
(19) United States
US 20070 198521A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0198521 A1
McKenney (43) Pub. Date: Aug. 23, 2007

(54) UTILIZING HARDWARE TRANSACTIONAL

(76)

(21)

(22)

(63)

APPROACH TO EXECUTE CODE AFTER
NITIALLY UTILIZING SOFTWARE
LOCKING BY EMPLOYING
PSEUDO-TRANSACTIONS

Inventor: Paul E. McKenney, Beaverton, OR
(US)

Correspondence Address:
LAW OFFICES OF MICHAEL DRYA
1474 N COOPERRD # 105-248
GILBERT, AZ 85233 (US)

Appl. No.: 11/738,502

Filed: Apr. 22, 2007

Related U.S. Application Data

Continuation of application No. 10/661,017, filed on
Sep. 12, 2003.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. .. T07/8

(57) ABSTRACT

Utilizing a hardware transactional approach to execute a
code section by employing pseudo-transactions, after ini
tially utilizing Software locking, is disclosed. A method is
disclosed that utilizes a Software approach to locking
memory to execute a code section relating to memory. The
Software approach employs a pseudo-transaction to deter
mine whether a hardware approach to transactional memory
to execute the threshold would have been successful. Where
the hardware approach to transactional memory to execute
the code section satisfies a threshold based on Success of at
least the pseudo-transaction, the method Subsequently uti
lizes the hardware approach to execute the code section. The
hardware approach may include starting a transaction inclu
sive of the code section, conditionally executing the trans
action, and, upon Successfully completing the transaction,
committing execution of the transaction to the memory to
which the code section relates.

UTILIZE HARDWARE
APPROACH TO

-> TRANSACTIONAL MEMORY --
TOEXECUTE CODE SECTION

102

- HARDWARE NO APPROACHFAIL
THRESHOLD?

104

YES

UTILIZE SOFTWARE
APPROACH TO LOCKING TO
EXECUTE CODE SECTION

106.

- HARDWARE's
APPROACH SATISFY NO

THRESHOLD?

YES

100

Patent Application Publication Aug. 23, 2007 Sheet 1 of 3 US 2007/0198521A1

FIG 1
1OO

UTILIZE HARDWARE
APPROACH TO

TRANSACTIONAL MEMORY
TOEXECUTE CODE SECTION

102

HARDWARE
APPROACH FAIL
THRESHOLD?

104

UTILIZE SOFTWARE
APPROACH TO LOCKING TO
EXECUTE CODE SECTION

106

HARDWARE
APPROACH SATISFY

THRESHOLD?
108

Patent Application Publication Aug. 23, 2007 Sheet 2 of 3 US 2007/0198521A1

NODE NODE 2OO
202A 2O2B

INTERCONNECT
204

NODE NODE
2O2D 2O2C

NODE 300

PROCESSOR 302 MEMORY 304

TRANSACTIONAL
MEMORY sERN DATA

CAPABILITY 3O8 310
306 O

SPIN SPIN
UNLOCK LOCK
FUNCTION FUNCTION

314 312

Patent Application Publication Aug. 23, 2007 Sheet 3 of 3 US 2007/0198521A1

402 START TRANSACTION INCLUSIVE FIG 4
OF CODE SECTION

400

404 CONDITIONALLY EXECUTE TRANSACTION

410

u-TRANSACTION NO -- SUCCESSFULLY D-Y- ABORT
N COMPLETED2 u
N u-1

408 COMMIT EXECUTION OF
11 TRANSACTION TO MEMORY

502 PLACE LOCK ON MEMORY TO
11 WHICH CODESECTION RELATES 500

504 1u EXECUTE CODESECTION

COMMIT EXECUTION OF CODE

50g - SECTION TO MEMORY AS CODE
SECTION IS EXECUTED

508 REMOVE LOCK ON MEMORY

US 2007/O 198521 A1

UTILIZING HARDWARE TRANSACTIONAL
APPROACH TO EXECUTE CODE AFTER

INITIALLY UTILIZING SOFTWARE LOCKING BY
EMPLOYING PSEUDO-TRANSACTIONS

RELATED APPLICATIONS

0001. The present patent application is a continuation of
the previously filed patent application entitled “Utilizing
hardware transactional approach to execute code after ini
tially using Software locking by employing pseudo-transac
tions.” filed on Sep. 12, 2003, and assigned Ser. No. 10/661,
O17.

