Title: ANALYTE DETECTION USING AUTOCATALYTIC CHAIN REACTIONS

Abstract: Compositions and methods for detecting the presence of analytes employing autocatalytic chain reactions (ACR) having super linear kinetics for amplification of signal are disclosed.
ANALYTE DETECTION USING AUTOCATALYTIC CHAIN REACTIONS

Cross-Reference to Related Application

[0001] This application claims priority from U.S. provisional application 60/915,659 filed 2 May 2007. The contents of this document are incorporated herein by reference.

Statement of Rights to Inventions Made Under Federally Sponsored Research

[0002] This work was supported in part by a government contract: AFSOR SBIR Phase II contract FA8750-05-C-0062 entitled “A DNA Tagant Watermarking System.” The U.S. government has certain rights in this invention.

Technical Field

[0003] The invention relates to analysis of small amounts of analyte in user-friendly formats that permit detection without special equipment. More particularly, the invention concerns assays that amplify a signal from an analyte to provide a detectable response.

Background Art

[0004] Early approaches to chemical detection of analytes relied on chemical indicators to produce color changes or precipitation products giving readouts that are visible to the naked eye. These tests were therefore convenient, portable and economical, but relatively insensitive. More recently, the limits of detection have been dramatically lowered, both by the development of methods of separation to purify and concentrate the analyte and by the development of increasingly sophisticated instrumentation to detect analytes with greater specificity. However, both of these approaches require specialized equipment and skilled personnel to operate and are generally inapplicable to field testing.

[0005] There are many instances, such as in environmental studies, biomedical research and medical diagnosis, where there is a need for detection technology that can rapidly detect very low amounts of analytes as well as reduce the time for sample preparation, laboratory infrastructure and turnaround. For example, in localities where harsh socioeconomic conditions persist, diagnosis of infectious diseases would be benefited by techniques that are adaptable outside of conventional clinical laboratories.
In addition, many military and commercial settings require the tracking of materials and/or documents and certification of their origin and authenticity. Tracking of materials or personnel may be accomplished by using a substance acting as a tag that is invisible until detected using specified analytical techniques. Presently, the methods of detecting such taggants are costly, laboratory-based and time-consuming.

[0006] The present invention provides assay compositions and methods that are adaptable to field use, simple to carry out, and able to detect very small amounts of analyte. The invention relies on amplification of a signal provided by the analyte by permitting the analyte directly or indirectly to trigger an autocatalytic chain reaction that amplifies the signal to produce products that are detectable by the naked eye.

[0007] Others have attempted to employ autocatalytic chain reactions (ACR’s) to amplify analyte signals. For example, Dirks, *et al.*, U.S. 2005/0260635 describe a method whereby metastable nucleic acid monomers can be made to self-assemble upon exposure to an analyte, thus obtaining a linear duplex polymer that can be detected by gel electrophoresis. No suggestion of a visible signal, such as color or fluorescence, is disclosed. Detection by fluorescence is, however, disclosed in Pierce, *et al.*, U.S. 2006/0228733, a published application by the same group that employs a similar method of polymerization by an initiating oligonucleotide analyte. Similarly, in another publication of the same group, Pierce, *et al.*, U.S. 2006/0234261, nanogold particles are used to detect the self-assembled polymers.

[0008] Zhang, *et al.*, U.S. 2005/0227259 describe generation of an amplified signal indicative of a target nucleic acid molecule using detection by fluorescent resonance emission transfer (FRET) effected by a complex system of displacing looped nucleic acids that are bound to a fluorescence emitter and a quencher to produce a fluorescent signal.

[0009] Richard, U.S. patent 5,645,987 describes an isothermal polymerization reaction which may be used to amplify the signal generated by a catalytic primer substrate and the products are detected by various methods. Western, *et al.*, U.S. 6,110,677 describe a different method of amplifying an initial oligonucleotide target for use in diagnostic methods. Seeman, *et al.*, U.S. 2006/0078910 describe formations of nucleic acid nanostructures from crossover domains.

[0011] Kool, U.S. 5,714,320 describes rolling circular amplification which is used in the present invention to generate signal amplification polymers.

[0012] The present invention provides particularly effective assay approaches which result in amplified signals permitting small amounts of analyte to be detected using convenient readouts requiring no instrumentation.

Disclosure of the Invention

[0013] The present invention provides unique combinations of components of a sensitive detection system wherein the components comprise a nanoswitch detector (NSD) that triggers an autocatalytic chain reaction (ACR) that results in an amplification of signal by providing products that can be detected by an indicating detection reaction (IDR) that, if desired, can be designed to be detectable by the naked eye. In some cases, the analyte is, itself, the NSD. The autocatalytic chain reaction of the invention proceeds by superlinear kinetics to provide a plethora of product as compared to the amount of analyte present. Thus, the product will be present in much greater quantity than the original analyte. The IDR is designed to respond to product.

[0014] Thus, in one aspect, the invention is directed to a method to determine the presence or absence of an analyte in a sample. The sample is contacted with a reaction mixture which contains the NSD if needed, the components of the ACR, and the components of an IDR. If desired, the IDR may be added after the ACR is allowed to proceed. The analyte causes the NSD to trigger the ACR resulting in a multiplicity of product molecules that can be detected by the IDR.

[0015] When present, the NSD both targets the analyte and triggers the ACR. These functions can be included in separate molecules or in separate portions of the same molecule. In some embodiments, the NSD may include an allosterically responsive component that exposes or liberates a trigger, typically a nucleic acid, when bound to
target analyte. This embodiment expands the scope of analytes that are candidates for
testing by permitting interaction of molecules other than nucleic acids to effect the
allosteric response, liberating a nucleic acid trigger.

[0016] The ACR may be an autocatalytic nucleic acid cleavage reaction, a
hybridization chain reaction that exhibits superlinear kinetics, or a modified rolling circle
amplification reaction that generates a multiplicity of IDR-reacting products, or may
employ displacement of multiple fluorescent resonance emission transfer (FRET) pairs.

[0017] The invention further relates to reaction mixture compositions that comprise
NSD, ACR and IDR components as well as to kits for constructing such reaction
mixtures.

Brief Description of the Drawings

[0018] Figure 1 illustrates a typical DNA detection assay in lateral flow strip format.
Top panel: the liquid sample is applied on the left and flows through the reaction pad to
the detection pad on the way to the absorbent pad on the right. Lower panel: the
appearance of both a control line and a capture line indicate that the assay has executed
properly and that DNA was present in the sample.

[0019] Figures 2a-2d show an overview of the deoxyribozymogen NSD/ACR
method.

[0020] Figures 3a-3c show schematics of a FRET based IDR.

[0021] Figure 4 shows an example of DNA-functionalized gold nanoparticle (DNA
AuNP) colorimetric IDR.

[0022] Figure 5 shows an alternative configuration of the NSD used in autocatalytic
cleavage ACR of Figures 2a-2d.

[0023] Figure 6 shows another alternative configuration of the NSD used in the
autocatalytic cleavage ACR of Figures 2a-2d.

[0024] Figure 7a-7f show schematically a superlinear embodiment of the
hybridization chain reaction (HCR).

[0025] Figure 8 shows NSD and ACR modules composed of two sequences, A and B.

[0026] Figure 9 shows a modified NSD for the procedure of Figure 8.

[0027] Figure 10 shows the steps in detection of a DNA analyte using exponential
rolling circle amplification (RCA).
[0028] Figure 11 shows how RCA is used to synthesize long, single stranded multiple repeats of the complement of the circular template sub-sequences a, b, and c. The sequence complements contained in the circular template are denoted by *b.* The single stranded products, comprised of 100’s or 1,000’s of repeats, are subsequently gel purified.

