

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 July 2006 (20.07.2006)

PCT

(10) International Publication Number
WO 2006/074983 A1

(51) International Patent Classification:
C07F 9/50 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2006/050081

(22) International Filing Date: 9 January 2006 (09.01.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
05100253.3 17 January 2005 (17.01.2005) EP

(71) Applicant (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SOMMERRLADE, Reinhard H. [DE/DE]; Rheinfeldener Strasse 27, 79395 Neuenburg Am Rhein (DE). FRITZSCHE, Katharina [DE/DE]; Mittlere Strasse 33, 79576 Weil Am Rhein (DE). FISCHER, Walter [CH/CH]; Vogesenstrasse 77, CH-4153 Reinach (CH).

(74) Common Representative: CIBA SPECIALTY CHEMICALS HOLDING INC.; Patent Department, Klybeckstrasse 141, CH-4057 Basel (CH).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR PREPARING ACYLPHOSPHANES AND THEIR OXIDES AND SULPHIDES

(57) Abstract: A process for the preparation of bis-acylphosphanes of formula $R^1P(COR^2)_2$ wherein R^1 is unsubstituted phenyl or phenyl substituted by one to five halogen, C_1-C_8 -alkyl, C_1-C_8 -alkylthio and/or C_1-C_8 -alkoxy; R^2 is C_1-C_{18} -alkyl or C_6-C_{18} -alkenyl; C_1-C_{18} -alkyl or C_2-C_{18} -alkenyl substituted once or more than once by halogen -OR¹⁰, -OCO-R¹⁰, -OCO-Hal, -COO-R¹⁰, -N(R¹¹)-CO-R¹⁰, -N(R¹¹)-CO-Hal, -CO-NR¹¹R¹⁰, -CH=CH-CO-OR¹⁰ or -CH=CH-phenyl; -C(C₁-C₄alkyl)=C(C₁-C₄alkyl)-CO-OR¹⁰ or -C(C₁-C₄alkyl)=C(C₁-C₄alkyl)-phenyl; C_5-C_{12} cycloalkyl, C_2-C_{18} alkenyl, phenyl-C₁-C₄alkyl, phenyl, naphthyl, biphenyl or a 5- or 6-membered -O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered -O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1-C_8 alkyl, C_1-C_8 alkoxy and/or C_1-C_8 alkylthio; the process comprises the steps in a) selective reduction of dichlorophenylphosphanes of the formula $R^1P(Cl)_2$ by means of hydrogen at a temperature in the range from 20 to 200°C and under hydrogen pressure of atmospheric pressure to 20bar in the presence of a hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain cyclic phenylphosphanes (R^1P)_n (n = 4 to 6); or b) selective reduction of $R^1P(Cl)_2$ by means of hydrogen at a temperature in the range from 80 to 250°C and under hydrogen pressure of 25 to 250bar in the presence of a hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain R^1PH_2 ; c) subsequent reaction with an acid halide of formula in the presence of an appropriate base R^2COHal wherein R^2 is as defined above.

WO 2006/074983 A1

PROCESS FOR PREPARING ACYLPHOSPHANES AND THEIR OXIDES AND SULPHIDES

The present invention relates to a new, selective process for the preparation of bisacylphosphanes, bisacylphosphane oxides or bisacylphosphane sulfides.

5 Methods of industrial Bapo synthesis are based on acylation of in situ prepared phenylphosphanes or its alkali salt as a key step. Due to its dangerous properties such as high toxicity and pyrophoric character, phenylphosphane is not available as a raw material on the market anymore.

10 The European Patent Publication WO00/32612 corresponding to EP1 135 399 B1 describes a process for the preparation of bisacylphosphanes, bisacylphosphane oxides and of bisacylphosphane sulfides, which process comprises first reacting organic P-monohalogenophosphanes or P, P-dihalogenophosphanes or mixtures thereof, with an alkali metal or magnesium in combination with lithium, where appropriate in the presence of a catalyst, and

15 then carrying out the reaction with acid halides and, in the case of the process for the preparation of oxides, carrying out an oxidation step and, in the case of the preparation of sulfides, reacting the phosphanes so obtained with sulfur. WO00/32612 uses the same starting materials as the presently claimed process but does not proceed via the hydride instead of a metal salt before reaction with the acid chloride.