BACKGROUND OF THE INVENTION

0002) 1. Technical Field
0003. This invention relates generally to executing a
section of code on an all-or-nothing basis, such that the
entire section of code is executed and committed to memory,
or none of the section of code is executed and committed to
memory. The invention relates more particularly to software
locking approaches and hardware transactional approaches
to Such execution of code on an all-or-nothing basis.
0004 2. Description of the Prior Art
0005. In multiple-processor computing systems, more
than one processor may attempt to affect the same memory
at the same time. For instance, a number of transactions,
which may be read or write requests or responses to
resources such as memory, may vie for the same memory at
the same time. If each transaction is allowed unfettered
access to the same memory, the results can include corrupt
ing the integrity of the data stored in this memory. For
example, one transaction may read a given memory line, act
upon the value read, and then write a new value to the
memory line. While the transaction is acting upon the value
it read from the memory line, another transaction may write
a different value to the memory line. When the first trans
action writes its new value to the memory line, the second
transaction may not realize that its value has been overwrit
ten.

0006. One approach to ensuring that a number of trans
actions are not attempting to process the same memory at the
same time is to use a software locking approach. In a
Software locking approach, a transaction must first Success
fully obtain a lock on the relevant lines of memory before it
is able to process the data stored in these memory lines. If
two transactions are attempting to process the same memory
line, then one transaction will initially win the lock, and be
able to process the memory line before the second transac
tion does. Thus, the transactions are implicitly serialized, so
that they do not try to compete for the same memory line at
the same time. A disadvantage to using the Software locking
approach is that it can add overhead to the processing of
transactions that in most cases is unnecessary, since most of
the time there will be no contention for desired memory
lines. This can cause degradation in performance of the
entire system.
0007 Another approach to ensuring that a number of
transactions are not attempting to process the same memory
at the same time is to use a hardware transactional memory
approach. In a hardware transactional memory approach, the
hardware of a system, specifically its processors, have the

Aug. 23, 2007

ability to process sections of code as transactional memory.
Transactional memory can thus be considered as a way to
bracket a code section Such that it becomes a large, multi
argument load link/store conditional (LL/SC) transaction.
The code section is executed speculatively, and the decision
to commit the changes is deferred until the end of the section
of code. If there has been any interference with any of the
data used by the code section, Such as the memory lines,
cache lines, and so on, being used by the code section, then
the entire transaction is aborted. Otherwise, the entire trans
action is committed to memory, and the changes memory to
the relevant memory and caches lines are effected.
0008 While the hardware transactional memory
approach is faster in performance than the Software locking
approach, it nevertheless Suffers from some disadvantages.
For the hardware transactional memory approach to work,
the operations performed by the relevant section of code are
accomplished within a cache before being committed to
memory. However, if the cache is not large enough, or does
not have great enough associativity, then the approach will
fail. This is because the entire section of code will not be
able to be completely executed speculatively before the
processing effects of the code section are committed to
memory. That is, the hardware transactional memory
approach, while advantageous in performance as compared
to the software locking approach, is not as widespread in its
potential application as is the Software locking approach.
For these and other reasons, therefore, there is a need for the
present invention.

SUMMARY OF THE INVENTION

0009. The invention relates to utilizing a hardware trans
actional approach to execute code, after initially utilizing
Software locking, by employing pseudo-transactions. A
method of the invention includes utilizing a software
approach to locking memory to execute a code section
relating to memory, and employing a pseudo-transaction to
determine whether a hardware approach to execute the
threshold would have been successful. Where the hardware
approach satisfies a threshold based on Success of at least the
pseudo-transaction, the hardware approach is Subsequently
utilized to execute the code section.

0010) A system of the invention includes a processor
having transactional memory capability, and memory. The
transactional memory capability of the processor includes a
pseudo-transactional memory capability that determines
whether the transactional memory capability would have
been Successful. The memory stores a spin lock function to
execute a code section by utilizing the transactional memory
capability upon the transactional memory capability having
satisfied a threshold based upon Success of at least the
pseudo-transactional memory capability.

0011. An article of manufacture includes a computer
readable medium and means in the medium. The means in
the medium is for utilizing a hardware approach to transac
tional memory to execute a code section after having utilized
a software approach to locking memory to execute the code
section and the hardware approach having satisfied a thresh
old based at least upon a pseudo-transaction to determine
whether the hardware approach would have succeeded in
executing the code section. Other features and advantages of
the invention will become apparent from the following

US 2007/O 198521 A1

detailed description of the presently preferred embodiment
of the invention, taken in conjunction with the accompany
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The drawings referenced herein form a part of the
specification. Features shown in the drawing are meant as
illustrative of only some embodiments of the invention, and
not of all embodiments of the invention, unless otherwise
explicitly indicated, and implications to the contrary are
otherwise not to be made.

