Abstract: Discrete items are conveyed, preferably by a vacuum conveyor, in a machine direction toward a pair of rotating blades. A first intended target of folding, for instance a right portion of front and back panels of a diaper, travels up a ramp, raising the level of the intended target. A rotating blade passes under the intended target of folding, and folds the right portion of front and back panels of a diaper over. If desired, a second intended target of folding, for instance a left portion of front and back panels of a diaper, travels up a second ramp, raising the level of the intended target. A rotating blade passes under the second intended target of folding, and folds the left portion of front and back panels of a diaper over. The folded diaper then exits the folding system and travels downstream for further processing as desired.
APPARATUS AND METHOD FOR FOLDING

Related Application

This application claims the benefit of co-pending U.S. Provisional Patent Application Serial No. 62/068,353, filed 24 October 2014.

Background of the Invention

The invention disclosed herein relates to apparatus and methods for folding pieces traveling on a production line. Although the description provided relates to diaper manufacturing, the apparatus and method are easily adaptable to other applications. Although the description provided relates to forming side panels of diapers, the apparatus and methods are easily adaptable to other products, other disposable products, other diaper types and other portions of diapers.

Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are
sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion.

In the creation of a diaper, multiple roll-fed web processes are typically utilized. To create an absorbent insert, the cellulose pulp is unwound from the provided raw material roll and pulverized by a pulp mill. Discrete pulp cores are formed by a core forming assembly and placed on a continuous tissue web. Optionally, super-absorbent powder may be added to the pulp core. The tissue web is wrapped around the pulp core. The wrapped core is debulked by proceeding through a calendar unit, which at least partially compresses the core, thereby increasing its density and structural integrity. After debulking, the tissue-wrapped core is passed through a segregation or knife unit, where individual wrapped cores are cut. The cut cores are conveyed, at the proper pitch, or spacing, to a boundary compression unit.

The diaper is built by sandwiching the formed core between a backsheet and a topsheet, and the combined web receives ears for securing the diaper about the waist of a baby. Most products require some longitudinal folding. Folding of webs can be combined with elastic strands to make a cuff. Folding can be used to overwrap a stiff edge to soften the feel of the product. It can also be used to convert the final product into a smaller form to improve the packaging.

Diapers are typically formed in a machine direction in a generally flat condition. Formed diapers require folding both longitudinally to tuck the ears and associated tape or hook applicators into the
diaper, and also cross-folded generally at a crotch region to stack the diapers prior to packaging. Larger portions of diapers, such as side portions of the front and rear panels of pane type diapers also require folding for compactness and packaging.

The folded product is then passed downstream to a packaging machine where the diapers are stacked and packaged and shipped for sale.

Summary of the Invention

A system for folding is provided. At least one rotary blade is passed under an intended target of the folding, and the blade folds the intended target and passes the intended target downstream for further processing.

Importantly, the methods taught in the present application are applicable not only to diapers and the like, but in any web based operation. The folding techniques taught herein can be directed any discrete component of a manufactured article, i.e., the methods taught herein are not product specific. For instance, the present methods can be applied as easily with respect to diaper components as they can for feminine hygiene products.

Apparatus and methods are provided for folding discrete items such as diapers at high speeds. Discrete items are conveyed, preferably by a vacuum conveyor, in a machine direction toward a pair of rotating blades. The intended target of folding, for instance a right portion of front and back panels of a diaper, travels up a ramp, raising the level of the intended target. A rotating blade passes under the intended target of folding, and folds the right portion of front and back panels of a diaper over. If desired.
another intended target of folding, for instance a left
portion of front and back panels of a diaper, travels
up a second ramp, raising the level of the intended
target, a rotating blade passes under the intended
target of folding, and folds the left portion of front
and back panels of a diaper over. The folded diaper
then exits the folding system and travels downstream
for further processing as desired.

Brief Description of the Drawings

Fig. 1 is a top view of a representative web
folding system, showing a single diaper product riding
on a conveyor toward a pair of folding blades;

Fig. 2 is a side view of a folding system of
the present invention;

Fig. 3 is a top view of a representative web
folding system, showing a single diaper product riding
on a conveyor toward a pair of folding blades, with a
right panel portion of the diaper riding up a ramp and
approaching a rotating blade;

Fig. 4 is a top view of the right panel
portion of the diaper being folded by a rotating blade;

Figs. 5 and 6 are top views of a
representative web folding system, showing a folded
over right panel portion, and showing a left panel
portion of the diaper riding up a second ramp and
approaching a second rotating blade;

Figs. 7 and 8 are top views of the left
panel portion of the diaper being folded by a rotating
blade;

Fig. 9 is top view of the folded diaper
exiting the folding system and being passed downstream
for further processing;

Fig. 10 is a top view of an alternate
embodiment of the folding system shown in Fig. 1, the alternate embodiment including a tucker bar to maintain the first fold, and a tucker roller to maintain the first and second folds intact during downstream passage;

Fig. 11 is a side view of the folding system shown in Fig. 10;

Figs. 12a-c are top views of alternate blade configurations.