20 The British Publication GB2310855 describes the preparation of methylphenylphosphine by lithium aluminium hydride reduction of 4-methylphenyldiethylphosphonate.

25 The International Publication WO05/014605, describes a process to prepare bisacylphosphanes, which process comprises first reacting organic P-monohalogenophosphanes (R^2PCl) or P,P-dihalogenophosphanes ($RPCl_2$), or phosphorus halide oxide or phosphorus halide sulfide with an alkali metal (metallation) in a solvent in the presence of a proton source (reduction), and where appropriate in the presence of a catalyst, and then carrying out the reaction with acid halides.

30 The European Patent Application EP 04105987.4 describes a process to prepare bisacylphosphanes, which process comprises first reducing elemental phosphorous or $P(Hal)_3$ with sodium to obtain sodium phosphide Na_3P , then adding a sterically hindered alcohol to obtain

sodium phosphides NaPH_2 ; subsequent reaction with two equivalents of an acid halide HalCOR^2 to obtain sodium bisacylphosphide $[\text{R}^2\text{CO-P=C(ONa)R}^2]$. After the reaction with an electrophilic agent R^1Hal mono- or bisacylphosphanes are obtained.

5 The International Publication WO04/050668 describes a process to prepare cycloorganyl phosphanes of the formula $(\text{R}^1\text{P})_n$ by reacting R^1PHal_2 with an alkali metal or an alkaline-earth metal in an organic solvent such as toluene in the presence of an activator.

10 The Japanese Publication JP 2000 007689 is addressed to the problem of phosphane preparation. Mono-chlorodiphenylphosphanes are hydrogenated in the presence of $\text{N,N-dimethylformamide}$ and an amine. The process has the drawback that phenylphosphane cannot be obtained starting from dichlorophenylphosphanes as shown in the comparative example.

15 Accordingly, there still remains a need for a process to produce acylphosphanes starting from dichlorophenylphosphanes.

The invention relates to a process for the preparation of bis-acylphosphanes of formula I

20 wherein

R^1 is unsubstituted phenyl or phenyl substituted by one to five halogen, $\text{C}_1\text{-C}_8\text{-alkyl}$, $\text{C}_1\text{-C}_8\text{-alkylthio}$ and/or $\text{C}_1\text{-C}_8\text{-alkoxy}$;

25 R^2 is $\text{C}_1\text{-C}_{18}\text{-alkyl}$ or $\text{C}_2\text{-C}_{18}\text{-alkenyl}$; $\text{C}_1\text{-C}_{18}\text{-alkyl}$ or $\text{C}_2\text{-C}_{18}\text{-alkenyl}$ substituted once or more than once by halogen $-\text{OR}^{10}$, $-\text{OCO-R}^{10}$, $-\text{OCO-Hal}$, $-\text{COO-R}^{10}$, $-\text{N}(\text{R}^{11})\text{-CO-R}^{10}$, $-\text{N}(\text{R}^{11})\text{-CO-Hal}$, $-\text{CO-NR}^{11}\text{R}^{10}$, $-\text{CH=CH-CO-OR}^{10}$ or $-\text{CH=CH-phenyl}$; $-\text{C}(\text{C}_1\text{-C}_4\text{-alkyl})=\text{C}(\text{C}_1\text{-C}_4\text{-alkyl})\text{-CO-OR}^{10}$ or $-\text{C}(\text{C}_1\text{-C}_4\text{-alkyl})=\text{C}(\text{C}_1\text{-C}_4\text{-alkyl})\text{-phenyl}$;

30 $\text{C}_5\text{-C}_{12}\text{-cycloalkyl}$, $\text{C}_2\text{-C}_{18}\text{-alkenyl}$, phenyl- $\text{C}_1\text{-C}_4\text{-alkyl}$, phenyl, naphthyl, biphenyl or a 5- or 6-membered -O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered -O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, $\text{C}_1\text{-C}_8\text{-alkyl}$, $\text{C}_1\text{-C}_8\text{-alkoxy}$ and/or $\text{C}_1\text{-C}_8\text{-alkylthio}$;

