(21) International Application Number: PCT/US94/04226
(22) International Filing Date: 18 April 1994 (18.04.94)
(30) Priority Data:
08/047,451 19 April 1993 (19.04.93) US

(74) Agent: BAKER, Raymond, N.; Shanley and Baker, 2233 Wisconsin Avenue N.W., Washington, DC 20007 (US).

Published
With international search report.

(54) Title: LIGHT-GAGE COMPOSITE-COATED FLAT-ROLLED STEEL MANUFACTURE AND PRODUCT

(57) Abstract

New composite-coated flat-rolled steel products and new methods of manufacture in which low-carbon steel (16), as received in cold-reduced continuous strip form is prepared for plating; a corrosion prevention plating (24) is applied, and a polymeric coating with lubricant (25) is applied as a finish surface. The resulting composite-coated steel substrate is cold-rolled (36) to decrease the gage of the coated substrate. Optionally, cold-rolling steps (14) and/or stress relief heat treatment steps (10, 20) may be employed prior to surface treatment. This process provides for tin mill manufacture of composite-coated steel of various weights per unit area, for example, in the range of 35 to about 100 lb/mb, useful in the manufacture of can bodies.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>RJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIGHT-GAGE COMPOSITE-COATED FLAT-ROLLED STEEL MANUFACTURE AND PRODUCT

This invention relates to new manufacturing methods for new composite-coated flat-rolled steel product.

"Tin mill practice," has encompassed electrolytic plating of tin, zinc, and chrome/chrome oxide (TFS) on cold-rolled steel "blackplate" as provided to the tin mill. Whether plating tin, zinc or TFS, the plating stage, prior to the present invention, essentially completed the "tin mill practice" carried out in commercial steel plants. (See Making, Shaping and Treating of Steel, 8th Ed., ©1964, pp. 950, 951, U.S. Steel, Pittsburgh, PA, and/or the 10th Ed. ©1985 by AISE, chapter 36, pp. 1139-1153, printed by Henbeck and Held, Pittsburgh, PA).

The present invention expands the range of "tin-mill product" and of "tin mill practice" by new and differing approaches to coated flat-rolled steel manufacture and new combinations of processing steps. A significant and
practical contribution enables such new products and manufacturing methods to be accomplished using electrolytic plating and cold rolling equipment presently available in steel plant tin mills.

More specifically, the invention enables production of new lighter-gage composite coated flat-rolled steel product than was previously contemplated, while enabling electrolytic plating of steel strip with tin and other metals and the heavier gages capable of being handled by, and deemed most efficient for, the electrolytic plating equipment available in steel plant tin mills.

The above and other advantages and contributions are considered in more detail in describing new processing, materials and products with references to the accompanying drawings, in which:

FIG 1 is diagrammatic general arrangement view for describing methods, apparatus, and product of the invention, and

FIGS 2, 3, 4 and 5 show enlarged cross-sectional views of composite-coated flat-rolled steel embodiments of the invention.

Definitions and background relating to steel plant manufacture of so-called "double-reduced" tin mill product are set forth in Making, Shaping and Treating of Steel, 10th Ed., with temper designations, approximate longitudinal yield strengths in ksi, and other characteristics, are tabulated at p. 1144.
It has not previously been practical to cold-reduce chrome/chrome oxide coated steel (TFS) because of the brittleness of the chrome/chrome oxide coating. And, electrolytic deposition of tin on steel substrate with weight less than fifty-five (55) to about sixty (60) lb/bbl has been impractical at the line speeds preferred and with commonly available existing tension-regulating equipment. Further, the "Application Characteristics" of DR-8 as "Relatively hard with limited ductility and highly directional properties" had previously constrained uses which involved shaping such as that required for one-piece can body formation.

However, a new cold-rolling arrangement is made practicable by the present invention along with new tin mill product. For example, a new "triple-cold-reduced" tin mill product is made available in which the gage of the steel substrate is triple cold-reduced to about .0035" to .004"; and, is capable of being accomplished without an intermediate or a subsequent heat treatment, while providing a longitudinal yield strength not significantly higher than the nominal range for double-reduced temper DR-9; thus enabling shaping such as for one-piece can body formation.

Continuous-strip processing is provided throughout substrate surface preparation, substrate surface corrosion-prevention plating, finish surface coating, and a subsequent gage-reduction taught herein. However, continuous-strip tin mill product manufactured as taught
herein can be cut into sheets or blanks for consumer product fabrication; and can be shipped or used as produced because of the protection provided.