Description of the Preferred Embodiment

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

It is noted that the present folding techniques and apparatus are described herein with respect to products such as diapers, but as previously mentioned, can be applied to a wide variety of processes in which components are required to be folded. The present methods can be used to fold a portion of a web, or discrete portions, as desired. The same apparatus and techniques can be used for ears, panels, hook materials, or any other situation in which folding is desired.

Importantly, the methods taught in the present application are applicable not only to diapers and the like, but in any web based operation. The folding techniques taught herein can be directed any component of a manufactured article desired to be
folded, i.e., the methods taught herein are not product specific. For instance, the present methods can be applied as easily with respect to diaper components as they can for feminine hygiene products.

Referring now to Fig. 1, a top view of a representative web folding system is shown. A diaper product 10 riding on a conveyor 18, preferably a vacuum conveyor with vacuum commutation ports 18a, is conveyed toward a pair of folding blades 22.

Vacuum conveyor ports 18a can extend the entire length of vacuum conveyor 18, or extend for selected portions of conveyor 18, such as shown, or extend for an entire product length. In pant-type diapers, typically an absorbent core section 16 is contained in a midsection of diaper 10. Left side of panel 12 consists of both the front and rear left portions of panels of a previously formed diaper 10. Right side of panel 14 consists of both the front and rear left portions of panels of a previously formed diaper 10. Intended fold lines L for the left panel 12 and R for the right panel 14 are acted upon by the system.

The first intended target of the folding, fold line R for the right panel 14 is seen traveling onto ramp 20, the ramp 20 comprising three sections, a conveyor level 20a, a sloped midsection 20b, and a blade clearance level 20c. Two ramps 20 are provided, one for each of the intended fold lines L for the left panel 12 and R for the right panel 14.

Blade 22, with blade lobes 22a and 22b, is driven in the direction shown by rotor 24. Preferably, two independent, servo controlled blades 22 are programmed to aid in actively folding each part of the
Conveyor 18 travels in the machine direction at a first speed. The rotational speeds of blade 22 can match the conveyor speed (first speed), but in some instances, the rotational speeds of blade 22 are seen to have positive effects by having a rotational speed greater than or less than the conveyor speed.

Still referring to Fig. 1, the previous description describes a horizontal conveying surface; 18 at a first elevation carrying at least a first portion 14 of an article 10 to be folded. The present invention is not limited to horizontal conveying surfaces 18, but also contemplates vertical or sloped conveying surfaces 18 (not shown). When the term elevation is used in the claims, the term is not to be limited to a vertical spacing relative to the conveying surface 18, but instead should be considered a spacing in any direction away, relative to conveying surface 18, e.g., for a vertical conveyor 18, the ramp 20 would actually elevate the first portion 14 of the article 10 in a horizontal direction relatively away from the vertical conveyor 18.

Referring now to Fig. 2, a side view of a folding system of the present invention is shown. In this view, the ramp 20 comprising three sections, the conveyor level 20a, the sloped midsection 20b, and the blade clearance level 20c can be seen. Referring to the first ramp in the system (upstream), right panel 14 is shown entering onto the ramp 20 at the conveyor level 20a. As the right panel 14 travels downstream, the right panel 14 travels up ramp 20 via sloped midsection 20b, raising the level of the intended target, right panel 14. As the right panel travels
onto blade clearance level 20c, as shown in Fig. 3,
first rotating blade 22 passes under the intended
target of folding, right panel 14, and passes under
blade clearance level 20c. As lobe 22a of blade 22
rotates while the right panel 14 is carried by the
blade clearance level 20c, blade 22 contacts the
underside of right panel 14 and folds the right panel
14 of diaper 10 over along line R, as shown in Fig. 4.

Referring now to Fig. 5, with fold line R achieved, the half-folded diaper 10 is passed
downstream. Left panel 12 enters onto the second ramp
20 at the conveyor level 20a. As the left panel 12 travels downstream, the right panel 14 travels up ramp
20 via sloped midsection 20b as shown in Fig. 6,
raising the level of the intended target, left panel
12. As the left panel travels onto blade clearance
level 20c, second rotating blade 22 passes under the
intended target of folding, left panel 12, and passes
under blade clearance level 20c. As lobe 22a of blade
22 rotates while the left panel 14 is carried by the
blade clearance level 20c (Fig. 6), blade 22 contacts
the underside of left panel 12 and folds the left panel
12 of diaper 10 over along line L, as shown in Figs. 7
and 8. The diaper 10 is passed downstream as shown in
Fig. 9, for further processing (e.g., folding or
packaging) as desired.

