wo 2013/036248 A1 |11 N0F V000000 0 0 A0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/036248 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

14 March 2013 (14.03.2013) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/06 (2006.01)
International Application Number:
PCT/US2011/055491

International Filing Date:
8 October 2011 (08.10.2011)

Filing Language: English
Publication Language: English
Priority Data:

13/229,697 10 September 2011 (10.09.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: OSTERMAN, Lawrence, W.; c/o Microsoft
Corporation, LCA - International Patents, One Microsott
Way, Redmond, Washington 98052-6399 (US). PIER-
SON, Harold, L.; ¢/0 Microsott Corporation, LCA - Inter-
national Patents, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). OMIYA, Elliot, H.; c/o Microsoft

al Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). PRAKRIYA, Mahesh; c¢/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US). ROWE,
Stephen, C.; c¢/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). BASU, Tassaduq, H.; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
WLODARCZYK, Robert, A.; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). ZENG, Wei; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
WADHWA, Neeraj, N.; ¢c/o0 Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SOLKAR, Shakeel, L.; c/o
Microsoft Corporation, LCA - International Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
AKSIONKIN, Michael; c¢/o Microsoft Corporation, LCA
- International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Corporation, LCA - International Patents, One Microsoft (81) Designated States (uniess otherwise indicated, for every
Way, Redmond, Washington 98052-6399 (US). LOVELL, kind of national protection available): AE, AG, AL, AM,
Martyn, S.; ¢/o Microsoft Corporation, LCA - Internation- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

[Continued on next page]

(54) Title: FLEXIBLE METADATA COMPOSITION
1002 — 1000~
Computing Device 102a Computing Device 102b
[Processor(s) 104a] [Processor(s) 104b]

Computer-Readable Storage Media — 106a

OperatéggS)Syslem Application(s)
108 1108
Software
interface(s) Motadata filo{s)
112a Lda

Mzrge Module(s)

Computer-Readable Storage Medla — 108b

Opera‘(‘ggs)syﬁam Application(s)
1 1100
Software]

interface(s) Metacata fie(s)
112b h—

lyce Resolution

Module(s)

a

b

(57) Abstract: Various embodiments provide an ability to abstract type resolution between multiple type systems. At least one type
can be described in one or more programmatically accessible file(s). In some embodiments, an application using a different type sys-
tem can programmatically access and resolve a type of the at least one type system without knowledge of a location of where a de -
scription of the type resides. Alternately or additionally, type descriptions contained in the one or more programmatically accessible
file(s) can be analyzed and restructured into one or more new programmatically accessible file(s) based, at least in part, upon the
type descriptions.

WO 2013/036248 A1 |IIIWAT 00TV YO0 OO AR

84)

DZ, EC, EF, EG, ES, FL, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT,

LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

FLEXIBLE METADATA COMPOSITION

BACKGROUND
[0001] Computing devices often run operating systems as a way to manage
hardware and/or software resources of the computing devices. In some cases, an
operating system can provide simplified, programmatic access to the resources.
For example, the operating system can include Application Programming Interfaces
(APIs) to expose various components. An application can successfully call an API
through a different programming language and/or type system than that of the API,
provided the application knows what types are associated with the API. For
example, the API can include one or more input and/or output parameter(s). To
call the API, the programmer determines not only the API’s parameters, but what
data types are associated with parameters.
[0002] As discussed above, an API can be described with a different type system
than that of a calling programming language. To bridge the differing type systems,
a programmer typically writes wrapper code to translate between type systems.
One way for the programmer to include API access in a program is to include the
API definitions into source code through one or more file(s) and/or namespaces.
To successfully incorporate the files and/or namespaces into the source code, the
source code can be configured to include a reference to the specific location of the
files/namespaces (e.g. hardcoded path, accessing a registry key with the path, etc.).
If the location, file name, and/or namespace name changes, the linkage is broken
until the code and/or software tools are updated with appropriate changes.

SUMMARY

[0003] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.
[0004] Various embodiments provide an ability to abstract type resolution

between multiple type systems. At least one type can be described in one or more

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

programmatically accessible file(s). In some embodiments, an application using a
different type system can programmatically access and resolve a type of the type
system without knowledge of a location of where a description of the type resides.
Alternately or additionally, type descriptions contained in the one or more
programmatically accessible file(s) can be analyzed and restructured into one or
more new programmatically accessible file(s) based, at least in part, upon the type
system descriptions.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The same numbers are used throughout the drawings to reference like
features.
[0006] Fig. laillustrates an operating environment in which various principles
described herein can be employed in accordance with one or more embodiments.
[0007] Fig. 1billustrates an operating environment in which various principles
described herein can be employed in accordance with one or more embodiments.
[0008] Fig. 2 illustrates an architecture in accordance with one or more
embodiments.
[0009] Fig. 3 illustrates a flow diagram in accordance with one or more
embodiments.
[0010] Fig. 4 illustrates a relationship diagram in accordance with one or more
embodiments.
[0011] Fig. 5 illustrates a flow diagram in accordance with one or more
embodiments.
[0012] Fig. 6 illustrates an example system that can be utilized to implement one
or more embodiments.
DETAILED DESCRIPTION
Overview
[0013] Various embodiments provide an ability to abstract type resolution
between multiple type systems. An application using one type system can call into
a second type system provided the application has knowledge on how to bridge
between type systems. For example, characteristics of a type system (e.g. data

types, behavior of data types, function call parameters, events, and the like) can be

