[19] 中华人民共和国国家知识产权局

[12] 发明专利申请公开说明书

[21] 申请号 02157586.X

[30] 优先权

[71] 申请人  三洋电机株式会社
  地址  日本大阪府

[72] 发明人  浅海利夫 寺川朗 田口斡朗

[11] 公开号 CN 1445865A

[54] 发明名称  光发电装置及其制造方法
[57] 摘要
  本发明的目的在于提高结晶半导体与非晶态半导体薄膜的界面特性，改善结特性。一种光发电装置的制造方法，插入i型非晶态硅薄膜12，来层叠n型单结硅基板11和p型非晶态硅薄膜13，并在单结硅基板11的背面侧插入i型非晶硅层14来设置n型非晶硅层15，使用氢气和含硼气体的混合气体，使单结硅基板11的表面等离子体放电，对单结硅基板11的表面实施等离子体处理后，形成i型非晶硅层12，并在单结硅基板11与i型非晶硅层12的界面上夹杂硼原子。

[51] Int.Cl
  H01L 31/04
  H01L 31/18

权利要求书2页 说明书13页 附图7页
1. 一种光发电装置，其特征在于：在一导电型结晶半导体上插入带电粒子不进行控制或实质上为本征的非晶态半导体薄膜并设置一导电型或其他导电型非晶态半导体薄膜，在上述结晶半导体与带电粒子不进行控制或实质上为本片非晶态半导体薄膜形成的界面上，存在一导电型或其他导电型杂质。

2. 根据权利要求1所述的光发电装置，其特征在于：所述结晶半导体是结晶系列硅，非晶态半导体薄膜是非晶态硅薄膜，所述一导电型杂质是属于周期表第5B族的原子，其界面杂质原子面密度在$1 \times 10^{11}$ cm$^{-2}$以上$5 \times 10^{14}$ cm$^{-2}$以下。

3. 根据权利要求1或2所述的光发电装置，其特征在于：所述结晶半导体是结晶系列硅，非晶态半导体薄膜是非晶态硅薄膜，所述其他导电型杂质是属于周期表第3B族的原子，其界面杂质原子面密度在$1 \times 10^{11}$ cm$^{-2}$以上$5 \times 10^{13}$ cm$^{-2}$以下。

4. 根据权利要求1或2所述的光发电装置，其特征在于：所述结晶半导体是结晶系列硅，非晶态半导体薄膜是非晶态硅薄膜，所述一导电型杂质是属于周期表第3B族的原子，其界面杂质原子面密度在$1 \times 10^{11}$ cm$^{-2}$以上$5 \times 10^{13}$ cm$^{-2}$以下。

5. 根据权利要求1或4所述的光发电装置，其特征在于：所述结晶半导体是结晶系列硅，非晶态半导体薄膜是非晶态硅薄膜，所述其他导电型杂质是属于周期表第5B族的原子，其界面杂质原子面密度在$1 \times 10^{11}$ cm$^{-2}$以上$5 \times 10^{14}$ cm$^{-2}$以下。

6. 一种光发电装置的制造方法，其特征在于：包含：导入氢气和包含低浓度一导电型或其他导电型杂质的气体后通过等离子体放电来进行一导电型或其他导电型结晶半导体基板表面清洁的工序；在结晶半导体基板表面形成带电粒子不进行控制或实质上为本征的非晶态半导体的薄膜的工序；和在其上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。

7. 一种光发电装置的制造方法，其特征在于：包含：向结晶半导体基板表面导入包含构成非晶态半导体薄膜的材料的气体和包含一导电型或其他导电型杂质的气体，并通过气相反应来形成第一非晶态半导体薄膜的工序；在该
第一非晶态半导体薄膜上通过气相反应来形成实质上本征的第二非晶态半导体薄膜的工序；和在该第二非晶态半导体薄膜上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。

8、一种光发电装置的制造方法，其特征在于，包含：在加热的状态下，将一导电型或其他导电型结晶半导体基板曝露在氢气和包含低浓度的一导电型或其他导电型杂质的气体中的工序；在结晶半导体基板表面上形成带电粒子不进行控制或实质上本征的非晶态半导体薄膜的工序；和在其上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。
光发电装置及其制造方法