Referring to FIG 1, coil 6 comprises cold-reduced flat-rolled steel substrate (blackplate) as provided for tin mill processing having a range of about seventy-five lb/bb to about one hundred thirty-five lb/bb.

Cold-reduced blackplate from coil 6 can be fed directly along path 8 toward surface preparation, or can be fed along path 9 toward a temper mill for cold-rolling gage reduction of the steel substrate. Path 9 provides for selection of a stress-relief heat treatment, at station 10, or for omitting that step. With either selection, the blackplate is fed along path 12 toward an initial gage-reduction stage which is suitably carried out in a two-stage cold-rolling mill 14. (That same cold-rolling gage-reduction station can be used again later in the processing being described.) At station 14, the blackplate can be cold-reduced as much as about twenty to about thirty-five percent before being directed along path 16.

The blackplate selected from either path 8 or path 16, is then directed along path 18. Prior to surface preparation, blackplate from either path can be selectively treated with a stress-relief heat treatment at station 20; which means that the cold-reduced steel substrate can be selectively stress-relief heat-treated either before and/or after cold-rolling-gage reduction.
stage 14, or that such gage reduction or any heat treatment can be omitted. An important objective of the invention is to increase the surface area of flat rolled steel being manufactured economically by relaying on cold-rolling gage reduction(s) while curtailing heat treatment. The result is to increase the number of consumer products, such as rigid sheet metal containers, which can be shaped from a coil of flat-rolled steel of given weight.

In the processing of FIG. 1, the selected blackplate product is then directed along path 21 for substrate surface preparation. Surface preparation stage 22 provides for selection from a plurality of surface cleansing techniques, including scrubbing, electrolytic cleaning and/or an acid pickling treatment. The strip is then fed, so as to avoid contact with an oxidizing atmosphere or with a particle contaminant, into corrosion-prevention coating stage 24. A sufficiently neutral or reducing atmosphere, and/or liquid submerged handling, or other means can be utilized to prevent contamination of planar substrate surfaces.

After surface cleansing in station 22, both planar blackplate surfaces are treated in corrosion-prevention station 24. The latter adjoins surface preparation stage 22 for purposes set forth in the previous paragraph. Corrosion-prevention plating is carried out, preferably using electrolytic action, by selecting from such coatings as tin, TFS, nickel, zinc or nickel zinc, chrome oxide (which can be carried out with or without electrolytic
action in a sodium dichromate bath), or a primer coat of a polymeric material deposited electrolytically from suspension in an aqueous E-coat bath. In addition to corrosion-protection for the steel substrate, the plating at station 24 is selected to augment adhesion of the finish polymeric coating which will be part of the consumer items to be formed from new composite-coated tin mill product taught herein.

Electrolytic tin coatings in pounds per base box (31,360 sq inches) refer to the tinplating weight on the total area (both surfaces) of the substrate as described in Making, Shaping and Treating of Steel, supra, 8th Ed., p. 948. A flash coating (as used herein) of tinplate is about five to ten hundredths lb/bb total (both surfaces). Differential tin coating weights extend between a flash coating to about one-and-one-half lb/bb. After rinsing of tinplating electrolyte, the matte-finish tin as presented by such plating is preferred in further processing in place of flow-brightened surfaces. However, alloying a flash-coat of tin on one or both surfaces of the steel substrate has advantages for certain selections from the various types of products taught herein.

TFS and zinc coating weights are disclosed in the above-cited texts; and nickel or nickel-zinc coating weights are disclosed in U.S. Patents No. 4,374,902 issued February 22, 1983, and No. 4,416,737 issued November 22, 1983. While vapor plating or cathode sputtering are adaptable to thin metal plating of flat rolled steel, the
electrolytic plating and production capabilities of present tin mill practice are more competitive economically for most types of consumer products shaped from flat rolled steel.

An inorganic chemical passivating bath treatment, such as a sodium dichromate treatment, is preferred for the various forms of tin plated surfaces, and can enhance adhesion of finish organic coating by acting as a surfactant. An inorganic surface passivation treatment is available as part of the corrosion-prevention treatment at stage 24. Surface passivation augments surface protection when handling is required between production stages.