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

described in one or more programmatically accessible file(s). An application can
access the files and resolve the differing type systems. In some embodiments, type
resolution can be abstracted such that the application can access the descriptions
without prior knowledge of which file to access, and/or where the files reside.
[0014] In the discussion that follows, a section entitled “Operating
Environment” is provided and describes multiple environments in which one or
more embodiments can be employed. Following this, a section entitled “Type
Resolution Architecture” describes an architecture that enables programmatic type
system resolution. Next, a section entitled “Type Description Storage” describes
various methods that can be used to enable flexible storage of type descriptions.
Last, a section entitled “Example System” describes an example system that can be
utilized to implement one or more embodiments.

[0015] Having provided an overview of various embodiments that are to be
described below, consider now example operating environments in which one or
more embodiments can be implemented.

Operating Environment

[0016] Fig. 1aand 1b illustrate operating environments in accordance with one
or more embodiments, shown generally at 100a and 100b. Fig. 1a illustrates an
example operating environment that can be utilized with reference to generation of
one or more metadata files, as described below. The environment of Fig. 1a can be
considered as a “build time” environment. Fig. 1b illustrates an example operating
environment that can be utilized with reference to flexible type system resolution.
The environment of Fig. 1b can be considered as a run time environment. In some
embodiments, operating environments 100a and 100b have at least some similar
components. Accordingly, for the purposes of brevity, Fig. 1a and Fig. 1b will be
described together. Similar components associated with Fig. 1a will be identified
as components having a naming convention of “1XXa”, while components
associated with Fig. 1b will be identified as components having a naming
convention of “1XXb”. Similarly, components specific to an operating

environment will simply be identified as “1XX”.

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

[0017] Environments 100a and 100b include, respectively, a computing device
102a, 102b having one or more processor(s) 104, 104b, and one or more computer-
readable storage media 106a, 106b. The computer-readable storage media can
include, by way of example and not limitation, all forms of volatile and non-
volatile memory and/or storage media that are typically associated with a
computing device. Such media can include ROM, RAM, flash memory, hard disk,
removable media and the like. One specific example of a computing device is
shown and described below in Fig. 6.

[0018] In addition, computing devices 102a, 102b include operating system(s)
(OS) 108a, 108b and application(s) 110a, 110b. Operating systems 108a, 108b
represent functionality configured to manage software and/or hardware resource(s)
of computing devices 102a, 102b. This can include memory management, file
management, services, functions, resource management, peripheral device
management, and the like. Application(s) 110a, 110b represent software
configured to execute on computing devices 102a, 102b, typically assisted by
operating system(s) 108a, 108b. Application(s) 110a, 110b can be implemented in
a same and/or different type system than that of operating system(s) 108a, 108b, as
further described below.

[0019] Computing devices 102a, 102b also include one or more software
interface(s) 112a, 112b, which represent programmatic access into functions,
services, data, and the like provided by software and/ application(s). Software
interface(s) 112a, 112b can enable programmatic access into operating system(s)
108a, 108b and/or application(s) 110a, 110b. For example, application(s) 110a,
110b can access functionality provided by operating system(s) 108a, 108b by
calling the software interface(s) 112a, 112b. In some embodiments, application(s)
112a, 112busing a different type system than that of the software interface can
programmatically resolve type differences, as further described below.

[0020] In addition, computing devices 102a, 102b also include one or more
metadata file(s) 114a, 114b, which represent one or more machine-readable file(s)
that include information associated with software interface(s) 112a, 112b, operating

system(s) 108a, 108b, and/or application(s) 110a, 110b, such as input parameter

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

types, parameter calling order, relationships between the interfaces, and the like.
Alternately or additionally, software interface(s) can be associated with peripheral
devices connected to computing devices 102a, 102b, such as a printer, a scanner, a
smart phone, and the like. In some embodiments, metadata file(s) 114a, 114b can
be configured to describe interface(s) in any suitable way, as further described
below.

[0021] Computing device 102a also includes merge module(s) 116. Merge
module(s) 116 represents functionality that can read one or more metadata file(s),
analyze the content of the files, and output one or more new metadata file(s)
containing restructured content. In some embodiments, the content can be
reorganized based, at least in part, upon type descriptions.

[0022] Computing device 102b includes type resolution module(s) 118. Type
resolution module(s) 118 represent functionality configured to receive a request to
access associated type data, and locate type resolution information. In some
embodiments, type resolution module(s) 118 can locate, without user input, the
type resolution information, independent of the information changing locations.
For example, type resolution module(s) 118 can locate, without user input, interface
description information when the information has been moved from a first file to a
second file, as further described below.

[0023] Computing devices 102a, 102b can be embodied as any suitable
computing device such as, by way of example and not limitation, a desktop
computer, a portable computer, a notebook computer, a handheld computer such as
a personal digital assistant (PDA), cell phone, and the like.

