

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-528678

(P2004-528678A)

(43) 公表日 平成16年9月16日(2004.9.16)

(51) Int.C1.⁷

HO1R 12/16

HO1R 13/658

F1

HO1R 23/68

HO1R 13/658

テーマコード(参考)

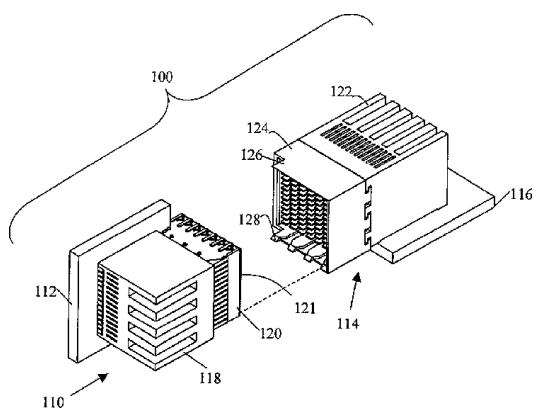
5E021

5E023

審査請求 未請求 予備審査請求 有 (全 49 頁)

(21) 出願番号 特願2002-561325 (P2002-561325)
 (86) (22) 出願日 平成14年2月1日 (2002.2.1)
 (85) 翻訳文提出日 平成15年8月1日 (2003.8.1)
 (86) 國際出願番号 PCT/US2002/002862
 (87) 國際公開番号 WO2002/061889
 (87) 國際公開日 平成14年8月8日 (2002.8.8)
 (31) 優先権主張番号 60/265,826
 (32) 優先日 平成13年2月1日 (2001.2.1)
 (33) 優先権主張国 米国(US)

(71) 出願人 591069226
 テラダイン・インコーポレーテッド
 TERADYNE INCORPORATED
 アメリカ合衆国マサチューセッツ州オーリンズ
 18, ボストン, ハリソン・アベニュー
 321
 (74) 代理人 100089705
 弁理士 社本 一夫
 (74) 代理人 100076691
 弁理士 増井 忠式
 (74) 代理人 100075270
 弁理士 小林 泰
 (74) 代理人 100080137
 弁理士 千葉 昭男


最終頁に続く

(54) 【発明の名称】マトリックスコネクタ

(57) 【要約】

【解決手段】マトリクスアッセンブリで使用するのに適した電気コネクタアッセンブリが開示されている。電気コネクタアッセンブリは、2つのコネクタを有し、それぞれウェーハから組み立てられている。個々のウェーハは、遮蔽され、別体のシールド片が1つのコネクタ内で当該コネクタのウェーハを横断して配置されている。更に、少なくとも一方のコネクタ内のウェーハは、2つのコネクタが自己整列できるようにする可撓性部分を含んでいる。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

マトリクスコネクタにおいて、

a) それぞれに絶縁部を有し、それぞれに導体要素が埋め込まれた複数のサブアッセンブリであって、前記導体要素はそれぞれに絶縁部の第1面から伸張している係合接点部と絶縁部の第2面から伸張している接点テールを有しているサブアッセンブリと、

b) 前記サブアッセンブリそれぞれの絶縁部に取り付けられ、前記サブアッセンブリを平行に保持する編成部と、

c) それぞれにサブアッセンブリに平行且つ隣接して配置された複数の第1型シールド部材と、

d) 前記サブアッセンブリの接点部が開口部内に延びているような開口部を備えたキャップと、

e) それぞれに少なくとも1つの前記第1型シールドと電気的に接続された複数の第2型シールドであって、同一サブアッセンブリ上の信号導体の隣接する連結接点部の間のキャップの開口部内に配置されている部分を有する第2型シールドと、を備えているマトリクスコネクタ。

【請求項 2】

前記編成部は絶縁性ハウジングを備えている、請求項1に記載のコネクタ。

【請求項 3】

前記絶縁性ハウジングは、中に複数のスロットが形成され、前記サブアッセンブリそれぞれの絶縁部は前記スロットの1つに係合したタブを含んでいる、請求項2に記載のマトリクスコネクタ。

【請求項 4】

前記編成部は金属編成部から構成されている、請求項1に記載のマトリクスコネクタ。

【請求項 5】

前記サブアッセンブリは、それぞれ、複数の導電性要素の周りにモールド成形された絶縁部を有している、請求項1に記載のマトリクスコネクタ。

【請求項 6】

前記サブアッセンブリそれぞれの導電性要素は、ピンを備えた接点部を有している、請求項1に記載のマトリクスコネクタ。

【請求項 7】

前記第1面と第2面は直交している、請求項1に記載のマトリクスコネクタ。

【請求項 8】

前記第1型シールドは、それぞれ、可撓性部分を備えた少なくとも1つのスロットを含んでおり、前記第2型シールドが前記スロットに挿入され前記可撓性部分に対して電気的接続を形成している、請求項1に記載のマトリクスコネクタ。

【請求項 9】

前記第1型シールド部材は、それぞれ、印刷回路板に対する電気的接続を形成するようになっている接点テールを備えており、前記第2型シールドは、前記第1型のシールドを通して印刷回路板と電気的に接続されている、請求項1に記載のマトリクスコネクタ。

【請求項 10】

前記第2型シールドは、それぞれ、前記第1型シールドそれぞれに接続されている、請求項1に記載のマトリクスコネクタ。

【請求項 11】

前記第2型シールドは、それぞれ、相手電気コネクタのシールドに対する電気的接続を形成するようになっている複数の接点領域を含んでいる、請求項1に記載のマトリクスコネクタ。

【請求項 12】

前記キャップは絶縁体で形成されている、請求項1に記載のマトリクスコネクタ。

【請求項 13】

10

20

30

40

50

前記キャップは、相手コネクタを間に受け入れるようになっている複数の側壁を備えている、請求項1に記載のマトリクスコネクタ。

【請求項14】

前記接点テールが電気的に接続されている印刷回路板を更に備えている、請求項1に記載のマトリクスコネクタ。

【請求項15】

前記印刷回路板と平行に取り付けられている第1の複数のボードと、前記ボードに垂直に取り付けられている第2の複数の印刷回路板とを備えているマトリクスアッセンブリ内の、請求項14に記載のマトリクスコネクタ。

【請求項16】

マトリクスコネクタアッセンブリにおいて、

a) 第1コネクタであって、

i) それぞれに絶縁部を有し、それぞれに導電性要素が埋め込まれている複数の第1型サブアッセンブリであって、前記各導電性要素は前記絶縁部の第1面から伸張している連結接点部と、前記絶縁部の第2面から伸張している接点テールとを有しており、それぞれに連結領域に矩形アレイに配置されている連結接点部分と平行に配置されている複数の第1型サブアッセンブリと、

ii) それぞれに前記第1型サブアッセンブリと平行且つ隣接して配置されている複数の第1型シールドと、

iii) それぞれに少なくとも1つの前記第1型シールドに電気的に接続されている複数の第2型シールドであって、同一サブアッセンブリ上の信号導体の隣接する連結接点部の間の連結領域に配置されている連結部分を有している第2型シールドと、を備えている第1コネクタと、

b) 第2コネクタであって、

i) それぞれに絶縁部を有し、それぞれに導電性要素が埋め込まれている複数の第2型サブアッセンブリであって、前記各導電性要素は前記絶縁部の第1面から伸張している連結接点部と、前記絶縁部から伸張している接点テールとを有しており、前記第1型サブアッセンブリは、それぞれに連結領域に矩形アレイに配置されている連結接点部と平行に配置されている複数の第2型サブアッセンブリと、

ii) それぞれに前記第2型サブアッセンブリと平行且つ隣接して配置され、それぞれに連結領域に伸張している連結部分を有している複数の第3型シールド部材と、を備えている第2コネクタと、を備えており、

c) 前記第1コネクタと前記第2コネクタを連結させるとき、前記第1コネクタの前記連結接点部は前記第2コネクタの前記連結接点部と接点を形成し、前記第2シールドの前記連結部分は前記第3シールドの前記連結部分と接触する、マトリクスコネクタアッセンブリ。