Referring now to Fig. 10, a top view of an
alternate embodiment of the folding system shown in
Fig. 1 is shown. In this embodiment, tucker bar 26
is provided at or above the blade clearance level 20c,
as shown in cross section in Fig. 11. The tucker bar
26 maintains the first fold R in position while the
diaper is passed downstream to the second rotating
blade 22 to achieve the second fold as described previously. A tucker roller 28 is optionally provided to maintain the first and second folds R and L intact during downstream passage.

Referring to Figs. 12a-c top views of alternate blade configurations are shown. In Fig. 12a, an oblong ear shaped blade 122 is shown. In Fig. 12b, a circular blade 222 is shown. In Fig. 12c, a bow-tie shaped blade 322 is shown. Blade shapes can be altered to improve folding performance. In addition, the web contacting surfaces of the blades 22, whether the web contacting surface be the top or the bottom of the blades 22, can be provided with varying coefficient-of-friction features. For instance, one portion of the blade, 22a could be provided with increased coefficient-of-friction features relative to a second portion of the blade, 22b. Alternatively, if as in Fig. 1, upstream and downstream blades 22 are used, the upstream blade 22 could provided with increased or decreased coefficient-of-friction features relative to the downstream blade 22.

The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
We Claim:

1. An apparatus for folding a product, the apparatus comprising:
 a conveying surface at a first elevation carrying at least a first portion of an article to be folded;
 a carrying surface for carrying at least a second portion of said article at a second elevation;
 a first blade at a third elevation between said first and second elevations, said first blade folding over at least a portion of said second portion of said article onto said first portion of said article.

2. An apparatus according to claim 1, said apparatus further comprising:
 a second carrying surface for carrying at least a third portion of said article at a fourth elevation;
 a second blade at a fifth elevation between said first and fourth elevations, said second blade folding over at least a portion of said third portion of said article onto at least one of said first portion and second portions of said article.

3. An apparatus according to claim 2, wherein said third and fifth elevations are equal.

4. An apparatus according to claim 2, wherein said second and fourth elevations are equal.

5. An apparatus according to claim 2, wherein said second blade rotates into contact with said third portion of said article.

6. An apparatus according to claim 2, wherein said second blade folds over said third portion of said article onto said second portion of said
7. An apparatus according to claim 2, said second blade provided with a first zone having a first coefficient of friction, and a second zone having a second coefficient of friction different than said first coefficient of friction.

8. An apparatus according to claim 2, said first and second blades provided with different coefficients of friction.

9. An apparatus according to claim 1, wherein said first blade rotates into contact with said second portion of said article.

10. An apparatus according to claim 1, said first blade provided with a first zone having a first coefficient of friction, and a second zone having a second coefficient of friction different than said first coefficient of friction.

11. An apparatus according to claim 1, said first blade impacting said second portion of said article at a speed greater than a speed of said conveying surface.
A. CLASSIFICATION OF SUBJECT MATTER

IPC(8): B65H 45/04 (2015.01)

CPC: B65H 45/04 (2015.12)

According to International Patent Classification (IPC) or to both national classification and IPC

B. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 20130130879 A1 (SCHOON et al) 23 May 2013 (23.05.2013) entire document</td>
<td>1-4, 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5, 7, 9, 10</td>
</tr>
<tr>
<td>Y</td>
<td>US 20020103468 A1 (NAKAKADO et al) 01 August 2002 (01.08.2002) entire document</td>
<td>5, 9</td>
</tr>
<tr>
<td>Y</td>
<td>US 8,357,256 B2 (DUMAS et al) 22 January 2013 (22.01.2013) entire document</td>
<td>7, 10</td>
</tr>
<tr>
<td>A</td>
<td>US 8,439,814 B2 (PIANTONI et al) 14 May 2013 (14.05.2013) entire document</td>
<td>1-1 1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

- **A** - Special categories of cited documents:
 - "A" - document defining the general state of the art which is not considered to be of particular relevance
 - "E" - earlier application or patent but published on or after the international filing date
 - "L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" - document referring to an oral disclosure, use, exhibition or other means
 - "P" - document published prior to the international filing date but later than the priority date claimed

- **T** - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **&** - document member of the same patent family

Date of the actual completion of the international search: 17 December 2015

Date of mailing of the international search report: [29 DEC 2015]

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer: Blaine R. Copenheaver

PCT Int. No. 571-272-4300

PCT OS/P. 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)