[0024] Having described example operating environments, consider now a
discussion of a type resolution architecture configured to enable type resolution
independent of location file name and/or location.

Type Resolution Architecture

[0025] As programming languages advance technically, so do their capabilities.
For example, applications written in a first programming language can call into
software written in a second programming language. Inherently, the programming

languages have different type systems. Thus, in order to successfully call software

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

residing in a different type system, the first programming language uses techniques
to resolve the varying types. For instance, a programmer can manually write
wrapper code to convert between the types. Alternately, type system definitions
can be stored in a file and programmatically accessed.

[0026] Programmatically accessing a file containing type definitions enables an
application to determine capabilities and descriptions at runtime. However,
accessing a file implies knowing not only which file to access, but the location of
the file. If content of the file changes and/or location of the file changes,
applications accessing the file can potentially fail unless properly updated. This
can sometimes create an unintentional coupling between the application(s) and
file(s).

[0027] Various embodiments provide an ability to abstract type resolution
between multiple type systems. Information associated with type resolution can be
stored in programmatically accessible files. In some embodiments, an application
using one type system can dynamically resolve a second type system through
access to the files. Alternately or additionally, the application can access the files
without knowledge of which file(s) to access, and/or where the file(s) reside.
[0028] Consider Fig. 2, which illustrates an example architecture 200, in
accordance with one or more embodiments. Architecture 200 includes operating
system 202, which can be configured to execute on a computing device. It should
be understood that for the sake of brevity, operating system 202 is not illustrated in
its entirety. Operating system 202 includes one or more operating system
component(s) 204 configured to manage resources associated with a computing
device. In some embodiments, operating system component(s) 204 can provide
programmatic access to the resources, as well as one or more service(s) and/or
feature(s) associated with managing the resources. Operating system component(s)
204 can also include basic elements associated with operating system 202, as well
as complex elements built from the basic elements. While this example illustrates
an architecture exposing functionality provided by operating system 202, it is to be

appreciated and understood that the architecture can be applied to expose

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

functionality provided by other suitable types of applications without departing
from the spirit of the claimed subject matter.

[0029] In some embodiments, operating system component(s) 204 can be
exposed via one or more interface(s), illustrated here as operating system
interface(s) 206. This can be any suitable form of an interface, such as an
Application Programming Interface (API). An application can access functionality
provided by operating system component (s) 204 by calling and/or executing
operating system interface(s) 206, as further described below. In some cases, the
application utilizes a type system different than a type system used to describe
operating system interface(s) 206. In some cases, operating system interface(s) 206
can include an application binary interface(s) (ABI). An ABI describes, at a
machine-level, a binary contract for calling functions, methods, APIs, and the like.
The binary contract can include an identification or name associated with a
function, a signature that can be used to call the function, an order of parameters
passed to the function and/or data types associated with parameters, etc.
Alternately or additionally, the binary contract can include definitions and/or rules
for exposing behavior associated with at least one type of a type system.

[0030] Operating system 202 also includes various metadata 208. Metadata 208
can include type resolution information that describes various aspects of associated
operating system interface(s) 206, such as version information, what methods are
available, what parameters the interface(s) take, data types of the parameters, the
order in which to pass the parameters, data type behavior and/or resolution
information, etc. In some embodiments, the metadata can include hierarchical
information associated with an interface, such as information describing
relationships between interface(s) and/or describing the interface(s) in an object-
oriented manner. Metadata can also include class descriptions, associated methods
and parameters of a class, and the like. In some cases, the metadata can describe the
interface using an abstract type system (e.g. a type system that is independent of a
specific programming language). Alternately or additionally, the metadata can
include descriptions of a particular type system, such as the abstract type system.

In turn, the specific programming language(s) can map descriptions of a particular

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

type system (e.g. the abstract type system) to the specific programming
language(s). Further, a programmer wanting to determine which interfaces are
available can manually and/or programmatically access descriptions of each
interface. For example, to determine what interfaces exist for operating system
component(s) 204, what type system the interfaces are described in, and how to call
them, the programmer can access associated metadata 208.

[0031] Architecture 200 also includes one or more application(s) 210.
Applications 210 can include one or more application(s) generated from one or
more programming language(s), such as HTML, JavaScript, Visual Basic, C#,
C++, and the like. In some embodiments, applications 210 include one or more
call(s) into an operating system component. In some cases, application(s) 10 can
be configured to first programmatically determine what interface(s) are available,
and then make a call into one or more of the determined interface(s). In some cases
application(s) 210 accesses the interface(s) with help from one or more generated
language projection module(s) 212 as further described below.

[0032] In one or more embodiments, generated language projection module(s)
212 maps an abstract type definition to a specific programming language. Any
suitable programming language can be mapped, examples of which are provided
above. In some embodiments, a generated language projection module can be
unique for each programming language. In other embodiments, a generated
language projection module can be multi-purpose and utilized by multiple
programming languages. A mapping enables current and future interfaces that are
described using the abstract type system to be accessible to a specific programming
language without additional programming statements (e.g. a wrapper function).
The mapping further allows a specific programming language to call an interface in
a manner that is native to the specific programming language. Any suitable type of
information can be mapped, such as classes, data types, function pointers,
structures, and the like.