技术领域

本发明涉及一种使用了异质半导体结的光发电装置及其制造方法。

背景技术

光发电装置根据吸收光然后主要变换为电流的部分的半导体种类，可分为单结晶系列、多结晶系列、非晶态。研究了发挥非晶态半导体薄膜和结晶半导体的特长，使两者形成层叠结构的混合型光发电装置(例如，特开平4-130671号公报)。在通过组合具有彼此相反的导电型的结型系列硅半导体和非晶态硅系半导体来形成半导体结时，通过在该光发电装置中结界面插入带电粒子不进行控制(即没有掺杂导电杂质)或掺杂微量硼等属于周期表第3B族的元素的实质上本征的非晶态硅系薄膜，使界面特性有所提高，进而提高光电变换特性。

因为以200℃以下的低温形成该结构的pn结，所以即使在基板的纯度低而担心高温处理中杂质或氧导致的缺陷的影响等情况下，也能得到较好的结特性。

另外，在上述光发电装置的背面侧形成带电粒子不进行控制或实质上本征非晶态硅系薄膜和电荷控制的导电型非晶态硅系薄膜，通过所谓BSF(Back Surface Field)效应来形成提高太阳能电池特性的结构。

图8是表示凹凸化单结硅基板的表面，并在该结硅半导体和非晶态半导体的结界面上插入带电粒子不进行控制的实质上本征型的非晶态半导体层结构的光发电装置的立体图。如图所示，n型单结硅基板101的表面通过碱性蚀刻等方法将表面凹凸化。在凹凸化后的单结硅基板101的感光面侧依次层叠形成i型非晶硅(a-Si)层102、p型非晶硅(a-Si)层103、由ITO(Indium Tin Oxide(铟锡氧化物))等透光性导电膜构成的透明电极104。另外，在透明电极104上形成例如由银(Ag)构成的梳形集电极105。

另外，在单结硅基板101的背面侧依次层叠形成i型非晶硅(a-Si)层106、n型非晶硅(a-Si)层107、由ITO等透光性导电膜构成的透明电极108，得到可
产生BSF效应的结构。另外，在透明电极108上形成例如由银(Ag)构成的梳形集电极109。

通过上述结构，由凹凸化的表面抑制光反射，高效地将光引入装置内。

另外，上述光发电装置可通过低温处理形成。因为是低温处理，所以难以完全去除附着在基板表面上的水分或有机物，在基板表面上存在氧、氮、碳等杂质。其中，含量最多的氧的浓度为1×10^{20} \text{cm}^{-3}，由于该杂质导致的界面特性下降而担心对pn结特性和BSF效应产生不良影响。

另一方面，报道了掺杂微量硼后得到实质上本征的非晶态硅膜的方法(例如，Applied Physics Letters 68卷, 1996, 1201-1203页)。该报告记载了导入相对于包含一定浓度的氧的非晶态硅膜的1/1000左右浓度(~1×10^{11} \text{cm}^{-3})的硼可对该硅膜进行补偿。

但是，即使导入上述量的硼来补偿氧的影响，但几乎对太阳能电池特性不产生影响。另外，虽然在提高特性上主要对太阳能电池特性的开路电压产生影响，但无论有无补偿，开路电压都无变化。

本发明是鉴于上述现有问题而研制的，其目的在于提高结晶半导体与非晶态半导体薄膜的界面特性，改良其特性，使用了本发明的半导体装置，尤其是太阳能电池装置的开路电压有所提高。

发明内容

本发明的光发电装置是在一种导电型结晶半导体上形成带电粒子不进行控制或实质上本征的非晶态半导体薄膜并设置一导电型或其他导电型非晶态半导体薄膜，其特征在于：在上述结晶半导体与带电粒子不进行控制或实质上本征的非晶态半导体薄膜形成的界面下，存在一导电型或其他导电型杂质。

这里，所谓非晶态半导体薄膜不仅包含非晶态半导体，还包含微晶半导体。

上述结晶半导体是结晶系硅，非晶态半导体薄膜是非晶态硅薄膜，上述一种导电型杂质是属于周期表第5B族的原子，其界面杂质原子面密度可在1×10^{11} \text{cm}^{-2}以上5×10^{14} \text{cm}^{-2}以下，另外，上述其他导电型杂质是属于周期表第3B族的原子，其界面杂质原子面密度可在1×10^{11} \text{cm}^{-2}以上5×10^{13} \text{cm}^{-2}以下。