R^{10} is hydrogen, $\text{C}_1\text{-C}_{18}\text{-alkyl}$, or $\text{C}_2\text{-C}_{18}\text{-alkyl}$ which is interrupted by one or several non-successive -O-atoms, $\text{C}_5\text{-C}_{12}\text{-cycloalkyl}$, phenyl- $\text{C}_1\text{-C}_4\text{-alkyl}$, $\text{C}_2\text{-C}_{18}\text{-alkenyl}$, phenyl,

- 3 -

naphthyl or biphenyl being unsubstituted or substituted by one to five C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio and/or halogen;

R¹¹ is hydrogen, C₁-C₁₈-alkyl, C₂-C₁₈-alkyl which is interrupted by one or several non-successive O atoms, C₅-C₁₂-cycloalkyl, C₂-C₁₈-alkenyl, phenyl-C₁-C₄-alkyl, phenyl, naphthyl, pyridyl, the radicals phenyl, naphthyl or pyridyl being unsubstituted or substituted by one to five C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio and/or halogen;

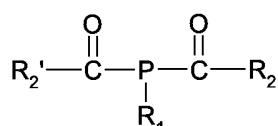
5

the process comprises the steps in

a) selective reduction of dichlorophenylphosphanes of the formula II

10 by means of hydrogen at a temperature in the range from 20 to 200°C and under hydrogen pressure of atmospheric pressure to 20bar in the presence of a hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain cyclic phenylphosphanes (R¹P)_n (n = 4 to 6); or

15 b) selective reduction of R¹P(Cl)₂ by means of hydrogen at a temperature in the range from 80 to 250°C and under hydrogen pressure of 25 to 250bar in the presence of a hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain R¹PH₂;


20 c) subsequent reaction with an acid halide of formula III in the presence of an appropriate base

wherein R² is as defined above.

25 The phenylphosphanes are obtained in high yield and with high selectivity. Furthermore it is possible to stop the reaction at an intermediate stage with selective formation of cyclic phenylphosphanes, potentially valuable compound for further transformations.

If two different acid halides are used R²COHal and R²COHal it is possible to prepare 30 unsymmetric bisacylphosphanes of the formula I'

wherein R² is one of the radicals defined under R², but with the proviso that R² is not equal R²'.

Definitions

5 C₁-C₁₈-alkyl is linear or branched and is, for example, C₁-C₁₂-, C₁-C₈-, C₁-C₆- or C₁-C₄alkyl. Examples are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, 2,4,4-trimethylpentyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl or octadecyl.

10 C₂-C₁₈-alkenyl radicals may be mono- or polyunsaturated, linear or branched and are, for example, vinyl, allyl, methallyl, 1,1-dimethylallyl, propenyl, butenyl, pentadienyl, hexenyl or octenyl, preferably vinyl or allyl.

15 C₅-C₁₂Cycloalkyl is, for example, cyclopentyl, cyclohexyl, cyclooctyl, cyclododecyl, preferably cyclopentyl and cyclohexyl, more preferably cyclohexyl.

20 C₁-C₈-alkoxy is linear or branched radicals and is typically methoxy, ethoxy, propoxy, isopropoxy, n-butyloxy, sec-butyloxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy, heptyloxy, 2,4,4-trimethylpentyl, 2-ethylhexyloxy or octyloxy, preferably methoxy, ethoxy, propoxy, isopropoxy, n-butyloxy, sec-butyloxy, isobutyloxy, tert-butyloxy, most preferably methoxy.

Halogen (= Hal) is fluoro, chloro, bromo and iodo, preferably chloro and bromo, most preferably chloro.

25 Examples of -O-, S- or N-containing 5- or 6-membered heterocyclic rings are furyl, thienyl, pyrrolyl, oxinyl, dioxinyl or pyridyl. The cited heterocyclic radicals may be substituted by one to five, e.g. by one or two, linear or branched C₁-C₈-alkyl, halogen and/or C₁-C₈-alkoxy. Examples of such compounds are dimethylpyridyl, dimethylpyrrolyl or methylfuryl.

30 Substituted phenyl, naphthyl or biphenyl is substituted by one to five, e.g. by one, two, three or four, preferably by one, two or three, for example linear or branched C₁-C₈-alkyl, linear or branched C₁-C₈-alkoxy or by halogen.

