
unit boundary should be inserted immediately before a DOT.

As one can notice, the rules in Figure 6a are more
complex than typical manually derived rules. The
automatically derived rules make use not only of
orthographic and cue-phrase-specific information, but also
of syntactic information, which is encoded as part of
speech tags.

In step 606, the C4.5 program was used in order to
learn decision trees and rules that classify lexemes as
boundaries of sentences, edus, or parenthetical units, or
as non-boundaries. Learning was accomplished both from
binary representations (when possible) and non-binary
representations of the cases. (Learning from binary
representations of features in the Brown corpus was too
computationally expensive to terminate — the Brown data
file had about 0.5 Giga-bytes.) In general the binary
representations yielded slightly better results than the
non-binary representations and the tree classifiers were
slightly better than the rule-based ones.

Table 1 shows accuracy results of non-binary,
decision-tree classifiers. The accuracy figures were
computed using a ten-fold cross-validation procedure. 1In
Table 1, Bl corresponds to a majority-based baseline

classifier that assigns the class “none” to all lexemes,

35

10

15

20

25

WO 01/86489 PCT/US01/15380

and B2 to a baseline classifier that assigns a sentence
boundary to every “DOT” (that is, a period (.), question
mark (?), and/or exclamation point (!)) lexeme and a non-

boundary to all other lexemes.

Corpus # cases B1(%) B2 (%) Acc (%)

MUC 14362 91.28 93.1 96.24%20.06

WsJ 31309 92.39 94.6 97.1440.10

Brown 72092 93.84 69.8 97.871£0.04
Table 1: Performance of a discourse segmenter that uses a

decision-tree, non-binary classifier.

Figure 7 shows the learning curve that corresponds to
the MUC corpus. It suggests that more data can increase
the accuracy of the classifier.

The confusion matrix shown in Table 2 corresponds to a
non-binary-based tree classifier that was trained on cases
derived from 27 Brown texts and that was tested on cases
derived from 3 different Brown texts, which were selected
randomly. The matrix shows that the segmenter encountered
some difficulty with identifying the begiﬁning of
parenthetical units and the intra-sentential edu
boundaries; for example, it correctly identifies 133 of the
220 edu boundaries. The performance is high with respect
to recognizing sentence boundaries and ends of
parenthetical units. The performance with respect to

identifying sentence boundaries appears to be close to that

36

WO 01/86489 PCT/US01/15380

of systems aimed at identifying “only” sentence boundaries,
such as described in David D. Palmer and Marti A. Hearst,
“Adaptive multilingual sentence boundary disambiguation,”
Computational Linguistics, 23(2):241-269 (1997)

5 (hereinafter, “Hearst (1997)”), whose accuracy is in the

range of 99%.

Action (a) (b) (c) (d) (e)
sentence-break (a) 272 4
edu-break (b) 133 3 84
start-paren (c) 4 26
end-paren (d) 20 6
none (e) 2 38 1 4 7555
Table 2: Confusion matrix for the decision-tree, non-

10 binary classifier (the Brown corpus).

Training the Discourse Parser

Figure 8 shows a generalized flowchart for a process
800 for generating decision rules for the discourse parser.
15 Put another way, the process 800 can be used to train the
discourse parser about when and under what circumstances,
and in what sequence, it should perform the various shift-
reduce operations.
In step 802, the process receives as input the
20 training corpus of discourse trees and, for each discourse
tree, a set of edus from the discourse segmenter. Next, in
step 804, for each discourse tree / edu set, the process
800 determines a sequence of shift-reduce operations that

reconstructs the discourse tree from the edus in that

37

10

15

20

25

WO 01/86489 PCT/US01/15380

tree’s corresponding set. Next, in step 806, the process
800 associates features with each entry in each sequence.
Finally, in step 808, the process 800 applies a learning
algorithm (e.g., C4.5) to generate decision rules 810 for
the discourse parser. As noted above, the discourse parser
will then be able to use these decision rules 810 to
determine the rhetorical structure for any input text and,
from it, generate a discourse tree as output.

Additional details of training the discourse parser

follow.

Shift-Reduce Action Identifier: Generation of learning

examples

The learning cases were generated automatically, in
the style of Magerman, “Statistical decision-tree models
for parsing,” Proceedings of ACL’95, pages 276-283 (1995),
by traversing in-order the final rhetorical structures
built by annotators and by generating a sequence of
discourse parse actions that used only SHIFT and REDUCE
operations of the kinds discussed above. When a derived
sequence 1s applied as described above with respect to the
parsing model, it produces a rhetorical tree that is a one-
to-one copy of the original tree that was used to generate
the sequence. For example, the tree at the bottom of

Figure 4 - the tree found at the top of the stack at step 1

38

10

15

20

25

WO 01/86489 PCT/US01/15380

+ 4 - can be built if the following sequence of operations
is performed: {SHIFT 12; SHIFT 13; REDUCE-ATTRIBUTION-NS;
SHIFT 14; REDUCE-JOINT-NN; SHIFT 15; REDUCE~CONTRAST-SN;
SHIFT 16; SHIFT 17; REDUCE~CONTRAST-SN; SHIFT 18; SHIFT 19;
REDUCE-APPOSITION-NS; REDUCE ATTRIBUTION-NS; REDUCE-

ELABORATION-NS. }

The Shift—-Reduce Action Identifier: Features used for

learning

To make decisions with respect to parsing actions, the
shift~reduce action identifier focuses on the three topmost
trees in the stack and the first edt in the input list.
These trees are referred to as the trees “in focus.” The
identifier relies on the following classes of features:
structural features, lexical (cue-phase-like) features,
operational features, and semantic-similarity-based

features. Each is described in turn.

Structural features.

Structural features include the following:

(1) Features that reflect the number of trees in the
stack and the number of edts in the input list.

(2) Features that describe the structure of the trees
in focus in terms of the type of textual units that they

subsume (sentences, paragraphs, titles). These may include

39

10

15

20

25

WO 01/86489 PCT/US01/15380

the number of immediate children of the root nodes, the
rhetorical relations that link the immediate children of
the root nodes, , and the like. The identifier assumes that
each sentence break that ends in a period and is followed
by two ’'\n’ characters, for example, is a paragraph break;
and that a sentence break that does not end in a
punctuation mark and is followed by two ’\n’ characters is

a title.

Lexical (cue-phrase-like) and syntactic features.

Lexical features include the following:

(1) Features that denote the actual words and POS tags
of the first and last two lexemes of the text spans
subsumed by the trees in focus.

(2) Features that denote whether the first and last
units of the trees in focus contain potential discourse
markers and the position of these markers in the

corresponding textual units (beginning, middle, or end).

Operational features.

Operational features includes features that specify
what the last five parsing operations performed by the
parser were. These features could be generated because,
for learning, sequences of shift-reduce operations were

used and not discourse trees.

40

10

15

20

WO 01/86489 PCT/US01/15380

Semantic-similarity-based features.
Semantic-similarity-based features include the
following:
(1) Features that denote the semantic similarity between
the textual segments subsumed by the trees in focus. This
similarity is computed by applying in the style of Hearst
(1997) a cosine-based metric on the morphed segments. If
two segments S; and S; are represented as sequences of (t,
w(t)) pairs, where t is a token and w(t) is its weight, the
similarity between the segments can be computed using the
formula shown below, where w(t)s; and w(t)s, represent the

weights of token t in segments S; and S, respectively.
ZtESlUSz w(t)Sl w(t)Sz
2 2
(B 0] S0

The weights of tokens are given by their frequencies in the

sim(S,,S,) =

segments.

(2) Features that denote Wordnet-based measures of
similarity between the bags of words in the promotion sets
of the trees in focus. Fourteen Wordnet-based measures of
similarity were used, one for each Wordnet relation
(Fellbaum, Wordnet: An Electronic Lexical Database, The MIT
Press, 1998). Each of these similarities is computed using

a metric similar to the cosine-based metric. Wordnet-based

41

10

15

20

WO 01/86489 PCT/US01/15380

similarities reflect the degree of synonymy, antonymy,
meronymy, hyponymy, and the like between the textual
segments subsumed by the trees in focus. The Wordnet-based
similarities are computed over the tokens that are found in
the promotion units associated with each segment. If the
words in the promotion units of two segments S; and S, are
represented as two sequences Wi and W, the Wordnet-based
similarities between the two segments can be computed using
the formula shown in below, where the function gsrmi, w2)
returns 1 if there exists a Wordnet relation of type R
between the words wy and wy, and 0 otherwise.

z :wleW, A O-wordnetReIation(wl W)

7] |

Slmwordnet Relation (VVI H I/V2) =

The Wordnet-based similarity function takes values in
the interval [0,1]: the larger the value, the more similar
with respect to a given Wordnet relation the two segments
are.

In addition to these features that modeled the
Wordnet-based similarities of the trees in focus, 14 X 13/2
= 91 relative Wordnet-based measures of similarity were
used, one of each possible pair of Wordnet-based relations.

For each pair of Wordnet-based measures of similarity wyg
and wy, each relative measure (feature) takes the value <,
=, or >, depending on whether the Wordnet-based similarity

wy; between the bags of words in the promotion sets of the

42

10

15

20

25

WO 01/86489 PCT/US01/15380

trees in focus is lower, equal, or higher than the Wordnet-
based similarity wy between the same bags of words. For
example, 1f both the synonymy- and meronymy-based measures
of similarity are 0, the relative similarity between the
synonymy and meronymy of the trees in focus will have the
value =.