Immersion in a sodium dichromate bath, free of electrolytic action can deposit about one hundred fifty (150) micrograms of chrome oxide per square foot, plus or minus one hundred (100) micrograms/ft². Electrolytic action increases dichromate treatment coating weights in a range extending to about 650 (plus or minus 100) micrograms/ft² (such coating weights are measured on each surface).

A distinctive corrosion-prevention treatment can comprise an E-coat applied from aqueous suspension of a polymeric primer, such as an epoxy, which will enhance adhesion for subsequently-scheduled surface finish polymeric coating(s).

Such corrosion-prevention treatments diminish concern with metal substrate oxidation in production or in later use; and, enable the transfer of treated strip for those
circumstances where the finish-surface coating cannot be applied in-line or at the corrosion-prevention plating site. Under circumstances requiring coil shipment before finish coating, an oil which is compatible with the subsequent coating, or is readily removable, can be applied to avoid surface abrasion during coiling. Preferably, however, the work product proceeds directly in-line, or at the location of the plating site for application of the finish coating at station 26.

To increase adaptability of in-line application of polymeric coatings as a finish surface in tin mill practice, such polymeric coating is preferably applied as a laminate which helps to avoid environmental concerns because polymerization (also referred to as "curing") can be completed prior to application in-line. Electrostatic particulate deposition of the polymer can have some of the same advantages.

Organic polymeric coating from a solvent solution can be applied in various ways -- spray, roller or dip -- by providing for solvent vapor recovery.

Molten polymeric materials can also be applied by means of thermal spray.

Adhesives can be "dried" or primer coats cured in facilities similar to those for recovery of a solvent carrier. Therefore, in the schematic representation, station 26 is followed by station 28 for carrying out either vapor recovery from drying adhesives or any of a combination of so-called "curing" steps or "setting" steps
used for the finish coat. "Curing" for organic polymers can involve induction heating and/or use of infrared and/or differing types of electro-magnetic radiation, such as μν, or combinations thereof.

While application of solid lamination film is preferred for environmental purposes, station 28 can be used in combination with laminate or other type of finish coat application. Details of solvent application of polymeric organic coatings for use in the canmaking industry are available from suppliers (Dexter Coating Co., Waukegan, Illinois; The Valspar Co. of Pittsburgh, Pennsylvania; the BASF Corp. of Parsippany, New Jersey). Regardless of the method of application, polymerization (whether referred to as curing or as setting) of the organic coating takes place before cold rolling of the composite-coated steel strip taught herein.

Also, the organic coating preferably embodies an organic lubricant, referred to as a "blooming compound," which is released under heat and/or rolling pressure.

Similar lubricant(s) which are acceptable for ultimate consumer product uses can be surface-applied at lubrication augmenting station 30 or later, prior to product shaping. Solidification station 32 can be used to expedite lubricant application and solidification when surface-applied to augment the blooming compound. Organic lubricants can include petrolatum, lanolin and the like.

Organic polymeric coating with blooming compound, or augmented surface lubrication, facilitates the unique
cold-rolling taught herein and helps eliminate any requirement for difficult-to-remove cold-rolling oils, such as those that have been utilized for cold-rolling gage reductions in the past.

Flat-rolled steel 34, composite-coated as described above, is cold rolled at a cold rolling mill that corresponds to cold-reduction stage 14; and, the same temper rolling mill can be used. However, a second cold-rolling mill is designated 36 in the general schematic arrangement of FIG 1. That is, the same type of two-stage cold rolling mill (14) described initially, which is the type currently used in tin mill practice can be used. That, along with use of present plating lines, makes significant economic contributions to the expansion of tin mill product made available herein.

Cold rolling of the composite-coated flat-rolled steel 34 can be used to reduce the substrate gage about twenty percent to about thirty-five percent; along with a corresponding cold reduction which takes place in the organic coating. It is significant that such cold rolling gage reduction of the composite-coated steel can be carried out without a significant departure from the nominal longitudinal yield strength of DR-9, as desired for subsequent consumer product processing. Notwithstanding gage reduction of composite-coated steel in the range of about twenty to thirty-five percent, yield strengths do not increase significantly above about 110 ksi.
The "grit finish" on the rolls of cold rolling station 36 is preferably selected to facilitate uniform distribution of the organic-type lubricant taught herein for can stock; such "grit finish" for cold rolling is also selected to avoid detrimental penetration of the finish polymeric coating during such cold reduction. Use of blooming compound in the organic coating facilitates the uniform distribution of lubricant, and also facilitates the increase in surface area of the organic coating.