[0033] Descriptions of the interface(s) can be used to describe how an
application should call an interface, as well as describe behavior of a type system

associated with the interface. Responsive to the descriptions being located, the

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

application can dynamically determine how to call an interface and resolve type
system differences between the application and interface. In some embodiments,
an application using a different type system can programmatically access and
resolve a type utilized by the interface without knowledge of a location of where
the type description resides. Alternately or additionally, how descriptions are
grouped can enable automatic type resolution, as further described below.
[0034] Consider a programmer writing an application using JavaScript. While
this example describes an implementation using JavaScript, it is to be appreciated
and understood that any programming language can be used without departing from
the spirit of the claimed subject matter. To access external functionality, the
programmer can include a statement in source code configured to identify a
namespace and/or type associated with the functionality. For instance, an external
type can be included and/or described in the source code as follows:
OperatingSystem.Foo.Bar.Typel
[0035] In this particular example, Typel represents the functionality being
accessed. This can be any suitable type of functionality, examples of which are
provided above and below. The above syntax represents a multi-level namespace
hierarchy traversable to locate Typel. At the highest level, Typel resides in a
namespace identified as “OperatingSystem”. Within “OperatingSystem” resides a
namespace identified as “Foo”. Similarly, within “Foo” resides a namespace
identified as “Bar”, where Typel resides. Accordingly, syntax can be used to
identify a logical location of Typel. However, a physical location of Typel (e.g.
what file Typel information resides in and/or what directory the file resides in) can
sometimes change. In the past, the physical location could be determined by hard
coding a path and filename within the application (directly or indirectly). Thus, if
the filename and/or path of Typel information changed, any direct or indirect
references to the file name and/or path utilized by the application would be
incorrect until updated. Further, until the direct or indirect references were
updated, the application could potentially not function properly.
[0036] Various embodiments provide an ability to abstract type resolution. For

example, a type can be programmatically resolved by an application without exact

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

knowledge of a location of associated type resolution information. In some
embodiments, the type resolution information can be relocated without updating
applications utilizing the resolution information with new location information.
The applications can be configured to locate the type resolution information
regardless of which file the type resolution information resides in.

[0037] Consider Fig. 3, which illustrates a flow diagram that describes steps in a
method in accordance with one or more embodiments. The method can be
performed by any suitable hardware, software, firmware, or combination thereof.
In at least some embodiments, aspects of the method can be implemented by one or
more suitably configured software module(s) executing on one or more computing
device(s), such as type resolution module(s) 118 of Fig. 1b. In some embodiments,
the method can be performed without user intervention.

[0038] Step 302 searches for a file with a filename that matches a type being
resolved. This can include searching a plurality of metadata files as described
above. Referring to the above syntax illustration, responsive to an application
accessing OperatingSystem.Foo.Bar. Typel, step 302 searches for a file with the
name “OperatingSystem.Foo.Bar. Typel”. Any suitable type of search can be
performed. For example, the search can be configured to look for an exact match
between the type and filename, a partial match between the type and filename, and
the like. Alternately or additionally, the search can be configured to search in one
directory, multiple directories and/or subdirectories, or any combination thereof.
[0039] Step 304 determines whether the file exists. Responsive to determining
the file exists, step 306 sends information indicating the type is a namespace.
Responsive to determining the file does not exist, step 308 searches for a filename
that matches a namespace associated with the type being resolved. In some cases,
this can include manipulating a string that contains the namespace hierarchy to
determine what namespace to search on. In the above example, Typel is illustrated
as being located three levels down in a namespace hierarchy. The string can be
manipulated to remove the type (e.g. Typel) and leave the namespace hierarchy.
Here, step 308 would search for a name associated with the namespace hierarchy

“OperatingSystem.Foo.Bar”. Similar to above, this search can be configured to

10

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

search for an exact-match, a partial-match, search in one directory, subdirectories,
etc.

[0040] Step 310 determines whether a file associated with the filename exists.
Responsive to determining the file exists, step 312 processes the file for the
information associated with the type.

[0041] Step 314 determines whether information associated with the type is
located within the file. Responsive to determining the information associated with
the type is within the file, step 316 returns the information. For example, the
information can be returned to a calling program. However, responsive to
determining the information associated with the type is not within the file, the
process proceeds to step 318.

[0042] Step 318 searches for a filename that matches a higher-level namespace.
This can be in response to determining a file does not exist, such as in response to
step 310, or in response to not locating information associated with a type within a
file, such as in response to step 314. A higher-level namespace can be determined
in any suitable fashion. For instance, in the above example, the string can be
further manipulated to reflect one level up in the namespace hierarchy (e.g.
“OperatingSystem.Foo”). Step 318 determines the higher-level namespace and
searches for a file with an associated name.

[0043] Step 320 determines whether a file associated with the filename exists.
As in the case of step 310, if the file is determined to exist, the process proceeds to
steps 312, 314, and/or 316, where the file is processed for associated type
information.

[0044] Responsive to determining the file does not exist, step 322 determines
whether another namespace hierarchy level exists. This can be determined in any
suitable manner. For example, the string can be searched for a level separator. In
the above example, syntax of a “.” distinguishes between levels of namespace
hierarchy.