另外，上述结晶半导体是结晶系硅，非晶态半导体薄膜是非晶态硅薄膜，上述一种导电型杂质是属于周期表第3B族的原子，其界面杂质原子面密度可在1×10^{11} \text{cm}^{-2}以上5×10^{13} \text{cm}^{-2}以下，另外，上述其他导电型杂质是属于周期表第
5B族的原子，其界面杂质原子面密度可在$1 \times 10^{11} \text{ cm}^{-2}$以上$5 \times 10^{14} \text{ cm}^{-2}$以下。

如上所述，对于由结晶半导体和非晶态半导体薄膜构成的pn结，通过在作为基板的结晶半导体和非晶态半导体薄膜的界面附近适量介入一种导电型或其他导电型杂质，可抑制界面处载流子的再耦合，可改善结特性。对于使用该结的太阳能电池，可提高开路电压。

另外，对于由上述结晶半导体和实质上本征的非晶态半导体薄膜构成的BSF结构，通过在作为基板的结晶半导体和非晶态半导体薄膜的界面附近适量夹杂一导电型或其他导电型杂质，可缓和频带偏移的影响，改善电子流，提高太阳能电池特性。

本发明的制造方法的特征在于包含：导入氨气和包含低浓度的导电型或其他导电型杂质的气体后通过等离子体放电来进行一导电型或其他导电型的结晶半导体基板表面的清洁工序；在结晶半导体基板表面形成带电粒子不进行控制或实质上本征的非晶态半导体薄膜的工序；和在其上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。

另外，本发明的另一制造方法的特征在于包含：向结晶半导体基板表面导入包含构成非晶态半导体薄膜的材料的气体和包含一导电型或其他导电型杂质的气体，并通过气相反应来形成第一非晶态半导体薄膜的工序；在该第一非晶态半导体薄膜上通过气相反应来形成实质上本征的第二非晶态半导体薄膜的工序；和在该第二非晶态半导体薄膜上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。

另外，本发明的再一制造方法的特征在于包含：在加热的状态下，将一导电型或其他导电型结晶半导体基板暴露在氢气和包含低浓度的导电型或其他导电型杂质的气体中的工序；在结晶半导体基板表面上形成带电粒子不进行控制或实质上本征的非晶态半导体薄膜的工序；和在其上形成带电粒子控制为一导电型或其他导电型的非晶态半导体薄膜的工序。

根据上述制造方法，可在此上述结晶半导体与实质上为本征的非晶态半导体薄膜层叠形成的界面上存在一导电型或其他导电型杂质原子。

如上所述，对于由结晶半导体和非晶态半导体薄膜构成的pn结，通过在作为基板的结晶半导体与非晶态半导体薄膜的界面附近适量夹杂一导电型或其他导电型杂质，可抑制界面处载流子的再耦合，改善结特性。对于使用该结的太阳能电池，可提高开路电压。
另外，对于由上述结晶半导体和实质上本征的非晶态半导体薄膜构成的BSF结构，通过在作为基板的结晶半导体和非晶态半导体薄膜的界面附近适当夹杂一导电型或其他导电型杂质，可缓和频带偏移的影响，改善电子流，提高太阳能电池特性。

附图说明
图1是按制造工序表示本发明实施例1的光发电装置的剖面图。
图2是本发明实施例1的光发电装置中半导体结的频带结构图。
图3是表示未掺杂层的厚度为160nm、p型层约为8nm，观察沿深度方向的杂质轮廓的结果的模式图。
图4是开路电压相对在基板与非晶态层的界面附近导入微量制成的乙硼烷后的极薄p型非晶态硅层的乙硼烷导入量变化的特性图。
图5是按制造工序表示本发明实施例4的光发电装置的剖面图。
图6是表示由SIMS分析测定本发明实施例4的光发电装置的P浓度的特性图。
图7是表示本发明实施例4的光发电装置的输出(Pmax)与背面侧的界面磷原子密度的关系的特性图。
图8是表示凹凸化结晶硅基板表面、并在该结晶半导体与非晶态半导体的结界面中插入i型非晶态半导体层的结构的光发电装置的斜视图。

具体实施方式
下面，参照附图来说明本发明的实施例。图1是按制造工序表示本发明实施例1的光发电装置的剖面图。

作为结晶半导体基板，有单结晶硅基板、多结晶硅基板等，作为本实施例，使用厚度为300微米、电阻率小于5 Ω cm的单结晶硅基板11。使用氢氧化钠溶液、氢氧化钾溶液等碱性溶液在该单结晶硅基板11的表面背面实施各向异性蚀刻，进行凹凸化。