A binary representation of these features yields

learning examples with 2789 features/example.

Examples of Rule Specific to the Action Identifier
Figure 8A shows some of the rules that were learned by

the C4.5 program using a binary representation of the
features and learning cases extracted from the MUC corpus.
Rule 1, which is similar to a typical rule derived
manually, specifies that if the last lexeme in the tree at
position top - 1 in the stack is a comma and there is a
marker “if” that occurs at the beginning of the text that
corresponds to the same tree, then the trees at position
top — 1 and top should be reduced using a REDUCE-CONDITION-
SN operation. This operation will make the tree at
position top - 1 the satellite of the tree at position top.
If the edt at position top - 1 in the stack subsumes unit
1 in example 5.1 and the edt at position top subsumes unit
2, this reduce action will correctly replace the two edts

with a new rhetorical tree, that shown in Figure 8B.

43

10

15

20

25

30

WO 01/86489 PCT/US01/15380

(5.1) [If you refer to someone as a butt-
head,!] [ordinarily speaking, no one is
going to take that as any specific
charge of any improper conduct or
insinuation of any character trait.?]

Rule 2 makes the tree at the top of the stack the
BACKGROUND-CIRCUMSTANCE satellite of the tree at position
top — 1 when the first word in the text subsumed by the top
tree is “when”, which is a while-adverb (WRB), when the
second word in the same text is not a gerund or past
participle verb (VBG), and when the cosine-based similarity
between the text subsumed by the top node in the stack and
the first unit in the list of elementary discourse units
that have not been shifted to the stack is greater than
0.0793052. 1If the edt as position top - 1 in the stack
subsumes unit 1 in example 5.2 and the edt at position top
subsumes unit 2, rule 2 will correctly replace the two edts
with the rhetorical tree shown in Figure 8C.

(5.2) [Mrs. Graham, 76 years old, has not
been involved in day-to-day operations
at the company since May 1991.%] [when
Mr. Graham assumed the chief executive
officer’s title.?]

In case the last word in the text subsumed by the tree
at position top - 1 in the stack is a plural noun (NNS),
the first word in the text subsumed by the tree at the top
of the stack is a preposition or subordinating conjunction

(IN), and the hyponymy-based similarity between the two

trees at the top of the stack is equal with their synonymy-

44

10

15

20

25

WO 01/86489 PCT/US01/15380

based similarity, then the action to be applied is REDUCE-
BACKGROUND-CIRCUMSTANCE-NS. When this rule is applied in
conjunction with the edts that correspond to the units
marked in 5.3, the resulting tree has the same shape as the
tree shown in Figure 8C.
(5.3) [In an April 7 Wall Street Journal

article, several experts suggested that

IBM’s accounting grew much more liberal

since the mid-1980s'][as its business

turned sour.?]

When the tree at the top of the stack subsumes a
paragraph and starts with the marker “but”, the action to
be applied is REDUCE-CONTRAST-NN. For example, if the
trees at the top of the stack subsume the paragraphs shown
in Figure 8D and are characterized by promotion sets Pl and
P2, as a result of applying rule 4 in Figure 8A, one would
obtain a new tree, whose shape is shown in Figure 8E; the
promotion units of the'root node of this tree are given by
the union of the promotion units of the child nodes.

The last rule in Figure 8A reflects the fact that each
text in the MUC corpus is characterized by a title. When
there are no units left in the input list (noUnitsInList =
0) and a tree that subsumes the whole text has been built
(noTreesInStack <=2), the two trees that are left in the
tree - the one that corresponds to the title and the one

that corresponds to the text - are reduced using a REDUCE-

TEXTUAL-NN operation.

45

10

15

20

WO 01/86489 PCT/US01/15380

Evaluation of shift-reduce-action identifier

Table 3 below displays the accuracy of the shift-
reduce action identifiers, determined for each of the three
corpora (MUC, Brown, WSJ) by means of a ten-fold cross-
validation procedure. 1In table 3, the B3 column gives the
accuracy of a majority-based classifier, which chooses
action SHIFT in all cases. Since choosing only the action
SHIFT never produces a discourse tree, column B4 presents
the accuracy of a baseline classifier that chooses shift-
reduce operations randomly, with probabilities that reflect

the probability distribution of the operations in each

corpus.
Corpus # cases B3 (%) B4 (%) Acc (%)
MUC 1996 50.75 26.9 6l.12+1.61
WSJ 4360 50.34 27.3 61.65+0.41
Brown 8242 50.18 28.1 61.81+0.48

Table 3: Performance of the tree-based, shift-reduce
action classifiers.

Figure 9 shows the learning curve that corresponds to
the MUC corpus. As in the case of the discourse segmenter,
this learning curve also suggests that more data can
increase the accuracy of the shift-reduce action

identifier.

46

WO 01/86489 PCT/US01/15380

Evaluation of the rhetorical parser

By applying the two classifiers sequentially, one can
derive the rhetorical structure of any text. The

performance results presented above suggest how well the

5 discourse segmenter and the shift-reduce action identifier
perform with respect to individual cases, but provide no
information about the performance of a rhetorical parser
that relies on these classifiers.

Corpus | Seg- Train- Elementary units Hierarchical spans Span nuclearity Rhetorical relations
ment Ing Judges Parser Judges Parser Judges Parser Judges Parser
er corpus R | P R [P [R]IPIR][P]R]TP RI]P[|[R[P[R]P

MUC DT MuUC 88.0 | 88.0 37.1 | 1000 | 844 | 844 | 382 | 61.0 | 79.1 83.5 255 | 515 | 78.6 | 78.6 | 149 | 287

DT All 75.4 96.9 709 | 72.8 583 | 689 384 | 453
M MUC 100.0 | 100.0 875 | 823 68.8 [782 724 | 62.8
M All 100.0 | 100.0 84.8 | 735 71.0 | 693 66.5 | 539
WSJ DT WwSI 851 | 86.8 18.1 958 | 799 | 80.1 | 340 | 658 | 676 | 77.1 216 | 540 | 731 | 733 | 13.0 | 343
DT All 25.1 79.6 40.1 | 66.3 303 | 585 173 | 36.0
M W8I 100.0 | 100.0 834 | 842 63,7 | 79.9 56.3 | 579
M All 100.0 { 100.0 83.0 | 85.0 69.0 | 824 59.8 | 63.2
Brown DT Brown 89.5 88.5 60.5 794 | 806 | 79.5 | 573 | 633 | 67.6 | 75.8 446 | 573 69.7 | 683 | 26.7 | 353
DT All 44.2 80.3 447 { 59.1 332 [518 15.7 | 25.7
M Brown 100.0 | 100.0 88.1 | 734 60.1 | 67.0 59.5 | 455
M All 100.0 | 100.0 80.8 | 77.5 60.0 | 72.0 51.8 | 447

Table 4: Performance of the rhetorical parser: labeled
(R)ecall and (P)recision. The segmenter is either

15 Decision-Tree-Based (DT) or Manual (M).

In order to evaluate the rhetorical parser as a whole,
each corpus was partitioned randomly into two sets of
texts: 27 texts were used for training and the last 3

20 texts were used for testing. The evaluation employs

“labeled recall” and “labeled precision” measures, which
are extensively used to study the performance of syntactic

parsers. “Labeled recall” reflects the number of correctly

47

10

15

20

25

WO 01/86489 PCT/US01/15380

labeled constituents identified by the rhetorical parser
with respect to the number of labeled constituents in the
corresponding manually built tree. “Labeled precision”
reflects the number of correctly labeled constituents
identified by the rhetorical parser with respect to the
total number of labeled constituents identified by the
parser.

Labeled recall and precision figures were computed
with respect to the ability of the discourse parser to
identify elementary units, hierarchical text spans, text
span nuclei and satellites, and rhetorical relations.

Table 4 displays results obtained using segmenters and
shift-reduce action identifiers that were trained either on
27 texts from each corpus and tested on 3 unseen texts from
the same corpus; or that were trained on 27 X 3 texts from
all corpora and tested on 3 unseen texts from each corpus.
The training and test texts were chosen randomly. Table 4
also displays results obtained using a manual discourse
segmenter, which identified correctly all edus. Since all
texts in the corpora were manually annotated by multiple
judges, an upper-bound of the performance of the rhetorical
parser was computed by calculating, for each text in the
test corpus and each judge, the average labeled recall and
precision figures with respect to the discourse trees built

by the other judges. Table 4 displays these upper-bound

48

10

15

20

25

WO 01/86489 PCT/US01/15380

figures as well.

The results in table 4 primarily show that errors in
the discourse segmentation stage affect significantly the
quality of the trees the parser builds. When a segmenter
is trained only on 27 texts (especially for the MUC and WSJ
corpora, which have shorter texts that the Brown corpus),
it has very low performance. Many of the intra-sentential
edu boundaries are not identified, and as a consequence,
the overall performance of the parser is low. When the
segmenter is trained on 27 X 3 texts, its performance
increases significantly with respect to the MUC and WSJ
corpora, but decreases with respect to the Brown corpus.
This can be explained by the significant differences in
style and discourse marker usage between the three corpora.

When a perfect segmenter is used, the rhetorical parser
determines hierarchical constituents and assigns them a
nuclearity status at levels of performance that are not far
from those of humans. However, the rhetorical labeling of
discourse spans even in this case is about 15-20% below
human performance. These results suggest that the features
used are sufficient for determining the hierarchical
structure of texts and the nuclearity statuses of discourse
segments.