【請求項17】

前記第1コネクタは、連結領域の境界を定める側壁を有する前方ハウジングを含んでいる、請求項16に記載のマトリクスコネクタアッセンブリ。

【請求項18】

前記前方ハウジングは、絶縁体を備えており、前記複数の第2型シールドは、側壁と平行に前記前方ハウジングに取り付けられている、請求項17に記載のマトリクスコネクタアッセンブリ。

【請求項19】

前記第2型シールドのそれぞれは、前記第1型シールドのそれぞれに接続されている、請求項17に記載のマトリクスコネクタ。

【請求項20】

前記第1型シールドは、それぞれ、可撓性部分を備えた少なくとも1つのスロットを含んでおり、前記第2型シールドが前記スロットに挿入され前記可撓性部分に対する接続を形成する、請求項17に記載のマトリクスコネクタ。

10

20

30

40

50

【発明の詳細な説明】**【技術分野】****【0001】**

本発明は、概略的には電子アッセンブリに、より厳密には電子アッセンブリ内の印刷回路板間で信号を経路付けするための電気コネクタに関する。

【背景技術】**【0002】**

本出願は、2001年2月1日出願の米国仮特許出願第60/265,826号に対する優先権を主張し、同出願を参考文献として本願に援用する。

電子システムは、幾つかの印刷回路板で組立てられることがしばしばである。これらの回路カードは、時には「データボード」と呼ばれることがある。データボードはカードケージに保持される。次いでデータボード間に電気的接続部が形成される。

【0003】

従来の方式の1つとして、バックプレーンを使ってデータボードを相互接続するやり方がある。バックプレーンは大型の印刷回路板であり、能動素子は取り付けられているとしてもごく僅かである。主に、バックプレーンは、1つのデータカードから別のデータカードへ電気信号を経路付けする信号トレスを保有している。バックプレーンをカードケージアッセンブリの背面に取り付け、データボードをカードケージの前方から挿入する。データカードは互いに平行でバックプレーンに対して直角に配置される。

【0004】

組立てを容易にするために、データカードは分離可能なコネクタによりバックプレーンに接続される。データカードをバックプレーンに結合するのに、しばしば2部片構成の電気コネクタが使用される。バックプレーンとデータカードに、それぞれコネクタの1部片ずつを取り付ける。これらの部片は連結して多くの導電経路を作り出す。時には、データボードコネクタをバックプレーンコネクタと正しく整列させるための案内として、バックプレーンにガイドピンが取り付けられる。

【0005】

2部片構成の電気コネクタは各部片が接点を有しており、2つの部片が連結したときに電気的接觸が作り出されるようになっている。従来のバックプレーンコネクタは、ピン又はブレードの形状をした接点を有しており、データカード接点は、レセプタクルの形状をした接点を有している。コネクタを連結する際、各ピンはレセプタクルに挿入される。

【0006】

高速高密度コネクタを実現するために、コネクタにはしばしば遮蔽機構が加えられる。Stokoe他に対する米国特許第5,993,259号は、望ましい遮蔽機構の設計を表示しており、本願に参考文献として援用する。同特許の譲受人であるテラダイン社は、VHDMと呼ばれるコネクタを市販し、商業的に成功を納めている。

【0007】

全ての電子アッセンブリがバックプレーンを採用しているわけではない。中にはミッドプレーン構成を使っているものもある。ミッドプレーン構成では、データカードはカードラックの前面と背面の両方に挿入される。ミッドプレーンと呼ばれる別の印刷回路板は、カードケージアッセンブリの中央に取り付けられる。ミッドプレーンはバックプレーンに非常に良く似ているが、アッセンブリの前面及び背面から挿入されるデータボードに接続するために両側にコネクタを有している。

【0008】

更に別の変型例はマトリクス構成と呼ばれているものである。マトリクス構成では、データボードはカードケージの前面と背面の両方から挿入される。しかしながら、前面から挿入されるボードは背面から挿入されるボードに対して垂直である。ボード間を接続するために、これら回路板の相互接続部にコネクタが取り付けられている。

【0009】

現在、或るマトリクス構成については、適した高速高密度コネクタが存在しない。

10

20

30

40

50

【特許文献1】

米国仮出願第60/265,826号

【特許文献2】

米国特許第5,993,259号

【発明の開示】**【発明が解決しようとする課題】****【0010】**

上記背景に着眼し、本発明の目的は、マトリクス構成用の高速高密度コネクタを提供することである。

本発明の別の目的は、製造が容易なマトリクスコネクタを提供することである。

10

【課題を解決するための手段】**【0011】**

上記及びその他の目的は、2つの相互連結可能な部片を備えたコネクタで実現される。各部片は、複数の信号導体と少なくとも1つの接地導体とを含んでいる複数のウェーハから形成されている。各ウェーハは、マトリクス構成に装着されたときに垂直になるように配置されている。一方のコネクタ部片は、その部片の接地導体に対して直交し相手部片の接地導体とは平行となる複数の直交シールド部片を含んでいる。直交シールド部片は各コネクタ部片の接地導体に電気的に接続されている。

【発明を実施するための最良の形態】**【0012】**

本発明は、以下の詳細な説明と添付図面を参照すれば、よく理解頂けるであろう。

図1はマトリクスアッセンブリ100の一部を示している。アッセンブリ100は、垂直ボード110と水平ボード116を含んでいる。ボード112にはA型コネクタが取り付けられ、ボード116にはB型コネクタが取り付けられている。コネクタ110と116は、それぞれ、ボード上又はボード内の回路トレースに対して電気的接続を形成する数多くの信号及び接地接点テール230を有している。更に、各コネクタは、連結部分232(図2)及び832(図8)を備えた導電性要素を有している。連結部分は、A型コネクタ及びB型コネクタを連結させたときに、ボード112とボード116の間で多数の回路経路が完成するように、配置されている。

【0013】

図示の例で、ボード110と116は、マトリクスアッセンブリでは従来から見られる旧知の印刷回路板である。なお、非常に小さいボードしか示していない旨理解頂きたい。商業的な実施例では、各ボードはもっと大きくて数多くの電子デバイスを保有している。

【0014】

また、マトリクスアッセンブリの商業的実施形態では、ボードはたった2枚ではなくもっと多くの傾向にあると理解頂きたい。例えば、マトリクスアッセンブリは、多数の水平ボードが同一の垂直ボードに接続されると、より有用になる。このようにして、垂直ボードは、垂直ボードの間の電気信号を経路付けすることができる。マトリクスアッセンブリは、複数の垂直ボードが複数の水平ボードと共に含まれる場合には更に一層有用となる傾向にある。このようにして、システム設計者は、印刷回路板の間の信号の経路付けに高い柔軟性を持たせている。

30

【0015】

図1に示す実施形態では、A型コネクタ110は、ハウジング118とキャップ120を含んでいる。後に詳しく説明するように、各コネクタは、信号導体を保有する複数のサブアッセンブリ又はウェーハ(図3の310)で構成されている。

【0016】

ハウジング118はウェーハの後部を保持している。図示の実施形態では、ハウジング118は絶縁性ハウジングであり、電気コネクタの製造で一般的に使用されているプラスチック又はその他の材料で作られるのが望ましい。

40

【0017】

50

キャップ120も、図示の実施形態では絶縁性材料で作られている。キャップ120は、A型コネクタ110の連結面を提供している。それは、導電性材料の接点部分をコネクタの内部に位置決めし、更にそれらを物理的損傷から保護する。

【0018】

キャップ120は、更に、「フロート」又は「コンプライアンス」の提供にも役立っている。キャップ120は、2つのコネクタを連結させるときにキャップ120と124を整列させる方向に力を発生させるテーパ面121のような造形を含んでいる。コネクタのコンプライアンス機構については後に詳しく説明する。

【0019】

同様に、B型コネクタ114は、ハウジング122とキャップ124を含んでいる。A型コネクタと同様に、ハウジング122は、ウェーハ（図2の210）を所定の位置に保つ。キャップ124も、コネクタ内部の導電性部材の接点部を位置決めし保護する。キャップ124は、突出壁126のようなシュラウドを備えており、接点部を保護する。