[0045] Responsive to determining another namespace hierarchy level exists, the
process repeats, and the process returns to step 318 to search for a file with the

newly determined namespace. Steps 318, 320, and 322 repeat themselves until an

11

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

appropriate file is found or the top of the namespace hierarchy has been reached
and searched. Responsive to determining another namespace hierarchy level does
not exist, step 324 returns an error. This can include throwing an exception,
displaying a popup dialog box, etc.

[0046] Through the use of the method described above, multiple files and/or
locations can be searched for type resolution information. As illustrated, a type
search can be based, at least in part, on hierarchical namespace information. Fig. 3
describes a type search that starts at a lower namespace hierarchy level (e.g
“OperatingSystem.Foo.Bar.Typel”) and traverses up each namespace level until the
type is located or the top namespace hierarchy level is reached (e.g.
“OperatingSystem”). However, this search can execute in any suitable order. In
some embodiments, a type search can start at a higher namespace hierarchy level
(e.g. “OperatingSystem”) and traverse down each namespace level until the type is
located or the bottom namespace hierarchy level is reached (e.g
“OperatingSystem.Foo.Bar.Typel”). Searching on a namespace hierarchy can
abstract where type resolution information can reside, and further enable type
resolution information to change locations without impact to applications accessing
the type resolution information.

[0047] Having considered type resolution architecture configured to enable type
resolution independent of location file name and/or location, consider now a
discussion of flexible type description storage in accordance with one or more
embodiments.

Type Description Storage

[0048] As metadata files can be used to describe various aspects of software
interfaces. As described above, metadata files can include information describing
interfaces in terms of a class hierarchy, an abstract type system, associated
methods, properties, and events, and the like. In some cases, associated
information can reside in multiple files. For example, different metadata files can
include information pertaining to a same namespace. While multiple metadata files
can give flexibility to developers of the metadata files, it can sometimes hinder

users of the metadata files when searching. Consider an example where each

12

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

namespace has its own associated metadata file. From a partitioning standpoint,
separate files for each namespace can isolate changes to a namespace to an
associated file. From a searching standpoint, however, having to search through
multiple files for information can slowdown performance when searching at
runtime. Further, from a knowledge standpoint, keeping track of what information
is in what file can be compounded as the number of files increases.

[0049] Various embodiments enable type resolution without prior knowledge of
a file name and file location of where type resolution information resides. Content
of a set of input files can be analyzed and partitioned based, at least in part, on
composition rules. A set of output files can be produced and are configured to
include the partitioned content. The output files can enable locating the content
without prior knowledge of where the content resides.

[0050] As an example, consider Fig. 4, which illustrates a relationship between
descriptive language files, metadata files, and a merge module in accordance with
one¢ or more embodiments. In at least some embodiments, modules illustrated in
the relationship diagram can be implemented as software, hardware, or any
combination thereof, such as merge module(s) 116 of Fig. la.

[0051] In the illustrated and described embodiment, Foo.idl 402 represents a
descriptive language file configured to describe one or more interface(s). In some
embodiments, an interface can be associated with an operating system and/or an
application, such as operating system interface(s) 108 and/or application(s) 110 of
Fig. 1. The description language files can describe the interfaces using any suitable
description, markup language, and/or syntax, such as with an Interface Definition
Language (IDL), eXtensible Markup Language (XML), and the like. In this
particular example, Foo.idl is representative of an IDL file.

[0052] Foo.idl 402 includes descriptions of three types: Type Foo.Bar.Typel
404, Type Foo.Bar.Type2 406, and Type Foo.Bar.Type3 408. While illustrated
with three entries, it is to be appreciated and understood that any suitable number of
descriptions, as well as types of descriptions, can be included in Foo.idl 402
without departing from the spirit of the claimed subject matter. For instance, types

can include descriptions of classes, interfaces, methods, properties, events, and the

13

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

like. In this example, types 404, 406, and 406 are described as being included in
the hierarchical namespace of “Foo.Bar”.

[0053] Fig. 4 also illustrates a second description language file, Bar.idl 410.
Similar to Foo.idl 402, Bar.idl 410 represents a description language file that
includes three types: Type Foo.Bar.Type4 412, Type Foo.Quux.Typel 414, and
Type Foo.Quux.Type2 416. Referring to the syntax of types 412, 414, and 416,
Bar.idl 410 includes at least one type in the namespace “Foo.Bar”, and at least two
types in the namespace “Foo.Quux”.

[0054] Foo.metadata 418 represents a machine-readable metadata file based, at
least in part, on Foo.idl 402. While not illustrated, in some embodiments,
Foo.metadata 418 can be generated by a compiler from Foo.idl 402. Similar to
Foo.idl 402, Foo.metadata 418 includes descriptions of types Foo.Bar. Type1420,
Foo.Bar.Type2 422, and Foo.Bar.Type3 424 in a format native to a metadata file.
Bar.metadata 426 also represents a machine-readable metadata file which is based,
at least in part, on Bar.idl 410. As in the case of Foo.metadata 418, Bar.metadata
426 includes type descriptions Foo.Bar. Type4 428, Foo.Quux.Typel 430, and
Foo.Quux.Type3 432.