Composite-coated flat-rolled steel product 38 is selectively controlled during processing to provide selective production of a variety of products ranging from (a) single cold-reduced (at station 36) composite-coated substrate of about fifty-five to about one hundred ten lb/bb (product 34), to (b) a triple cold-reduced, composite-coated substrate with a gage of about thirty-five to about fifty lb/bb; and, with a yield strength not significantly greater than that of the nominal range for DR-9 which is preferable for most shaping.

Cold-rolled blackplate is free of anneal or stress relief heat treatment as introduced from coil 6. Such blackplate is initially cold-rolled at station 14 without intermediate or subsequent heat treatment. And the composite-coated substrate is subsequently cold-rolled at station 36 without intermediate or subsequent anneal to provide such triple-reduced product.

The composite-coated strip resulting from cold rolling in the tin mill before and after organic coating
provides a low weight per unit surface area which improves
the capability for steel to compete as rigid can stock
with lower specific gravity metal and materials. However,
the flat-rolled steel can be handled on current
electroplating equipment at the desired heavier gage
without special controls or features which would otherwise
be required if one attempted to electroplate flat-rolled
steel strip of about thirty-five to about fifty-five
lb/bb. Thus, use of current electrolytic plating
equipment, lines under optimum conditions, is made
practicable by the present invention.

Further, the processing selections make the new
composite-coated flat-rolled steel available in a wide
selection of substrate weights, a wide selection of
coating weights for various and new consumer product uses,
with enhanced finish properties because of the cold
rolling of the composite-coated stock and with increased
selections for subsurface corrosion protection.

The new tin mill production methods enable new and
increased selection of tin mill product for fabricating of
consumer products from flat-rolled substrate starting with
blackplate of about seventy-five lb/bb to about one
hundred thirty-five lb/bb; the selections of base box
weight are tabulated below:
1. Single cold-reduction at station 36 to about 45 to 110 lb/bb
 (a) no stress-relief anneal upper DR-9 to about 110 ksi
 (b) single stress-relief anneal at station 10 DR-8 to DR-9
 (c) dual stress-relief anneal at stations 10 & 20 DR-8

2. Dual cold-reduction at stations 14 and 36 to about 35 to 90 lb/bb
 (a) no stress-relief anneal Upper DR-9 to about 110 ksi
 (b) single stress-relief anneal at station 10 DR-8 to DR-9
 (c) dual stress-relief anneal at station 10 & 20 DR-8

It should be noted that a cold reduction of about 33¾% increases the surface area of the product by about 50%. For example, a 10-ton coil of 60 lb/bb steel produces about 333 base boxes of can stock. Present teachings enable such coil to be reduced to 40 lb/bb, which produces about 500 base boxes of coated can stock; that is, an increase of about 50%.

Present composite coating and cold-rolling of the composite-coated stock teachings improve the range of flat-rolled steel with desired characteristics for subsequent part fabrication. By providing the draw lubricant entirely as blooming compound, the uniformity of the lubricant distribution achieved remains relatively uniform during the cold rolling of the composite coated stock. Smoother finish cold reduction rolls (referred to
as 7C or 7K) are used in tin mill cold rolling stage 36; and, a smoother organic coat finish results. With surface-applied organic-type lubricant, selection of a grit surface for the rolls of stage 36 can be helpful in maintaining the uniformity of the draw lubricant for subsequent fabrication. On-line testing for desired lubricant level, as being further developed concurrently by assignee for application herewith, can be carried out at a stage prior to selectively providing desired supplemental lubrication for final cold-reduction.

Subsequent to cold-reduction at stage 36, lubrication of the strip also can be tested at station 40 and can be supplemented with surface-applied lubricant at stage 42. The latter can be dependent on expected handling and consumer product fabrication. Continuous strip 43 can be cut into blanks or sheets at station 44, prior to directing such cut material to press apparatus 46 to form one-piece drawn and ironed can bodies 48. Or, continuous strip 43 can be directed to continuous strip draw-forming station 50 for blanking, cupping and draw-forming into cups 52 or end closures (not shown).

As readily recognized by those skilled in the art, forming satisfactory one-piece can bodies presents difficult fabrication problems. The present composite-coated can stock decreases the weight of the material required per can body while producing a rigid sheet metal one-piece can body ready for direct use as fabricated in
canning comestibles without requiring washing, a finish coating step and/or repair of finish coating.