Alternative embodiments of the discourse parser and

its parsing procedure are possible. For example,

49

10

15

20

25

WO 01/86489 PCT/US01/15380

probabilities could be incorporated into the process that
builds the discourse trees. Alternatively, or in addition,
multiple trees could be derived in parallel and the best
one selected in the end. In the current embodiment, the
final discourse tree is generated in a sequence of
deterministic steps with no recursion or branching.
Alternatively, it is possible to associate a probability
with each individual step and build the discourse tree of a
text by exploring multiple alternatives at the same time.
The probability of a discourse tree is given by the product
of the probabilities of all steps that led to the
derivation of that tree. 1In such a case, the discourse
tree of a text will be taken to be the resulting tree of
maximum probability. An advantage of such an approach is
that it enables the creation of multiple trees, each one

having associated a probability.

SUMMARIZATION

Various summarizing systems and techniques are
described in detail below. In general, two different
embodiments of a summarizer are described. First, a
“channel-based” summarizer that uses a probabilistic
approach for summarization (equivalently, compression) is
described, and second, a “decision-based” summarizer that

uses learned decision rules for summarization is described.

50

10

15

20

25

WO 01/86489 PCT/US01/15380

Channel-Based Summarizer

This section describes a probabilistic approach to the
compression problem. In particular, a ”“noisy channel”
framework is used. In this framework, a long text string
is regarded as (1) originally being a short string, that
(2) someone added some additional, optional text to it.
Compression is a matter of identifying the original short
string. It is not critical whether or not the “original”
string is real or hypothetical. For example, in
statistical machine translation, a French string could be
regarded as originally being in English, but having noise
added to it. The French may or may not have been
translated from English originally, but by removing the
noise, one can hypothesize an English source - and thereby
translate the string. In the case of compression, the
noise consists of optional text material that pads out the
core signal. For the larger case of text summarization, it
may be useful to imagine a scenario in which a news editor
composes a short document, hands it to a reporter, and
tells the reporter to “flesh it out” . . . which results in
the final article published in the newspaper. In
summarizing the final article, the summarizer typically
will not have access to the editor’s original version

(which may or may not exist), but the summarizer can guess

51

10

15

20

25

30

35

WO 01/86489 PCT/US01/15380

at it - which is where probabilities come in.
In a noisy channel application, three problems must be

solved:

e Source model. To every string s a probability P(s)
must be assigned. P(s) represents the chance that s
is generated as an “original short string” in the

above hypothetical process. For example, it may be
desirable to have P(s) to be very low if s is
ungrammatical.

e Channel model. To every pair of strings (s,t) a
probability P(t | s) is assigned. P(t | s) represents
the chance that when the short string s 1s expanded,
the result is the long string t. For example, if t is
the same as s except for the extra word “not,” then it
may be desirable to have a very low P(t | s) because
the word “not” is not optional, additional material.

¢ Decoder. Given a long string t, a short string s is

searched for that maximizes P(s | t). This is
equivalent to searching for the s that maximizes P (s)
P(t | s).

It is advantageous to break down the noisy channel
problem this way, as it decouples the somewhat independent
goals of creating a short text that (1) is grammatical and
coherent, and (2) preserves important information. It is
easier to build a channel model that focuses exclusively on
the latter, without having to worry about the former. That
is, one can specify that a certain substring may represent
unimportant information without worrying that deleting the
substring will result in an ungrammatical structure. That
concern is left to the source model, which worries

exclusively about well-formedness. In that regard, well-

52

10

15

20

25

WO 01/86489 PCT/US01/15380

known prior work in source language modeling for speech
recognition, machine translation, and natural language
generation can be used. The same goes for actual
compression (“decoding” in noisy-channel jargon) - one can
re-use generic software packages to solve problems in all

these application domains.

Statistical Models

In the experiments discussed here, relatively simple
source and channel models were built and used. 1In a
departure from the above discussion and from previous work
on statistical channel models, probabilities Piree(s) and
Pexpand tree (£ | 8) were assigned to trees rather than strings.

In decoding a new string, first it is parsed into a large
syntactic tree t (for example, using the parser described
in M. Collins, “Three generative, lexicalized models for
statistical parsing,” Proceedings of the 35 Annual Meeting
of the Association for Computational Linguistics (ACL-97),
16-23 (1997)) and then various small syntactic trees are
hypothesized and ranked.

Good source strings are ones that have both (1) a
normal-looking parse tree, and (2) normal-looking word
pairs. Piree(s) 1s a combination of a standard probabilistic
context-free grammar (PCFG) score, which is computed over

the grammar rules that yielded the tree s, and a standard

53

10

15

20

25

WO 01/86489 PCT/US01/15380

word-bigram score, which is computed over the leaves of the
tree. For example, the tree s = (S (NP John) (VP (VB saw)

(NP Mary))) is assigned a score based on these factors:

Ptree(s) = P(TOP - S | TOP)

P(S - NP VP | S) + P(NP - John | NP)
P(VP - VP NP | VP) - P(VP —» saw | VB)
P (NP — Mary | NP)

P(John | EOS) + P(saw | John)

P(Mary | saw) + P(EOS | Mary)

The stochastic channel model performs minimal
operations on a small tree s to create a larger tree t.
For each internal node in s, an expansion template is
chosen probabilistically based on the labels of the node
and its children. For example, when processing the S node
in the tree above, one may wish to add a prepositional
phrase as a third child. This is done with probability P (S
- NP VP PP | S - NP VP). Or one may choose to leave it
alone, with probability P(S - NP VP | S - NP VP). After an
expansion template is chosen, then for each new child node
introduced (if any), a new subtree is grown rooted at that
node-for example, (PP (P in) (NP Pittsburgh)). Any
particular subtree is grown with probability given by its.

PCFG factorization, as above (no bigrams).

Example of using statistical models for compression
This example demonstrates how to tell whether one

potential compression is more likely than another,

54

10

15

20

25

30

WO 01/86489

PCT/US01/15380

according to the statistical models described above.

Figure 11 shows examples of parse trees. As shown, the

tree t in Figure 11 spans the string abede. Consider the
parse tree for compression sl, which is also shown in
Figure 11.

The factors Piree(sl) and Pexpand tree(t | sl) are
computed. Breaking this down further, the source PCFG and

word-bigram factors, which describe Piree (S1), are as

follows:
P(TOP - G | TOPR) P(H - a | H)
P(G - HA | G) P(C - b | C)
P(A—»C D | A) P(D-—>e ID)
P(a | EO0S) P(e | b)
P(b | a) P(EOS | e)

The channel expansion-template factors and the channel PCFG

(new tree growth) factors, which describe Pexpand tree(t | s1)
are:

P(G>HA]| G- HA)

[P(E-CBD | A CD)

P(BE > Q R | B) P(Z - c | 2)

P(Q - 2 | Q) P(R - d | R)

A different compression will be scored with a different set

of factors. For example, consider a compression of t that

leaves t completely untouched. 1In that case, the source

costs Pirree(t) are:

55

10

15

20

25

30

35

WO 01/86489 PCT/US01/15380

P(TOP - G | TOP) P(H - a | H) P(a | EOS)
P(G > HA | G) P(C - b | C) P(b | a)
P(A - C D { A) P(Z - ¢ | Z) P(c | b))
P(B - QR | B) P(R - d |R) P(d | c)
P(Q > Z | Q) P(D - e | D) P(e | d)
P(EOS | e)
The channel coOsts Pexpang tree(t | t) are
P(G-»- HA | G- HBA)
P(A-CBD]| A CB D)
P(B > QR | B - Q R)J
P(Q -2 | Q= 7)
Now, the following values are compared — Peypand tree(S1
| £) = Ptree(sl) - Pexpandﬂtree(t | 81))/Ptree(t) versus
Pexpand_tree(t I t) = Ptree(t)) Pexpand_tree(t I t) / Ptree(t) —- and

the more likely one is selected. Note that Piree(t) and all
the PCFG factors can be canceled out, as they appear in any
potential compression. Therefore, one need only compare
compressions of the basis of the expansion-template
probabilities and the word-bigram probabilities. The
quantities that differ between the two proposed
compressions are boxed above. Therefore, sl will be

preferred over t if and only if:

Training Corpus
In order to train the channel-based summarizing

system, the Ziff-Davis corpus - a collection of newspaper

56

10

15

20

25

WO 01/86489 PCT/US01/15380

articles announcing computer products - was used. Many of
the articles in the corpus are paired with human written
abstracts. A set of 1067 sentence pairs were automatically
extracted from the corpus. Each pair consisted of a
sentence t = ti, t, . . . , tp that occurred in the article
and a possible compressed version of it s = sl, s,,

Sm, wWhich occurred in the human written abstract. Figure 12
shows a few examples of sentence pairs extracted from the
corpus.

This corpus was chosen because i1t is consistent with
two desiderata specific to summarization work: (1) the
human-written Abstract sentences are grammatical; (ii) the
Abstract sentences represent in a compressed form the
salient points of the original newspaper Sentences. The
uncompressed sentences were kept in the corpus as well,
since an objective was to learn not only how to compress a

sentence, but also when to do it.

Learning Model Parameters For Channel-Based Summarizer

Expansion-template probabilities were collected from
parallel corpus. First, both sides of the parallel corpus
were parsed, and then corresponding syntactic nodes were
identified. For example, the parse tree for one sentence
may begin

(S (NP . . .)