【0020】

シュラウドは、A型とB型コネクタを連結するときに整列させる働きをする。図示の実施形態では、キャップ120がシュラウド内に嵌る。キャップ120がシュラウドと係合するとき、A型コネクタからの接点要素はB型コネクタの接点要素と整列する。

【0021】

更に整列精度を高めるために、壁126は整列造形128を備えている。整列造形128は、キャップ120上の相補的な整列造形と係合し、コネクタを連結位置に案内するのを助ける。整列造形は、130（図2）のようなテーパ面を有し、コネクタの前面をY方向の適切な位置に案内するのが望ましい。テーパ面132（図2）は、相手側コネクタの相補的造形と係合してコネクタをX方向の適切な整列位置に案内する。図示の実施形態では、キャップ124にはコンプライアンスがあり、相手方のコネクタをキャップ124に押し込むと、キャップ124が相手方コネクタに整列する。

【0022】

次に、図2には、B型コネクタ114の分解図を示している。図示のように、複数のウェーハ210が隣り合わせに重ねられている。ウェーハは、ハウジング122内に嵌め込まれている。図示の実施形態では、各ウェーハは、ハウジング122内の他の造形と係合してウェーハを所定の位置に保つ、220及び222のような造形を保有している。

【0023】

各種係合造形を使用することができる。図示の実施形態では、造形220は、ハウジング122のスロット221と係合するタブを含んでいる。所望であれば、造形220は、一旦係合されたウェーハが滑って外れることを防ぐためのラッチを含んでいてもよい。造形222は、ハウジング122内側の相補的な開口部と係合するタブ、ボス又は類似の突起部を含んでいる。

【0024】

各ウェーハは導電性要素を含んでいる。好適な実施形態では、導電性要素の幾つかは、信号を搬送するように設計されている。他の導電性要素は、接地接続用である。接地導体は、信号導体に生じる歪を低減するためのシールドとしても働く。

【0025】

導電性要素は印刷回路板116に接続されている。接点テール230は、ウェーハの下縁から突き出ている。図示の実施形態では、接点テールは、印刷回路板の表面の穴と係合する圧入型接点である。

【0026】

導電性要素は、ウェーハ210の前方縁から伸びる部分も含んでいる。好適な実施形態では、信号導体は、連結接点部232としてウェーハの前方縁から伸びている。図2では、連結接点部分はブレードとして示している。しかしながら、ピン、レセプタクル、又はビームなど数多くの連結接点形態が知られており、使用できると理解頂きたい。

【0027】

10

20

30

40

50

好適実施形態の接地導体は、ウェーハの主要面に対して平らに置かれたシールドプレート236の形状を採っている。ハブ238は、ウェーハ210から伸びてプレート236の穴を貫通して、これによりプレートをウェーハに固定する。

【0028】

接地プレート236は、印刷回路板116の接地孔に圧入される接点テール236を含んでいる。接地プレート236は、ウェーハの前方縁から伸びる接続部も含んでいる。接地プレート236の前方縁は、シールド250に連結するようになっている接点240を含んでいる。

【0029】

図2に示すように、各ウェーハ210は、信号接点のカラムを保有している。シールドプレート236は、カラムを、隣接するウェーハによりウェーハの本体内に設けられたカラムから遮蔽する。

【0030】

ウェーハが隣り合わせに組立てられると、信号接点のカラムは信号導体の矩形アレイを形成する。図示の実施形態では、アレイは正方形のアレイである。各ウェーハは、14個の信号接点のカラムを含んでおり、14枚のウェーハが隣り合わせに整列して、一列14個の接点を有する列を14列形成している。

【0031】

シールド250は、連結接点部の領域内の信号接点の列と列の間に位置付けられる。シールドプレート250は、シールドプレート236と電気的に接続されている。各シールドプレート250は、各シールド236の接点234と係合している。各信号導体の長さの大部分は、シールドプレート236の1つ又はシールド250の1つの何れかに隣接している。このようにして、遮蔽機能は実質的に信号導体の全長に亘って設けられている。

【0032】

ウェーハ本体と接点部分の間には可撓性部分240があるが、それについては後に詳しく説明する。これら可撓性部分は、連結接点を保有するウェーハの部分がウェーハの後部に対して動けるようにしている。また、220及び222のようなウェーハの取り付け点は後部にある点を注記しておく。従って、ウェーハの後部がハウジング及び印刷回路板に固定されても、連結接点部分は、回路板及びハウジングに対して動くことができる。好適な実施形態では、可撓性部分はコネクタの連結片同士の整列不良を調整する。

【0033】

シールドプレート250は、キャップ124に嵌り、何らかの都合の良い手段で固定される。例えば、シールドプレート250の各縁部は、キャップ124の壁のスロットに嵌め込んでもよい。しかしながら、図示の実施形態では、キャップ124は、多数の開口を含むフロア252を有している。各シールドプレート250には、スリットが切り込まれフインガ254を形成している。各フインガは、フロア252の開口を通って突き出し、キャップ124の壁126により形成されたシュラウド内で連結面を作り出している。図示の実施形態では、シールドプレートは、締まり嵌めによりキャップにしっかりと保持されている。

【0034】

連結部232は、フロア252の開口を貫通して突き出ている。開口は、連結部232と締まり嵌めを形成し連結部をキャップ124に固定できる程度に小さいのが望ましい。同様に、それらは、キャップ124の壁126により形成されたシュラウド内に係合領域を設けるように設置されている。

【0035】

好適な実施形態では、キャップ124は、ハウジング122に堅く取り付けられてはいない。取り付け手段を使用して、キャップ部分124にコンプライアンスを設けてもよい。キャップ部124にはコンプライアンスがあるので、キャップ124内の連結領域にもコンプライアンスがある。重要なことだが、コネクタ110及び114が正しく整列していない場合でも、このコンプライアンスによって各コネクタの連結接点が正しく整列できる

10

20

30

40

50

ようになる。

【0036】

図示の実施形態では、キャップ124上の取り付け造形260とハウジング122上の取り付け造形262によってコンプライアンスが作り出され、導体部全ての可撓性部分240と組合せて、滑動形態で取り付けができるようになっている。好適にも、この特定の取り付け形態により、図2のX-Y平面として示される平面内でキャップが動けるようになっている。この取り付け形態は、図示Z方向へのコンプライアンスを許容しないのが望ましい。コネクタ部片110と114を連結させるために互いに押し付ける際、連結部分は、X-Y平面内で整列するのが望ましい。十分な連結力が発生するように、Z方向には剛性のある取り付けが望ましい。

10

【0037】

上記のように、電気的導体は、印刷回路板116に堅く取り付けられる部分を有している。また、キャップ124に取り付けられる部分も有している。しかし、これら2つの部分は可撓性部分240で分離されている。このようにして、正しい連結を保証するのに必要なコンプライアンスを有したままで、コネクタを介して電機的接続を形成することができる。

【0038】

次に、図3は、A型コネクタ110を分解図で示している。コネクタは、複数のウェーハ310を保有している。ウェーハ210と同様に、ウェーハ310は、複数の信号導体とシールド336を含んでいる。複数の接点テールは、印刷回路板112に取り付けるため、ウェーハの下面から伸びている。

20

【0039】

ウェーハ310は、主要面が平行になるようにして隣り合わせに重ねられる。ウェーハは、ハウジング118に固定される。ウェーハ310上の取り付け造形322は、ハウジング118のスロット321と係合する。同様に、造形321は、ハウジング118の他のスロットと係合する。

【0040】

図示の実施形態では、各ウェーハは、信号導体として働くことを目的とした14個の電気的に分離した導体を含んでいる。14個のウェーハは、隣り合わせに重ねられて、行と列の個数が同じ矩形アレイを形成している。B型コネクタ114の場合と同様に、ウェーハ内の接点間のピッチは、隣接するウェーハの間の間隔と同じである。従って、A型コネクタ110のウェーハとB型コネクタ114のウェーハは直交しているにも関わらず、各コネクタは、導体が連結することのできる接点間隔を持った矩形アレイ形態の接点を備えた連結インターフェースを有している。