0013 FIG. 1 is a flowchart of a method according to a
preferred embodiment of the invention, and is suggested for
printing on the first page of the patent.

0014 FIG. 2 is a diagram of a system having a number
of nodes, in conjunction with which embodiments of the
invention may be implemented.

0.015 FIG. 3 is a diagram of one of the nodes of the
system of FIG. 2 in more detail, according to an embodiment
of the invention.

0016 FIG. 4 is a flowchart of a method for executing a
section of code according to a hardware approach to trans
actional memory, according to an embodiment of the inven
tion.

0017 FIG. 5 is a flowchart of a method for executing a
section of code according to a software approach to locking
memory, according to an embodiment of the invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview and Method

0018 FIG. 1 shows a method 100, according to a pre
ferred embodiment of the invention. Like other methods of
embodiments of the invention, the method 100 may be
implemented as a computer-readable medium on an article
of manufacture. The medium may be a recordable data
storage medium, Such as a magnetic, semiconductor, and/or
optical medium, a removable or a fixed medium, and/or a
volatile or a non-volatile medium. The medium may also be
a modulated carrier signal. The method 100 may be per
formed by a processor of a node of a multi-node system that
is to execute a section of code that relates to memory of the
node.

0019. A hardware approach to transactional memory is
initially used to execute a section of code on an all-or
nothing basis (102). That is, the hardware approach to
transactional memory is utilized such that either the entire
section of code is executed and committed to memory, or
none of the section of code is executed and committed to
memory. The hardware approach to transactional memory
thus treats the section of code as a single transaction. It
conditionally executes the code section, committing execu
tion of the code section to memory only if the entire code
section can be completed. The hardware approach to trans
actional memory is a hardware approach in that it is accom
plished in hardware, such as by the transactional memory
capability of the processor that is performing the method
1OO.

Aug. 23, 2007

0020. If the hardware approach does not fail a threshold
in executing the code section (104), then the next time the
code section needs to be executed, the hardware approach to
transactional memory is again employed to execute the
section of code (102). In one embodiment, the hardware
approach fails the threshold if it is forced to abort execution
of the code section a single time. That is, the hardware
approach fails the threshold if it fails to completely execute
the code section a single time. In another embodiment, the
hardware approach fails the threshold if it is forced to abort
execution of the code section a predetermined number of
times. Abortion of code section execution may be caused
when another code section is attempting to read from and/or
write to the same memory that the first code section is
processing, for instance. Other approaches to determine
whether the hardware approach has failed the threshold are
described in a later section of the detailed description.
0021. If the hardware approach fails the threshold in
executing the code section (104), then a Software approach
to locking memory is instead utilized to execute the section
of code (106). The software approach is utilized by first
locking the memory to which the code section relates. The
code section is then executed, and is committed to memory
as it is executed. No other sections of code can read from
and/or write to the same memory to which the code section
relates, because the code section has placed a lock on the
memory. When the code section has finished being executed,
the lock on the memory that it was accessing is released, or
removed. The software approach to locking memory may be
implemented by a spin-lock function that is called prior to
executing the section of code, and a spin-unlock function
that is called after executing the section of code, as is
described in more detail in a later section of the detailed
description.

0022 Preferably, after the software approach has been
utilized to execute the section of code, if the hardware
approach to transactional memory has again satisfied the
threshold (108), then the hardware approach is utilized the
next time the code section needs to be executed (102). As
will be described in more detail in a later section of the
detailed description, this can be implemented in one
embodiment by having a pseudo-transaction executed, or
performed, concurrently with the software approach in 106.
A pseudo-transaction is similar to an actual hardware trans
action employed by the hardware approach to transactional
memory, but unconditionally performs the instructions in the
code section, and unconditionally commits execution of the
code section to memory. A pseudo-transaction never aborts,
but rather determines whether an actual transaction would
have been Successful in execution. That is, a pseudo-trans
action is employed to determine whether utilizing the hard
ware approach to transactional memory would have been
Successful in executing the code section. Thus, a pseudo
transaction can be employed to determine whether the
hardware approach to transactional memory has again sat
isfied the threshold in 108. Furthermore, determining
whether the hardware approach to transactional memory has
satisfied the threshold can be based upon the success of
previous pseudo-transactions and/or previous transactions.