57

WO 01/86489 PCT/US01/15380

(Ve . . .)
(PP . . .))
while the parse tree for its compressed version may begin
(S (NP . . .)
5 (VP . .« .)).

If these two S nodes are deemed to correspond, then a
joint event (S - NP VP, S - NP VP PP) is recorded.
Afterwards the events are normalized so that the
probabilities add up to one. Not all nodes have

10 corresponding partners; some non-correspondences are due to
incorrect parses, while others are due to legitimate
reformulations that are beyond the scope of the simple
channel model. Standard methods based on counting and
parameters were used to estimate word-bigram probabilities.

15
Decoding

A vast number of potential compressions of a large tree t
exist, but all of them can be packed efficiently into a
shared-forest structure. For each node of t that has n

20 children, the following operations are performed:

e generate 2" - 1 new nodes, one for each non-empty
subset of the children, and

25 e Pack those nodes so that they are referred to as a
whole.

For example, consider the large tree t above. All

58

10

15

20

25

WO 01/86489 PCT/US01/15380

compressions can be represented with the following forest:

G- HA B-R A-BC H- a
G - H Q- Z A5 C C-5>D
G - A A-CBD A - B Z - C
B-0QR A-CB A - D R d
B -0 A-CD D e

An expansion-template probability can be assigned to
each node in the forest. For example, to the B - Q node,
one can assign P(B - Q R | B - Q). If the observed
probability from the parallel corpus is zero, then a small
floor value of 107® is assigned. In reality, forests are
produced that are much slimmer, as only methods of
compressing a node that are locally grammatical according
to the Penn Treebank are considered. (Penn Treebank is a
collection of manually built syntactic parse trees
available from the Linguistic Data Consortium at the
University of Pennsylvania.) If a rule of the type A - C B
has never been observed, then it will not appear in the
forest.

Next, a set of high-scoring trees is extracted from
the forest, taking into account both expansion-template
probabilities and word-bigram probabilities. A generic
extractor such as described by I. Langkilde, “Forest-based
statistical sentence generation,” Proceedings of the 18t
Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (2000) can be

used for this purpose.

59

10

15

20

25

WO 01/86489 PCT/US01/15380

The extractor selects the trees with the best
combination of word-bigram and expansion template scores.
It returns a list of such trees, one for each possible
compression length. For example, as shown in Figure 16,
for the sentence Beyond that basic level, the operations of
the three products vary, the following “best” compressions
are obtained, with negative log-probabilities shown in

parentheses (smaller = more likely):

Length Selection

It is useful to have multiple answers to choose from,
as one user may seek 20% compression, while another seeks
60% compression. However, for purposes of evaluation, the
summarizing system was designed to be able to select a
single compression. If log-probabilities as shown in
Figure 16 are relied upon, then typically the shortest
compression will be chosen. (Note above, however, how the
three-word compression scores better than the two-word
compression, as the models are not entirely happy removing
the article “the”). To create a more reasonable
competition, the log-probability is divided by the length
of the compression, rewarding longer strings. This
technique often is applied speech recognition.

If this normalized score is plotted against

compression length, typically a (bumpy) U-shaped curve

60

10

15

20

25

WO 01/86489 PCT/US01/15380

results, as i1llustrated in Figure 13. 1In a typical more
difficult case, a 25-word sentence may be optimally
compressed by a l7-word version. Of course, if a user
requires a shorter compression than that, another region of
the curve may be selected and inspected for a local
minimum.

Figs. 17 and 18 are respectively generalized
flowcharts of the channel-based summarization and training
processes described above.

As shown in Fig. 17, the first step 1702 in the
channel-based summarization process 1700 is to receive the
input text. Although the embodiment described above uses
sentences as theAinput text, any other text segment could
be used instead, for example, clauses, paragraphs, or
entire treatises.

Next, in step 1704, the input text is parsed to
produce a syntactic tree in the style of Figure 11, which
is used in step 1706 as the basis of generating multiple
possible solutions (e.g., the shared-forest structure
described above). If a whole text is given as input, the
text can be parsed to produce a discourse tree, and the
algorithm described here will operate on the discourse
tree.

Next, the multiple possible solutions generated in

step 1706 are ranked using pre-generated ranking statistics

61

10

15

20

25

WO 01/86489 PCT/US01/15380

from a statistical model. For example, step 1706 may
involve assigning an expansion-template probability to each
node in the forest, as described above.

Finally, the best scoring candidate (or candidates) is
(are) chosen as the final compression solution(s) in step
1710. As described above, the best scoring candidate may
be the one having the smallest log-probability / length of
compression ratio.

Fig. 18 shows a generalized process for training a
channel-based summarizer. As shown therein, the process
1800 starts in step 1802 with an input training set (or
corpus). As discussed above, this input training set
comprises pairs of long-short text fragments, for example,
long/short sentence pailrs or treatise/abstract pairs.
Typically, because a main purpose of the training set is to
teach the summarizer how to properly compress text, the
training set used will have been generated manually by
experienced editors who know how to create relevant,
coherent and grammatical summaries of longer text segments.

Next, in step 1804, the long-short text pairs are
parsed to generate syntactic parse trees such as shown in
Figure 11, thereby resulting in corresponding long-short
syntactic tree pairs. Each item of text in each pair is
parsed individually in this manner. Also, the entire text

is parsed using the discourse parser.

62

10

15

20

25

WO 01/86489 PCT/US01/15380

Next, in step 1806, the resulting parse tree pairs are
compared - that is, the discourse or syntactic parse tree
for a long segment is compared against the discourse or
syntactic parse tree for its paired short segment - to
identify similarities and differences between nodes of the
tree pairs. A difference might occur, for example, if, in
generating the short segment, an editor deleted a
prepositional phrase from the long segment. In any event,
the results of this comparison are “events” that are
collected for each of the long/short pairs and stored in a
database. In general, two different types of events are
detected: “joint events” which represent a detected
correspondence between a long and short segment pair and
Context-Free Grammar (CFG) events, which relate only to
characteristics of the short segment in each pair.

Next, in step 1808, the collected events are
normalized to generate probabilities. These normalized
events collectively represent the statistical learning

model 1810 used by the channel-based summarizer.

Decision-based Summarizer

A description of a decision-based, history model of
sentence compression follows. As in the noisy-channel
approach, it is assumed that a parse tree t is given as

input. The goal is to “rewrite” t into a smaller tree s,

63

10

15

20

25

30

WO 01/86489 PCT/US01/15380

which corresponds to a compressed version of the original
sentence subsumed by t. Assume the trees t and s2 in
Figure 11 are in the corpus. In the decision-based
summarizer model, the question presented is how may tree t
be rewritten into s2. One possible solution is to
decompose the rewriting operation into a sequence of shift-
reduce-drop actions that are specific to an extended shift-
reduce parsing paradigm.

In the decision-based model, the rewriting process
starts with an empty Stack and an Input List that contains
the sequence of words subsumed by the large tree t. Each
word in the input list is labeled with the name of all
syntactic constituents in t that start with that word (see
Figure 14). At each step, the rewriting module applies an
operation that is aimed at reconstructing the smaller tree
s52. In the context of the sentence-compression module,

four types of operations are used:

e SHIFT operations transfer the first word from the
input list into the stack;

e REDUCE operations pop the k syntactic trees located at
the top of the stack; combine them into a new tree;
and push the new tree on the top of the stack. Reduce
operations are used to derive the structure of the
syntactic tree of the short sentence.

e DROP operations are used to delete from the input list
subsequences of words that correspond to syntactic
constituents. A DROP X operations deletes from the
input list all words that are spanned by constituent X
in t.

64

10

15

20

25

WO 01/86489 PCT/US01/15380

e ASSIGNTYPE operations are used to change the label of
trees at the top of the stack. These actions assign

POS tags to the words in the compressed sentence,

which may be different from the POS tags in the

original sentence.
The decision-based model is more flexible than the channel
model because it enables the derivation of a tree whose
skeleton can differ quite drastically from that of the tree
given as input. For example, the channel-based model was
unable to obtain tree s2 from t. However, using the four
operations listed above (SHIFT, REDUCE, DROP, ASSIGNTYPE),
the decision-based model was able to rewrite a tree t into
any tree s, as long as an in-order traversal of the leaves
of s produces a sequence of words that occur in the same
order as the words in the tree t. For example, the tree s2
can be obtained from the tree t by following this sequence
of actions, whose effects are shown in Figure 14: SHIFT,
ASSIGNTYPE H; SHIFT; ASSIGNTYPE K; REDUCE 2 F; DROP B;
SHIFT; ASSIGNTYPE D; REDUCE 2 G.

To save space, the SHIFT and ASSIGNTYPE operations are
shown in Fig. 14 on the same line. However, it should be
understood that the SHIFT and ASSIGNTYPE operations
correspond to two distinct actions. The ASSIGNTYPE K
operation rewrites the POS tag of the word b; the REDUCE

operations modify the skeleton of the tree given as input.

To increase readability, the input list is shown in Fig.

65

10

15

20

25

WO 01/86489 PCT/US01/15380

14 in a format that resembles the graphical representation

of the trees in Figure 11.

Learning the Parameters of (Training) the Decision-Based
Model

To train the decision-based model, each configuration
of our shift-reduce-drop rewriting model is associated with
a learning case. The learning cases are generated
automatically by a program that derives sequences of
actions that map each of the large trees in our corpus into
smaller trees. The rewriting procedure simulates a bottom-
up reconstruction of the smaller trees.