30

【0041】

ウェーハ310の導体は、ウェーハの前方縁に伸びる連結部を有している。好適な実施形態では、これら連結部は、キャップ120の下面352に形成された溝内に嵌る。従来型コネクタの場合と同様に、キャップ120内の溝は、キャップ120の連結面の開口部を通してアクセスすることができる。コネクタ110をコネクタ114と連結させると、キャップ120は、キャップ124の壁内に嵌り、コネクタ110からの導体の連結接点部分が連結領域内に入る。コネクタ114からの信号導体の連結部分は、キャップ120の連結面の開口を貫通して、コネクタ110からの導体の連結接点部分と電気接点を形成する。

40

【0042】

図示の実施形態では、コネクタ114の信号導体の連結接点部分はブレードである。コネクタ110からの信号導体の連結接点部分は、ブレードに対して適した電気的接続を形成する型式の接点でなくてはならない。コネクタ110の信号導体の連結接点部分は、ブレードに対してばね力を生成するようなやり方で曲げられた1つ又は複数のビームを含んでいるのが望ましい。分離ビーム型接点を作り出すために平行に配置された2つの分離したビームが、コネクタ110に信号導体の連結接点部を形成しているのが望ましい。

50

【0043】

コネクタ114の接地導体用の連結接点部分はフィンガ254である。フィンガ254も、ブレードのような連結接点部を提供している。図3を見ると分かるように、シールド336も連結領域にフィンガ354を有している。しかしながら、完全に平らになっているのではなく、フィンガ354ではビーム830(図8)が切り込まれている。図示の実施形態では、ビームは、両端はシールドプレートに固定されているが、中間部はシールド面から曲がって出ている。この構造により、ビームはばね力を作り出すことができる。

【0044】

連結時、1つのシールド250からのフィンガ254は、1つのシールド336からのフィンガ354と平行且つ隣接した状態となる。ビーム830により生み出されたばね力は、両シールドの間に必要な電気的接続を作り出す。このようにして、コネクタ110のシールドは、コネクタ114のシールドと電気的に接続される。

【0045】

次に、図4は、ウェーハ210の製造工程を示している。図4Aは、リードフレーム410を示している。リードフレーム410は、電気コネクタの信号接点を形成するのに従来から使用されている種類の導電性材料のシートから打ち抜かれる。銅合金を使用するのが望ましい。

【0046】

リードフレーム410を打ち抜く際、リードフレームの取扱いを容易にするためキャリアストラップ412が残される。リードフレームは複数のタイバー414によりキャリアストラップ412に保持される。そして、信号導体416は、タイバー415によって互いに連結されている。タイバー415は、最終的には切断され、複数の電気的に分離した信号導体416が残される。また、タイバー414も最終的に切断され、キャリアストラップからウェーハ210が分離される。

【0047】

図示のように、各信号接点は、接点テール230、連結接点部分232、可撓性部分240、及び可撓性部分と接点テールの中間部分を有している。

好適な実施形態では、導電性材料の長い帯材から多数のリードフレームが打ち抜かれる。リードフレームは、キャリアストラップ412によって互いに連結されており、リール(図示せず)に巻き取られる。このようにして、ウェーハ210の全体リールを加工して容易に取り扱うことができる。しかしながら、簡潔さを期して、リールの一部分しか図示していない。

【0048】

リードフレーム410は、一旦所望の形状に打ち抜かれると、フォーミング工程に使用されることになる。フォーミング工程では、リードフレームを形成するために使用されたシート材料の面から外れたあらゆる造形が、リードフレーム410上に作り出される。フォーミングの正確な形状と量は、信号接点の設計により異なる。図示の実施形態では、連結接点部232は、リードフレーム410の面に対して90°の角度で曲げられている。この曲げにより、接点部分の滑らかで平坦な表面が、リードフレーム410の面に対して垂直に形成される。使用時、コネクタ110からの連結接点部は、この角度で曲げられると、接点部232の平坦な面に対して押し付けられることになる。接点は、滑らかな表面上で連結させるのが望ましい。

【0049】

図4Bは、ウェーハ210の製造時の別の工程を示している。リードフレームは、モールド型内に置かれ、信号導体の中間部分の周りに絶縁体420が成形される。絶縁体420は、信号導体416を定位置に固定する。これはまた、ウェーハ210に対する機械的支持を提供し、信号導体を絶縁して電気的短絡を回避する。絶縁体420は、適していれば何れのプラスチックでもよく、電気コネクタの製造に従来から使用されているものなどが挙げられる。

【0050】

10

20

30

40

50

図示のように、絶縁体420には、後段のシールド取り付けのために、複数のハブ238が成形されている。絶縁体420の表面は、シールド236を取り付けられるように成形されている。

【0051】

図4Bは、更に、信号接点232の近位端に、各信号導体を横切って成形された前方絶縁体422を示している。前方絶縁体は、タイバーが切断されたときに信号接点を一体に保持する。これはまた、ウェーハの信号接点部分をキャップ124に押し込むために使用される製造工具用の取り付け点も提供している。

【0052】

図4Cは、ウェーハ210に取り付ける前のシールド236を示している。信号接点の場合と同様に、導電性材料のシートから複数のシールドが打ち抜かれ、キャリアストラップ上に一体に保持される。シールド236には、ハブ238と係合する複数の穴430が打ち抜かれる。穴430とハブ238の位置は、絶縁体420に隣接する概ね平らな中間部分を保持している。

【0053】

シールド236も、中間部分から伸張する複数の可撓性部分240を備えて打ち抜かれる。図示の実施形態では、各シールド236上には、ウェーハ内の信号導体とほぼ同数の可撓性部分240がある。この数の可撓性部分によって、接地電流の適切な流れと適量のコンプライアンスが実現される。可撓性部分240を増やせば、より高い遮蔽効果が得られる。

【0054】

前方部分434は、可撓性部分240から伸びている。前方部分434は、キャップ124に固定される。シールド接点234は、前方部分434上に形成される。

信号接点の場合と同様に、シールド236は、打ち抜き成形後フォーミングされ、シールドを形成するために使用された導電性シートの面から外へ伸張する造形が形成される。接点部230もシールド236の中間部分から伸張して成形される。

【0055】

図4Dは組み立ての後段工程のウェーハ210を示している。シールドプレート236を絶縁体420の上に重ねる。シールドプレートを押して、ハブ238を穴430に係合させる。タイバー414を切断して、ウェーハ210をキャリアストラップ412から離す。ウェーハ210は、これでハウジング122へ挿入する準備が整う。

【0056】

ここに示したもの以外にも、当技術で知られている他の製造工程を使用してもよい。例えば、信号接点部分232の縁部を鋳造することは望ましいといえる。或いは、或る接点部分を金メッキするのも効果的である。

【0057】

図5は、可撓性部分240の追加的詳細形状を示す図である。図示のように、可撓性部分は概ね細長い。しかも、図示の実施形態では、可撓性部分は、コンプライアンスを増すため曲りを含んでいる。図示の実施形態には、曲がり部510と512が含まれている。曲がり部510と512は互いに反対方向に曲がり、接点の永久変形を伴わずにX及びY方向にコンプライアンスを提供し、これによりコネクタの自己センタリング特性を実現しているのが望ましい。曲がり部の個数、大きさ、及び形状はこれ以外でもよい。しかしながら、可撓性部分は滑らかな曲りを含み、より望ましい電気的特性を提供するのが好ましい。更に、湾曲部は、追加的にZ方向のコンプライアンスも提供する。キャップは係合してZ方向の動きを防ぐのが一般的には望ましいが、Z方の動きを幾分許容する幾らかの製造上の許容差が存在する。

【0058】

好適な実施形態では、可撓性部分は凡そ長さ8mmで、約8ミル平方の断面を有する材料で形成されている。コンプライアンスの度合いは、可撓性部分の長さを増すことにより、又は湾曲部の半径又は個数を増すことにより高まる。反対に、コンプライアンスを低くす

10

20

30

40

50

る必要がある場合は、湾曲部を取り除き、この区画を短縮し、又は厚い材料を使用すればよい。

【0059】

次に、図6は、シールド236の造形の追加的詳細形状を示している。図6Aは、接点234を示している。この接点は、前方部434に打ち抜き成形される。ギャップ610が設けられる。ビーム618と620を残して、スロット612及び614もシールドに打ち抜かれる。