Preferred substituents for phenyl, naphthyl and biphenyl are C₁-C₄-alkyl, e.g. methyl, C₁-C₄-alkoxy, e.g. methoxy, and chloro. Particularly preferred substituents are, for example, 2,4,6-trimethylphenyl, 2,6-dichlorophenyl, 2,6-dimethylphenyl or 2,6-dimethoxyphenyl.

R² is, for example, C₁-C₁₈-alkyl or phenyl, preferably 2,4,6-trimethylphenyl, 2,6-dimethylphenyl or 2,6-dimethoxyphenyl, *tert*-butyl, 1,1-diphenylethyl, 2-phenylpropyl, 2-methylbutyl, 2-methylpentyl, most preferably 2,4,6-trimethylphenyl.

Preferably R¹ is unsubstituted phenyl.

10 Compounds to be highlighted in the above processes are those of formula I, wherein R² is phenyl which is substituted in 2,6- or 2,4,6-position by C₁-C₄-alkyl and/or C₁-C₄-alkoxy.

15 The hydrogenation catalyst is a reduction catalyst. Preferred catalysts include, but are not limited to, ruthenium (Ru), rhenium (Re), rhodium (Rh), platinum (Pt), palladium (Pd), copper (Cu), nickel (Ni), cobalt (Co), molybdenum (Mo), copper chromite, including various oxides and Raney forms thereof. Supports may include carbon (C), niobium (Nb), titania (TiO₂), zirconia (ZrO₂), silica (SiO₂), tin (Sn), alumina (Al₂O₃) or mixtures thereof. Especially preferred catalysts include palladium on carbon and palladium on alumina.

20 Suitable amounts are 0.5wt% to 30wt%Pd, preferably 5wt% to 10wt%.

25 The term "tertiary amine" among others includes alkylamines such as: triethylamine, tributylamine, benzylalkylamine, N-alkylmorpholine, N-alkylpiperidine, N-alkylpyrrolidine, or aromatic amines such as pyridine, 2 or 3 or 4-methylpyridine, 2,3 or 2,4 or 2,5 or 2,6 or 3,4 or 3,5-dimethylpyridine, N,N-dialkylaniline, e.g. N,N-dimethylaniline, or mixtures thereof.

30 Preferred is pyridine or triethylamine, especially preferred is pyridine.

35 The term "non-protic solvent which is unreactive under hydrogenation reactions" refers to aromatic hydrocarbons such as benzene, toluene, xylenes, and the like; Ethers such as DME (1,2-dimethoxyethane), isopropylether, dioxanes, diglyme, triglyme, anisol and the like; aliphatic hydrocarbons such as hexanes, heptanes, octanes, and the like; esters such as *tert*-butylester, isopropylester, and the like; N-C₁-C₆-alkylimidazoles, N-C₁-C₆-alkyl-1,2,4-triazoles and mixtures thereof. Preferred are toluene or xylene.

The success of the reaction according to the invention is mainly dependent on the use of the appropriate solvent, base, catalyst and reaction temperature chosen.

Process parameters:

5 Depending on the hydrogen pressure phenylphosphanes or cyclic phenylphosphanes are selectively obtained.

To prepare phenylphosphanes the hydrogenation process is preferably carried out at 80 to 250°C preferably at 100-180°C, in particular at 115-160°C, and 25 to 250 bar, preferably at 50 to 250 bar hydrogen pressure.

10

To prepare cyclic phenylphosphanes such as tetraphenyl-tetraphosphetane, pentaphenyl-pentaphospholane hexaphenyl-hexaphosphorinane, the hydrogenation process is preferably carried out at 20 to 200°C preferably at 50-180°C, in particular at 80-100°C, and 1 to 20 bar, preferably at 1 to 10. bar hydrogen pressure.

15

The catalyst can be separated off after the reaction by the usual methods.

The cyclic phenylphosphanes obtained in step a) or the phenylphosphanes obtained in step b) can be further reacted with acid halides $\mathbf{R}^2\mathbf{COHal}$ (III) to bisacylphosphanes of the formula

20 I.

The solvents used in step c) may be, for example, the same as those used above for the first step. However, it is also possible to remove the solvent used in the first step by distillation and to take up the residue in another solvent and then to further process it. It is preferred to 25 work in the same solvent as in the preceding step, preferably in xylene or toluene.