Overall, the 1067 pairs of long and short sentences
yielded 46383 learning cases. Each case was labeled with
one action name from a set of 210 possible actions: There
are 37 different ASSIGNTYPE actions, one for each POS tag.

There are 63 distinct DROP actions, one for each type of
syntactic constituent that can be deleted during
compression. There are 109 distinct REDUCE actions, one
for each type of reduce operation that is applied during
the reconstruction of the compressed sentence. And there
is one SHIFT operation. Given a tree t and an arbitrary
configuration of the stack and input list, the purpose of
the decision-based classifier is to learn what action to

choose from the set of 210 possible actions.

66

10

15

20

25

WO 01/86489 PCT/US01/15380

To each learning example, a set of 99 features was
associlated from the following two classes: operation
features and original-tree-specific features.

Operational features reflect the number of trees in
the stack, the input list, and the types of the last five
operations performed. Operational features also encode
information that denotes the syntactic category of the root
nodes of the partial trees built up to a certain time.
Examples of operational features include the following:
numberTreesInStack, wasPreviousOperationShift,
syntacticLabelOfTreeAtTheTopOfStack.

Original-tree-specific features denote the syntactic
constituents that start with the first unit in the input
list. Examples of such features include
inputListStartsWithA CC and inputListStartsWithA PP.

The decision-based compression module uses the C4.5
program as described in J. Quinlan, “C4.5: Programs for
Machine Learning,” Morgan Kaufmann Publishers (1993), in
order to learn decision trees that specify how large
syntactic trees can be compressed into shorter trees. A
ten-fold cross-validation evaluation of the classifier
yielded an accuracy of 98.16% (+0.14). A majority baseline
classifier that chooses the action SHIFT has an accuracy of
28.72%.

Figure 18A shows examples of rules that were learned

67

10

15

20

25

WO 01/86489 PCT/US01/15380

automatically by the C4.5 program. As seen therein, Rule 1
enables the deletion of WH prepositional phrases in the
context in which they follow other constituents that the
program decided to delete. Rule 2 enables the deletion of
WHNP constituents. Since this deletion is carried out only
when the stack contains only one NP constituent, it follows
that this rule is applied only in conjunction with complex
nounphrases that occur at the beginning of sentences. Rule

3 enables the deletion of adjectival phrases.

Employing the decision-based model

To compress sentences, the shift-reduce-drop model is
applied in a deterministic fashion. The sentence to be
compressed is parsed and the input list is initialized with
the words in the sentence and the syntactic constituents
that “begin” at each word, as shown in Figure 14.
Afterwards, the learned classifier is asked in a stepwise
manner what action to propose. Each action is then
simulated, thus incrementally building a parse tree. The
procedure ends when the input list is empty and when the
stack contains only one tree. An in-order traversal of the
leaves of this tree produces the compressed version of the
sentence given as input.

Because the decision-based model is deterministic, it

produces only one output. An advantage of this result is

68

10

15

20

25

WO 01/86489 PCT/US01/15380

that compression using the decision-based model is very
fast: it takes only a few milliseconds per sentence. One
potential disadvantage, depending on one’s objectives, is
that the decision-based model does not produce a range of
compressions, from which another system may subsequently
choose. It would be relatively straightforward to extend
the model within a probabilistic framework by applying, for
example, techniques described in D. Magerman, “Statistical
decision-tree models for parsing,” Proceedings of the 33rd
Annual Meeting of the Association for Computational
Linguistics, 276-283 (1995).

Figs. 19 and 20 are respectively generalized
flowcharts of the decision-based summarization and training
processes described above.

As shown in Fig. 19, the first step 1902 in the
decision-based summarization process 1900 is to receive the
input text. Although the embodiment described above uses
sentences as the input text, any other text segment could
be used instead, for example, clauses, paragraphs, or
entire treatises.

Next, in step 1904, the input text is parsed to
produce a syntactic tree in the style of Figure 11. If a
full text is used, one can use a discourse parse to build
the discourse tree of the text.

In step 1906, the shift-reduce-drop algorithm is

69

10

15

20

WO 01/86489 PCT/US01/15380

applied to the syntactic / discourse tree generated in step
1904. As discussed above, the shift-reduce-algorithm
applies a sequence of predetermined decision rules (learned
during training of the decision-based model, and
identifying under what circumstances, and in what order, to
perform the various shift-reduce-drop operations) to
produce a compressed syntactic / discourse tree 1908. The
resulting syntactic / discourse tree can be used for
various purposes, for example, it can be rendered into a
compressed text segment and output to a user (e.g., either
a human end-user or a computer process). Alternatively,
the resulting syntactic / discourse tree can be supplied to
a process that further manipulates the tree for other
purposes. For example, the resulting compressed syntactic
/ discourse tree could be supplied to a tree rewriter to
convert it into another form, e.g., to translate it into a
target language. An example of such a tree rewriter is
described in Daniel Marcu et al., “The Automatic
Translation of Discourse Structures,” Proceedings of the
First Annual Meeting of the North American Chapter of the
Assoclation for Computational Linguistics, pp. 9-17,
Seattle, Washington, (April 29 -- May 3, 2000).

Fig. 20 shows a generalized process for training a

decision-based summarizer. As shown therein, the training

70

10

15

20

25

WO 01/86489 PCT/US01/15380

process 2000 starts in step 2002 with an input training set
as discussed above with reference to Fig. 17.

Next, in step 2004, the long-short text pairs are
parsed to generate syntactic parse trees such as shown in
Figure 11, thereby resulting in corresponding long-short
syntactic tree pairs.

Next, in step 2006, for each long-short tree pair, the
training process 2000 determines a sequence of shift-
reduce-drop operations that will convert the long tree into
the short tree. As discussed above, this step is performed
based on the following four basic operations, referred to
collectively as the “shift-reduce-drop” operations - shift,
reduce, drop, and assignType. These four operations are
sufficient to rewrite any given long tree into its paired
short tree, provided that the order of the leaves does not
change.

The output of step 2006 is a set of learning cases -
one learning case for each long-short tree pair in the
training set. In essence, each learning case is an ordered
set of shift-reduce-drop operations that when applied to a
long tree will generate the paired short tree.

Next, in step 2008, the training process 2000
assoclates features (e.g., operational and original-tree-
specific features) with the learning cases to reflect the

context in which the operations are to be performed.

71

10

15

20

25

WO 01/86489 PCT/US01/15380

Next, in step 2010, the training process 2000 applies
a learning algorithm, for example, the C4.5 algorithm as
described in J. Ross Quinlan, “C4.5: Programs for Machine
Learning,” Morgan Kaufmann Publishers (1993), to learn a
set of decision rules 2012 from the learning cases. This
set of decision rules 2012 then can be used by the
decision-based summarizer to summarize any previously
unseen text or syntactic tree into a compressed version

that is both coherent and grammatical.

Evaluation of the Summarizer Models

To evaluate the compression algorithms, 32 sentence
pairs were randomly selected from the parallel corpus.
This random subset is referred to as the Test Corpus. The
other 1035 sentence pairs were used for training as
described above. Figure 15 shows three sentences from the
Test Corpus, together with the compressions produced by
humans, the two compression algorithms described here
(channel-based and decision-based), and a baseline
algorithm that produces compressions with highest word-
bigram scores. The examples were chosen so as to reflect
good, average, and bad performance cases. The first
sentence in Fig. 15 (“Beyond the basic level, the
operations of the three products vary widely.”) was

compressed in the same manner by humans and by both of the

712

10

15

20

25

WO 01/86489 PCT/US01/15380

channel-based and decision-based algorithms (the baseline
algorithm chooses though not to compress this sentence).

For the second example in Fig. 15, the output of the
Decision-based algorithm is grammatical, but the semantics
are negatively affected. . The noisy-channel algorithm
deletes only the word “break”, which affects the
correctness of the output less. 1In the last example in
Fig. 15, the noisy-channel model is again more conservative
and decides not to drop any constituents. In contrast, the
decision-based algorithm compresses the input
substantially, but it fails to produce a grammatical
output.

Each original sentence in the Test Corpus was
presented to four judges, together with four compressions
of it: the human generated compression, the outputs of the
noisy-channel and decision-based algorithms, and the output
of the baseline algorithm. The judges were told that all
outputs were generated automatically. The order of the
outputs was scrambled randomly across test cases.

To avoid confounding, the judges participated in two
experiments. In the first experiment, they were asked to
determine on a scale from 1 to 5 how well the systems did
with respect to selecting the most important words in the
original sentence. In the second experiment, they were

asked to determine on a scale from 1 to 5 how grammatical

73

10

15

20

25

WO 01/86489 PCT/US01/15380

the outputs were.

It was also investigated how sensitive the channel-
based and decision-based algorithms are with respect to the
training data by carrying out the same experiments on
sentences of a different genre, the scientific one. To
this end, the first sentence of the first 26 articles made
available in 1999 on the cmplg archive was used. A second
parallel corpus, referred to as the Cmplg Corpus, was
created by generating compressed grammatical versions of
these sentences. Because some of the sentences in this
corpus were extremely long, the baseline algorithm could
not produce compressed versions in reasonable time.

The results of Table 5 show compression rate, and mean
and standard deviation results across all judges, for each
algorithm and corpus. The results show that the decision-
based algorithm is the most aggressive: on average, it
compresses sentences to about half of their original size.