[0029] Figure 12 shows the details of single stranded RCA products of Figure 11. The analyte DNA (b), binds to the b*, priming DNA polymerization (dotted arrow). When hybridized, the FRET quencher and fluorophore groups on FRET-D are proximal, thus quenching fluorescence.

[0030] Figure 13 shows how DNA polymerase displaces the FRET-D sequence of Figure 12, activating fluorescence.

Modes of Carrying Out the Invention

[0031] By providing a nanoswitch detector (NSD) if needed, an autocatalytic chain reaction (ACR) that has at least superlinear or exponential kinetics, and components of an indicator detection reaction (IDR) that is responsive to the products of the ACR, detection of small amounts of analyte (even in complex mixtures) is made possible without resort to expensive instrumentation. Typically, the analyte is a nucleic acid, but the availability of allosteric and modular NSD systems allows translation of the signal received by interaction with any analyte into a trigger for the ACR. Allosteric systems which liberate nucleic acid triggers are known in the art and are described, for example, by Breaker, R. R., *Current Opinion in Biotechnol.* (2002) 13:31-39; by Ward, et al., U.S. 2006/0035275; and by Nilsen-Hamilton, U.S. 2005/0026178. In these embodiments, a conformational change in a molecule that changes its shape in response to peptides, small molecules, energy packets, and the like, is induced to release or expose a nucleic acid trigger for the ACR. “Energy packets” refers to photons or emissions from radioactive substances (including α and β particles, for example), that activate any of a large class of photosensitizers, such as those mentioned in U.S. 6,723,750.

[0032] There are various methods of sequestering nucleic acid sequence(s) that trigger the ACR. One method, strand displacement via ‘toe-hold’ mediated branch migration, has a well established prior art. In strand displacement, the trigger sequence is bound in a metastable duplex configuration with either an intermolecular or an intramolecular complementary sequestering strand, which blocks the trigger from activating the ACR. The sequestering strand is composed of sequence and/or structural
features that make it susceptible to displacement from the trigger by the more stably
binding analyte. In the presence of the analyte, which is frequently, but not necessarily,
another single-stranded nucleic acid, the sequestering strand is efficiently displaced
(typically as a duplex with the analyte), to liberate the trigger strand to initiate the ACR.

[0033] Another method of sequestering nucleic acid sequence(s) that act as triggers of
the ACR, is based on a conformational response to the analyte interaction with the NSD
at a site other than the sequestered trigger sequence. Upon interacting with the analyte,
the NSD undergoes a conformational shift that liberates or exposes the trigger sequence
for subsequent activation of the ACR. As noted above, allosteric modulation of the NSD
has the advantage that the analyte need not be a nucleic sequence, but may belong to
virtually any type of molecule, for example, small organic and inorganic species,
environmental contaminants, and biological molecules, such as peptides and proteins,
carbohydrates and lipids. The analyte could include various forms of energy, as long as
the energy is capable of inducing the allosteric transformation liberating the sequestered
trigger strand. Photosensitive NSD’s or NSD’s sensitive to the ionizing radiation of
radioisotopes could be used as detectors of radioactive contamination. Nucleic acids
responding to analytes in this way have been isolated from nature and synthesized in
vitro, as described in U.S. 2005/0026178 and U.S. 2006/0035275 cited above.

[0034] A strand displacement and allosteric modulation system using riboswitches
can also be used to implement the NSD. Absent the analyte, the triggering strand of the
NSD is sequestered, preemiting activation of the ACR. In the presence of the analyte,
the allozyme undergoes a conformational switch, exposing the triggering strand, and
initiating the ACR.

[0035] In some embodiments, the portion of the NSD that interacts directly with the
analyte, and the triggering oligonucleotide are separate components. For example, the
analyte effects a conformational change in a first component which exposes a nucleic acid
sequence that activates the trigger for the ACR. Typically, an analyte nucleic acid opens
a loop sequence in a component of the NSD which in turn opens and exposes the trigger
for the ACR.

[0036] In another embodiment, the NSD is a circular, especially designed single-
stranded nucleic acid that serves as a template for rolling circle amplification as described
by Kool in U.S. 5,714,320, cited above. In this embodiment, the circular DNA is
designed to include at least one restriction site which, in the presence of restriction
enzyme, permits cleavage of the extended DNA strand when coupled to added snippets of DNA that complement the restriction site. The multiplicity of fragments generated by the single-strand upon cleavage permits easy detection by virtue of the presence of a multiplicity of such segments. Such fragments can prime amplification on additional circles, thus providing superlinear production of fragments for detection.

[0037] In still another embodiment, the analyte itself in effect behaves as a trigger by liberating multiple detectable complements that are bound to a single-chain DNA of repeating sequences generated, for example, by the rolling circle amplification method.

[0038] The ACR in the methods of the invention may take several forms. In one embodiment, a cross-catalytic nucleic acid cleavage ACR is employed. The NSD trigger causes linearization of a ribozyme contained in a reaction mixture of complementary circularized forms of the ribozyme. The linearized trigger cleaves the circularized form of its complementary embodiment, which then becomes active and cleaves and linearizes the circularized form of its complement; each open linearized form is then able to cleave the circularized form of its complement, resulting in a cross-cleavage catalytic reaction with superlinear kinetics.

[0039] In this embodiment, the reaction mixture for conducting the method of the invention will contain, as a component of the NSD, a form of the ribozyme that is activated directly or indirectly by the analyte, as further described in Example 1, as well as multiple copies of circularized complementary forms of the ribozyme. The product comprises the linear forms of the complementary ribozyme constructs. The amount of product is limited only by the concentration of circularized ribozyme present in the reaction mixture.

[0040] The linearized forms of the circular ribozymes can be detected by a variety of methods. For example, the sequences proximal to either side of the cleavage site may each contain a member of a FRET pair. Alternatively, the linearized forms of the ribozyme may be used to bridge metal colloids, such as gold nanoparticles, that have been derivatized with oligomers complementary to portions of the linearized sequences. For instance, when diffused in solution, gold nanoparticles appear red, but when brought into close proximity they appear blue due to plasmon resonance. These alternatives are illustrated below in Examples 1.1 and 1.2 and in Figures 3 and 4. These examples are used only for illustration, and any method that distinguishes the linear forms of the ribozymes from the circular forms could be used. For example, a fluorescent dye coupled
to a complementary oligomer which binds only to the linearized form could be used for detection.

[0041] In another embodiment, the hybridization chain reaction described by Dirks, R. M., et al., in Proc. Natl. Acad. Sci. USA (2004) 43:15275-15278 may be modified to exhibit superlinear kinetics, rather than the linear kinetics characteristic of the reaction as described in the art. The components of the reaction mixture in this case are a pair of at least double-looped structures wherein opening both loops of the structure of one of these components provides binding sites for two molecules of the other component. Superlinear kinetics result because opening of one of these double-loop structures by interaction with analyte provides binding for two molecules of the other component, which, when opened, provide binding sites for four molecules of the first component, which results in opening of these components’ structures to provide eight binding sites on the next level. The resultant is a dendritic structure containing members of both components that can be readily detected by labeling its extended positions with complementary oligomer-bound label. In the exemplified embodiment, colloidal gold nanoparticles are used as the label.

[0042] In this case, the amount of dendritic structures formed is limited only by the amounts of reciprocally interacting and hybridizing components contained in the reaction mixture. Again, alternative methods of detection may be used other than colloidal metals, including binding to radioisotopes, fluorophores or other labels. In this embodiment, the NSD is the analyte itself which initiates the ACR by opening one of the components for the reciprocal hybridization chain reaction.