0023. However, if the hardware approach has not satis
fied the threshold (108), then the software approach is
utilized the next time the code section needs to be executed
(106). In this way, the software approach is a fallback

US 2007/O 198521 A1

approach to executing the section of code where the hard
ware approach is the default and preferred approach to
executing the section of code. This may be because the
hardware approach provides for improved system perfor
mance as compared to utilizing the Software approach, for
instance.

System and Code Section Execution
0024 FIG. 2 shows a system 200 in accordance with
which embodiments of the invention may be implemented.
The system 200 includes a number of nodes 202A, 202B,
202C, and 202D, which are collectively referred to as the
nodes 202. The nodes 202 are connected with one another
through an interconnection network, or interconnect, 204.
Each of the nodes 202 may include at least one processor
and memory. Where the system 200 is a non-uniform
memory architecture (NUMA) system, the memory of a
given node is local to the processors of the node, and is
remote to the processors of the other nodes. However, the
system 200 may be another type of system in lieu of being
a NUMA system.
0.025 FIG. 3 shows in more detail a node 300, according
to an embodiment of the invention, that can implement one
or more of the nodes 202 of FIG. 2. As can be appreciated
by those of ordinary skill within the art, only those compo
nents needed to implement one embodiment of the invention
are shown in FIG. 3, and the node 300 may include other
components as well. The node 300 includes a processor 302
and a memory 304. There may be other processors within the
node 300 besides the processor 302. The memory 304 may
be or include random-access memory (RAM), as well as
other types of memory, such as non-volatile memory, read
only memory (ROM), and so on.
0026. The processor 302 includes transactional memory
capability 306, which is used to effect the hardware trans
actional approach to executing code sections, as has been
described. Alternatively, the transactional memory capabil
ity 306 may be a part of hardware other than the processor
302. The transactional memory capability 306 may in one
embodiment include pseudo-transactional memory capabil
ity as well, such that it can be determined whether the
hardware transactional approach to executing code sections
would have been successful, even where the hardware
transactional approach is nevertheless not currently
employed for code section execution.
0027. The memory 308 includes a code section 308, data
310, a spin lock function 312, and a spin unlock function
314. The code section 308 is a section of code that is
preferably executed on an all-or-nothing basis. That is, either
the entirety of the code section 308 is executed and com
mitted to memory, or none of the code section 308 is
executed and committed to memory. The data 310 is the part
of the memory 304 to which the code section 308 relates.
That is, the data 310 is the data that is processed by the code
Section 308.

0028. The spin lock function 312 and the spin unlock
function 314 effect the software approach to locking and
unlocking memory that has been described. Particularly, the
spin lock function 312 is called to lock the memory, Such as
the data 310, for the code section 308 to be executed without
interruption or corruption of the data 310. The spin unlock
function 314 is then called to unlock the memory after the

Aug. 23, 2007

code section 308 has been executed. That is, the unlock
function 314 is called to remove, or release, the lock on the
data 310 after the code section 308 has been executed. As is
described in more detail in a later section of the detailed
description, the spin lock and unlock functions 312 and 314
may default to utilization of the transactional memory
capability 306 of the processor 302 to execute the code
section 308, and utilize their software locking capability as
a fallback approach for executing the code section 308.

0029 FIG. 4 shows a method 400 for using a hardware
approach to transactional memory to execute a section of
code, according to an embodiment of the invention. For
instance, the method 400 may be that which is performed by
the transactional memory capability 306 to execute the code
section 308. First, a transaction inclusive of the relevant
section of code is started (402). The transaction is condi
tionally executed (404). For instance, results of the condi
tional execution of the transaction may be temporarily stored
in a processor cache or other type of cache. If the transaction
has successfully completed (406), then execution of the
transaction is committed to memory (408), such that the
entire section of code has been executed. Otherwise, the
transaction is aborted (410), and none of the section of code
is effectively executed in actuality.

0030 FIG. 5 shows a method 500 for using a software
approach to locking memory to execute a section of code,
according to an embodiment of the invention. For instance,
the method 500 may be that which is performed by the spin
lock and unlock functions 312 and 314 to execute the code
section 308. First, a lock is placed on the memory to which
a relevant section of code relates (502). This is the memory
that is to be processed by the section of code, Such as the data
310 of the memory 304. The lock prevents other sections of
code, for instance, from processing the memory while the
relevant section of code is processing the memory. The code
section is then executed (504), such that execution of the
code section is committed to memory as it is executed (506).
That is, the code section is not executed on a conditional
basis. Since the memory to which the code section relates is
locked, the code section may be committed to memory as it
is executed. Finally, the lock on the memory to which the
code section relates is removed, or released (508), so that
other code sections, for instance, may process the memory.