【0060】

ギャップ610は、シールド250の厚さよりも狭い。従って、シールド250をスロット610に押し込むと、ビーム618と620は変形してスロット612及び614内に入り込む。しかしながら、ビーム618と620は、シールド250に対して十分な量の力を発生させるはずである。力の量は、シールド250とシールド236の間に気密シールを作り出すのに十分であるのが望ましい。

【0061】

次に、図6Bは、シールド236上の接点テール230の詳細形状を示している。好適な実施形態では、接点テール230は圧入部650を含んでいる。タブ652が、圧入部650をシールド236の中間部に結合させる。ここで、タブ652は、シールド236の中間部の面から外に曲げられている。曲がり部は圧入部650を信号導体の圧入区間と整列させる。

【0062】

図4Aは、信号導体の接点テールが各対間にギャップを設けた状態で対にグループ分けされていることを示している。シールド236がウェーハ210に取り付けられると、シールド236用の各接点テールは、信号導体の隣接する対の間に嵌る。

【0063】

次に、図7は、キャップ124とハウジング122との間の可撓性取り付けの追加的詳細形状を示している。図示の実施形態では、取り付け造形は、ハウジング122の2つの相対する側に設けられている。3セットの取り付け造形260と262を整列させ係合させることになる。

【0064】

造形260は、突起720によりキャップ124の表面から離して保持されているタブ716を含んでいる。この構造では面714とリップ716の間にスロット752が形成されている。

【0065】

造形262は、後壁712を備えた開口部722を含んでいる。リップ718は後壁712から距離を空けて開口部722内に伸びている。この構造では、後壁712とリップ718の間にスロットが形成されている。

【0066】

好適な実施形態では、スロット752の幅はリップ718の厚さと同じであり、スロット750の幅はタブ716の厚さと同じである。従って、取り付け造形260と262を係合させると、タブ716はスロット750内に保持され、リップ718はスロット752内に保持される。双方共にZ方向へ大きく動けるほどの遊びはない。

【0067】

しかしながら、嵌合は全ての動きを阻止する締まり嵌めほどきつくてはならない。タブ716は、スロット750内でX-Y方向に滑動できなければならず、リップ718はスロット752内でX-Y方向に滑動できなければならない。

【0068】

取り付け造形262には、キャップ124がハウジング122から外れてしまうほど遠くに滑ってしまわないように、ストッパが設けられている。ストッパ754は、図7Aで左方向への過度な動きを防止する。ストッパ756は図7Aで右方向への過度な動きを防止する。上方への動きは、リップ718を突起720に押し付けることにより制限される。

10

20

30

40

50

下方への動きは、整列造形 260 がその下の整列造形 262 に押し付けられると制限される。

【0069】

しかしながら、係合した整列造形の一部破断図で明らかのように、造形 260 と 262 の間には X-Y 平面内の動きを許容する十分な遊びがある。例えば、突起 720 は、ストップ 754 又は 756 の何れかが係合するまでに、0.5 mm の動きができる程度に狭く作られている。また、スロット 722 は、リップ 718 がタブ 716 に係合するまで、又は取り付け造形 260 がその下の取り付け造形 262 に係合するまでに、0.5 mm の動きができる程度に長くなっている。この程度のコンプライアンスを設けるために、可撓性部分は凡そ 8 ミル平方の材料で約長さ 8 mm に形成される。

10

【0070】

次に、図 8 は、ウェーハ 310 の詳細を示している。ウェーハ 210 の場合と同様に、ウェーハ 310 は、先ず絶縁体 820 に、信号接点を含むリードフレームを埋め込んで信号接点アッセンブリを形成することにより製作するのが望ましい。リードフレームは、導電性金属のシートから打ち抜かれ、次いで所望の形状にフォーミングされる。図示の実施形態では、連結接点部 832 は、最初に 2 つのビームを打ち抜いて、次いでそれらビームを連結のための適切なばね力を生成する形状に曲げることにより、分離ビーム型接点に形成される。一旦、リードフレームが絶縁体 820 内に密閉されると、個々の信号接点が切断分離される。

20

【0071】

別途、シールド 336 が打ち抜かれ、フォーミングされる。好適な実施形態では、それは絶縁体 820 に取り付けられ遮蔽されたサブアッセンブリを形成する。穴 834 は、ハブ 836 と係合してシールド 336 を定位置に保持する。図 8A は、シールドが取り付けられた状態のウェーハを示している。図 8B は、信号接点サブアッセンブリとシールドを別々に示している。

【0072】

シールド 336 も、電気的接続を形成するために打ち抜かれフォーミングされた造形を有している。接点テール 230 は、タブ 852 に取り付けられる。タブ 852 は、シールド 336 が絶縁体 820 に取り付けられた場合にシールド 336 の接点テール 230 が信号接点からの接点テールと整列するように、曲げられている。上記のように、接点テール 230 は、印刷回路板内の信号トレースに対する電気的接続を形成することを目的としている。

30

【0073】

シールド 336 も、相手コネクタのシールド 250 に対して電気的接続を形成する。ビーム 830 が各フィンガ 354 に打ち抜かれている。ビームは、フィンガ 354 がシールド 250 に対して滑動するときに、ビーム 830 がシールド面に押し戻されて、これによって連結するコネクタのシールドの間に電気的接続を形成するのに必要なばね力が生成されるように、シールド 336 の面から外に曲げられている。

【0074】

このようにして、製造が容易なコネクタがマトリクス用途に提供される。コネクタの両半部片にウェーハ型の構造が用いられる。しかも、コネクタは自己整列するので、マトリクスアッセンブリの製造時の位置精度が多少悪くても補正することができ、印刷回路板のマトリクス構造を使った電子システムの製造が容易になる。自己整列式コネクタは、基準を与えるバックプレーン又はミッドプレーンのような単構造体なしには、ボードの製造公差がコネクタの不整列に到る可能性が高くなることから、マトリクスアッセンブリにとって特に重要である。ここに示す設計は、1 mm を超す不整列の場合でも、連結させることができる。

40

【0075】

更に、本設計は、信号接点部分を実質的に全長に亘って遮蔽できるようにしている。信号接点に隣接して遮蔽することにより、信号導体間のクロストークが低減される。信号導体

50

のインピーダンスを制御することも重要である。

【0076】

以上、1つの実施形態について説明してきたが、多くの代替例又は変形が可能である。例えば、ボードの配置は水平又は垂直であると説明してきた。これらの寸法については、好適な実施形態の説明に関して基準となる枠組みを示すため解説用に使用したものに過ぎない。ある商業的な実施形態では、ボードは、電子アッセンブリの要件によって決まる任意の異なる方位に取り付けることができる。また、A型及びB型コネクタは、特定の方向でボードに取り付ける必要はない。例えば、A型及びB型コネクタの位置は逆でもよい。

【0077】

ウェーハを図示のようにハウジング内に保持する必要もない。ウェーハを位置決めするためにどの様な種類の編成部を使用してもよい。例えば、各ウェーハからの造形を受け入れる穴を有する金属帯板を使用することもできる。または、ウェーハは、ブロック内に十分な剛性を持たせて固定することにより、定位置に保持してもよい。ウェーハは、例えば、接着剤で一体に保持してもよい。同様に、接点テールの機械的位置決めが重要でない用途では、ハウジングを省いてもよい。

【0078】

別の代替例として、上記の好適な実施形態では、平面のコンプライアンスを、X-Y平面内の2つの直交方向の動きを許容するキャップ124とハウジング122の間の取り付け造形で作り出している。代わりに、B型コネクタには、一方向のみのコンプライアンスのある取り付け造形を設けてもよい。A型コネクタには、これと直交方向のコンプライアンスを同様の構造で設け、2つを組み合わせることにより平面のコンプライアンスを作り出すことができる。