[0043] In still another embodiment, the reaction mixture contains a circular single-stranded DNA comprising at least one sequence complementary to analyte and one or more restriction sites separating the remaining sequences. A processive polymerase present in the reaction mixture catalyzes rolling circle amplification when the reaction is primed by the analyte, complementary to one of the sequences in the circular DNA. The continued amplification of the sequence in the circle generates a series of repeating sequences in the single-stranded product separated by restriction sites which are made susceptible to cleavage by short complements to their sequences also contained in the reaction mixture. Upon cleavage of the generated single-strand, a multiplicity of single-stranded sequences is generated which can be used to effect the assembly of metal colloids into a complex resulting in a change in color. Furthermore, some of the single-
stranded products have sequences identical to the analyte DNA, and can thus prime additional circular DNA templates, ensuring a superlinear amplification of product for both detection (assembly of nanoparticles) and amplification (via priming). Thus, the gold particles are coupled to oligomers with sequences complementary to the generated single-strand segments such that the gold particles are assembled into a multi-particle complex.

[0044] In this embodiment, the reaction mixture will contain the circular DNA, the appropriate polymerase, short DNA molecules complementary to the restriction sites, the appropriate restriction enzyme, nucleotides for assembly of the single-strand, and, during the reaction or afterwards, the detecting gold particles associated with complementary oligomers.

[0045] In still another embodiment of the invention, rolling circle amplification (or any other method) can be used to assemble a single-chain DNA with repeating sequences wherein in each sequence, there is a binding site for analyte and a binding site for a FRET detector. In preparation for the assay, the single strand is coupled to a multiplicity of FRET detectors, i.e., oligomers, each containing a fluorescent emitter and quencher, wherein the oligomers are constrained by binding to the single strand to permit quenching to occur. Addition of the analyte in the presence of a processing polymerase permits ongoing construction of the complementary strand, thus displacing the multiplicity of FRET detectors and allowing detection of fluorescence generated thereby. Alternatively, the single-chain could be assembled synthetically containing only one or two sites of attachment for the analyte and a multiplicity of sites to attach the FRET detector sequences.

[0046] The assays of the invention can also be configured in single-use disposable lateral flow strips for field use. Lateral flow assays were developed in the late 80's drawing on technology disclosed in Campbell, R. L., et al. (U.S. 4,703,017) and Rosenstein, et al. (U.S. 4,855,240). Today they are used routinely for home pregnancy tests, human fecal occult blood detection, HIV-1 diagnostics, mycobacterium tuberculosis diagnostics, and detection of drugs of abuse, for example. The lateral flow assay format is simple to use and can be read with the naked eye.

[0047] The lateral flow format consists of a plastic-backed strip with sample application area on one end and an absorbent pad on the other end, which causes the sample to be drawn through the reaction area and detection pads by the absorbent action
of the terminal pad. DNA molecules in the sample are exposed to reagents in the proper order by patterning them in sequence on the various pads during the manufacturing process. Figure 1 illustrates a typical DNA detection assay in lateral flow strip format.

[0048] A lateral strip of nitrocellulose incorporates the reagents of the NSD, ACR and IDR. Assays configured with a lateral flow IDR format should yield results within 5-10 minutes. Tests strips should be stable for at least several months and perhaps up to a year, making this incarnation ideal for portable and inexpensive kits for field-based detection and diagnosis.

[0049] In the examples set forth below, particular illustrations of the assay are given with particular embodiments of the NSD, ACR and IDR in each case. In some examples, the analyte itself is the NSD. However, in each case, it is possible to modify the assay so that an intermediate will release a trigger in the presence of an analyte. Thus, instead of utilizing the analyte itself as the NSD in Example 5, the analyte could be used to release the primer for the polymerase. Typically, for example, an allosteric molecule sequestering the primer might interact with an analyte of any arbitrary nature to release the primer. Similarly, IDR components are generally interchangeable among the assays.

[0050] The following examples are offered to illustrate but not to limit the invention. In the descriptions, asterisks are used to indicate complementary sequences – i.e., a* indicates a sequence complementary to a, b* indicates a sequence complementary to b. Alternatively, the notation a indicates a sequence complementary to a and b indicates a sequence complementary to b. Sequences are listed in 5’→3’ order, or when diagrammed an arrow (→) indicates the 5’→3’ sequence.

Example 1

Cross Catalytic Cleavage ACR

[0051] In this example, the autocatalytic chain reaction (ACR) is an exponential cross-catalytic cleavage reaction catalyzed by the 10-23 deoxyribozyme as described in Levy, M., *et al.*, *PNAS* (2003) 100:6416, incorporated herein by reference. The 10-23 deoxyribozyme is a highly efficient and sequence specific enzyme for cleaving RNA or ribonucleic acid phosphodiester linkages within DNA sequences. The 10-23 deoxyribozyme does not cleave DNA linkages. A circular form of this enzyme is inactive, but the linear form is catalytic.
[0052] The ACR employs a mixture of circularized, hence inactivated, 10-23 deoxyribozymes, C1 and C2, each containing a small RNA portion susceptible to cleavage. See Figure 2. C2 can hybridize with, and can subsequently be cleaved by, a cleaved and linearized C1 (designated L1). Symmetrically, C1 can be cleaved by an active L2, which is a linearized C2. The products of the activated ACR, L1 and L2, thus accumulate exponentially.

[0053] In one embodiment, the nanometer scale switching device (NSD) is itself a 10-23 deoxyribozyme that has been modified to be activated by an analyte. This modified 10-23 deoxyribozyme is generically referred to as L1D (Loop 1 Detector). Absent the analyte, the L1D is in an inactive state. When contacted by the analyte, L1D is activated and acts as a trigger initiating the ACR.

[0054] The accumulation ACR products, L1 and L2 may be detected by a variety of methods.

Example 1.01

[0055] In this incarnation, the NSD is a 10-23 deoxyribozyme which has been modified for strand displacement using a 5' appended, 21 nucleotide tail. See Figure 2a, where it is labeled as L1SDD (Loop 1 Strand Displacement Detector). L1SDD has substrate recognition sub-sequences, a and b, the enzyme sub-sequence e, and the 21 nucleotide tail tethered by a tetraloop, T₃ (TTTT). The 21 nucleotide tail has a sequence that is complementary to the 10-23 deoxyribozyme substrate recognition sub-sequences (a*b*) plus an additional 5' sequence, c*, that facilitates analyte hybridization. The analyte DNA has the sequence (from 5' to 3') a b c.

[0056] Absent the analyte, L1SDD has a hairpin structure that inactivates the deoxyribozyme. When contacted by the analyte, the tail and analyte hybridize, opening the hairpin to its open active configuration, see Figure 2b. In the analyte-bound open form, L1SDD acts as a trigger initiating the ACR as described above, see Figure 2c.

[0057] In Figures 2A-2d, arrowheads indicate 3' end of DNA oligomers. Asterisks designate the reverse complement of cognate sequence pairs. The lightning icon indicates catalyzed cleavage of circularized DNA. Figure 2a shows the NSD L1SDD in its inactive form. Sub-sequence c of the analyte DNA facilitates its hybridization to sub-sequence c* of L1SDD's 5' appended tail. Figure 2b shows L1SDD in its activated form, after the appended tail hybridizes to the analyte DNA. Figure 2c shows the activated L1SDD acts...
as a trigger, initiating the ACR by catalyzing the opening of a circularized 10-23 deoxyribozyme, C2. Figure 2d shows the cross-catalytic exponential amplification of circularized DNA openings results in an accumulation of L1 and L2 as products.