In step c) a base has to be added. Examples of a suitable base is NaOH, KOH, LiOH, alcoholates such as tert. butylalcoholate, tetraalkylphosphonium salts, tetraarylphosphonium salts, tetraalkylammonium salts, tetraarylammonium salts and the like.

30

The reaction temperatures for the reaction with the acid halide are usefully in the range from -20° to +80°C.

The bisacylphosphane of formula I can be isolated by the customary technological methods which are known to the skilled person, for example by filtration, evaporation or distillation. Likewise, the customary methods of purification may be used, for example crystallisation, distillation or chromatography.

5

However, the phosphanes can also be reacted without isolation to the corresponding bisacylphosphane oxides or bisacylphosphane sulfides.

Acylphosphane oxides and acylphosphane sulfides of formula IV

10 $R^1P(=Z)(COR^2)_2$

wherein R^1 , R^2 are as defined above, and Z is O or S, can be prepared by oxidation or reaction with sulfur of the acylphosphane of formula I.

This process is first carried out as described above and a bisacylphosphane (I) is prepared.

15 The crude reaction product (I) can then be further processed without purification.

It is recommended to adjust the p_H of the reaction mixture prior to the oxidation step to a p_H of 2-8, preferably to a p_H of 3-6 by addition of typical inorganic and/or organic acids or buffer systems.

20

When preparing the respective oxide (Z = O), the oxidation of the phosphane (I) is carried out using the oxidant conventionally used in the technology. Suitable oxidants are in particular hydrogen peroxide and organic peroxy compounds, for example peracetic acid or t-butylhydroperoxide, air or pure oxygen.

25

The oxidation is usefully carried out in solution. Suitable solvents are aromatic hydrocarbons, such as benzene, toluene, m-xylene, p-xylene, ethylbenzene or mesitylene, or aliphatic hydrocarbons, such as alkanes and alkane mixtures, e.g. petroleum ether, hexane or cyclohexane. During oxidation, the reaction temperature is preferably kept in the range from 0° to

30 120°C, preferably from 20° and 80°C.

The reaction products can be isolated and purified by conventional processing methods known to the skilled person.

The respective sulfide is prepared by reaction with sulfur:

The bisacylphosphanes (I) are in this case reacted in substance or, where appropriate, in a suitable inert organic solvent with an equimolar to 2-fold molar amount of elementary sulfur. Suitable solvents are for example those described for the oxidation reaction. However, it is

5 also possible to use e.g. aliphatic or aromatic ethers, such as dibutyl ether, dioxane, diethylene glycol dimethyl ether or diphenyl ether, in the temperature range from 20° to 250°C, preferably from 60° to 120°C. The resulting bisacylphosphane sulfide, or its solution, is usefully freed from any remaining elementary sulfur by filtration. After the solvent is removed, the bisacylphosphane sulfide can be isolated by distillation, chromatography or re-

10 crystallisation in pure form.

All of the above reactions are usefully carried out with exclusion of air in an inert gas atmosphere, e.g. under nitrogen or argon gas. The respective reaction mixture is usefully also

15 stirred.

The acid halides (III), used as starting materials are known substances, some of which are commercially available, or may be prepared in analogy to known compounds.

20 It is characteristic of the novel process that the individual processing steps can be carried out directly one after the other without the need for isolating and purifying the respective intermediates.

25 The phosphane oxides and phosphane sulfides are used in the art as initiators in photopolymerisation reactions.

The following examples illustrate the invention in more detail, although it is not intended that the invention be limited to the examples. As in the remaining description and in the patent

30 claims, parts or percentages are by weight, unless otherwise stated.

Examples**Hydrogenation of dichlorophenylphosphane****Example1: Preparation of pentaphenyl-pentaphospholane (PhP)₅**

5 A 100 mL glass autoclave equipped with an agitator is charged with toluene (20 mL), pyridine (20 mL), palladium on activated carbon (10% Pd, 0.15 g) and dichlorophenylphosphane (1.80 g, 0.01 mol) under argon atmosphere. After rinsing the autoclave with hydrogen, the hydrogen pressure is set to 5 bar and the temperature is raised to 80°C while stirring. After 60 hours at 80°C and 5 bar pressure, a sample for ³¹P-NMR shows that all dichlorophenylphosphane has been converted to cyclophenylphosphanes (PhP)_n (n = 4 to 6), proportions of which can roughly be estimated by peak intensity: (PhP)₅ (m, -2 to -5 ppm) : (PhP)₄ (s, -48 ppm) : (PhP)₆ (s, -22 ppm) = 38 : 6 : 1. Only traces of phenylphosphane were detected (s, -123 ppm).