【0079】

シールドプレートは、フィンガに分割される連結領域に示されている。図示の実施形態では、信号導体の半分の個数のフィンガがある。このような配置では、信号導体はシールドフィンガに隣接して対にグループ分けされる。このような実施形態は、1つの信号が1対の信号導体で搬送される差分コネクタを構成するのに有用である。電気コネクタの性能を更に強化するために、各種シールドプレートにスリットを切り込んでよい。例えば、差分信号を搬送する対を成す信号導体の間の導電性材料を除去するため、シールド236にスリットを切り込んでよい。反対に、信号導体対の間の導電性材料を除去し、それによって各対により搬送される信号間の電気的絶縁性を高めるに、シールドプレート336にスリットを切り込んでよい。

【0080】

また、236のようなシールドは、金属シートから打ち抜いたものとして説明してきた。シールドプレートは、代わりにプラスチック上の導電層によって形成してもよい。更に、接点234は、2つのビームがシールド250の両側を押しているように示している。1つのビームがシールドの片側を押すように電気接点を形成することもできる。或いは、ビームを両端で固定する必要はない。片持ち梁式のビームを代わりに使用することもできる。

【0081】

別の変形例として、キャップ124をプラスチックよりも構造上の強度が高い材料で形成するのも望ましい。コネクタの整列は、キャップ124の壁がキャップ120を定位置に案内するまで、コネクタをまとめて付勢することにより実現されることから、コネクタ内の導体の数及び印刷回路板の間の不整列の度合いにもよるが、連結時にはキャップ124の壁に大きな力が掛かることもあり得る。代わりに、陽極化アルミからキャップ124を鋳造し、或いは金属からそれを形成することも考えられる。導電性金属を使用する場合には、信号導体の短絡を回避するために信号導体を金属から絶縁する必要がある。プラスチックグロメット又は他の絶縁体をフロア252の穴に挿入して、信号導体を金属から絶縁するようにしてよい。接地プレートを金属から絶縁するのも望ましい。

【0082】

10

20

30

40

50

また、128のような整列造形は、整列造形の形状と位置を説明するためのものと理解頂きたい。より一般的には、コネクタ部片を正しく整列するように付勢するのであれば、どのようなテーパ面でも使用できる。また、整列造形をコネクタ部片自体に形成する必要はない。整列ピンと穴のような別体の整列構造を、コネクタハウジング又はキャップに取り付けてもよい。

【0083】

更に、ウェーハを、信号接点を覆ってプラスチックをモールド成型することにより製造する必要はない。導体を絶縁体に埋め込むための代わりのやり方として、絶縁体内に信号導体用の空間を残して、絶縁体をシールド部片上にモールド成形してもよい。次いで、信号導体を上記空間に押し込んで絶縁体に取り付けることになる。信号導体は、その上のかえりを使用して絶縁体に固定してもよい。或いは、締まり嵌めを形成するために、導体又は絶縁体の何れかに造形を構成してもよい。又は、絶縁体の上掛けモールド成形を用いて信号導体周りの空間をシールし、それらを絶縁体内に保持するようにしてよい。

【0084】

更に、シールドを信号サブアッセンブリに固定する必要は全くない。信号サブアッセンブリの間に固定されていないシールド部片を配したコネクタを構成することもできる。別の変形例としては、絶縁部材を、隣接する信号導体の間、又はシールド部材と信号導体の間に配置することが挙げられる。例えば、シールド336、特にフィンガ354を絶縁体でコーティングして、信号導体への接触を防止してもよい。或いは、前方422絶縁体を拡張して接点部分を受け入れる開口部を含むようにしてよい。そうすれば、接点をキャップ124の開口部に挿入するのではなく、開口部は接点周りにすでにモールド成形されており、キャップ124は開放フレームに更に似たものとなる。

【0085】

従って、本発明は、特許請求の範囲に述べる精神及び範囲によってのみ限定されるものである。

【図面の簡単な説明】

【0086】

【図1】本発明によるマトリクスアッセンブリの図である。

【図2】図1の第1型コネクタの分解図である。

【図3】図1の第2型コネクタの分解図である。

【図4】図4A-4Dは、図2のウェーハの製造工程の段階を示す一連の図面である。

【図5】可撓性部分の好適な実施形態を示す図である。

【図6】図6A-6Bは、図4Cのシールド上の造形の追加的詳細形状を示す。

【図7】図7A-7Bは、好適な実施形態の可撓性取り付け部の追加的詳細形状のスケッチである。

【図8】図8A-8Bは、図3のウェーハの追加的詳細形状のスケッチである。

10

20

30

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
8 August 2002 (08.08.2002)

PCT

(10) International Publication Number
WO 02/061889 A1

(51) International Patent Classification*: H01R 12/16 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CL, CN, CO, CR, CU, CZ, DL, DK, DM, DZ, EC, EL, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KH, KG, KP, KR, KZ, L, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/US02/02862

(22) International Filing Date: 1 February 2002 (01.02.2002)

(25) Filing Language: English

(26) Publication Language: English

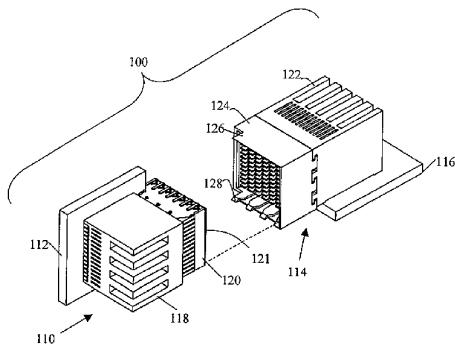
(30) Priority Data: 60/265,826 1 February 2001 (01.02.2001) US

(71) Applicant: TERADYNE, INC., [US/US]; 321 Harrison Avenue, Boston, MA 02118 (US).

(72) Inventors: STOKOE, Philip, T.; 23 Country View Read, Attleboro, MA 02703 (US); COHEN, Thomas, S.; 63 Scobie Read, New Boston, NH 03070 (US).

(74) Agents: WALSH, Edmund, J. et al.; Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BH, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:
 — with international search report
 — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: MATRIX CONNECTOR

WO 02/061889 A1

(57) Abstract: An electrical connector assembly suitable for use in a matrix assembly. The electrical connector assembly has two connectors, each assembled from wafers. The individual wafers are shielded and separate shield pieces are positioned in one connector transverse to the wafers in that connector. Additionally, wafers in at least one of the connectors includes a compliant portion that allows the two connectors to be self-aligning.

WO 02/061889 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MATRIX CONNECTOR

This invention relates generally to electronic assemblies and more specifically to electrical connectors for routing signals between printed circuit boards in an electronic assembly.

5

Related Applications

This application claims priority to US provisional application 60/265,826 filed February 1, 2001, which is hereby incorporated by reference.

10 *Background*

Electronic systems are often assembled from several printed circuit boards. These circuit cards are sometimes referred to as "daughter boards." The daughter boards are held in a card cage. Electrical connections are then made between the daughter boards.

One traditional approach is to interconnect the daughter cards using a backplane.

15 The backplane is a large printed circuit board with few, if any, active components attached to it. Mainly, the backplane contains signal traces that route electrical signals from one daughter card to another. It is mounted at the back of the card cage assembly and the daughter cards are inserted from the front of the card cage. The daughter cards are in parallel to each other and at right angles to the backplane.

20 For ease of assembly, the daughter cards are connected to the backplane through a separable connector. Often, two-piece electrical connectors are used to join the daughter cards to the backplane. One piece of the connector is mounted to each of the backplane and a daughter card. These pieces mate and establish many conducting paths.

Sometimes, guide pins are attached to the backplane that guide the daughter board connector into proper alignment with the backplane connector.

25 A two piece electrical connector has contacts in each piece of the connector that are adapted to make electrical contact when the two pieces mate. A traditional backplane connector has contacts that are shaped as pins or blades and the daughter card contact has contacts that are shaped as receptacles. Each pin is inserted into a receptacle when the connectors mate.

30 To make a high speed, high density connector, shielding is often added to the connectors. US patent 5,993,259 to Stokoe, et al. represents a desirable shielding design and is hereby incorporated by reference. Teradyne, Inc., the assignee of that patent markets a connector called VHDM that is commercially successful.