Example 1.02

[0058] This incarnation is similar to Example 1.01, except the NSD is a circularized 10-23 deoxyribozyme as in construct C1 that has been hybridized to a texaphyrin-oligonucleotide conjugate. The texaphyrin-oligonucleotide conjugate can photo-induce sequence-specific cleavage of C1 when the appropriate photon energy is present. The photo-cleaved, open form of C1 acts, in a manner analogous to Example 1.01, as a trigger for ACR. This construct is therefore a sensitive detector for specific photon energies (in this case, low-energy radiation between 690-880 nm). This C1-texaphyrin-oligonucleotide complex NSD is referred to as L1hVD1 (Loop 1 Photon Detector 1).

[0059] Neither the electromagnetic radiation nor the texaphyrin-oligonucleotide conjugate alone will induce cleavage. Absent the photon analyte, the closed-circle configuration of L1hVD inactivates the deoxyribozyme and the ACR remains in its poised state. Photosensitizer-oligonucleotide conjugates having absorbencies in other energies, acting either independently or multiplexed, could be used as sensitive detectors of radioisotope contamination.

Example 1.03

[0060] This incarnation is similar to Example 1.02, except the circularized 10-23 deoxyribozyme is linked directly to a texaphyrin photosensitizer, without an intermediary oligonucleotide conjugate. The texaphyrin link can directly photoinduce sequence specific cleavage of C1 when the appropriate photon energy is present. This C1 texaphyrin linked NSD is referred to as L1hVD2 (Loop 1 Photon Detector 2). Photosensitizer oligonucleotide conjugates having absorbencies in other energies, acting either independently or multiplexed, could be used as sensitive detectors of radioisotope contamination.
Example 1.04

[0061] This incarnation is similar to Example 1.01, except the NSD is a modified 10-23 deoxyribozyme which has been conjugated or concatenated to a nucleic acid aptamer or enzyme capable of allosteric modulation, as described in U.S. 2005/0026178 and U.S. 2006/0035275A1, wherein the molecule referred to therein as the “allosteric effector” is the analyte. This particular NSD construct is referred to as L1AD (Loop 1 Allozyme Detector).

[0062] Allozyme-based NSD’s are capable of detecting a wide range of analytes, from small molecule (including divalent metal ions) to macromolecular structures. Absent the allosteric effector-analyte, the conformation of L1AD inactivates the deoxyribozyme. In the presence of the analyte, the allozyme undergoes an conformational switch, activating the 10-23 deoxyribozyme.

Example 1.1
Use of FRET as IDR

[0063] This example is shown in Figures 3a-3c. In Figure 3a, the NSD and analyte are depicted with particular sequences. Figure 3b shows the analyte DNA binding L1D, activating the 10-23 deoxyribozyme. Figure 3c depicts the quenched (C2) and fluorescing (L2) FRET pairs (circled T and triangle encased T) where L2 is shown hybridized to C1.

[0064] L1D is 5’-TTT ATC CGT CCC TCC TAG TGT TTT TCA CTA GGA GGC TAG CTA CAA CGA GGG ACG, and the analyte DNA sequence is 5’-CCA CTA GGA GGG ACG GAT AAA. The C1 and C2 constructs are prepared by enzymatically circularizing appropriate linear DNA constructs with CircLigase™, obtained from Epicenter Biotechnologies. The linear forms of C2 and C1 are respectively: 5’-p-AGC TAC AAC GAC GTC CCrA UCC TAG TGA GGC T and 5’-p-AGC TAC AAC GAG GGA CGrA UCA CTA GGA GGC T. The linear C1 and C2 sequences contain, at the appropriate positions, a single ribo-linkage (depicted in the figures as “r”) in the otherwise deoxy-chain, that serve as substrates for the deoxyribozyme cleavage reaction in the linearization of circles as part of the ACR.
[0065] For detection using fluorescence resonance energy transfer (FRET), the donor dye FAM and an acceptor dye TAMRA are respectively attached to the circled T and the triangle-encased T in strand C2. In C2, FAM and TAMRA are positioned in close proximity, allowing strong FRET between the two. In contrast, after linearization (i.e., the formation of L2), the distance between the two dyes is increased, inhibiting FRET, so the accumulation of strand L2 can be detected by monitoring an increase in fluorescence.

[0066] A system that contains 2 μM C1, 2 μM C2, and 0.1 μM L1D, can readily detect presence of 0.1 μM analyte DNA.

Example 1.2

Use of Gold Nanoparticles as IDR

[0067] Alternatively, detection of the products formed in the ACR of Example 1.1 is based on colloidal solution of gold-nanoparticles (AuNP’s). When dispersed, AuNP’s appear red, when aggregated, such that the particles experience plasmonic coupling, the AuNP’s appear blue. AuNP’s are functionalized with thiolated single-stranded DNA oligomers, and particle aggregation is specifically induced where sequence hybridization binds particles in close proximity. See U.S. 2006/0234261, Elghamian, R., et al., Science (1997) 277:1078, and Storhoff, J. J., et al., J. Am. Chem. Soc. (1998) 120:1959. AuNP aggregation can be induced between particles functionalized with complementary DNA sequences, or through the use of DNA oligomers that can bridge the sequences functionalized to the particles.

[0068] The present embodiment is schematically depicted in Figure 4. In the presence of the analyte DNA and subsequent triggering of the ACR, the accumulated product of the ACR, L1 acts as a bridge, aggregating AuNP’s, inducing plasmonic coupling and the red to blue color change. Although the DNA strands of the DNA-AuNP are also complementary in sequence to strands C1, L1 more effectively bridges dispersed AuNP’s. The relative inability of C1 to serve as the bridging strand is attributed to steric hindrance. The reaction proceeds most efficiently if the DNA-AuNP is added after the ACR reaction has run for 2 hours.

[0069] In one illustrative procedure, 15 nm (standard deviation ±40 nm) diameter AuNP’s (Ted Pella, Inc.) were functionalized with synthetic DNA oligomers having the sequences: 5'-GCT AGC CTC ACT AGG A-A10-C6SS or 5'-C6SS-A10-TGG GAC GTC GTT GTA.
[0070] The included A₁₀ sub-sequence facilitates accessibility of the oligos during hybridization. The C6SS “thiol modifier” is a 6-carbon-alkane-disulfide group capping the 5' ends of the synthetic oligomers, that promotes stable linkage of the DNA to the AuNP. The C6SS modifications were prepared as part of the synthesis of the DNA oligomers.

[0072] A. The autocatalytic cross cleavage procedure using the detection method of this example is conducted to detect a genomic sequence uniquely identifying Chlamydia trachomatis, Girjes, A. A., et al., Res. Microbiol (1999) 150:483. The sequences used are:

L1D: 5'-CCG ACC TTT GGG TTA TGA GCC CAT TTT TGG GCT CAG GCT AGC TAC AAC GAT AAC CCA;

analyte DNA: 5'-TGG GCT CAT AAC CCA AAG GTC GG;

Linear C2: 5'-p-AGC TAC AAC GAT GGG TTA rAUG AGC CCA GGC T;

Linear C1: 5'-p-AGC TAC AAC GAT AAC CCA rAUG GGC TCA GGC T;

C6SS capped DNA for AuNP functionalization:

5'-GCT AGC CTG GGC TCA-A₁₀-C6SS, and

5'-C6SS-A₁₀-TTA ACC CAT CGT TGT A.

[0073] B. The procedure of this example is conducted to detect a unique identifier of Human Immunodeficiency Virus (HIV), Cao, Y. C., et al. (supra). The sequences used are:

L1D: 5'-GTC ATG TTA TTC CAA ATA TCT TCT TTT GAA GAT AGG CTA GCT ACA ACG ATT TGG AA;

analyte DNA: 5'-GAA GAT ATT TGG AAT AAC ATG AC;

Linear C2: 5'-p-AGC TAC AAC GAT TCC AAA rAUA TCT TCA GGC T;
Linear C1: 5'-p-AGC TAC AAC GAT TTG GAA rAUG AAG ATA GGC T;
C6SS capped DNA for AuNP functionalization:
5'-GCT AGC CTG AAG ATA-A10-C6SS, and
5'-C6SS-A10-TTT TGG AAT CGT TGT A.