[0055] Included in Fig. 4 is merge module 434. Merge module 434 can accept
one or more input file(s) and, in turn, generate one or more output file(s) based
upon a set of criteria and/or rules. For example, input commands and/or rules can
be applied to merge module 434 that specify an input directory in which to search
for input files, an output directory in which to place output files, a level of
validation to apply, what level of namespace hierarchy to consolidate and/or
partition at, how to name output files, what number of output files to generate, what
depth metadata files should be generated at, and the like. Criteria and/or rules can
be given to merge module 434 in any suitable manner, such as through a command
line and/or a “makefile” that contains one or more rule(s).

[0056] In this example, Foo.metadata 418 and Bar.metadata 426 are inputs to
merge module 434. Merge module 434 parses through the input files and generates
output file(s) as directed. Here, merge module 434 generates two output files:

Foo.Bar.metadata 436 and Foo.Quux.metadata 438. Foo.Bar.metadata 436

14

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

includes types pertaining to the “Foo.Bar” namespace (e.g. Foo.Bar. Typel 440,
Foo.Bar.Type2 442, Foo.Bar.Type3 444, and Foo.Bar.Type4 446). Similarly,
Foo.Quux.metadata 438 includes types pertaining to the “Foo.Quux” namespace
(e.g. Foo.Quux.Typel 448, Foo.Quux.Type2 450). As in the case above,
Foo.Bar.metadata 436 and Foo.Quux.metadata 438 represent machine-readable
metadata files that potentially contain reorganized and/or regrouped data from
associated input files. Thus, merge module 434 can analyze content from multiple
files and restructure the content according to a set of criteria.

[0057] In some embodiments, a file naming convention can be utilized to enable
abstract type resolution. For example, a namespace hierarchy can be used as the
naming convention. In Fig. 4, files Foo.Bar.metadata 436 and Foo.Quux.metadata
438 include an associated namespace hierarchy in their file name (e.g. “Foo.Bar”
and “Foo.Quux”, respectively). By utilizing this naming convention, type
information can be searched for based upon its associated namespace, rather than a
specific file name. Alternately or additionally, an output file can include multiple
levels of namespace hierarchy data. In Fig. 4, Foo.Bar.metadata 436 is illustrated
as containing data in the “Foo.Bar” namespace. However, Foo.Bar.metadata 436
can also be configured to include type information residing at a namespace
hierarchy level of “Foo.Bar.Levell.Level2.Level3”. Thus, the naming convention
indicates a highest level namespace that can be contained within the file.

[0058] Additionally, a search algorithm, such as that described in Fig. 3, can be
employed to traverse the different levels of the hierarchical namespace (and
associated files) until an appropriate type is located. By configuring all type
information at the same namespace hierarchy level to reside in the same file, the
information associated with a particular level can be moved from file to file without
impact to applications utilizing the information. Information associated with
namespace hierarchies can be partitioned in any suitable way. For example,
multiple hierarchy levels can reside in a same file (e.g. Foo.Bar, Foo.Bar.Levell,
and Foo.Bar.Level?2 all reside in a file named “Foo.Bar.metadata”), or each file can
have its own associated file (e.g. information at the Foo.Bar level resides in

“Foo.Bar.metadata”, information at the Foo.Bar.Levell resides in a

15

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

“Foo.Bar.Level l.metadata” file, etc. Provided the information is placed according
to its associated namespace hierarchy, type resolution can be abstracted by
removing dependencies on a specific file name.

[0059] Consider now Fig. 5, which illustrates a flow diagram that describes
steps in a method in accordance with one or more embodiments. The method can
be performed by any suitable hardware, software, firmware, or combination
thereof. In at least some embodiments, aspects of the method can be implemented
by one or more suitably configured software module(s) executing on one or more
computing device(s), such as merge module(s) 116 of Fig. 1a.

[0060] Step 502 receives one or more input criteria associated with generating
one or more output file(s). In some embodiments, the input criteria can include
rule(s) that specify how to partition information into one or more output files. For
example, the input criteria can specify one or more namespace hierarchy levels to
group together in an output file. Alternately or additionally, the input criteria can
describe where to find the information, such as by specifying what files and/or
directories to pull information from.

[0061] Responsive to receiving the one or more input criteria, step 504 receives
one or more input file(s) that include information associated with one or more
software interfaces. The information can be any suitable type of information, such
as descriptions of the software interfaces using an abstract type system, object-
oriented associations, methods, properties, function pointers, input and/or output
parameters, type system information, and the like. In some embodiments, type
information can include namespace hierarchy information.

[0062] Responsive to receiving the one or more input file(s), step 506 analyzes
the information based, at least in part, on the one or more input criteria. This can
include analyzing the input files(s) to determine what namespace hierarchy type
information exists within each file.