Particular Embodiment and Pseudo-Code

0031 A particular embodiment of the spin lock function
312 and the spin unlock function 314 is now described, in
relation to pseudo-code that implements both of these func
tions. The functions 312 and 314 are specifically described
as implementing both the software approach to locking
memory and the hardware approach to transactional memory
that have been described. The spin lock function 312 is
called to lock the relevant memory for a section of code to
be executed, be it by the hardware or the software approach.
The spin unlock function 314 is then called to release the
lock from the memory after the section of code has been
executed.

0032) First, a number of memory-transaction primitives
are described that are utilized in the pseudo-code. The
primitives include begin tXn(), begin tXn check(), com
mit tXn(), and abort txn(). The primitive begin tXn() may
be of type integer, and marks the start of a hardware

US 2007/O 198521 A1

transaction. It returns true. If a given transaction is then
aborted by the hardware, execution resumes after the cor
responding begin tXn(), which returns false. This can be
implemented in one embodiment with an instruction that
takes a branch address for the abort path, so long as that
instruction restores registers in the event of an abort. In
another embodiment, Software can save and restore the
registers, but this approach may impose undesired added
overhead on the system.
0033. The primitive begin tXn check() marks the start of
a pseudo-transaction. A pseudo-transaction does not affect
instruction execution, except to track whether a real trans
action would have been Successful. The pseudo-code uses
this primitive to determine when it is acceptable to switch
back from a Software locking approach to a hardware
transactional approach. Although not included in the
pseudo-code, an additional primitive of type int, end tX
in check(), may be provided to mark the end of a pseudo
transaction, returning true if a real transaction would have
Succeeded. However, this primitive is not needed, as
described in the next paragraph, and thus is not included in
the pseudo-code.
0034. The primitive commit txn() may be of type inte
ger, and marks the end of a transaction. All memory writes
that were speculatively executed since the matching

begin tXn() are made permanent, and visible to other
processors. This primitive also ends the effect of a matching
begin tXn check() primitive, returning true if a real trans
action would have succeeded. Thus, the primitive end tx
in check() described in the preceding paragraph is not
needed in all embodiments of the invention.

0035 Finally, the primitive abort txn() has a parameter
mimic hw of type integer. This primitive aborts the current
transaction. If mimic hw is true, then execution resumes
with the matching begin tXn() returning false. Otherwise,
execution continues after the abort txn(). It is not permis
sible to pass true to an abort tXn() that matches a begin tx
in check(). In one embodiment, it may be useful to have the
primitive begin tXn check() return a true or false value so
that abort tXn() can mimic a hardware abort, even for a
pseudo-transaction. 46 The pseudo-code is line-numbered
alphanumerically for descriptive convenience. The pseudo
code additionally is an example of a software-codified
implementation of the method 100, as can be appreciated by
those of ordinary skill within the art. Three initial definitions
are first provided:

003.6 A1 typedef atomic t tXn lock;
0037 A2 #define TXN LOCK HELD 0x80000000
0038 A3#define TXN LOCK DOLOCK 0x40000000
0039), A4iidefine TXN LOCK OWNER 0x3fffffff

Aug. 23, 2007

Line A1 defines the type tXn lock as an atomic operation.
Lines A2, A3, and A4 define the constants TXN LOCK
HELD, TXN LOCK DOLOCK, and TXN LOCK
OWNER. The constant TXN LOCK HELD refers to the

scenario where a software lock is currently being held,
whereas the constant TXN LOCK DOLOCK refers to the
scenario where a Software locking approach, in lieu of a
hardware transactional approach, is to be utilized. The
constant TXN LOCK OWNER defines a bit field into
which an identifier for the processor or thread holding the
lock is placed.
0040. The spin lock function 312 is then provided as:

B1 spin lock(tXn lock tp)
B2 {
B3 intoldval:
B4 int new val;

0041. The spin lock function receives in line B1 as an
argument a pointer tp to a variable of type tXn lock. The
variables oldval and new Val are declared in lines B3 and B4,
and used internally by the spin lock function to read values
from atomic reads on the variable tp.

for (::) {
oldval = atomic read(tp);
if (oldval & TXN LOCK DOLOCK) {

while ((oldval = atomic read(tp)) & ~TXN LOCK OWNER)
== TXN LOCK DOLOCK TXN LOCK HELD) {

continue;

0042. The spin lock function first atomically reads the
variable tp as the variable oldval in the line B6. The “if
clause of lines B7-B11 is executed if the variable tp indicates
that a software lock should be employed. The while loop of
lines B8-B11 is executed to constantly loop while the
variable tp., which is read as the variable oldval in line B8,
continues to show that a software lock should be used, and
that the software lock is in fact being held.