[0074] C. The procedure of this example is conducted to detect an additional unique identifier of Human Immunodeficiency Virus (HIV), Cao, Y. C., et al., Science (2002) 297:1536. The sequences used are:
L1D: 5'- GCC AGG ACT CTT GCC TGG AGC TGC TTA ATG CCC CAG
ACC GTG AGT TTTT ACT CAC GGT CTG GGG CAG GCT AGC TAC AAC GAT
TAAT GCA GCT CCA GGC;
analyte DNA: 5'-ACT CAC GGT CTG GGG CAT TAA GCA GCT CCA GGC
AAG AGT CCT GGC;
Linear C2: 5'-p-AGC TAC AAC GAC TGC TTA ArAU GCC CCA GAG GCT;
Linear C1: 5'-p-AGC TAC AAC GAT TAA GCA GrAU CTG GGG CAG GCT;
C6SS capped DNA for AuNP functionalization:
5'-GCT AGC CTG CCC CAG A-A10-C6SS, and
5'-C6SS-A10-TCT GCT TAA TCG TTG TA, or
5'-GCT AGC CTC TGG GGC A-A10-C6SS, and
5'-C6SS-A10-TTT AAG CAG TCG TGG TA.

[0075] D. The procedure of this example is conducted to detect a longer form of a uniquely identifying genomic sequence from Chlamydia trachomatis, Girjes, A. A., et al. (supra). The sequences used are:
L1D: 5'-GGA TTC GGA CCT CCG ACC TTT GGG TTA TGA GCC CAA
CGA GAT TTT TAT CTC GTT GGG CTC AGG CTA GCT ACA ACG ATA ACC
CAA AGG TCG G;
analyte DNA: 5'-ATC TCG TTG GGC TCA TAA CCC AAA GGT CGG AGG
TCC GAA TCC;
Linear C2, Linear C1, and the C6SS capped DNA for AuNP functionalization are the same as in Example 1.2A, paragraph [0071].

[0076] E. Detection of different or multiple analytes using the same NSD triggering mechanism, is permitted if the sequence of the 10-23 deoxyribozyme and its recognition sites are not a part of the sequence that hybridizes to the analyte DNA sequence. Thus, as
shown in Figure 5, the sites a-h-b recognition sites for the ribozymes are not a part of the analyte recognition sets a* or b*. The sequences used are:

L1D: 5'-ATC CAG GTC ATG TTA TTC CAA ATA TTT ATC CGT CCC TCC TAG TGG TCA CTA GGA GGC TAG CTA CAA CGA GGG ACG TAT TTG GAA TAA CAT;
analyte DNA: 5'-TAT TTG GAA TAA CAT GAC CTG GAT;
Linear C2: 5'-p-AGC TAC AAC GAC GTC CCrA UCC TAG TGA GGC T; and
Linear C1: 5'-p-AGC TAC AAC GAG GGA CGrAUCA CTA GGA GGC T.

Example 1.3
Separation of NSD Function into Two Molecules

[0077] Instead of a single NSD embodying both the analyte detection and triggering of the ACR, two distinct and independent nanostructures embodying each function separately are employed. (See Figure 6.)

[0078] In Step 1, the Nanoswitch Detector is a hairpin that opens in the presence of the analyte DNA exposing sub-sequences a-b-c. In Step 2, the exposed a-b-c sub-sequence opens the a*-b*-c* stem of L1D. In Step 3, the activated form of L1D binds to C2, initiating the ACR.

[0079] Hence, in this incarnation, L1D performs only the triggering function of the NSD. This 2-step NSD module is designed to decrease false positives.

[0080] A. In one embodiment, this procedure is designed to detect a 40-nucleotide analyte DNA from the 7.4 kb multicopy cryptic plasmid of the Chlamydia trachomatis genome, 5'-CAA CAC CTG TCG CAG CCA AAA TGA CAG CTT CTG ATG GAA T. This common plasmid is found in human biovar strains of Chlamydia (Palmer, L., et al., Plasmid (1986) 16:52-62; Little, M. C., et al., Clinical Chemistry (1999) 45:777-784).

[0081] Nanoswitch Detector is:

5'-ATT CCA TCA GAA GCT GTC ATT TTG GCT GCG ACA GGT GTT GCA CTA GGA GGG ACG GAT AAA CAA CAC CTG TCG CAG CCA AAA TGA C;
L1D is: 5'-TTT ATC CGT CCC TCC TAG TG TTTT CA CTA GGA GGC TAG CTA CAA CGA GGG ACG;
Linear C2, Linear C1, are the same as in Example 1.1, paragraph [0063] while the C6SS capped DNA for AuNP functionalization is the same as in Example 1.2, paragraph [0068].
B. In another embodiment of this example, a different _Chlamydia trachomatis_ cryptic plasmid sequence, DNA (41 nucleotides), 5'-GTC GCA GCC AAA ATG ACA GCT TCT GAT GGA ATA TCT TTA AC is detected using this procedure wherein the Analyte Detector (86 nucleotides) is 5'-GTT AAA GAT ATT CCA TCA GAA GCT GTC ATT TTG GTG CGA CCA CTA GGA GGG ACG GAT AAA GTC GCA GCC AAA ATG ACA GCT TCT GA.

C. In another embodiment, a shorter Analyte Detector sequence for the analyte of the previous paragraph (70 nucleotides), 5'-TTC CAT CAG AAG CTG TCA TTT TGG CTG CGA CCA CTA GGA GGG ACG GAT AAA GTC GCA GCC AAA AT GAC AG is used.

Example 2.0

(HCR) with Super Linear Kinetics

D. In this example, the ACR is an improvement of the Hybridization Chain Reaction (HCR) described by Dirks, R. M., _et al._, _PNAS_ (2004) 101:15275, and in U.S. 2005/0260635, U.S. 2006/0234261 and U.S. 2006/0228733. The HCR as described in these documents has linear kinetics, whereas the improved ACR described herein has super linear kinetics. In addition, the product of the HCR as described in the cited documents results in a linear double-stranded nanostructure complex, in contrast to the product of the present example which is a nanostructure complex that has dendritic characteristics. The dendrite structure facilitates detection and enhances sensitivity. The ACR in this embodiment is as outlined below and illustrated in Figures 7a-7f.

E. The process requires the presence of two hairpin-containing structures, each hairpin containing two looped segments. In the simplest embodiment the loops are of identical sequence. The sequence of the loops in one of the hairpin molecules is complementary to an extended single-stranded region of the other. The analyte target nucleic acid is able to open the entire hairpin of one of the molecules, permitting the opened structure to hybridize to two molecules of the second hairpin, thus opening two molecules of the second hairpin, which in turn can hybridize and open two molecules of the first. This reciprocal opening and hybridization results in a tree-like structure.
In Figure 7a, molecule 1 (the analyte) is a single-strand DNA (ssDNA) target consisting of three sub-sequences in order b*-b*-a* from 5’ to 3’ on the strand. Molecules 2 and 3 are building blocks for the ultimate product and are hairpin structures, each with two bulged-loops protruding in the middle of the double-strand (dsDNA) region. The sequence of molecule 2 is a-b-b-c-b*-c-b* while that of molecule 3 is b*-a*-b*-a*-b-b-c*. Sub-sequences a*, a*, c, and c* are sufficiently short (e.g., approximately 4–8 residues) that when held in their loop structures they are unavailable for hybridization with their sequence complements. Sub-sequences b and b* are sufficiently long (e.g., approximately 9–18 residues) that their dsDNA stem structures are stable and do not allow the protected loops to open up. Molecule 2 is shown as a solid line and molecule 3 as a dotted line for ease in tracking.