15

Example 2: Preparation of phenylphosphane PhPH₂

A 100 mL stainless steel autoclave equipped with an agitator is charged with toluene (25 mL), pyridine (25 mL), palladium on activated carbon (10% Pd, 0.50 g) and dichlorophenylphosphane (4.50 g, 0.025 mol) under argon atmosphere. After rinsing the autoclave with hydrogen, the hydrogen pressure is set to 20 bar and the temperature is raised to 150°C while stirring. When the temperature has reached 150°C, the hydrogen pressure is set to 50 bar. After 60 hours at 150°C and 50 bar the autoclave is cooled to room temperature and a sample is taken for ³¹P-NMR, showing that all dichlorophenylphosphane has been converted.

25 Phenylphosphane was the main product and only small amounts of tetraphenyl-tetraphosphetane (PhP)₄ and some diphenyldiphosphane (PhPH)₂ has been formed as can be estimated by peak intensity ratios: PhPH₂ (s, -123 ppm) : (PhP)₄ (s, -48 ppm) : meso / d,l-(PhPH)₂ (s, -67 ppm; s, -71 ppm) = 70 : 2 : 15.

30 **Example 3: Preparation of phenylphosphane PhPH₂**

50 mL of xylene, 10 mL (0.125 mol) of pyridine, 1.0 g of 10% palladium on activated carbon and 4.50 g (0.025 mol) dichlorophenylphosphane are charged into a 100 mL stainless steel

- 10 -

autoclave equipped with an agitator under argon atmosphere. After rinsing the autoclave with hydrogen, the hydrogen pressure is set to 10 bar and the temperature is raised to 180°C while stirring. When the temperature has reached 180°C the hydrogen pressure is set to 50 bar. After 30 hours at 180°C and 50 bar, the autoclave is cooled to room temperature and a 5 sample is taken for ^{31}P -NMR spectroscopy showing that dichlorophenylphosphane has completely been converted to phenylphosphane PhPH_2 (s, -123 ppm).

Comparative Example according to JP2000 007689

A 100 mL glass autoclave equipped with an agitator is charged with 20 mL of DMF, 20 mL of 10 triethylamine, 0.15 g of 10% palladium on activated carbon and 1.80 g (0.01 mol) dichlorophenylphosphane under argon atmosphere. After rinsing the autoclave with hydrogen, the hydrogen pressure is set to 5 bar and kept at 5 bar while stirring. After 4.5 hours at room temperature a sample is taken and analyzed by ^{31}P -NMR¹ spectroscopy showing that some dichlorophenylphosphane has been converted (s, 163 ppm). The main products 15 showed ^{31}P -NMR signals at 77 ppm (s), 3 to -3 ppm (m), respectively. According to ^{31}P -NMR, the reaction mass does not contain any phenylphosphane.

The hydrogen pressure is then set again to 5 bar and the temperature is increased to 50°C. After 8 hours at 50°C and 5 bar the autoclave is cooled to room temperature and an again an analytical sample for ^{31}P -NMR is taken. The ^{31}P -NMR shows that all 20 dichlorophenylphosphane has been converted and that various phosphorus containing products (s, 24 ppm; m, 11 to -5 ppm; s, 48 ppm) have been formed but still no phenylphosphane can be detected.

Hydrogenation is continued at 80°C and 5 bar. After 23 hours, the autoclave is cooled to room temperature and a new sample is taken. ^{31}P -NMR revealed that various phosphorus 25 containing products (s, 67 ppm; m, 25 to 6 ppm; s, 29 ppm; s, 48 ppm; s, 49 ppm) have been formed. Phenylphosphane cannot be detected yet. A GC-MS analysis of the crude product shows the following peaks: M = 181 g/mol ($\text{C}_{12}\text{H}_9\text{NOP}$), 362 g/mol, 252 g/mol ($\text{C}_{12}\text{H}_{17}\text{N}_2\text{O}_2\text{P}$), 324 g/mol, 360 g/mol ($\text{C}_{18}\text{H}_{22}\text{N}_2\text{O}_2\text{P}_2$), which indicate that reaction with the solvent DMF has been taken place.