B12 if (oldvall= TXN LOCK DOLOCK) {
B13 continue;
B14

0043. Next, if the variable oldval indicates that a software
lock should not be utilized, in line B12, then in line B13 the
result of the continue function causes the spin lock function
to reexecute, beginning at line B5.

B15 newval = oldval TXN LOCK HELD:
B16 if (cmpxchg(&tp, oldval, newval) = oldval) {
B17 continue;
B18

US 2007/O 198521 A1

0044) The variable newval is set equal to the variable
oldval, and logically OR'ed with the constant TXN LOCK
HELD, in line B15 to indicate that the software lock is

held.

0045. The compare and exchange function is used in the
“if clause in line B16 to determine whether the variable
oldval has now changed relative to the variable newval. If
So, then this means that Some other processor or thread
modified the lock value, so that the attempted update fails,
and the continue function in line B17 causes the spin lock
function to reexecute, beginning at line B5.

0046 B19 begin txn check();

0047 The begin tXn check() function is called in line
B19 to flag the beginning of a pseudo-atomic section. The
hardware will determine whether an atomic transaction
equivalent to the lock's critical section would have suc
ceeded, and report that via the commit tXn function in
spin unlock, as will be described.

B21 if (begin tXn()) {
B22 oldval = atomic read(tp);
B23 if (oldval & TXN LOCK DOLOCK) == 0) {
B24 newval = oldval TXN LOCK DOLOCK:
B2S (void)cmpxchg(tp, oldval, newval);

B27 continue;
B28

0048. The “if clause in line B21 begins a hardware
transaction, returning a non-Zero result. If this transaction is
later aborted, control will return to this begin tXn, which
will then return a zero result. Thus, lines B22 through B27
are executed only when a hardware transaction is aborted. In
this instance, if the variable oldval does not indicate that a
software lock should be held, in line B23, then the variable
newval is set equal to the variable oldval and logically
OR'ed with the constant TXN LOCK DOLOCK, in line
B24, to indicate that the software lock should now be used
in preference to hardware transactions when executing the
code section in question. The compare and exchange func
tion is used in line B25 to attempt to set the variable tp to the
variable new Val, and the continue function in line B27
causes the spin lock function to reexecute, beginning at line
B5.

C10

C11

C12

C13

C14

Aug. 23, 2007

B29 oldval = atomic read(tp);
B30 if (oldval & TXN LOCK DOLOCK) {
B31 abort tXn(FALSE);
B32 continue;
B33
B34
B35
B36

0049 Finally, the variable oldval again is set equal to the
variable tp, as atomically read in line B29. If the variable
oldval indicates that a software lock should be held in line
B30, then the hardware approach to transactional memory is
aborted in line B31, and the spin lock function reexecutes,
beginning at line B5, due to the continue function in line
B32.

0050. The spin unlock function 314 is provided as:

C1 spin unlock(tXn lock *tp)
C2 {
C3 int new val;
C4 int nextVal;
C5 intoldval:
C6 int result:

The spin unlock function receives in line C1 as an argument
a pointer *tp to a variable of type txn lock. The variables
new Val, nextval, and oldval, and declared in lines C3-C5.
and are used internally by the spin unlock function to hold
values from atomic reads on the variable tp and to compute
new values to be stored into variable tp via the cmpxchg
function. The variable result is used to store the results from
attempting to commit the transaction encompassing the code
section in question by utilizing a hardware approach to
transactional memory.

0051 C7 result=commit txn();

0052 The function commit txn() is called in line C7, the
results of which the variable result is set equal to, to commit
execution of the section of code in question when using a
hardware approach to transactional memory. If the software
locking approach was instead used, the function commit
tXn() instead indicates whether the hardware approach

would have succeeded had it been used.

if (((oldval = atomic read (tp)) & (TXN LOCK HELD
TXN LOCK OWNER)) = (TXN LOCK HELD me())) {
if (result) {

newval = 0;
else {

newval = TXN LOCK DOLOCK;

US 2007/O 198521 A1

0053. In line C8, the variable oldval is set equal to the
atomically read value of the variable tp. The “if clause in
lines C8 and C9 determines whether the variable oldval
indicates that a software lock is being held by this processor
or thread, where the me() function returns a unique iden
tifier for the currently running processor, process, or thread,
If the “if clause yields true, then lines C10-C13 are per
formed. If the result of the commit txn() operation in line
C7 yielded a true result, indicating that the transaction could
have been Successfully committed to memory using the
hardware approach, as tested in line C10, then the variable
newval is set equal to Zero in line C11. Setting the variable
new Val to Zero will then be used to indicate that a software
lock should not be later employed. Otherwise, if the variable
result yielded a false result, as tested in line C10, then this
indicates that the transaction was unsuccessfully committed
to memory using the hardware approach, and in line C13 the
variable new val is set to the constant TXN LOCK
DOLOCK, to indicate that a software lock should be

Subsequently employed.