In the first step, molecule 1 hybridizes with molecule 2 at a, and by strand displacement at both b sequences, opens molecule 2, resulting in the complex 4 shown in Figure 7b.

In complex 4 the c-b*-c-b* ssDNA region is now available for hybridizing to two copies of molecule 3 by binding the free c* on molecule 3 to form the first cascade layer in the new complex 5, also shown in Figure 7b. The hybridized copies of molecule 3 partially open via strand displacement and match their b sub-sequences with the b* sub-sequences exposed in complex 4. With some tunable probability (as discussed further below), the remaining b*-a*-b stem-loop will open to expose another available copy of a*, as shown in complex 6 in Figure 7c.

Complex 6 is the same as complex 5 except with the remaining stem-loops on the two copies of molecule 3 open (unhybridized). This transition can be facilitated either by 1) modifying the 5’ most sub-sequence b on molecule 3 to a sub-sequence ~b which contains sequence mismatches (e.g., non-complementary base pairs) when annealed with b* and/or by 2) including some ssDNA with sequence b* (or ~b*) in the reaction mixture to hybridize with the b (or ~b) sub-sequence. Complex 6 now has 4 sites b*a* available to hybridize to ab sub-sequences in molecule 2, to obtain complex 7. Complex 7 is formed when four copies of molecule 2 react with complex 6. The process continues by strand displacement, stem-loop openings, and hybridization of eight copies of molecule 3 to form the third order cascade complex as shown in Figure 7d.
[0090] Complex 8 is shown in simplified schematic form without specific sub-sequence labels, but molecules 2 and 3 are drawn as solid lines and dotted lines, respectively. On the leaves of the growing tree-like complex, each of the eight copies of molecule 3 display two copies of b*-a* which are available for hybridization and opening of a total of sixteen copies of molecule 2 for the fourth layer of the cascade complex, and so on. Alternating layers of molecules 3 and 2 will continue binding to grow large, branched supramolecular complexes.

[0091] These large complexes are visible as high molecular weight bands following electrophoresis and ethidium bromide staining of the native samples on polyacrylamide gels.

[0092] In addition, immediate, naked-eye detection is obtained using DNA-AuNP’s as shown in Figure 7e. Complex 11 shows a AuNP decorated ACR tree complex formed by the addition of DNA-AuNP complex 10 and DNA complex 9. Complex 10 is a conjugate of mixed thiol-labeled DNA strands b-a-C6SS and C6SS-b-c* (where C6SS is the disulfide form and shows the modification site on the oligonucleotide). These DNA labels on the AuNP’s hybridize with b*-a* on open 3 molecules and with c-b* on open 2 molecules, thus clustering the AuNP together within range for plasmonic coupling to produce a macroscopic color change from red to blue.

[0093] As mentioned above, the sub-sequence b closest to the 3’ end on molecule 2 and the sub-sequence b closest to the 5’ end on molecule 3 can be replaced with sub-sequence ~b which is similar to b, but contains a small number (e.g., 1-4) of sequence changes which introduce mismatched base-pairings in the ~b/b* double helix. This would serve to slightly destabilize the remaining stem-loop structures shown in complexes 5 and 7 above. This opening reaction needs to be very high yield in order to make the ACR grow exponentially. If this opening is less efficient, the complex will still grow with super-linear scaling, but perhaps less than exponential, thus slight destabilization of the indicated stem might be desirable.

[0094] In the illustration above, initial step in which the analyte DNA (1) is able to open, completely, the double-looped molecule 2, requires that the target DNA contain a repeat sequence, in order to effect sufficient strand displacement. Thus, the illustrated target DNA in molecule 1 has the sequence b*b*a*. Such a repeat sequence may not exist in the desired target. However, the NSD can be adapted to accommodate any target nucleotide sequence by using an adaptor illustrated by molecule 12 in Figure 7f.
[0095] Arbitrary analyte sequence d-a*-b* (molecule 13) opens the adaptor molecule 12 to expose a sequence b*-b*-a* which, like their sequence in original analyte molecule 1, initiates the cascade of components 2.1 and 3.1 as described above.

[0096] The procedure of this example can also be performed using a nucleic acid aptamer or enzyme capable of allostERIC modulation as NSD as described in U.S. 2006/0026178 and U.S. 2006/0035275A1.

[0097] Allozyme-based NSD’s, can detect a wide range of analytes, from small molecules (including divalent metal ions) to macromolecular structures. In the absence of analyte, the conformation of the NSD sequesters the triggering strand. In the presence of the analyte that binds the allosteric aptamer or enzyme, the NSD undergoes an conformational switch, exposing a triggering strand analogous to molecule 1 above. This analyte-bound open form thus initiates the ACR by exposing the triggering strand.

[0098] A. A specific embodiment of this example uses the following sequences:

Building block molecule 2: 5’-CCT AAA CCA CGC CGA ATC CAC TCA CGC CGA ATC CAC TCA AAG TAA GTG GAT TCG GCG TGC AAA GTA AGT GGA TTC GGC GTG;

Building block molecule 3: 5’-AGT GGA TTC GGC GTG GTT TAG GAT TAA ATT CGG CGT GGT TTA GGC ACG CCG AAT CCA CTC ACG CCG AAT CCA CTT ACT TTG;

analyte molecule 1: 5’-AGT GGA TTC GGC GTG AGT GGA TTC GGC GTG GTT TAG G;

Detection molecule 10 (b-c*): 5’-C6SS-A10-CA CGC CGA ATC CAC TTA CCT TG;

Detection molecule 10 (a-b): 5’-C6SS-A10-CCT AAA CCA CGC CGA ATC CAC T

[0099] B. The procedure of this example is performed using a 34 nucleotide analyte DNA uniquely identifying the multicopy cryptic plasmid of Chlamydia trachomatis genome as analyte:

Analyte DNA 13: 5’-GCA AAT AAT CCT TGG GAC AAA ATC AAC ACC TGT C;

NSD 12: 5’-GAC AGG TGT TGA TTT TGT CCC AAG GAT TAT TTG CGC AAA TAA TCC TTG GGC AAA TAA TCC TTG GGA CAA AA;
Building block molecule 2.1: 5′-TTT TGT CCC AAG GAT TAT TTG CCC AAG GAT TAT TTG CCA AAG TAG CAA ATA ATC CTT GGC AAA GTA GCA AAT AAT CCT TGG;

Building block molecule 3.1: 5′-GCA AAT AAT CCT TGG GAC AAA AGC AAA TAA TCC TTG GGA CAA AAC CAA GGA TTA TTT GCC CAA GGA TTA TTT GCT ACT TTG;

Detection molecule Ct (b-c*): 5′-C6SS-AAAAAAAAAA-CCA AGG ATT ATT TG CTA CTT TG; and

Detection molecule Ct (a-b): 5′-C6SS-AAAAAAAA-AAA-TTT TGT CCC AAG GAT TAT TTG C.

Example 3.0

[0100] In the procedure of Example 2.0, the analyte is a short single-stranded DNA hidden within the structure of an allosteric DNA molecule. The analyte, shown in Figure 8, will affect the status of two independently synthesized DNA nanostructures (A and B in Figure 8). When A and B are added together without the analyte DNA they remain stable in the closed position. Upon addition of the analyte DNA, a series of hybridizations occurs, opening up a single stranded section of B that contains a copy of the analyte strand (portion a-b). Repetitions of this reaction involving the newly exposed copies of the analyte DNA induces a chain reaction of amplification of copies of the analyte DNA. These copies of the analyte DNA grow exponentially with time, as illustrated in Figure 8. The method is completely autonomous and requires no thermal cycling.