The compressed sentences produced by both the channel-
based algorithm and by the decision-based algorithm are
more “grammatical” and contain more important words than
the sentences produced by the baseline. TI-test experiments
showed these differences to be statistically significant at
p < 0.01 both for individual judges and for average scores
across all judges. T-tests showed no significant

statistical differences between the two algorithms. As

74

WO 01/86489 PCT/US01/15380

Table 1 shows, the performance of the each of the
compression algorithms is much closer to human performance
than baseline performance; yet, humans perform

statistically better than our algorithms at p < 0.01.

| Corpus Avg. orig. sent. Length | Baseline | Noisy-channel | Decision-based | Humans |
Test 21 words Compression 63.70% 70.37% 57.19% 53.33%
Grammaticality 1.78+1.19 4.34+1.02 4.30+£1.33 4.92+0.18
Importance 2.17+0.89 3.38+0.67 3.54+1.00 4.24+0.52
Cmplg 26 words Compression - 65.68% 54.25% 65.68%
Grammaticality - 4.2240.99 3.72£1.53 4.97+0.08
Importance - 3.42+0.97 3.2420.68 4.32:0.54

10

15

20

Table 5: Experimental results

When applied to sentences of a different genre, the
performance of the noisy-channel compression algorithm
degrades smoothly, while the performance of the decision-
based algorithm drops sharply. This i1s due to a few
sentences in the Cmplg Corpus that the decision-based
algorithm over-compressed to only two or three words. This
characteristic of the decision-based summarizer can be
adjusted if the decision-based compression module is
extended as described in D. Magerman, “Statistical
decision-tree models for parsing,” Proceedings of the 33
Annual Meeting of the Association for Computational
Linguistics, 276-283 (1995), by computing probabilities
across the sequences of decisions that correspond to a

compressed sentence.

75

10

15

WO 01/86489 PCT/US01/15380

Similarly, noisy-channel modeling could be enhanced by
taking into account subcategory and head-modifier
statistics (in addition to simple word-bigrams). For
example, the subject of a sentence may be separated from
the verb by intervening prepositional phrases. In this
case, statistics should be collected over subject / verb
pairs, which can be extracted from parsed text.

Although only a few embodiments have been described in
detail above, those having ordinary skill in the art will
certainly understand that many modifications are possible
in the preferred embodiment without departing from the
teachings thereof. All such modifications are encompassed

within the following claims.

76

10

15

20

WO 01/86489 PCT/US01/15380

What is claimed is:

1. A computer-implemented summarization method
comprising:

generating a set of one or more summarization decision
rules based on a training set; and

compressing a tree structure by applying the generated

set of summarization decision rules to the tree structure.

2. The method of claim 1 wherein the tree structure

comprises a discourse tree.

3. The method of claim 1 wherein the tree structure

comprises a syntactic tree.

4. The method of claim 1 further comprising
generating the tree structure to be compressed by parsing

an input text segment.

5. The method of claim 4 wherein the input text
segment comprises a clause, a sentence, a paragraph, or a

treatise.

6. The method of claim 1 further comprising
converting the compressed tree structure into a summarized

text segment.

17

10

15

WO 01/86489 PCT/US01/15380

7. The method of claim 6 wherein the summarized text

segment is grammatical and coherent.

8. The method of claim 6 wherein the summarized text
segment includes sentences not present in a text segment

from which the pre-compressed tree structure was generated.

9. The method of claim 1 wherein applying the
generated set of summarization decision rules comprises
performing a sequence of modification operations on the

tree structure.

10. The method of claim 9 wherein the sequence of
modification operations comprises one or more of the
following: a shift operation, a reduce operation, and a

drop operation.

11. The method of claim 10 wherein the reduce

operation combines a plurality of trees into a larger tree.

12. The method of claim 10 wherein the drop operation

deletes constituents from the tree structure.

13. The method of claim 1 wherein the training set

comprises pre—generated long/short tree pairs.

78

10

15

20

WO 01/86489 PCT/US01/15380

14. The method of claim 13 wherein generating the set
of summarization decision rules comprises iteratively
performing one or more tree modification operations on a

long tree until the paired short tree is realized.

15. The method of claim 14 wherein a plurality of
long/short tree pairs are processed to generate a plurality

of learning cases.

16. The method of claim 15 wherein generating the set
of decision rules comprises applying a learning algorithm

to the plurality of learning cases.

17. The method of claim 15 further comprising
associating one or more features with each of the learning

cases to reflect context.

18. A computer-implemented summarization method
comprising:

generating a parse tree for an input text segment; and

iteratively reducing the generated parse tree by

selectively eliminating portions of the parse tree.

19. The method of claim 18 wherein the generated

parse tree comprises a discourse tree.

79

WO 01/86489 PCT/US01/15380

20. The method of claim 18 wherein the generated

parse tree comprises a syntactic tree.

21. The method of claim 18 wherein the iterative
reduction of the parse tree is performed based on a

5 plurality of learned decision rules.

22. The method of claim 18 wherein iteratively
reducing the parse tree comprises performing tree

modification operations on the parse tree.

23. The method of claim 22 wherein the tree
10 modification operations comprise one or more of the
following: a shift operation, a reduce operation, and a

drop operation.

24. The method of claim 23 wherein the reduce

operation combines a plurality of trees into a larger tree.

15 25. The method of claim 23 wherein the drop operation

deletes constituents from the tree structure.

26. A computer-implemented summarization method
comprising:
parsing an input text segment to generate a parse tree
20 for the input segment;

generating a plurality of potential solutions;

80

10

15

20

WO 01/86489 PCT/US01/15380

applying a statistical model to determine a
probability of correctness for each of potential solution;
extracting one or more high-probability solutions
based on the solutions’ respective determined probabilities

of correctness.

27. The method of claim 26 wherein the generated

parse tree comprises a discourse tree.

28. The method of claim 26 wherein the generated

parse tree comprises a syntactic tree.

29. The method of claim 26 wherein applying a
statistical model comprises using a stochastic channel

model algorithm.

30. The method of claim 29 wherein using a stochastic
channel model algorithm comprises performing minimal

operations on a small tree to create a larger tree.

31. The method of claim 29 wherein using a stochastic
channel model algorithm comprises probabilistically

choosing an expansion template.

32. The method of claim 26 wherein generating a
plurality of potential solutions comprises identifying a

forest of potential compressions for the parse tree.

81

10

15

20

WO 01/86489 PCT/US01/15380

33. The method of claim 32 wherein the generated
parse tree has one or more nodes, each node having N
children (wherein N is an integer), and wherein identifying
a forest of potential compressions comprises:

generating 2" — 1 new nodes, one node for each non-
empty subset of the children; and

packing the newly generated nodes into a whole.

34. The method of claim 32 wherein the generated
parse tree has one or more nodes, and wherein identifying a
forest of potential compressions comprises assigning an

expansion-template probability to each node in the forest.

35. The method of claim 26 wherein extracting one or
more high-probability solutions comprises selecting one or
more trees based on a combination of each tree’s word-

bigram and expansion-template score.

36. The method of claim 35 wherein selecting one or
more trees comprises selecting a list of trees, one for

each possible compression length.

37. The method of claim 26 further comprising
normalizing each potential solution based on compression

length.

82

WO 01/86489 PCT/US01/15380

38. The method of claim 26 further comprising, for
each potential solution, dividing a log-probability of
correctness for the solution by a length of compression for

the solution.

83

PCT/US01/15380

1=z
h o]
/
Yoo

WO 01/86489

L "9ld

201 201 201
T " — e
JUNSSIA KUNVISNIISOWTY AM0dWT) 201 ™"
OITHISONLY MOT TTIOMAYM SHLN GInk0S 211 2 LCaHNGH
JHLA0ISNMIE M ANOTAYINE oo nogor 7 STI0AIHL SHHI09.)} SMISTED 201
S MYHLOLHONONT AHYM S! HYAN SAISTID $33493a 09- Lnogy _ X
90! T N SIANLIYT TYIdOUL LY STIDIAEZL-OL FOVHIAY ATTVOIIAL g 1IN
201~ POL NNSAVOGNFHLAINO JIONVOGNY STHNIVHIAAALIHENS zp; OIHASOMLY WIS ONY
__~ /EEE NYHL NNS FHL 10!
LSYHINOD 501 401 INfor poL SNOLIGNOD H3HLYIM ~ H3HLHYH IN3OHTd 05-)
) 201 @9 STONTHTA SHYA LIGHO LNYLSI SL HUM
904 o0 NOLVEORTT N\-p01 v01| aunogowoye 90}
/\/ ~-801
901 JONIANT 501
801"
4

001

SUBSTITUTE SHEET (RULE 26)

WO 01/86489 PCT/US01/15380

2/19
(GENERATE DISCOURSE TREE)~ 200

! 202
RECEIVEINPUTTEXT
! 204
BREAK TEXT INTO EDUS }~
! 206
PUT EDUS INTO INPUT LISTS ¥V
Y
PERFORN SHIFT-REDUCE | ;o
ALGORITHM BASED ON V~
DECISION RULES
210
DISCOURSF TREE
FOR INPUT TEXT
FIG. 2
301
INPUT TEXT
L / 300
Y
DISCOURSE | v~ 902
SEGMENTER
DECISION RULES
[EDUS
DISCOURSE 304
PARSER %
DECISION RULES

\

305
DISCOURSE ' -
TREE |

rmn N

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15380

vy "9l

3/19

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

{e1} {21}
NOILNGIHLLY NVdS
TAYS| | SnaIonN
{r1} {21}
1511 s
SNATINN SNTIONN
/\
{11} {91} {1} {r1'e1}
NVdS | | NOILIGNOD NVdS 1SVHINOD
NOLLYHIJ0 SN-NOLLISOddV-7ona3H SNATONN | | UTIYS| | SNTTINN JUTHLYS
[~—" [— |
{0z} {61} {o1} {1} {o1} {r}
aINHIaNN ||| aanHIaNn | {aaNEAIanNn | | @GINEIaNn GINHIANN GINHIaNN .
aaNHIaNN ||| aanHIaNn | | GINHIanNn | | GINHIaNn qINHAANN GINHIANN| | +1 4q]
{e1} {21}
NOUNGIHLLY NVdS
JUTIAYS| | SnIT9NN
£
{#1} {z1}
sn 1817
SIEIAN SNITINN
<
{21} {a1} {c1} {r121}
NVdS | | NOLIaNOD NVdS 1SYHINDD
NOILYHIdO LHIHS SnATonN | | FLmAWS| | SnaTanN IUTILYS |
I,

{0z} {61} {o1} {21} {¢1} {r}
aaNHaanNn | (aanEHFann (|| aavHFann | | @anH3ann GINHIaNN GINHIANN 14l
GINHIaNn | [@aniHaann (|| @anHIaNn | | qaNHIaNn @INHIaNN GINHIANN !