In the expanded views of FIGS 2, 3, 4 and 5 (in which like reference numbers are used for like parts), the flat-rolled steel substrate 60 has been cold-rolled from a starting gage, for the blackplate as delivered to the tin mill, in the range of about seventy-five lb/bb to about one hundred thirty-five lb/bb to a gage for the composite-coated product as cold rolled, in the range of about thirty-five lb/bb to about one hundred ten lb/bb.

In FIG 2, the electrolytically-applied corrosion-protection plating 62 comprises a metal, such as tin, nickel, zinc or nickel zinc; layer 64 comprises a passivation treatment such as sodium dichromate; and layer 66 comprises the polymeric organic coat finish surface.

In FIG 3, the corrosion-protection layer 62 comprises TFS; a combination of about 0.3 microinch of chrome metal and chrome oxide of about 0.3 to 2.0 milligrams/sq ft, as described in earlier patents and texts such as the above-referenced, *Making, Shaping and Treating of Steel.*

In FIG 4, the corrosion-prevention plating 62 comprises a polymeric organic primer, such as an epoxy, deposited, for example, from solid suspension in an aqueous E-coat bath. The outer-finish coating 66 on both surfaces is a compatible polymeric coating.

In the embodiment of FIG 5, a flash coating 68 of free metal, e.g., tin of about .05 lb/bb to almost .10 lb/bb preferably matte-finished or alloyed, is provided on
each surface of substrate 60. A differential-coat free
metal layer 70, e.g., tinplate of about a quarter lb/bb to
about one-and-one-half lb/bb is provided on the other
substrate surface. Preferably, matte-finish free-tin is
used. Also, a passivation layer 72 is applied such as
sodium dichromate treatment.

Such a dichromate (passivating) treatment is not
utilized in the embodiments of FIG 3 (TFS) or FIG 4
(organic E-coat primer). However, it is preferred for
protection and enhanced application of a polymeric organic
finish coat 66 in the embodiment of FIG 5. Other metallic
platings, such as free Ni2n, can be used in place of tin.

In FIGS 2, 3, 4 and 5, finish surfaces 66 comprise a
polymeric coating and a draw-type lubricant. The draw-
type lubricant is preferably embodied in the organic
coating as a blooming compound which is made available
under the heat and pressure of cold rolling or cold
fabrication; but, can be added to the surface of the
organic coating. The polymeric organic coating for
purposes of cold rolling or cold fabrication has been
polymerized to have characteristics that are not subject
to change under the temperatures encountered during cold
rolling or cold fabrication.

Organic coatings and lubricants are selected from
those approved by the U.S. F.D.A. for purposes of canning
comestibles. Polymeric coatings for solvent and related
types of applications can be selected from acrylics,
vinyls, epoxies, polyesters and polyolefins;
polypropylene, polyethylene terephthalates (PET) and polybutylene terephthalates (PBT) are customarily applied as solid laminating film.

Lubricants acceptable for canning commodities comprise petrolatum, lanolin, and other acceptable source organic lubricants. Referred to herein as "organic-type," such lubricants can be embodied in the organic coating and/or applied as a supplemental surface lubricant, total lubricant weight should be between about 10 mg/ft² to about 20 mg/ft².

The inorganic oils such as DOS or ATBC, which have been relied on in the past, can be eliminated for the new cold rolling of composite-coated steel substrate for can stock as taught herein. Inorganic steel mill rolling oils, can be difficult to remove.

Cold-rolling gage reduction of composite coated steel, using roll finishes as previously set forth, provides a smooth surface finish not previously available in tin mill practice and help to facilitate subsequent fabrication.

The above specific data, values and illustrations provide the bases for use of the subject matter by those skilled in the art as well as providing background for determining the scope of patentable subject matter by reference to appended claims.
CLAIMS

1. Process for manufacturing composite-coated flat-rolled steel, comprising the steps of
providing cold-reduced flat-rolled steel substrate in continuous-strip form having a gage in the range of about 75 to 135 lb/BB,
preparing both planar surfaces of such steel substrate for coating,
applying a corrosion-prevention plating selected from the group consisting of an electrolytically-applied polymeric coating primer, a metallic plating, and a metallic plating in combination with an inorganic surface passivating treatment,
applying polymeric coating material and lubricant to comprise the finish surface for the corrosion-prevention plated substrate,
such polymeric coating finish surface material, and any polymeric primer, if selected for corrosion-prevention, being polymerized to prevent change in characteristics during temperatures encountered in cold rolling gage reduction, and
cold rolling such composite-coated flat-rolled steel to decrease substrate gage between about 20% and about 35%.