洗净单结晶硅基板11，放入真空室内，加热到低于200℃，尽量去除附着在基板表面上的水分。在本实施例中，基板温度加热到170℃。

接着，导入氢气(H₂)，进行等离子体放电，清洗基板表面。可知该处理具有降低基板表面碳元素量的效果。
在本实施例中，在氢等离子体处理时，导入氢气（H₂）和乙硼烷气体（B₂H₆），分解硼（B），并使硼吸附在表面上，向单结晶硅基板表面导入硼(参照图1(a))。此时的条件如表1所示。

之后，导入硅烷气体（SiH₄）及作为稀释气体的氢气（H₂），将基板保持在170°C，通过等离子体CVD法，形成未掺杂的i型非晶态硅层12。接着，导入硅烷气体（SiH₄）、作为稀释气体的氢气（H₂）和作为掺杂气体的乙硼烷气体（B₂H₆），由等离子体CVD法依次形成p型非晶态硅层13，并形成pn结(参照图1(b))，此时的条件如表1所示。

接着，在上述n型单结晶硅基板11的背面侧同样形成氧化非晶态硅薄膜。

首先，将n型单结晶硅基板11放入真空室内，加热到200°C以下。在本实施例中，基板加热到170°C。接着，在氢气（H₂）中进行等离子体放电。之后，导入硅烷气体（SiH₄）及作为稀释气体的氢气（H₂），将基板保持在170°C，通过等离子体CVD法，形成未掺杂的i型非晶态硅层14。接着，导入硅烷气体（SiH₄）、作为稀释气体的氢气（H₂）和作为掺杂气体的磷化氢气体（PH₃），由等离子体CVD法依次形成n型非晶态硅层15，并在n型单结晶硅基板11的背面侧形成BSF结构(参照图1(c))，此时的形成条件如表1所示。

另外，通过溅射法形成氧化铟锡（ITO）膜16作为表面侧电极，通过网印法形成银电极18作为集电极。另外，通过溅射法形成ITO膜17作为背面侧电极，通过网印法形成银电极19作为集电极，完成光发电装置(参照图1(d))。

在上述实施例中，在背面侧形成所谓BSF结构，但也可不形成BSF结构。当形成BSF结构时，对于制作非晶态硅层的顺序，如上所述，既可以从表面侧（p型侧）开始形成，也可从背面侧（n型侧）开始形成。

上述光发电装置的具体形成条件如表1所示。
<table>
<thead>
<tr>
<th>处理</th>
<th>基板温度(℃)</th>
<th>使用气体</th>
<th>压力(Pa)</th>
<th>功率密度(mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>表侧</td>
<td>170</td>
<td>H₂: 100sccm</td>
<td>70</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B₂H₆: 0-100 sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i型a-Si</td>
<td>170</td>
<td>SiH₄: 40sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td>p型a-Si</td>
<td>170</td>
<td>H₂: 0-100sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SiH₄: 40sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B₂H₆(2%): 40 sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>背面</td>
<td>170</td>
<td>H₂: 100sccm</td>
<td>70</td>
<td>8.33</td>
</tr>
<tr>
<td>i型a-Si</td>
<td>170</td>
<td>SiH₄: 40sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td>p型a-Si</td>
<td>170</td>
<td>H₂: 0-100sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SiH₄: 40sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH₃(1%): 40 sccm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图2表示本发明的半导体结的频带结构。图2中，实线表示本发明的频带结构，虚线表示在氢等离子体处理中未导入乙硼烷的现有频带结构。

由上述方法形成的光电发电装置在n型单结晶硅基板11上形成实质为i型的非晶态硅层12并在其上形成n型非晶态硅层13，再在n型非晶态硅层13上形成ITO膜16。另外，向基板11和i型非晶态硅层12的界面中导入过量补偿i型非晶态硅层所需的硼。

如图2所示，通过向单结晶硅基板11和i型非晶态硅层12的界面中导入大于补偿非晶态硅层所需量的硼，界面附近的非晶态硅层12变为极弱的p型，同时，可局限在界面附近的单结晶硅基板11内的电场变强。因此，可有效地分离界面附近存在的电子与空穴，降低在界面再耦合的概率。另外，价电子带在界面中的频带的不连接部分的势垒相对变小，载流子移动变容易。结果，可提高太阳能电池特性中的开路电压。