35 Not all electronic assemblies employ a backplane. Some use a midplane configuration. In a midplane configuration, daughter cards are inserted into both the front

WO 02/061889

PCT/US02/02862

and the back of the card rack. Another printed circuit board, called the midplane, is mounted in the center of the card cage assembly. The midplane is very similar to a backplane, but it has connectors on both sides to connect to the daughter boards inserted from the front and the back of the assembly.

5 A further variation is called a matrix configuration. In the matrix configuration, daughter boards are inserted from both the front and the back of the card cage. However, the boards inserted from the front are perpendicular to the boards inserted from the back. Connectors are mounted at the interconnection of these circuit boards to make connections between the boards.

10 Currently, there exists no suitable high speed, high density connectors for some matrix configurations.

WO 02/061889

PCT/US02/02862

SUMMARY OF THE INVENTION

With the foregoing background in mind, it is an object of the invention to provide a high speed high density connector for a matrix configuration.

It is also an object to provide a matrix connector that is easy to manufacture.

5 The foregoing and other objects are achieved in a connector with two intermateable pieces. Each piece is made from a plurality of wafers that include a plurality of signal conductors and at least one ground conductor. The wafers are oriented so that they will be perpendicular when installed in a matrix configuration. One of the connector pieces includes a plurality of orthogonal shield pieces that are orthogonal to the
10 ground conductors in that piece and parallel to the ground conductors in the mating piece. The orthogonal shield pieces are electrically connected to ground conductors in each of the connector pieces.

WO 02/061889

PCT/US02/02862

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood by reference to the following more detailed description and accompanying drawings in which

5 FIG. 1 is a illustration of a matrix assembly according to the invention;
FIG. 2 is an exploded view of a first type connector of FIG. 1;
FIG. 3 is an exploded view of a second type connector of FIG. 1;
FIGs. 4A-4D is a series of figures showing steps in the manufacturing process of a
wafer of FIG. 2;
10 FIG. 5 is an illustration of a preferred embodiment of a compliant section;
FIGs. 6A and 6B are illustrations showing additional details of features on the
shield of FIG. 4C;
FIGs. 7A and 7B are sketches showing additional detail of the compliant
attachment of the preferred embodiment; and
FIG. 8A and 8B are sketches showing additional details of the wafer of FIG. 3.

15

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows a portion of a matrix assembly 100. Assembly 100 includes a vertical board 110 and a horizontal board 116. A type A connector is mounted to board 112 and a type B connector is mounted to board 116. The connectors 110 and 116 each have numerous signal and ground contact tails 230 that make electrical connection to circuit traces on or within the boards. Additionally, each of the connectors have conducting elements that with mating portions 232 (FIG. 2) and 832 (FIG. 8). The mating portions are positioned so that when the type A connector and the type B connector are mated, numerous circuit paths will be completed between board 112 and board 116.

In the illustrated example, boards 110 and 116 are conventional printed circuit boards as traditionally found in a matrix assembly. It will be appreciated that only very small boards are shown. In a commercial implementation, each board would be larger and contain numerous electronic devices.

Also, it should be appreciated that a commercial embodiment of a matrix assembly is likely to have more than just two boards. For example, a matrix assembly is more useful when multiple horizontal boards are connected to the same vertical board. In this way, the vertical board can route electrical signals between the vertical boards. A matrix assembly is likely to be even more useful if multiple vertical boards are included along with multiple horizontal boards. In this way, a system designer has significant flexibility in routing signals between printed circuit boards.

In the embodiment illustrated in FIG. 1, type A connector 110 includes a housing 118 and a cap 120. As will be described in greater detail below, each of the connector is made up of a plurality of subassemblies or wafers (310 FIG. 3) that contains signal conductors.

Housing 118 holds the rear portions of the wafers. In the illustrated embodiment, housing 118 is an insulative housing, preferably made of plastic or other material typically used in the manufacture of electrical connectors.

Cap 120 is also made of insulative material in the illustrated embodiment. Cap 120 provides the mating face of type A connector 110. It positions the contact portions of the conductive members inside the connector and also protects them from physical damage.

Cap 120 further aids in providing "float" or "compliance." Cap 120 includes features, such as tapered surface 121 that generates force in a direction that tends to align caps 120 and 124 as the two connectors are mated. The compliance mechanism of the connector is described in greater detail below.

WO 02/061889

PCT/US02/02862

Likewise, type B connector 114 includes a housing 122 and a cap 124. As with the type A connector, housing 122 holds wafers (210 FIG. 2) in position. Cap 124 also positions and protects the contact portions of the conductive members inside the connector. Cap 124 provides includes a shroud, such as formed by projecting walls 126, to protect the contacts.

5 The shroud also serves to provide alignment between the type A and type B connectors as they mate. In the illustrated embodiment, cap 120 fits within the shroud. When cap 120 is engaged in the shroud, the contact elements from the A type connector align with the contact element in the B type connector.

10 To further the alignment, walls 126 include alignment features 128. Alignment features 128 engage with complementary alignment features on cap 120 to aid in guiding the connectors into a mating position. Preferably, the alignment features have tapered surfaces, such as 130 (FIG. 2), to guide the front face of the connectors into the appropriate position in the Y direction. Tapered surfaces 132 (FIG. 2) engage 15 complementary features on the mating connector to guide the connectors into appropriate alignment in the X direction. In the illustrated embodiment, cap 124 is compliant and pressing a mating connector into cap 124 aligns cap 124 with the mating connector.

20 Turning now to FIG. 2, type B connector 114 is shown in exploded view. A plurality of wafers 210 are shown stacked side by side. The wafers fit within housing 122. In the illustrated embodiment, each wafer contains features, such as 220 and 222 that engage other features within housing 122 to hold the wafers in place.

25 Various engagement features might be used. In the illustrated embodiment, feature 220 includes a tab that engages a slot 221 on the housing 122. If desired, feature 220 might also include a latch to prevent the wafer from sliding out once engaged. Feature 222 includes a tab or boss or similar protrusion to engage a complementary opening on the inside of housing 122.

30 Each wafer includes conducting elements. In the preferred embodiment, some of the conducting elements are designed to carry signals. Others of the conducting elements are intended to be connected to ground. The ground conductors also can serve as shields to reduce distortion carried on the signal conductors.

35 The conducting elements are connected to the printed circuit board 116. Contact tails 230 project from a lower edge of the wafer. In the illustrated embodiment, the contact tails are press fit contacts that engage holes in the surface of a printed circuit board.

35 The conducting elements also include portions that extend from the forward edge of wafer 210. In the preferred embodiment, the signal conductors extend from the

WO 02/061889

PCT/US02/02862

forward edge of the wafer as mating contact portions 232. In FIG. 2, the mating contact portions are illustrated as blades. However, it should be appreciated that multiple forms of mating contacts are known -- such as pins, receptacles or beams -- and could be used.

The ground conductors in the preferred embodiment take the shape of shield plates 236 that lies flat against the major surface of the wafer. Hubs 238 extend from wafer 210 and pass through holes in plate 236, thereby holding it securely to the wafer.

Ground plate 236 includes contact tails 230 that press fit into ground holes in printed circuit board 116. Ground plate 236 also includes a connection portion that extends from the forward edge of the wafer. The forward edge of ground plate 236 includes contacts 240 that are adapted to mate to shields 250.

As shown in FIG. 2, each of the wafers 210 contains a column of signal contacts. Shield plate 236 shields a column from the column provided by an adjacent wafer in the body of the wafer.

When the wafers are assembled side by side, the columns of signal contacts make a rectangular array of signal conductors. In the illustrated embodiment, the array will be a square array. Each wafer contains a column of fourteen signal contacts and fourteen wafers are aligned side by side to make fourteen rows of fourteen contacts each.

Shields 250 are positioned between the rows of signal contacts in the region of the mating contact portions. Shield plates 250 are electrically connected to the shield plates 236. Each shield plate 250 engages a contact 234 on each of the shields 236. Much of the length of each signal conductor is adjacent to either one of the shield plates 236 or one of the shields 250. In this way, shielding is provided substantially over the length of the signal conductors.