2. The process of claim 1, in which a polymeric organic coating and an organic draw lubricant comprise the finish surface for such plated substrate, and
further including the step of
selecting a grit roll surface for such cold rolling
of the composite-coated substrate so as to help maintain
uniform distribution of lubricant during such cold rolling
and avoid significant irregular penetration of the organic
polymeric coating during such cold rolling.

3. The process of claim 2, including
selectively augmenting surface application of organic
lubricant to such composite-coated substrate as required
to facilitate such cold-rolling gage reduction.

4. The process of claim 1, further including the
step of
applying a stress-relief type heat treatment of the
cold-reduced steel substrate prior to
preparing surfaces of such substrate for plating.

5. The process of claim 1, including
initially cold rolling such cold-reduced steel
substrate as provided prior to preparing such planar
surfaces for plating, and in which
such subsequent cold rolling of the composite-coated
substrate produces a substrate gage in the range of about
35 lb/bb to about 110 lb/bb.

6. The process of claim 5, in which
such initial cold rolling of steel substrate
decreases its gage in the range of about 20% to about 35%,
such subsequent cold rolling of the composite-coated substrate produces a substrate gage in the range of about 35 lb/bb to about 80 lb/bb.

7. The process of claim 2, in which such cold rolling gage reduction of coated substrate is carried out free of any inorganic rolling oil which would require removal before use of the cold-rolled composite-coated substrate for canmaking for comestibles.

8. The process of claim 5, carried out with selection from the group consisting of (a) free of any preliminary heat treatment of the cold-rolled steel substrate as provided, (b) free of any heat treatment subsequent to such initial cold rolling, (c) free of a preliminary heat treatment of the cold-reduced steel substrate as provided, and free of a heat treatment subsequent to such initial cold-rolling before preparation for corrosion-protection plating, and (d) a combination in which a heat treatment is carried out both before and after such initial cold rolling.

9. The process of claim 1, in which such corrosion-protection is selected to include metallic plating in which such metal is selected from the group consisting of tin, chrome, nickel, zinc, nickel/zinc and a combination of chrome and chrome oxide.

10. The process of claim 1, in which the corrosion-protection plating is selected to comprise tin in combination with an inorganic passivating treatment.

11. The process of claim 2, including
selecting electrolytic plating of tin with plating
weight selected from the group consisting of
(a) a flash-coating of tin with a tinplating
weight of about .05 lb/bb to about .10 lb/bb, and
(b) a differential-coat tinplating with plating
weights being selected in a range from about .05 lb/bb to
about 1.50 lb/bb.

12. The process of claim 2 in which
the polymeric organic coating comprises a
thermosetting polymeric organic coating selected from the
group consisting of epoxies, vinyls, polyesters, and
polyolefins.

13. The process of claim 1, in which
the polymeric finish coating is carried out with
selection from the group consisting of
a liquid solvent solution, a thermal spray powder
applied electrostatically, and a solid film laminate.

14. The process of claim 2, in which
a polymeric organic primer coat electrolytically
applied from an E-coat aqueous bath is selected for such
corrosion-prevention plating, and
such subsequently-applied polymeric organic coating
comprises a thermosetting polymeric organic material
selected to be compatible with such organic primer.

15. Process for manufacturing flat-rolled steel can
stock, comprising the steps of
providing flat-rolled steel substrate as cold-reduced
in continuous-strip form,
preparing both planar surfaces of such steel substrate for coating by surface cleansing followed by applying a corrosion-protection metallic coating, then applying a polymeric organic coating and organic lubricant which are acceptable for canning comestibles to the metallic plated substrate,
such polymeric organic finish coating being polymerized to facilitate cold-rolling gage reduction of such composite-coated substrate free of change in characteristics during temperature changes experienced during cold rolling gage reduction or cold forming of such composite-coated steel substrate, and in which such cold-rolling of the composite-coated substrate is carried out to decrease substrate weight by about 20% to about 35% per unit area.

16. The process of claim 15, further including selectively augmenting surface lubrication prior to such cold-rolling gage reduction.