S3341 3SHN0ISIA AYYVININTTI 40 ISTT OVIS FHL 40 dOL

PCT/US01/15380

WO 01/86489

4/19

ar "9l

{e1} {21}
NOLNGILLLY NVdS
UTHEWS| | SnF1ONN
/_
{61} {g1} {11} {91} {r1} {21}
NOILISOddY NS NvdS | | Notianod 1817 117
umAws| | snatonn | | snazonn | | 3imaivs SNITINN SATIINN
~—"] ~_ _—
{1} {71} {61} {171}
NOILNG/HLLY NVdS NVdS ISYHINOD
NOILYYFJ0 SN-NOILYHO Y 13-70n a7 TAWS| | snaTonn SNA1NN JUTHLYS .
{0z} {21} {¢1} {r}
QINHIaNN GINHIANN GaNHIaNN GINHIANN
gaNIHIaNN GINHIANN @INHIANN GINHIGNN| o41 47
{e1} {21}
NOLNGIHLLY NYdS
TS| | snF1oNN
/_
{r1} {21}
181 1817
SNTTINN SNTIONN
/\
{61} {81} {71} {91} {o/} {#121}
NOILISOddY S NS | | Nowranog NYdS 1SVHINOD
NOIIYHIJO0 SN-NOLNGMLLY-3ona3d || uTiLys) | snT7ann | | snatonn | | 3Lmmaws| | sna7onN TS .
~—1 ~— —— |
{oc} {91} {21} {51} {r}
aINHIaNN GINHIANN | | GINHIAND @INHIaNn EINHIANN
INHIaNN aaNHAaNN | | GINHIAND GINHIANN GNHFAND] 741 43

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15380

WO 01/86489

9/19

ar "9l

{oc}
a3NIH3aNN
EAEEL

{e1} {21}
NOLNGIYLLY NYdS
JUTAWS| | SnTTONN

/l_

{61} {81} {21} {91} {r1} {e1}
NOILISOddY NvdS Nvds | | NoILangd 117 1S/7
0TS | snTIonN | | SnATonN | | FLTIYS SnT19NN SNITINN

: {91} {1} {c1} {r1'21}

NOUNGIHLLY NS NYdS ISVHINOD
TS| | snatonn SNFTONN JUTHALYS
/._ _/\
{21} {c1}
NOLLYHOAY T3 NYdS
EITEIS SNFTINN
{61} {#}
GINHAANN GINHIANN
FINHATNN GINHIaNN

y+!dilS

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

PCT/US01/15380

FIG. 5

SUBSTITUTE SHEET (RULE 26)

6/19
UNDEFINED UNDEFINED] UNDEFINED
UNDEFINED UMREFINVED RELATION-NS _ | (npEFED
P1 P25 P1
NUCLEUS SATELLITE
SPAN RELATION
Ef P
UNDEFINED UNDEFINED e UNDEFINED
UNDEFINED UNDEFNED| DELATION-BELOWENS | pwneemien
p1 P2 P1
SATELLTTE
RELATION
P
UNDEFINED UNDEFIVED] UNDEFIVED
UNDEFINED UNDEFINED RELATION-SN UNDEFINED
P1 P2 P2
SATELLITE NUCLEUS
RELATION SPAN
Pi P
UNDEFINED UNDEFINED UNDERED
UNDEFINED UNDEFNED| ELATION-BELOW-GN UNDEFINED
pi P2 P2
SATELLTE
RELATION
Pi
UNDEFINED UNDEFINED] UNDEFINED
UNDEFINED UNDEFINED RELATION-AN UNDEFINED
p1 P2 P1UP2
NUCLEUS NUCLEUS
RELATION RELATION
Pi P
UNDEFINED UNDEFIVED J— UNDEFIVED
UNDEFINED unpErep| RELATIONBELOW-W 1 iwneemip
P P PIUP2
NUCLEUS
RELATION
P

WO 01/86489 PCT/US01/15380
7/19

600
GENERATE DECISION RULES)/

FOR DISCOURSE SEGMENTER

i

BUILD TRAINING CORPUS |~ 602

/

ASSOCIATE FEATURES WITH }~604
EACH LEXEME

(LEARNING
| CASES)

APPLY LEARNING ALGORITHIMY}~ 606

/

DISCOURSE SEGMENTERY 608
DECISION RULES

FIG. 6

Rule 1; if pos(-1) = ")" ~ previous-marker = "("
then end-paren
Rule 2: if pos(-1) ="" ~ pos (0) = CD
pos(+1) = NNS
then start-paren
Rule 3: if pos(-1) = DOT ~ pos(0) = DOT
pos(+1) = DOT ~ pos(+1) = DOUBLEQUOTE
| then end-sentence
Rule 4 if pos(+2) = VBD ~ word(+1) = "and"
then edu-break
Rule 5: if word(+1) = "until" ~ isThereAnyVerbBeforeNextPotentialBreak
then edu-break
Rule 6: if pos(0) ="." ~ previous-marker = "while"
then edu-break
Rule 7: if pos(1) = DOT
then nothing

FIG RA

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

96.20
96.00
95.80
95.60
95.40
Ace 9520
95.00
94.80
94.60
94.40

8/19

PCT/US01/15380

2.00 4.00 6.00 800 1000 12.00

cases x 10°
FIG. 7

(GENERATE DISCOURSE PARSER
DECISION RULES

A
RECEIVE AS INPUT TRAINING CORPUS
OF DISCOURSE TREES AND

800

802

CORRESPONDING SET OF EDUS

y
FOR EACH DISCOURSE TREE/EDU SET,

OPERATIONS THAT RECONSTRUCTS
DISCOURSE TREE FROM EDUS -

DETERMINE SEQUENCE OF SHIFT-REDUCE | -804

ASSOCIATE FEATURES WITH EACH
ENTRY IN EACH SEQUENCE

|~ 806

y
[APPLY LEARNING ALGORITHM

808

DISCOURSE PARSER 810
DECISION RULES

FIz R

SUBSTITUTE SHEEY(RULE 26)

WO 01/86489 PCT/US01/15380

9/19

Rule 1: if lastTag(Top-1) = "~ position(firstUnit(Top-1),"if") = 'b’
then REDUCE-CONDITION-SN

Rule 2: if firstTag(Top) = WRB ~
secondTag(Top) = VBG™
position(firstUnit(Top),"when") = 'b*
sim(Top,Unit) > 0.0793052
then REDUGE-BACKGROUND-CIRCUMSTANCE-NS

Rule 3: if lastTag(Top-1) = NNS *
firstTag(Top) = IN™
hyponymy (Top-1,Top) = synonymy(Top-1,Top)
then REDUCE-BACKGROUND-CIRCUMSTANGE-NS

Rule 4: if isParagraphEnd(Top) ™
position(FirstUnit(Top),"but") = b’
then REDUGE-CONTRAST-NN

Rule 5: if noTreesInStack< 2 ™
noUnitsinList= 0"

topRelation(Top-1) = TEXTUAL

then REDUCE-TEXTUAL-NN
FIG. 8A
UNDEFINED UNDEFINED
UNDEFINED UNDEFINED
{2} {1}
SATELLITE NUGLEUS NUCLEUS SATELLITE
CONDITION SPAN SPAN BACKGROUND-CIRCUMSTANCE
{1} 2} {1} 2}
FiG. 8B FIG. 8C

SUBSTITUTE SHEET (RULE 26)

WO 01/86489 ‘ PCT/US01/15380
10/19

[Some of the executives who attended yesterday's session weren't a surprise.
Tenneco Inc. Chairman Michael Walsh, for instance, is a staunch Democrat
who provided an early endorsement for Mr. Clinton during the presidential
campaign. Xerox Corp.'s Chairman Paul Allaire was one of the few top
corporate chief executive officers who contributed money to the Clinton
campaign. And other, such as Atlantic Richfield Co. Chairman Lodwrick M.
Cook and Zenith Electronics Corp. Chairman Jerry Pearlman, have also
previously voiced their approval of Mr. Clinton's economic strategy.] [But
some faces were fresh. Norman Augustine, the chairman of defense
contractor Martin Marietta Corp., is a registered Republican who has never
stood behind Mr. Clinton. It was also the first formal show of support by

Rand Araskog, the chairman of [TT Corp.2]
FIG. 8D

UNDEFINED
UNDEFINED
P1UP2

T~

NUCLEUS NUCLEUS
CONTRAST CONTRAST
P1 P2

FIG. 8E

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

Acc

60.00
58.00

56.00
54.00

52.00

50.00
48.00

46.00

11/19

PCT/US01/15380

0.50 1.00

cases x 10°

FIG. 9

_~1000

/ INPUT TEXT /

SUMMARIZER

- 1002

Y

1004

SUMMARY OF
INPUT TEXT

FIG. 10

SUBSTITUTE SHEET (RULE 26)

1.50

WO 01/86489 PCT/US01/15380

12/19
G G G
H A H A F D
| — | — 7~ |
a o B D C D H K e
| | | | I l
b (IQ Il? e b e d
Z d
I
C
®) (s7) (s2)
FIG. 11

The documentation is typical of Epson quality: excellent.
Documentation is excellent.