[0101] In this embodiment, the NSD is modified to decrease the background of false positives. As seen in Figure 9, the stem structures at the end of A (t and t*) and B (s and s*) are of critical importance. The system detects the presence of analyte DNA and involves two copies of the analyte DNA sequestered inside another component (in this case component B). The presence of such structures coupled with the looped structure in A and B can help to effectively inhibit unwanted hybridization, e.g., that between b* in A and b in B. It is possible for A and B to form dimers/multimers, but these are expected not to affect the intended reactions negatively. Furthermore, we can decrease the probability of forming dimers by decreasing the concentration of the DNA strands. The overall reactions are:
Analyte DNA + A => Analyte DNA•A
Analyte DNA•A + B => A•B + Analyte DNA
A•B + A => A•B•A
A•B•A + B => 2A•B

[0102] It is important that A and B are single strands; otherwise, we can not ensure stoichiometry (equimolar) of reactants. Solution A and solution B are kept separate until the method is applied, then equal amounts of A and B combined, along with the analyze DNA.

[0103] This procedure of this example is performed using the following sequences:
analyte DNA: 5’-CGC TCG CTA GGT TGA AGT CA;
NSD-ACR Sequence A: 5’-atgc AAT GAG GG cataa GCA TCT CTG GCC CTC
AaT gcaT TGA CTT CAA CCT AGC GAG CGA ACG TGC CAA TTC TGA TCT ACT
GTG TGG taaa CGC TCG CTA GGT; and
NSD-ACR Sequence B: 5’-tcgc CGA CGA TT cataa GCA TCT CTG GAA TCG
TCG cgg AtttA CCA CAC AGT AGA TCA GAA TTG GCA CGT TCG CTC GCT AGG
TTG AAG TCA AAC GTG CCA ATT CGC TCG CTA GGT TGA AGT CAC TGA
TCT ACT GT.

Example 4.0
Super Linear Kinetics in Rolling Circle Amplification (RCA)

[0104] This example illustrates improved forms of rolling circle synthesis and amplification described in U.S. 5,854,033 and U.S. 5,714,320. A mixture of a single-stranded circular DNA template (which serves the function of an NSD), DNA polymerase, a restriction enzyme, and a short DNA oligonucleotide that comprises one strand of a particular restriction recognition sequence is used to detect an analyte.

[0105] The circular DNA template is composed of four distinct sub-sequences having the 5′ to 3′ arrangement: a, b, c and d, where a and b are separated from c and d by two identical restriction sites (depicted in Figure 10 by black rectangles). The restriction sites of the circular template are methylated, thus protecting the circular template from enzyme digestion and subsequent linearization. The analyte is a DNA oligonucleotide having a sequence a* complementary to at least a segment of sub-sequence a.
[0106] Figure 10 illustrates the basic operation of this particular embodiment. In Step 1, the circular template, NSD detects the analyte DNA sequence (shown as an arrow in Figure 10) via sequence specific binding. The bound analyte acts as a primer of the polymerase reaction, triggering the ACR process by primer extension polymerization. In Step 2, after finishing one full circle of extension, the polymerase then displaces the product strand and continues through additional cycles around the circular template, continuously displacing the growing linear strand, creating a linear, single-strand multimer product as in standard RCA. The product strand hybridizes to the oligonucleotides complementary to the restriction sites, creating at these sites, double-stranded regions of DNA susceptible to enzymatic cleavage.

[0107] In Step 3, endonuclease digestion yields many independent copies of a*b* and c*d* sequences, both capable of priming additional RCA reactions, Step 4a. Many copies of the a*b* and c*d* sequences are produced from any particular priming event, creating an ACR with super-linear kinetics.

[0108] The liberated a*b* sequences provide the basis for the detection (IDR) (Step 4b) by acting as bridging sequences for AuNP’s functionalized with either a or b DNA sequences. Hence a dramatic red-blue color change permits the rapid detection of even a single analyte molecule by visual inspection with the naked eye.

[0109] A. The procedure described above is performed using a circular template DNA synthesized as a linear single-stranded, 78-mer and enzymatically using CircLigase™ from Epicenter Biotechnologies, and gel purified.

<table>
<thead>
<tr>
<th>sub-sequence d</th>
<th>Aci I</th>
<th>sub-sequence a</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’-P-GT CAT CCG TTG TCG TGTC/iMe-dC/G</td>
<td>CTC AGG CTT GCT CTG TCT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sub-sequence b</th>
<th>Aci I</th>
<th>sub-sequence c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT AGG CAC TGC ACC TTA C/iMe-dC/G</td>
<td>CAC TCT CGA TTG TCG TTC C-3’</td>
<td></td>
</tr>
</tbody>
</table>

[0110] The two restriction sites in the template (boxed sequences) were designed for the endonuclease Aci I, which cuts at 5’-CICGC-3’, but is inhibited when the second C is methylated. Methylation was included in the synthesis procedure. The analyte DNA was 5’-CAG AGC AAG CCT GA. The sequence of the 4-mer oligonucleotides complementary for restriction digest was 5’-GCGG.
[0111] The circularized template was mixed with the polymerase, 629, an enzyme capable of strand-displacement and more than 70,000 nucleotide extensions per priming event. Using PAGE and ethidium bromide staining as the IDR, the analyte DNA was detected in quantities less than 30 nM.

[0112] B. The procedure described in paragraph A of this example was followed, but replacing the PAGE IDR with the DNA-AuNP colorimetric method described herein. Four distinct sequences, analogs of the a, b, c, and d sequences from the circular template, were synthesized for AuNP functionalization:

\[a, 5'\text{-C6SS-A}_{10}^\text{-AGA CAG AGC AAG CCT GAG;} \]
\[b, 5'\text{-C6SS-A}_{10}^\text{-CGG TAA GGT GCA GTG CCT ACG;} \]
\[c, 5'\text{-C6SS-A}_{10}^\text{-GGA ACG ACA ATC GAG AGT G;} \] and
\[d, 5'\text{-C6SS-A}_{10}^\text{-CGG ACA GCA CAA CGG ATG AC.} \]

[0113] Each a*b* product can thus bridge the a and b derivatized Au, and each c*d* product bridges the c and d derivatized Au to obtain networks of gold nanoparticles.

[0114] C. The procedure described in paragraph B of this example is followed, where the a and b sub-sequences of the circular template (as well as the analogous a and b sequences that functionalize the AuNP’s) were modified to hybridize to a 20 nucleotide analyte sequence uniquely identifying the Human Immunodeficiency Virus (HIV), Cao, Y. C., et al., Science (2002) 297:1536.

[0115] The sequences are:

Circular Template: 5'-P-GT CAT CCG TTG TCG TGT C/iMe-dC/G C AGA AGA TAT TTG GAA TAA CAT GAC CTG GAT GCA C/iMe-dC/G C AC TCT CGA TTG TCG TTC C;

analyte DNA: 5'-TAT TCC AAA TAT CTT CT; and

C6SS capped DNA for AuNP functionalization:

\[5'\text{-C6SS-A}_{10}^\text{-TAT TCC AAA TAT CTT CTG, and} \]
\[5'\text{-C6SS-A}_{10}^\text{-CGG TGC ATC CAG GTC AGT T.} \]

[0116] D. The procedure of paragraph B of this example is followed where the a and b sub-sequences of the circular template (as well as the analogous a and b sequences that functionalize the AuNP’s) were modified to hybridize to the 21 nucleotide analyte sequence uniquely identifying *Chlamydia trachomatis* (Little, M. C., et al., *Clinical Chemistry* (1999) supra).
The sequences incarnation are:

Circular Template: 5'-P-GT CAT CCG TTG TCG TGT C /iMe-dC/GC GGA TAG AGT AGT GGT CAT CTC GTT GGG CTC ATA AC /iMe-dC/G CAC TCT CGA TTG TCG TTC C;

analyte DNA: 5'-GAT GAC CAC TAC TCT ATC C;

C6SS capped DNA for AuNP functionalization:
5'-C6SS-A₁₀-GAT GAC CAC TAC TCT ATC CG, and
5'-C6SS-A₁₀-CGG TTA TGA GCC CAA CGA .