17. The process of claim 15 in which such cold-reduced steel substrate as provided, comprises flat-rolled steel having a weight in the range of about 75 to about 135 lb/bb, and such composite-coated steel substrate is cold-rolled to produce a substrate weight in the range of about 35 lb/bb to about 110 lb/bb.

18. The process of claim 17, in which
such cold rolled composite-coated steel substrate has
a longitudinal yield strength in the range of about 75 to
about 110 ksi.

19. Preparing flat-rolled steel to enable direct
fabrication into can parts, such as draw-processed one-
piece can bodies or end closures, comprising steps in the
following sequence:

providing a flat-rolled steel blackplate as
continuous-strip in cold-reduced form,

preparing both surfaces of such blackplate for
plating including surface cleaning selected from the group
consisting of scrubbing, electrolytic cleaning and acid
pickling, followed by

corrosion-prevention plating both prepared surfaces
of such blackplate with selection of the plating from the
group consisting of a polymeric organic primer which is
applied from an aqueous E-coat bath, a combination of tin
and an inorganic passivating chemical treatment, and a
combination of chrome and chrome oxide,

applying a finish coating consisting essentially of
a polymeric organic coating and a lubricant acceptable for
canning comestibles to both such plated surfaces,

such organic finish coating application being
selected from the group consisting of a solid film
laminate, a particular form applied electrostatically, and
a solvent solution,

with polymerization of the selected organic coating
being carried out prior to cold rolling, and, then
cold-rolling such composite-coated steel substrate to decrease its weight per unit area by about 20% to about 35%.

20. The process of claim 19, in which the cold-reduced steel blackplate as provided has a weight of about 75 to 135 lb/bb, and such cold rolling of the composite-coated substrate is carried out to produce a weight in the range of about 35 to less than about 110 lb/bb.

21. The process of claim 19, in which the finish surface polymeric organic coating is applied in the range of about 3 to about 15 mg/in² of surface, the lubricant acceptable for canning comestibles is applied in the range of about 10 mg to 20 mg per square foot of surface, and such lubricant acceptable for canning comestibles is embodied at least in part as a blooming compound in such finish surface organic coating.

22. Composite-coated flat-rolled steel produced in accordance with the process of claim 1, 2, or 21.

23. Composite-coated flat-rolled steel can stock consisting essentially of flat-rolled low-carbon steel substrate having a weight in the range of about 35 to about 90 lb/bb which has been cold rolled with a corrosion-prevention subsurface plating applied, and
a polymeric coating of about 2.5 to about 15 mg/in²
with a lubricant acceptable for canning comestibles,
such composite-coated flat-rolled steel being cold-
rolled without subsequent stress relief heat treatment to
provide can stock having longitudinal yield strength in
the range above about 75 to about 110 ksi.

24. A one-piece can body fabricated from the
composite-coated flat-rolled steel substrate can stock of
claim 23.

25. A rigid one-piece steel can body fabricated by
draw processing the can stock of claim 23.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) : B21C 23/22; B32B 15/04, 15/18; B65D 1/12, 85/72
US CL : 72/46; 148/518,529; 220/455, 455; 428/458, 626, 632
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. 72/46; 148/518,529, 520,537; 220/455, 456, 457,458; 428/458, 626, 632

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 3,568,486 (Rosenberg et al.), 9 March 1971, column 3, line 3, to column 6, line 75</td>
<td>1-21</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,812,365 (Saunders et al.), 14 March 1989, entire document</td>
<td>1-8, 12-14, 16-25</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,863,060 (Saunders), 5 September 1989, entire document</td>
<td>1, 4 - 6, 8 - 11,17,18, 20-25</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,875,597 (Saunders), 24 October 1989, column 2, line 23 to column 4, line 65</td>
<td>1-4, 6-10, 15-18, 22-25</td>
</tr>
</tbody>
</table>

See patent family annex.

¢ Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search: 10 June 1994

Date of mailing of the international search report: JUL 14 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer: GEORGE WYSZOMIERSKI

Facsimile No.: NOT APPLICABLE
Telephone No.: (703) 308-2531

Form PCT/ISA/210 (second sheet) July 1992*
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 5,119,657 (Saunders), 9 June 1992, column 7, line 53 to column 8, line 16, and column 19, line 66 to column 20, line 68</td>
<td>1-8, 12-25</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 5,137,762 (Aizawa et al.), 11 August 1992, column 5, lines 6-27</td>
<td>4,8</td>
</tr>
</tbody>
</table>