Claims:

1. A process for the preparation of bis-acylphosphanes of formula I

wherein

5 R^1 is unsubstituted phenyl or phenyl substituted by one to five halogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio and/or C_1 - C_8 -alkoxy;

10 R^2 is C_1 - C_{18} -alkyl or C_2 - C_{18} -alkenyl ; C_1 - C_{18} -alkyl or C_2 - C_{18} -alkenyl substituted once or more than once by halogen $-OR^{10}$, $-OCO-R^{10}$, $-OCO-Hal$, $-COO-R^{10}$, $-N(R^{11})-CO-R^{10}$, $-N(R^{11})-CO-Hal$, $-CO-NR^{11}R^{10}$, $-CH=CH-CO-OR^{10}$ or $-CH=CH-phenyl$; $-C(C_1-C_4$ -alkyl)= $C(C_1-C_4$ -alkyl)- $CO-OR^{10}$ or $-C(C_1-C_4$ -alkyl)= $C(C_1-C_4$ -alkyl)-phenyl;

15 C_5 - C_{12} -cycloalkyl, C_2 - C_{18} -alkenyl, phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl, biphenyl or a 5- or 6-membered -O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered -O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy and/or C_1 - C_8 -alkylthio;

20 R^{10} is hydrogen, C_1 - C_{18} -alkyl, or C_2 - C_{18} -alkyl which is interrupted by one or several non-successive -O-atoms, C_5 - C_{12} -cycloalkyl, phenyl- C_1 - C_4 -alkyl, C_2 - C_{18} -alkenyl, phenyl, naphthyl or biphenyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen;

25 R^{11} is hydrogen, C_1 - C_{18} -alkyl, C_2 - C_{18} -alkyl which is interrupted by one or several non-successive O atoms, C_5 - C_{12} -cycloalkyl, C_2 - C_{18} -alkenyl, phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl, pyridyl, the radicals phenyl, naphthyl or pyridyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen;

the process comprises the steps in

25 a) selective reduction of dichlorophenylphosphanes of the formula II

30 by means of hydrogen at a temperature in the range from 20 to 200°C and under hydrogen pressure of atmospheric pressure to 20bar in the presence of a hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain cyclic phenylphosphanes $(R^1P)_n$ ($n = 4$ to 6); or

b) selective reduction of $R^1P(Cl)_2$ by means of hydrogen at a temperature in the range from 80 to 250°C and under hydrogen pressure of 25 to 250bar in the presence of a

- 12 -

hydrogenation catalyst, a tert. aliphatic amine or an aromatic amine and in the presence of a non protic solvent which is unreactive under the hydrogenation conditions to obtain R^1PH_2 ;

5 c) subsequent reaction with an acid halide of formula III in the presence of an appropriate base

wherein R^2 is as defined above.

10 2. A process according to claim 1, wherein R^1 is unsubstituted phenyl and R^2 is phenyl which is substituted in 2,6- or 2,4,6-position by C_1 - C_4 -alkyl and/or C_1 - C_4 -alkoxy.

15 3. A process according to claim 2, wherein R^2 is 2,4,6-trimethylphenyl.

4. A process according to any one of claims 1-3, comprising the steps a) and c).

20 5. A process according to any one of claims 1-3, comprising the steps b) and c).

25 6. A process according to any one of claims 1-5, wherein the tert. amine is pyridine or triethylamine, preferably pyridine.

30 7. A process according to any one of claims 1-6, wherein the non-protic solvent which is unreactive under hydrogenation reactions is an aromatic or aliphatic hydrocarbon, an ether, an ester, N - C_1 - C_6 -alkylimidazoles, N - C_1 - C_6 -alkyl-1,2,4-triazoles and mixtures thereof.

8. A process according to claim 7, wherein the non-protic solvent which is unreactive under hydrogenation reactions is toluene or xylene.