[0063] Responsive to analyzing the information, step 508 generates at least one
output file that includes the information. In some embodiments, the output files
can include information that has been repartitioned into different files based, at

least in part, on the input criteria. The output file can be configured in any suitable

16

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

manner, examples of which are provided above. For example, the output file(s) can
be configured as a metadata file named with a naming convention based upon a
namespace hierarchy included in the metadata file. Alternately or additionally, the
output file(s) can be configured to include multiple levels of a namespace
hierarchy. By grouping namespace hierarchy information together into an output
file, applications can search for information based upon a namespace hierarchy
level, rather than a specific filename. This enables flexible partitioning of the
information without impact to the applications. As long as an application knows
what namespace hierarchy level a particular type resides in, associated type
information can be located in the output files, regardless of how the namespace
hierarchy levels are grouped.

[0064] Having considered flexible type description storage, consider now a
discussion of an example system in accordance with one or more embodiments.

Example System

[0065] Fig. 6 illustrates an example computing device 600 that can be used to
implement the various embodiments described above. Computing device 600 can
be, for example, computing devices 102a and/or 102b of Figs. 1a and 1b or any
other suitable computing device.

[0066] Computing device 600 includes one or more processor(s) or processing
unit(s) 602, one or more memory and/or storage component(s) 604, one or more
input/output (I/O) devices 606, and a bus 608 that allows the various components
and devices to communicate with one another. Bus 608 represents one or more of
any of several types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures. Bus 608 can include wired and/or
wireless buses.

[0067] Memory/storage component 604 represents one or more computer
hardware storage media. Component 604 can include volatile media (such as
random access memory (RAM)) and/or nonvolatile media (such as read only
memory (ROM), Flash memory, optical disks, magnetic disks, and so forth).
Component 604 can include fixed media (¢.g., RAM, ROM, a fixed hard drive,

17

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

etc.) as well as removable media (e.g., a Flash memory drive, a removable hard
drive, an optical disk, and so forth).
[0068] One or more input/output device(s) 606 allow a user to enter commands
and information to computing device 600, and also allow information to be
presented to the user and/or other components or devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a
scanner, and so forth. Examples of output devices include a display device (e.g., a
monitor or projector), speakers, a printer, a network card, and so forth.
[0069] Various techniques may be described herein in the general context of
software or program modules. Generally, software includes routines, programs,
objects, components, data structures, and so forth that perform particular tasks or
implement particular abstract data types. An implementation of these modules and
techniques may be stored on or transmitted across some form of computer readable
media. Computer readable media can be any available medium or media that can
be accessed by a computing device. By way of example, and not limitation,
computer readable media may comprise “computer-readable storage media”.
[0070] “Computer-readable storage media” include volatile and non-volatile,
removable and non-removable hardware media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules, or other data. Computer-readable hardware storage
media include, but are not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired
information and which can be accessed by a computer.

Conclusion
[0071] Various embodiments provide an ability to abstract type resolution
between multiple type systems. At least one type can be described in one or more
programmatically accessible file(s). In some embodiments, an application using a
different type system can programmatically access and resolve a type of the at least

one type system without knowledge of a location of where a description of the type

18

WO 2013/036248 PCT/US2011/055491

resides. Alternately or additionally, type descriptions contained in the one or more
programmatically accessible file(s) can be analyzed and restructured into one or
more new programmatically accessible file(s) based, at least in part, upon the type
descriptions.

[0072] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described

above are disclosed as example forms of implementing the claims.

19

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

What Is Claimed Is:
1. A computer-implemented method comprising:

searching a plurality of files for a first file associated with a type being
resolved;

responsive to determining the first file exists, sending information indicating
the type is a namespace;

responsive to determining the first file does not exist, searching the plurality
of files for a filename matching a first namespace level hierarchy associated with
the type;

responsive to determining a filename matching a first namespace level
hierarchy associated with the type exists, processing a file associated with the
filename for information associated with the type;

responsive to determining the filename matching the first namespace level
hierarchy associated with the type does not exist, determining whether another
namespace hierarchy level associated with the type exists; and

responsive to determining another namespace hierarchy level exists,
searching the plurality of files for a filename associated with the another namespace
hierarchy level.

2. The computer-implemented method of claim 1, the searching a
plurality of files for a first file further comprising searching the plurality of files for
a file with a filename matching a name associated with the type.

3. The computer-implemented method of claim 2, the searching a
plurality of files for a first file further comprising searching for the first file without
knowledge of a location of where the type resides.

4. The computer-implemented method of claim 1 performed without
user intervention.

S. The computer-implemented method of claim 1, the plurality of files
comprising metadata files individual ones of which contain descriptions associated
with an operating system software interface.

6. The computer-implemented method of claim 5, the metadata files

configured to describe the type independent of a specific programming language.