Example 5.0

Displacement of Multiple FRET Detectors

Hybridization of a nucleic acid analyte to a long template strand hybridized to multiple repeating FRET detectors primes extension catalyzed by a processive polymerase. This displaces the multiple FRET detectors generating a fluorescent signal. To prepare the assay system, RCA is conveniently used to synthesize long, linear, single-stranded DNA’s, that are multiple repeats of the complement of the circular template. The template is comprised of three sub-sequences arranged in the 5’ to 3’ order: the RCA primer-binding sequence α; the analyte-binding sequence β, the FRET detector binding sequence γ, as shown in Figure 11. Sequences α and β in this example are distinct but could, in principle, be the same. Sub-sequence γ is comprised of two sub-sequences, (γ1) and (γ2), complementary to sub-sequences found on the FRET detector sequence (Figure 12). The linear products of the RCA are gel purified from the circular templates.

The purified linear products are then loaded with the FRET detector sequence (FRET-D) shown in Figure 12. The FRET-D sequence has sub-sequence γ1 near its 3’ end, and sub-sequence γ2 at its 5’ terminal, permitting base-pairing to the RCA product as shown. Located terminally on FRET-D are quencher and fluorophore groups. In the bound state, with the 5’ and 3’ ends in proximity, fluorescence is inactivated. This configuration of RCA product and bound FRET-D comprise a poised fluorescence detector for a DNA analyte having sequence β.
[0120] The DNA analyte binds to b* of the RCA product, priming DNA polymerase, which begins synthesizing a complementary DNA strand 5' to 3', as shown in Figure 13. The DNA polymerase displaces the bound FRET-D sequence allowing the quencher and fluorophore groups to diffuse and create a fluorescent signal. Although many polymerases could operate on a single FRET-D-loaded RCA product, processive DNA polymerases (such as φ29) will displace many FRET-D sequences from a single priming event. Hence, even low molar quantities of the DNA analyte will generate substantial fluorescent signal.
Claims

1. A method to determine the presence or absence of an analyte in a sample which method comprises
 contacting said sample with
 – when required, a nanometer scale switching device (NSD) specific for, and
 activated by, the presence of the analyte,
 – components of an autocatalytic chain reaction (ACR) process which process is
 initiated by activation of the NSD or directly by the analyte, and operates with super-
 linear kinetics to produce product, and
 – an indicator (IDR) responsive to said product; and
 detecting the presence or absence of any response of the IDR to said product as
 indicative of the presence or absence of the analyte,
 wherein said ACR comprises an autocatalytic nucleic acid cleavage reaction, or
 wherein said ACR comprises a hybridization chain reaction, or
 wherein said ACR comprises a rolling circle amplification reaction, or
 wherein said ACR comprises displacement of multiple FRET detectors.

2. The method of claim 1, wherein the analyte effects an allosteric
 transformation in said NSD to release or expose a trigger that initiates the ACR.

3. The method of claim 2, wherein the NSD is activated by a substance other
 than a nucleic acid or by an energy packet.

4. The method of claim 1, wherein the IDR comprises metal colloids that are
 assembled into a complex by said product.

5. The method of claim 1, wherein the IDR comprises the components of a
 fluorescence resonance emission transfer (FRET) system.
6. The method of claim 1, wherein said ACR comprises an autocatalytic nucleic acid cleavage reaction, and
 wherein said autocatalytic nucleic acid reaction employs circularized ribozymes which are activated by linearization, and
 wherein the NSD comprises an inactivated form of said ribozyme that is activated in the presence of analyte, and wherein the products are the linearized ribozymes.

7. The method of claim 6, wherein said analyte activates an intermediate that activates the inactivated form of said ribozyme.

8. The method of claim 6, wherein the ribozyme is the 10-23 deoxyribozyme.

9. The method of claim 1, wherein said ACR comprises a hybridization chain reaction (HCR) with superlinear kinetics.

10. The method of claim 9, wherein the components of the HCR comprise two oligonucleotides in double-looped hairpin configurations such that when each is linearized, it hybridizes to two copies of the other and wherein a dendritic structure is obtained as a product.

11. The method of claim 10, wherein the IDR comprises gold nanoparticles coupled to oligonucleotides that bind to exposed portions of the dendritic structure.

12. The method of claim 1, wherein the ACR comprises a rolling circle amplification reaction (RCA) wherein the components of the ACR comprise circular DNA containing at least one sequence complementary to analyte or to a trigger released or exposed in the presence of analyte and at least one restriction site, a restriction enzyme corresponding to said restriction site, short sequences complementary to said restriction site, nucleotides for assembly of a single-strand DNA, and a processive DNA polymerase, and
 wherein said product comprises cleaved portions of single-stranded nucleic acid synthesized in said RCA.
13. The method of claim 12, wherein the IDR comprises gold nanoparticles coupled to oligomers and wherein said products effect complexation of the gold nanoparticles by hybridizing to said oligomers.

14. The method of claim 1, wherein said ACR comprises displacement of multiple FRET detectors, wherein said FRET detectors are disposed on a single strand of nucleic acid which single strand comprises binding sites for said FRET detectors and at least one sequence complementary to analyte or to a nucleic acid released or exposed in the presence of analyte, and wherein the products are the displaced FRET detectors.

15. A composition for performing the method of claim 1, which composition comprises components of an ACR process with superlinear kinetics that produces product and is initiated by the activated NSD or by the analyte, an IDR responsive to said product, and optionally comprising an NSD specific for, and activated by, said analyte.

16. The composition of claim 15, which comprises circularized ribozymes which are activated by linearization, and an inactivated form of said ribozyme that is activated in the presence of analyte.

17. The composition of claim 15, which comprises two oligonucleotides in double-looped hairpin configurations such that when each is linearized, it hybridizes to two copies of the other.

18. The composition of claim 15, which comprises circular DNA containing at least one sequence complementary to analyte or to a trigger released or exposed in the presence of analyte and at least one restriction site, a restriction enzyme corresponding to said restriction site, short sequences complementary to said restriction site, nucleotides for assembly of a single-strand DNA, and a processive DNA polymerase.
19. The composition of claim 15, which comprises FRET detectors disposed on a single strand of nucleic acid which single strand comprises binding sites for said FRET detectors and at least one sequence complementary to analyte or to a nucleic acid released or exposed in the presence of analyte.

20. A kit for performance of the method of claim 1 containing, optionally in separate containers,

components of an ACR process with superlinear kinetics that produces product and is initiated by the activated NSD,

an IDR responsive to said product, and

optionally an NSD specific for, and activated by, said analyte.
Figure 1
L1SDD, inactive form

a

L1SDD, active form

b

c

L1SDD, active form, triggering the ACR

d

Figure 2
a
L1D, inactive form

analyte DNA

b
L1D, active form

analyte DNA

c
L1

C2

Fluorescence quenched

C1

Fluorescence active

Figure 3

3/10
Figure 4

Figure 5
Figure 6
Figure 10