此时，虽然i型非晶态硅层中存在的电场强度变弱，但由此可得到使非晶态层内的载流子移动变得非常容易的电场。

另外，若提供硼过剩，则i型非晶态硅层12的电场强度变小，该部分中的载流子再耦合增加，若进一步增加，便基本与直接在n型单结晶硅基板上堆积p
型非晶态硅层等价，通过过剩存在的硒进行再结合，太阳能电池特性降低。

作为本发明的光发电装置，在上述表1所示的形成条件下制作光发电装置。如此制作的光发电装置的输出特性如表2所示。这里，使用在上述的氢等离子体处理中不导入乙硼烷气体的情况作为比较例。这些样品同时形成背面的BSF层。

表2

<table>
<thead>
<tr>
<th></th>
<th>Voc(V)</th>
<th>Isc(A)</th>
<th>F.F.</th>
<th>Pmax(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未导入B₂H₆</td>
<td>0.670</td>
<td>3.72</td>
<td>0.75</td>
<td>1.87</td>
</tr>
<tr>
<td>导入B₂H₆</td>
<td>0.692</td>
<td>3.70</td>
<td>0.76</td>
<td>1.95</td>
</tr>
</tbody>
</table>

从表2可知，在氢等离子体处理中导入乙硼烷气体，发现开路电压提高，确认本发明的有效性。

表1所示实施例的非晶态层的膜厚，i型非晶态硅层约为7nm，p型层约为5nm，因为不能由现有的二次离子质量分析仪在深度方向的分辨能力(10nm至20nm)观察，所以图3中示出观察i型非晶态硅层厚度为160nm、p型层约为8nm的沿深度方向的杂质轮廓的结果。

这里，由SIMS(secondary ion mass spectroscopy)分析，从非晶态硅层侧沿深度方向测定界面的硼原子密度，通过在深度方向积分来求出硼(B)的体积浓度。另外，根据深度方向的界面前后(2nm-3nm)的体积密度计算界面的面密度，作为界面硼原子密度。

图中，虚线为根据轮廓预测的形成各层的界面位置。基板界面中存在约6×10¹¹cm⁻²的界面硼原子密度量的硼(B)。从p型非晶态硅表面上本征(i型)非晶态硅层内的硼量的单调减少、从基板界面向基板内的硼量的单调减少任一个都比高斯分布更倾向于平缓，从经验可知是由于SIMS分析中在溅射时的打入效应。

因此，认为实际上硼浓度在各界面上急剧减少，基本上未从i型非晶态硅层和基板界面向基板内扩散。在观察实际的太阳能电池的情况下，也通过使用深度方向分辨率高的(1nm-2nm)低加速SIMS等测定方法，认为是具有类似于图3的硼(B)轮廓的轮廓的测定结果。

下面，说明本发明的实施例2。

洗净洗净了的n型单结晶硅基板，放入真空室内，加热到低于200℃，尽量去除附着在基板表面上的水分。在本实施例中，基板加热到170℃。

接着，导入氢气(H₂)，进行等离子体放电，清洗基板表面。之后，导入氢
气（H₂）、乙硼烷气体（B₃H₆）、硅烷气体（SiH₄），进行等离子体放电，在基板表面堆积约1nm的极薄且导电低浓度p型杂质的第一非晶态硅层①，向界面附近导入硼。之后，与实施例1一样，依次形成i型非晶态硅层②、p型非晶态硅层，完成pn结。此外，通过溅射法形成氧化铟锡（ITO）膜作为表面电极，通过网印法形成银电极作为集电极。

在表3所示的形成条件下形成本发明实施例2的光发电装置。

<table>
<thead>
<tr>
<th>处理</th>
<th>形成条件等</th>
<th>基板温度（℃）</th>
<th>使用气体</th>
<th>压力（Pa）</th>
<th>功率密度（mW/cm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氮处理</td>
<td></td>
<td>170</td>
<td>H₂: 100sccm</td>
<td>70</td>
<td>8.33</td>
</tr>
<tr>
<td>i型a-Si①</td>
<td></td>
<td>170</td>
<td>H₂: 0-100sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SiH₄: 40sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(B₃H₆/SiH₄: 10-2000 sccm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i型a-Si②</td>
<td></td>
<td>170</td>
<td>SiH₄: 40sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td>p型a-Si</td>
<td></td>
<td>170</td>
<td>H₂: 0-100sccm</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SiH₄: 40sccm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B₃H₆(2%): 40 sccm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图4表示开路电压特性相对在由上述表3所示条件形成的第一非晶态硅层的界面附近导入微量制成的乙硼烷气体（B₃H₆）后的极薄p型非晶态硅层的硼导入量变化的特性图。