C14 while (nextval =
C15 cmpxchg(tp, oldval, newval)) = oldval) {
C16 oldvall=nextval:
C17
C18
C19

0054) The variable nextval is set to the result of the
compare and exchange function in lines C14 and 15. If the
variable nextval is not equal to the variable oldval, then the
variable oldval is set equal to the variable nextval in line
C16, and the while loop of lines C14-C17 is repeated until
the variable nextval is equal to the variable oldval. That is,
the while loop of lines C14-C17 is employed to effectuate
the variable new Val as had been set in line C10 or line C12,
within the variable tp.
0.055 The pseudo-code that has been described utilizes
both actual hardware transactions, via the hardware trans
actional approach, as well as pseudo-transactions. The
pseudo-transactions are employed to determine whether the
hardware transactional approach would have been Success
ful, so that the hardware transactional approach can be
switched back to from the software locking approach. How
ever, in another embodiment, once utilization of the hard
ware transactional approach has yielded to use of the Soft
ware locking approach, the hardware transactional approach
is never again utilized. That is, the Software locking
approach never Switches back to the hardware transactional
approach. In this embodiment, pseudo-transactions, and the
corresponding pseudo-transaction primitives, are not needed
and are not used.

0056 Furthermore, in another embodiment, pseudo
transactions and their corresponding primitives may not be
present, but the ability to switch back from use of the
Software locking approach to the hardware transactional
approach may nevertheless be provided. For example, the
pseudo-code may instead randomly select between real
hardware transactions and Software locking, weighted by
historical transaction Success and failure statistics. Such an
approach, as well as other approaches, thus allow for the use
of the hardware transactional approach even after the soft

Aug. 23, 2007

ware locking approach has been employed, and where
pseudo-transactional capability is not provided.

Alternative Embodiments

0057 The pseudo-code listed and described in the pre
vious section of the detailed description uses a simple
threshold to determine whether the hardware approach to
transactional memory should yield to the Software approach
to locking memory in executing the section of code in
question. Specifically, in line B21, the hardware approach to
transactional memory fails the threshold where it has
aborted. That is, the hardware approach to transactional
memory fails the threshold where it has aborted execution of
the code section a single time.
0058 Similarly, the pseudo-code uses the same simple
threshold to determine whether the software approach to
locking memory should yield back to the hardware approach
to transaction memory in execution the code section in
question. Specifically, in line C9, the hardware approach to
transactional memory satisfies the threshold where it would
not have aborted, when executing the section of code. That
is, the hardware approach satisfies the threshold where it
has, or would have, successfully committed the transaction
encompassing the code section.
0059. However, in alternative embodiments of the inven
tion, more Sophisticated thresholds are employed to deter
mine whether the Software approach to locking memory
should be used in lieu of the hardware approach to transac
tional memory, and Vice-versa, in executing a section of
code. One such alternative embodiment has already been
described, where the hardware approach has to fail to
execute the code section, or abort the code section, a
predetermined number of times greater than one before the
Software approach is employed. Likewise, the hardware
approach would have had to Successfully execute the code
section the predetermined number of times before it is again
actually used in lieu of the Software approach.
0060. In one embodiment, a digital filter is used to
maintain state within the lock. A digital filter slows the
response of a system where the inputs change too quickly.
For instance, utilization of the Software approach to locking
memory may cause the state to increase by a fraction, and
utilization of the hardware approach to locking memory may
cause the state to decrease by the fraction, where the state
can vary between Zero and one. If the state is greater than a
given threshold, such as one-half, then the software
approach is utilized, whereas if it is less than the threshold,
then the hardware approach is utilized.
0061. In another embodiment, the compiler may pass
information to the spin lock() and spin unlock() functions
of the pseudo-code provided in the previous section of the
detailed description. For instance, the compiler may deter
mine a score based on the notion of transfer functions known
to those of ordinary skill within the art. That is, the score
realizes the expected number of memory references in the
expected critical parts of the section of code in which the
code section causes the transaction to abort, Such as the
number of references to distinct cache lines within the
section of code. A transfer function is generated based on
this number. Compilers that have full awareness of the
hardware structures. Such as cache size, associativity, and
other transactional limitations, may be able to provide better

US 2007/O 198521 A1

estimates of the likelihood of hardware transactional suc
cess. The spin unlock() function may be more aggressive in
clearing the need for software locking where transactions are
more likely to succeed. Information from the hardware of
the system, Such as the processor thereof, is thus passed to
the spin lock() and spin unlock() functions through the
compiler.