All of our design goals were achieved and the delivered performance
matches the speed of the underlying device. All design goals were achieved.

Reach's E-mail product, MaillMan, is a message-management system
designed initially for VINES LANSs that will eventually be operating system-
independent. MailMan will eventually be operating system-independent.
Although the modules themselves may be physically and/or electrically
incompatible, the cable-specific jacks on them provide industry-standard
connections. Cable-specific jacks provide industry-standard connections.

Ingress/Star prices start at $2,100.
Ingress/Star prices start at $2,100.

FIG. 12

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15380

WO 01/86489

13/19

"90UB]SID SI pueqpro.q Jo abejueApe Jayjoue Ajeuld

"80UBISIP SI PUBQPEO.q JO abejuApE Jayjoue fifeul{

"20UIB]SID SI PUBQPERO.] JO abBEJUEADE JBLjOU

"90UBISIP SI PUBQPROIG JO abBjLBADY
"90UB]SIP SI abejueApe Jaljouy

"90UB)SIP SI abejueApy

|
|
o
S
u/(s|1)d (s)d boj -
u ypbuaf Jenaned e je s UoIssaldiiod
1saq jo Ajjiqeqosd-Goy aanebau pajsnipy

0.20 +
0.10 +

Compression length n

FiG. 13

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

PCT/US01/15380

14/19

i
T 4 H
a 4
~
9
6 Sd41S P
9 ¢ 40Na4d o |
| AH
a 4
8-/ Sd41S .
ad AdALNIISSY o
14IHS A
4
9 d11S 5 .
qd0o4a p 7 o
a g p
ISITINdNI | XOVIS

vl a9ld

G dilS) w .
4 ¢ 40N044 AR
a gl y H
p-€ SdILS 9
M IdALNDISSY p 7z
d4IHS 9 4 0O ¢ .
a g 9| |
V| H
0
¢ Sd4IS b 7
H 3dALNOISSY
gqps & € 04
a g o ¢©
Y H
9
ISIT1NdNI | MOVLS

SURSTITUTE SHEET (RULE 26)

PCT/US01/15380

WO 01/86489

Gl 9ld

"pappe Usaq aAey sainjea) buibbngap Augp
"salnies) Buibbngsp Auelpy
"Dappe Uaaqg aARY ‘SMOpPUIM

Buiyorem-abessolu pue Buiyorem-a|qeLieA pue sjutod pauljap-1asn Buipnjoul ‘sainjea) Buibbngap Auepp

15/19

"usaq aAey ‘Buiyorem-abessawl pue Huiyorem-ajgeLieA pue paullap-lasn ‘Buibbngsg
"Dappe Usaq aAey ‘smopuim Buiyorem-sbessawl
pue Buiyolem-s|gelieA pue siulod yealq paulep-iesn Buipniour ‘sainyes) Buibbngap Auep

"s9)1 JXp ab.e| AlaA saonpoid ueasiogly
"S9]I} Ixp ab.e| A1an Bunse) Ul Aj81eInd9. payIom pue ajqeljas SI UBISIOqY

"s9|1 JXp abie] A1aA saonpoud 11 Ing ‘Bunss) ul Ajg1eindoe payJom pue ajqeljal SI UBISIOqIY

IXp 9bJe| AJaA 11 1N ‘Ul payJOM pue URISIOY
'sa|I} IXp abue| Aiaa saanpoud g ‘Bunsay ui AjgieIndae payJom pue ajgeljal sl urasioqly

‘Ajapim Asea syonpoud saiyl ay3 Jo suoielado sy
‘Klapim Alea sponpoad aaly ay) Jo suoneiado ayj
‘fjapim A1ea sjonpoud 93y} syl Jo suolesado ay|
‘Ajapim Area sjonpoud eaauyp sy} Jo suoiiesado ayj ‘[aA9] diseq aup puohsg
‘Ajapim A1ea sjonpoud 8.yl syl 1o suonesodo syl ‘|aAs| aIseq oyl puohag

:sueLn|
'PasSed-UoISIo9

;[auueyo-£sio|
:auljase:

;leuiB

:suewn|
:paseq-UoIsIos
;Jauteyd-Asio|
:auljase!
feulBLi

-SuBewn|
:paseq-uoIs108(
;JauurYy9-£sI0|
-auljose:!
;Jeubuy

JE SHEET (RULE 26)

PCT/US01/15380

WO 01/86489

16/19

9L ‘BId
(2+9299) A1en suoijeredg

(20¥22s) A1ea suoiriado alyf

(961608) Aiea sjonpoud Jo suoneedp

(¢16069) Aiea sjonpoud jo suonesado ay|

(19/8¥/) Aiea sjonpoud ay} jo Suoljesado alyl

(9902/8) Alapim A1ea sponpo.d ayj jo suoljeiado ayl

(216656) Alapim Aiea sjonpo.d 9aiy} ayj Jo suolesado alyf

(/€181 1) Aiea sponpo.d ayj jo suopesado o) ‘jaAd) 0ISeq jey) puokag
(ezeere]) Aiea sponpo.d aaly) ay) Jo Suonesado sy ‘Jans| Jey) puofag
(Jepese) A1ea sponposd saly) al JO SUoieIado 8y ‘|aAg] 0ISeq ey} puokag
(z/c0er L) Alapim Alea sjonpoud aaiy) 8L} jo suoleiado ol ‘jang] Jey) puofag

(99¢E 1 ¢ 1) Alapim A1ea sponpoud saiy) ay Jo Suoleiado 8l ‘JeAs] 2iseq Jey puokag

SUBSTITUTE SHEET (RULE 26)

WO 01/86489 PCT/US01/15380

17/19
1700
@HANNEL—BASED SUMMARIZATION ;

] 1702

/ INPUT TEXT /

i

SynTacTic PARSING b 1704

\i
GENERATE MULTIPLE |~ 1706
POSSIBLE SOLUTIONS

|
RANK POSSIBLE SOLUTIONS |~ 1708
USING STATISTICAL MODEL

]
CHOOSE BEST SCORING | ~1710
SOLUTION

FIG. 17

@HANNEL—BASED SUMMARIZER TRAINING Y 7600

1
INPUT TRAINING SET 1802
(LONG-SHORT TEXT PAIRS)

!
SYNTACTIC PARSING - 1604

!
IDENTIFY CORRESPONDING

SYNTACTIC NODES |~ 1806
(GENERATE DATABASE OF EVENTS)

\

NORMALIZE EVENTS TO L~ 1808
GENERATE PROBABILITIES

| ~1810
STATISTICAL
LEARNING MODEL

Fir: 18

SUBSTITUTE SHEET (RULE 26)

WO 01/86489 PCT/US01/15380

18/19

Rule 1: IF previous operation was not "Reduce" AND
previous operation was not "Shift" AND
previous operation was not "AssignType" AND
the input list starts with a syntactic constituent of type WHPP
THEN drop from the input list the words subsumed by WHPP

Rule 2: IF there is only one tree in the stack AND
previous operation was "Reduce" AND
the syntactic label of the tree in the stack is NP-A AND
the input list starts with a syntactic constituent of type WHNP
THEN drop from the input list the words subsumed by WHNP

Rule 3: IF previous operation was "Drop" AND
the input list starts with a syntactic constituent of type ADJP AND

the input list does not start with a syntactic constituent of type NP
THEN drop from the input list the words subsumed by ADJP

FIG. 18A

1900
@ECISION—BASED SUMMARIZATI Oﬁ

Y
INPUT TEXT

Y

SYNTACTIC PARSING

- 1902

- 1904

Y

SHIFT/REDUCE/DROP |~ 1906

ALGORITHM
Y 1908
COMPRESSED
SYNTACTIC TREE
FIG. 19

SUBSTITUTE SHEET (RULE 26)

WO 01/86489

19/19

PCT/US01/15380

2000
@:’C/S/ON—BASED SUMMARIZER TRA/NI@

1
INPUT TRAINING SET
(LONG-SHORT TEXT PAIRS)

2002

/

SYNTACTIC PARSING

- 2004

|
DETERMINE SEQUENCE
OF SHIFT-REDUCE-DROP

OPERATIONS THAT CONVERT

2006

LONG TEXT INTO SHORT TEXT

|

\
ASSOCIATE FEATURES

- 2008

WITH LEARNING CASES

APPLY LEARNING

2010

ALGORITHM

/ DECISION RULES //

FIG. 20

SUBSTITUTE SHEET (RULE 26)

Y ~2012

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