由图4可知，与未导入乙硼烷气体（B₃H₆）的情况相比，开路电压阶段上升，并且，若掺杂质更多时，开路电压转向减少倾向。与未导入的情况相比，将硼导入量作为界面的硼原子面密度，在在1×10¹¹cm⁻²以上5×10¹¹cm⁻²以下的范围内可改善开路电压。根据图4，最好控制乙硼烷气体（B₃H₆）的量，使导入基板与非晶态硅层的界面中的界面硼原子面密度在在1×10¹¹cm⁻²以上5×10¹¹cm⁻²以下的范围内。

下面，说明本发明的实施例3。

洗净洗净了的n型单结晶硅基板，放入真空室内，加热到低于200℃，尽量去除附着在基板表面上的水分。在本实施例中，基板加热到170℃。

接着，导入氢气（H₂），进行等离子体放电，清洗基板表面。之后，导入氢
气(H₂)、乙硼烷气体(B₂H₆)。将基板暴露在上述气体中。乙硼烷气体(B₂H₆)在加热的基板表面分解，吸附在基板表面上，可向界面引入硼。作为曝露条件，基板温度为170℃，2%的乙硼烷气体(B₂H₆)为100sccm，压力为40Pa，时间为1-600秒。

之后，与实施例1一样，依次形成i型非晶态硅层、p型非晶态硅层，完成pn结。此外，通过溅射法形成氧化铟锡(ITO)膜作为表面侧电极，通过网印法形成银电极作为集电极。

在此情况下也与实施例1一样，确认开路电压提高。另外，基本上没有曝露条件变化下的特性差别，有无曝露引起的特性大。

如上所述，对于由结晶系列硅和非晶态硅半导体构成的pn结，通过在作为基板的结晶系列硅与非晶态硅半导体薄膜的界面附近适量夹杂硼，可抑制界面处的载流子再耦合，改善耦合特性。对于是用该耦合的太阳电池，可提高开路电压。

上述实施例1-3中说明了改善pn结特性，实施例4中使BSF效应良好。下面

说明实施例4。

下面，参照附图来说明本发明的实施例。图5是按制造工序表示本发明实施例4的光发电装置的剖面图。

作为结晶半导体基板，有单结晶硅基板、多结晶硅基板等，作为实施例4，与实施例1一样，使用厚度为300微米、电阻率小于5Ω cm的单结晶硅基板11。

使用氢氧化钠溶液、氢氧化钾溶液等碱性溶液对该单结晶硅基板11的表面背面实施各向异性蚀刻，进行凹凸化。

接着，导入氢气(H₂)，进行等离子体放电，清洗基板表面。

在实施例4中，在等离子体处理时，导入氢气(H₂)和磷化氢气体(PH₃)，分解磷(P)，并使磷吸附在表面上，向单结晶硅基板11的背面导入磷(参照图5(a))。此时的条件如表4所示。

之后，导入硅烷气体(SiH₄)及作为稀释气体的氢气(H₂)，将基板保持在170℃，通过等离子体CVD法，形成未掺杂的i型非晶态硅层14。接着，导入硅烷气体(SiH₄)、作为稀释气体的氢气(H₂)和作为掺杂气体的磷化氢气体(PH₃)，由等离子体CVD法形成n型非晶态硅层15，并在n型单结晶硅基板11的背面侧形成BSF结构(参照图5(b))，此时的条件如表4所示。

接着，在上述n型单结晶硅基板11的背面侧同样形成氢化非晶态硅薄膜。
首先，将n型单结晶硅基板11放入真空室内，加热到200°C以下。在实施例4中，基板加热到170°C。接着，在氢气(H₂)中进行等离子体放电。之后，导入硅烷气体(SiH₄)及作为稀释气体的氧气(H₂)，将基板保持在170°C，通过等离子体CVD法形成实质为i型非晶态硅层12。接着，导入硅烷气体(SiH₄)及作为稀释气体的氢气(H₂)和作为掺杂气体的乙硼烷气体(B₂H₆)，由等离子体CVD法依次形成p型非晶态硅层13，并形成pn结(参照图5(c))，此时的条件如表4所示。