20

10

15

20

25

30

WO 2013/036248 PCT/US2011/055491

7. One or more computer-readable hardware storage media comprising
computer readable instructions which, when executed, implement:
a type resolution module configured to, without user intervention:
search one or more metadata files for a file with a filename that
matches a namespace of a type associated with a type system;
responsive to determining the file exists, process the file for
information associated with the type;
responsive to determining the file does not exist, perform, at least one
time:
determine whether another namespace hierarchy level
associated with the type exists; and
responsive to determining another namespace hierarchy level
exists, search the one or more metadata files for a file with a filename
that matches the another namespace hierarchy level;
said perform, at least one time, terminating responsive to:
determining the file with a filename that matches the another
namespace hierarchy level exists; or
determining another namespace hierarchy level does not exist.
8. The one or more computer-readable hardware storage media of claim
7, the search the one or more metadata files for a file with a filename that matches
the another namespace hierarchy level comprising a search for at least a partial
filename match to the namespace hierarchy level.
9. The one or more computer-readable hardware storage media of claim
7, the type associated with a type system comprising an Application Programming
Interface (API) associated with an operating system.
10. The one or more computer-readable hardware storage media of claim
7, the search one or more metadata files for a file with a filename that matches a
namespace of a type associated with a type system further comprising a search

without knowledge of a location of where the type resides.

21

WO 2013/036248 PCT/US2011/055491
1/7

100a w

Computing Device 102a

Processor(s) 104a |

Computer-Readable Storage Media — 106a

Operating System Application(s)
(0S) 110a
108a E—
Software ,
interface(s) Metadata file(s)
114a
112a

Merge Module(s)
116

Fig. 1a

WO 2013/036248 PCT/US2011/055491
2/7

100bj

Computing Device 102b

Processor(s) 104b]

Computer-Readable Storage Media — 106b

A A

Operating System
(0S)
108b

——

Application(s)
110b

Software ,
interface(s) Metail?’fbﬂle(s)
112b E—

Type Resolution
Module(s)
118

Fig. 1b

WO 2013/036248

200
\‘

3/7

Application(s) 210

Generated Language
Projection module(s) 212

§ Operating
© System
g Component
o) interface(s)
2| 2

Operating System
Component(s)
204

PCT/US2011/055491

WO 2013/036248 PCT/US2011/055491
4/7

Search for a file with a
filename that matches a type
being resolved

302

Determine
whether the file
exists?

304

Send information indicating
the type is a namespace

Search for a filename that

308 N matches a hamespace

associated with the type
being resolved

Determine
whether a file associated
with the filename
exists?

310

Process file for information
associated with the type

318 Search for a filename that Determine whether
Q matches a higher-level information associated with
type is within file?

namespace

Determine
whether a file associated
with the filename
exists?

320

316
) Return information

Determine
whether another
namespace hierarchy
level exists

Return error

PCT/US2011/055491

WO 2013/036248

57

0S¥ ZodAL xXnnp 0o

¥ LadAL xnn 004

Fomy >
ejepejsw Xnn) 004

V¥ yodAL Jeg oo

YT codA] 1eg oo

Zv¥ zodA] 1eg oo

07V LodAL teg oo

Q_NUQ_QE] mm.OOn_

Z¢¥ zadA L xnnp oo

ey
a|npoy\ abis\

H 0¢¥ LodAL xnnp 004 u

Q¥ vodA] 1eg oo

ocv EmvﬁmE\;mm_\

Yoy codA] 1eg oo

v zadA| Jeg oo

02y L odA] 1eg oo

31T elepejsw-oo

_—

9Ly

Z2adA] xnnpoo4 adA)

H Y1¥ LedA1 ' xnnp 004 adA| u

¥ vodA| 1eg-ood adA)

Olv Ipried

f

0¥ cadA] Jeg-oo4 adA]

90¥ zodA 1 Jeg-oo4 adA] u

V0V LadA| 1eg oo adA]

Z0v Ip1oo4

WO 2013/036248

502
Y

6/7

Receive one or more input criteria
associated with generating one or
more output file(s)

504
)

:

Receive one or more input file(s) that
include information associated with
one or more software interface(s)

506 ™

—

~

Analyze the information based, at least
in part, on the one or more input
criteria

—

Generate at least one output file
configured to include the information

Fig. 5

PCT/US2011/055491

PCT/US2011/055491

WO 2013/036248

901A8Q O
| _
909

717

sng

809

abelo1g
JAIowsN

- 709 — ¢09

10ss820.d

h_ 009

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2011/055491

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/44(20006.01)i, GOGF 9/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/44; GO6F 17/30; GO6F 12/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: type, abstract, filename, namespace

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2008-0052329 Al (DAN DODGE et al.) 28 February 2008 1-10
See paragraphs [0033]-[0036], claims 1-11, and figures 7-9.

A US 6330567 B1 (CHAO; KUO-JEN) 11 December 2001 1-10
See abstract, claims 1-5, and figure 1.

A US 6560613 Bl (GYLFASON SNORRI et al.) 06 May 2003 1-10
See abstract, claim 1, and figures 5A, BB.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
11 SEPTEMBER 2012 (11.09.2012) 12 SEPTEMBER 2012 (12.09.2012)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan Lee Sang Lim
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-3452

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2011/055491

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2008-0052329 A1 28.02.2008 CA 2596434 A1 25.02.2008
CN 101131672 A 27.02.2008
CN 101131672 GO 27.02.2008
EP 1895394 A2 05.03.2008
EP 1895394 A3 12.08.2009
JP 2008-052730 A 06.03.2008
KR 10-2008-0018801 A 28.02.2008
US 7599972 B2 06.10.2009

US 6330567 B1 11.12.2001 None

US 6560613 B1 06.05.2003 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