- 13 -

9. A process according to any one of claims 1-8, wherein the catalyst is palladium on carbon and palladium on alumina.

5

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/050081

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal, PAJ, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, A	WO 2005/014605 A (CIBA SPECIALTY CHEMICALS HOLDING INC) 17 February 2005 (2005-02-17) the whole document -----	1-9
A	WO 03/019295 A (CIBA SPECIALTY CHEMICALS HOLDING INC) 6 March 2003 (2003-03-06) claims 7,8 -----	1-9
A	WO 00/32612 A (CIBA SPECIALTY CHEMICALS HOLDING INC) 8 June 2000 (2000-06-08) cited in the application claim 2 ----- -/-	1-9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

4 May 2006

Date of mailing of the international search report

18/05/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Elliott, A

INTERNATIONAL SEARCH REPORT

 International application No
 PCT/EP2006/050081

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04, 31 August 2000 (2000-08-31) & JP 2000 007689 A (KANKYO KAGAKU CENTER:KK), 11 January 2000 (2000-01-11) cited in the application abstract -----	1-9
A	GB 2 310 855 A (CIBA SPECIALTY CHEMICALS HOLDING INC) 10 September 1997 (1997-09-10) cited in the application example 1 -----	1-9
A	BOURUMEAU K ET AL: "P-H bond activation of primary phosphine-boranes: access to alpha-hydroxy and alpha, alpha'-dihydroxyphosphine-borane adducts by uncatalyzed hydrophosphination of carbonyl derivatives" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 529, no. 1, 15 February 1997 (1997-02-15), pages 205-213, XP004061300 ISSN: 0022-328X * paragraph 4.1 * -----	1-9
A	PASS F ET AL: "Organische Verbindungen des Phosphors. I. Mitt. Über die Darstellung primärer Phosphine durch reduktive Methoden" MONATSHEFTE FÜR CHEMIE, vol. 90, 1959, pages 148-156, XP009005184 ISSN: 0026-9247 page 154; table 1 -----	1-9
A	FENSKE D ET AL: "Phenylbis(trimethylsilyl)phosphine and 1,2-diphenyl-1,2-bis(trimethylsilyl)diphos- phane as reagents for the preparation of heterocyclic phosphorus compounds and acylphosphines" CHEMISCHE BERICHTE, vol. 109, 1976, pages 359-362, XP009054663 * compound 3 and its preparation * -----	1-9
A	MANN F G ET AL: "The preparation and properties of hexahydro-1:4-diphenyl-1:4-azaphosphine" JOURNAL OF THE CHEMICAL SOCIETY, 1952, pages 3039-3046, XP009054691 page 3042 - page 3043 -----	1-9

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/050081

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2005014605	A	17-02-2005	AU CA	2004262586 A1 2531318 A1		17-02-2005 17-02-2005
WO 03019295	A	06-03-2003	BR CA CN EP JP MX US	0211921 A 2454914 A1 1545643 A 1423757 A1 2005501124 T PA04001483 A 2004204613 A1		26-10-2004 06-03-2003 10-11-2004 02-06-2004 13-01-2005 30-07-2004 14-10-2004
WO 0032612	A	08-06-2000	AT AU AU CA CN CZ DE DE EP ES JP SK TW US	221893 T 760237 B2 1384500 A 2349637 A1 1328564 A 20011875 A3 69902485 D1 69902485 T2 1135399 A1 2180347 T3 2002531460 T 7272001 A3 492972 B 6888031 B1		15-08-2002 08-05-2003 19-06-2000 08-06-2000 26-12-2001 12-09-2001 12-09-2002 08-05-2003 26-09-2001 01-02-2003 24-09-2002 03-12-2001 01-07-2002 03-05-2005
JP 2000007689	A	11-01-2000		NONE		
GB 2310855	A	10-09-1997	AT AT BE BR CA CN DE DK ES FR IT JP NL NL NO RU SE SE SG TW US ZA	404729 B 36297 A 1011437 A5 9701154 A 2198803 A1 1160718 A 19708294 A1 21797 A 2132018 A1 2745575 A1 MI970460 A1 10029997 A 1005424 C2 1005424 A1 970962 A 2180667 C2 520727 C2 9700616 A 55281 A1 408136 B 6020528 A 9701810 A		25-02-1999 15-06-1998 07-09-1999 15-12-1998 04-09-1997 01-10-1997 11-09-1997 05-09-1997 01-08-1999 05-09-1997 03-09-1998 03-02-1998 22-03-1999 05-09-1997 05-09-1997 20-03-2002 19-08-2003 04-11-1997 21-12-1998 11-10-2000 01-02-2000 16-09-1997