另外，通过溅射法形成ITO膜16作为表面侧电极，通过网印法形成银电极18作为集电极。另外，通过溅射法形成ITO膜17作为背面侧电极，通过网印法形成银电极19作为集电极。完成光发电装置(参照图5(d))。

上述光发电装置的具体形成条件如表4所示。

<table>
<thead>
<tr>
<th>处理</th>
<th>形成条件</th>
<th>基板温度(°C)</th>
<th>使用气体(sccm)</th>
<th>压力(Pa)</th>
<th>功率密度(mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>表侧</td>
<td>氢处理</td>
<td>170</td>
<td>H₂: 100</td>
<td>70</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>i型a-Si</td>
<td>170</td>
<td>SiH₄: 40</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>p型a-Si</td>
<td>170</td>
<td>H₂: 0-100</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SiH₄: 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B₂H₆(2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>背面</td>
<td>氢处理</td>
<td>170</td>
<td>H₂: 100</td>
<td>70</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>i型a-Si</td>
<td>170</td>
<td>SiH₄: 40</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td>n型a-Si</td>
<td>170</td>
<td>H₂: 0-100</td>
<td>40</td>
<td>8.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SiH₄: 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PH₃(1%): 0-100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

接着，在单结晶硅基板11背面侧的氢气和磷化氢(PH₃)的混合气体的等离子体处理中，使PH₃气体的流量浓度变化，改变界面磷原子密度时测定的输出特性结果如表5所示。如图6所示，界面磷原子浓度由SIMS分析从非晶态硅层16侧沿深度方向测定，沿深度方向积分后求出磷(P)的体积浓度。另外，根据图
6中加阴影的区域，即深度方向的界面前后（2nm-3nm）的体积密度计算界面的面密度，作为界面磷原子浓度。

<table>
<thead>
<tr>
<th></th>
<th>P密度（cm⁻³）</th>
<th>Voc（V）</th>
<th>Isc（A）</th>
<th>FF</th>
<th>Pmax（W）</th>
</tr>
</thead>
<tbody>
<tr>
<td>未导入PH₃</td>
<td>9.20E+10</td>
<td>0.677</td>
<td>3.730</td>
<td>0.751</td>
<td>1.896</td>
</tr>
<tr>
<td>导入PH₃ a</td>
<td>5.00E+11</td>
<td>0.690</td>
<td>3.725</td>
<td>0.771</td>
<td>1.982</td>
</tr>
<tr>
<td>导入PH₃ b</td>
<td>7.00E+12</td>
<td>0.710</td>
<td>3.720</td>
<td>0.766</td>
<td>2.023</td>
</tr>
<tr>
<td>导入PH₃ c</td>
<td>2.00E+14</td>
<td>0.693</td>
<td>3.721</td>
<td>0.762</td>
<td>1.965</td>
</tr>
<tr>
<td>导入PH₃ d</td>
<td>5.00E+15</td>
<td>0.665</td>
<td>3.710</td>
<td>0.745</td>
<td>1.845</td>
</tr>
</tbody>
</table>

从表5可知，在单结晶硅基板11背面侧的等离子体处理中，与未导入磷化氢气体（PH₃）的比较例相比，根据导入磷化氢气体（PH₃）的本发明实施例4可知提高了开路电压和填充因数（F.F.）。通过向界面导入磷，可缓和频带偏移的影响，改善电子流。

图7示出测定导入磷化氢气体（PH₃）后进行等离子体处理的情况下的光发电装置的输出（单元输出）（Pmax）与背面侧的界面磷原子密度的关系的结果。

从表7可知，界面磷原子密度若在1×10¹¹cm⁻²以上5×10¹⁴cm⁻²以下，则单元输出超过1.900W，得到好的结果。由此，在单结晶硅基板11的背面侧的等离子体处理中，控制导入磷化氢气体（PH₃）的流量，使界面磷原子密度在1×10¹¹cm⁻²以上5×10¹⁴cm⁻²以下。