0062. In another embodiment, the success rates of utiliz
ing the hardware transactional approach are tracked. How
ever, the act of tracking the Success rate may cause trans
actions encompassing the code sections to be executed more
likely to fail. Therefore, the spin lock() function should
record its identity so that the spin unlock() function can
communicate the measurements made. This may be accom
plished within a machine register, bearing in mind that there
may be many-to-many relationships between spin lock.()
and spin unlock() functional primitives.
0063. In another embodiment, a per-lock caller state is
maintained, which is comparable to branch-prediction tables
in processors, as can be appreciated by those of ordinary
skill within the art. The same lock may often be used for
multiple critical parts of a code section that can cause
transaction abortion and that have differing cache require
ments. The spin lock() function may record its address in
the lock when acquiring the lock, and the spin unlock.()
function may measure the transaction-completion Success
rate on a per-spin lock() basis. The spin lock() function
can then more aggressively use transactions on sections of
code where there have been good records of Success.
0064. In another embodiment, the number of times that a
given section of code has transactionally failed is counted,
Such that the spin lock() function is more likely to use
software locking in cases where there have been multiple
failures, even if the failures are not sequential. Furthermore,
queued software locks or non-uniform memory-architecture
(NUMA) software locks, as known to those of ordinary skill
within the art, can be particularly used in differing embodi
ments of the invention. Reader-writer software locks, as
known to those of ordinary skill within the art, may also be
used in an alternative embodiment of the invention.

0065. The pseudo-code described in the previous section
of the detailed description is particularly useful where the
Software locks in question are perfectly nested. However,
where the software locks are imperfectly nested, such as is
the case with hierarchical locks, alternative approaches may
be considered. First, the enclosing transaction may be
aborted when a hierarchical lock is encountered. Alterna
tively, the hardware transaction application-programming
interface (API) may be modified to accept the address of the
lock, permitting the hardware to match the hierarchical
transactions. In addition, a software check may be per
formed to determine if an enclosing transaction is currently
being executed. Such that the inner locks use the software
approach in lieu of the hardware approach.

Aug. 23, 2007

Advantages Over the Prior Art
0066 Embodiments of the invention allow for advan
tages over the prior art. Whereas utilizing a hardware
approach to transactional memory to execute code sections
can be advantageous from a performance perspective,
embodiments of the invention nevertheless fall back on a
slower Software approach to execute the sections of code
where the hardware approach fails, or aborts, too often. The
embodiments of the invention thus ensure that the hardware
approach is utilized where appropriate, Such that the perfor
mance gains of utilization of the hardware approach are
maintained. The embodiments also ensure that the software
approach is utilized where the hardware approach is not
appropriate, so that overall forward progress of sectional
code execution continues and does not hang on an overly
aborting hardware approach.

Conclusion

0067. It will be appreciated that, although specific
embodiments of the invention have been described herein
for purposes of illustration, various modifications may be
made without departing from the spirit and scope of the
invention. For instance, the system that has been described
as amenable to implementations of embodiments of the
invention has been indicated as having a non-uniform
memory access (NUMA) architecture. However, the inven
tion is amenable to implementation in conjunction with
systems having other architectures as well. Accordingly, the
scope of protection of this invention is limited only by the
following claims and their equivalents.
What is claimed is:

1. An article of manufacture comprising:
a computer-readable medium; and,
means in the medium for utilizing a hardware approach to

transactional memory to execute a code section after
having utilized a software approach to locking memory
to execute the code section and the hardware approach
to transactional memory having satisfied a threshold
based at least upon a pseudo-transaction to determine
whether the hardware approach would have succeeded
in executing the code section.

2. The article of claim 1, wherein the means utilizes the
hardware approach to transactional memory where the hard
ware approach to transactional memory would have Suc
cessfully executed the code section a predetermined one or
more times.

3. The article of claim 1, wherein the hardware approach
satisfies the threshold also based on previous transactions
utilized by the hardware approach to execute the code
section and on previous pseudo-transactions.

4. The article of claim 1, wherein the computer-readable
medium is one of a recordable data storage medium and a
modulated carrier signal.

k k k k k