下面，说明本发明的实施例5。

洗净洗净后的n型单结晶硅基板，放入真空室，加热到低于200°C，尽量去除附着在基板表面上的水分。在本实施例中，基板加热到170°C。

接着，导入氢气（H₂），进行等离子体放电，清洗基板表面。之后，导入氢气（H₂）、磷化氢气体（PH₃）、硅烷气体（SiH₄），进行等离子体放电，在基板表面堆积约1nm的极薄且导入低浓度n型杂质的第四非晶态硅层④，向界面附近导入磷。之后，与实施例4一样，依次形成i型非晶态硅层⑤、n型非晶态硅层，完成BSF结构。另外，在n型单结晶硅基板表面侧也与实施例4一样，依次形成i型非晶态硅层、p型非晶态硅层，并形成pn结。通过溅射法形成氧化铟锡（ITO）膜作为表面侧及背面侧电极，通过网印法形成银电极作为集电极。

在表6所示条件下形成本发明实施例5的光发电装置。
<table>
<thead>
<tr>
<th>处理</th>
<th>形成条件等</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>基板温度(℃)</td>
<td>使用气体</td>
<td>压力(Pa)</td>
<td>功率密度(mW/cm²)</td>
<td></td>
</tr>
<tr>
<td>背面</td>
<td>170</td>
<td>H₂: 100sccm</td>
<td>70</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>i型a-Si④</td>
<td>170</td>
<td>H₂: 0-100sccm, SiH₄: 40sccm, (PH₃/SiH₄: 10000ppm)</td>
<td>40</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>i型a-Si⑤</td>
<td>170</td>
<td>SiH₄: 40sccm</td>
<td>40</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>n型a-Si</td>
<td>170</td>
<td>H₂: 0-100sccm, SiH₄: 40sccm</td>
<td>40</td>
<td>8.33</td>
<td></td>
</tr>
</tbody>
</table>

此时，与实施例4一样，确认开路电压提高。

下面，说明本发明的实施例6。

洗净洗净了的n型单结晶硅基板，放入真空室内，加热到低于200℃，尽量去除附着在基板表面上的水分。在本实施例中，基板加热到170℃。

接着，导入氢气(H₂)，进行等离子体放电，清洗基板表面。之后，导入氢气(H₂)、磷化氢气体(PH₃)，将基板曝露在上述气体中。磷化氢气体(PH₃)在加热的基板表面分解，吸附在基板表面上，可向界面导入硼。作为曝露条件，基板温度为170℃，1%的磷化氢气体(PH₃)为100sccm，压力为40Pa，时间为1-600秒。

之后，与实施例4一样，依次形成i型非晶态硅层、n型非晶态硅层，完成BSF结构。另外，在n型单结晶硅基板表面侧与实施例4一样，依次形成实质上为i型的非晶态硅层、p型非晶态硅层，并形成pn结。通过蒸镀法形成氧化铟锡(ITO)膜作为背面及背面侧电极，通过网印法形成银电极作为集电极。

在此情况下也与实施例4一样，确认开路电压提高。另外，在曝露条件变化下特性基本没有差别，有无曝露引起的变化大。

另外，上述各实施例使用n型基板，但不用说，在将基板设为p型，在表侧制作i型的非晶态硅层、n型的非晶态硅层及ITO膜、银电极，在背侧制作i型的非晶态硅层、p型的非晶态硅层及ITO膜、银电极时也完全一样处理。另外，作为结晶基板，使用n型、p型多结晶硅基板制作的情况下也可得到同样的结果。
另外，在上述各实施例中，虽然在基板的表面侧界面或背面侧的界面某一方中存在一导电型或其他导电型杂质，但也可在表面背面的两界面中导入杂质。例如，通过组合实施例1和实施例4，在基板的表面背面的界面中导入各自对应的杂质，双方的效果组合可期待进一步提高太阳能电池的特性。

另外，在上述实施例中，使用非晶态硅薄膜作为非晶态半导体薄膜，但同样也可使用微结晶硅薄膜。另外，在上述实施例中，说明了使用硅作为半导体的情况，但在使用锗的情况下也可期待同样的效果。

另外，在上述实施例中，虽然描述了使用磷作为属于周期表第5B族的原子的情况，但使用其他属于周期表第5B族的原子，例如砷元素(As)、锑(Sb)等也可期待同样的效果。另外，虽然描述了使用硼作为属于周期表第3B族的原子的情况，但使用其他属于周期表第3B族的原子，例如铝元素(Al)等也可期待同样的效果。
图 2
图 5
图 6