In between the body of the wafer and the contact portions are compliant portions 240, which is described in greater detail below. These compliant portions allow the portions of the wafer containing the mating contacts to move relative to the rear portion of the wafers. Also, it should be noted that the attachment points of the wafers, such as 220 and 222 are on the rear portions. Thus, while the rear portion of the wafers are fixed to the housing and to the printed circuit board, the mating contact portions can move relative to the board and the housing. In the preferred embodiment, the compliant portions adjusts for mis-alignment between the mating pieces of the connectors.

The shield plates 250 fit into the cap 124 and are secured with any convenient means. For example, each edge of the shield plates 250 might fit into a slot in a wall of cap 124. However, in the illustrated embodiment, cap 124 has a floor 252 that includes numerous openings. Each shield plate 250 is cut with slits creating fingers 254. Each of the fingers projects through an opening in floor 252, creating a mating surface within the

WO 02/061889

PCT/US02/02862

shroud created by the walls 126 of cap 124. In the illustrated embodiment, the shield plates held firmly to the cap through an interference fit.

Mating portions 232 project through openings in floor 252. Preferably, the openings are so small that they create an interference fit with the mating portions 232 to 5 secure them to cap 124. Likewise, they are situated to provide a mating area within shroud created by the walls 126 of cap 124.

In the preferred embodiment, cap 124 is not rigidly attached to housing 122. A means of attachment is used to provide compliance to cap portion 124. Because there is 10 compliance in cap portion 124, there is also compliance in the mating area within cap 124. Significantly, if the connectors 110 and 114 are misaligned, the compliance allows the mating contacts of each connector to properly align nonetheless.

In the illustrated embodiment, the compliance is provided with attachment features 260 on cap 124 and attachment features 262 on housing 122 that allow a sliding form of attachment in combination with compliance sections 240 on all of the conductors. 15 Preferably, the specific form of attachment allows the cap to move in the plane illustrated as the X-Y plane in FIG. 2. It is also preferable that the attachment not allow compliance in the direction illustrated as Z. As the connector pieces 110 and 114 are pushed together for mating, it is desirable that the mating portions come into alignment in the X-Y plane. A rigid attachment in the Z direction is desirable so that sufficient mating force can be . 20 generated.

As described above, the electrical conductors have portions that are rigidly attached to the printed circuit board 116. They also have portions that are attached to cap 124. But, these two portions are separated by compliant portions 240. In this way, 25 electrical connections can be made through the connector while still providing the compliance necessary to ensure proper mating.

Turning now to FIG.3, A type connector 110 is shown in exploded view. The connector contains a plurality of wafers 310. As with wafers 210, wafers 310 include a plurality of signal conductors and a shield 336. A plurality of contact tails extend from a lower surface of the wafers for attachment to printed circuit board 112.

30 Wafers 310 are stacked side-by-side, with their major surfaces in parallel. The wafers are secured to housing 118. Attachment features 322 on the wafers 310 engage slots 321 in the housing 118. Likewise, features 321 engage other slots in housing 118.

In the illustrated embodiment, each wafer includes fourteen electrically separate 35 conductors that are intended to act as signal conductors. Fourteen wafers are stacked side by side to make a rectangular array with the same number of rows and columns. And, as with the type B connector 114, the pitch between the contacts in a wafer is the same as

the spacing between adjacent wafers. Thus, despite the fact that the wafers in the type A connector 110 and the wafers in the type B connector 114 are orthogonal, each connector has a mating interface with contacts in a rectangular array with contact spacings that allows the conductors to mate.

5 The conductors of wafers 310 have mating portions that extend at the forward edge of the wafer. In the preferred embodiment, these mating portions fit within recesses formed in the lower surface 352 of cap 120. As in a traditional connector, the recesses within cap 120 are accessible through openings in the mating face of cap 120. As connector 110 is mated with connector 114, cap 120 fits within the walls of cap 124, 10 bring the mating contact portions of the conductors from connector 110 into the mating area. The mating portions of the signal conductors from connector 114 pass through the openings in the mating face of cap 120 and make electrical contact with the mating contact portions of the conductors from connector 110.

In the illustrated embodiment, the mating contact portions of the signal conductors of connector 114 are blades. The mating contact portions of the signal conductors from connector 110 must be of the type that makes a suitable electrical connection to a blade. Preferably, the mating contact portions of the signal conductors in connector 110 will include one or more beams bent in such a way to generate spring force against that blade. Preferably, two separate beams positioned in parallel to create a split beam type contact 20 create the mating contact portion of the signal conductors in connector 110.

The mating contact portions for the ground conductors in connector 114 are the fingers 254. Fingers 254 also provide a blade-like mating contact portion. As can be seen in FIG. 3, shields 336 also have fingers 354 in their mating areas. However, rather than being completely flat, fingers 354 have beams 830 (FIG. 8) cut in them. In the 25 illustrated embodiment, the beams are secured to the shield plate at two ends, but bent out the plane of the shield in the middle. This arrangement allows the beams to generate a spring force.

During mating, fingers 254 from one of the shields 250 will be parallel to and adjacent fingers 354 from one of the shields 336. The spring force generated by the 30 beams 830 will create the necessary electrical connection between the shields. In this way, the shields in connector 110 are electrically connected to the shields in connector 114.

Turning now to FIG. 4, a manufacturing process for wafer 210 is illustrated. FIG. 4A shows a lead frame 410. The lead frame 410 is stamped from a sheet of conductive 35 material of the type traditionally used to make signal contacts in an electrical connector. Preferably, a copper alloy is used.

WO 02/061889

PCT/US02/02862

When lead frame 410 is stamped, carrier strips 412 are left to allow easier handling of the lead frame. The lead frame is held to the carrier strip 412 by a plurality of tie bars 414. And, the signal conductors 416 are joined by tie bars 415. The tie bars 415 are eventually cut to leave a plurality of electrically separate signal contacts 416. And the tie bars 414 are eventually cut to separate the wafer 210 from the carrier strips.

As can be seen, each signal contact has a contact tail 230, a mating contact portion 232, a compliant portion 240 and an intermediate portion, between the compliant portion and the contact tail.

In a preferred embodiment, multiple lead frames are stamped from a long strip of conductive material. The lead frames are joined by the carrier strips 412 and wound on a reel (not shown). In this way, an entire reel of wafers 210 can be processed and easily handled. However, for simplicity, only a portion of the reel is shown.

Once the lead frame 410 is stamped to the required shape, a forming operation might be used. The forming operation creates any features on the lead frame 410 that are out of the plane of the sheet of material used to make the lead frame. The precise shape and amount of forming will depend on the design of the signal contact. In the illustrated embodiment, the mating contact portions 232 are bent at a 90° angle relative to the plane of the lead frame 410. This bend places the smooth, flat surface of the contact portion perpendicular to the plane of lead frame 410. In use, the mating contact portion from the connector 110 will press against the flat surface of the contact portion 232 when bent at this angle. It is preferable to have the contacts mate on a smooth surface.

FIG. 4B illustrates another step in the manufacture of the wafer 210. The lead frame is placed in a mold and an insulator 420 is molded around the intermediate portions of the signal conductors. Insulator 420 locks the signal conductors 416 in place. It also provides mechanical support to the wafer 210 and insulates the signal conductors to avoid electrical shorts. Insulator 420 might be any suitable plastic, such as those which are traditionally used in the manufacture of electrical connectors.

Insulator 420 is shown with a plurality of hubs 238 molded therein for later attachment of a shield. The surface of insulator 420 is molded to receive the shield 236.

FIG. 4B also shows a forward insulator 422 molded across the signal conductors at the proximal end of the signal contacts 232. Forward insulator holds the signal contacts together when the tie bars are severed. It also provides a point of attachment for a manufacturing tool that can be used to press the signal contact portion of the wafers into cap 124.

FIG. 4C shows a shield 236 before attachment to wafer 210. As with the signal contacts, a plurality of shields are stamped from a sheet of conductive material and held

WO 02/061889

PCT/US02/02862

together on carrier strips. Shield 236 is stamped with a plurality of holes 430 to engage the hubs 238. The positioning of holes 430 and hubs 238 holds a generally planar intermediate portion adjacent the insulator 420.

5 Shield 236 is also stamped with a plurality of compliant portions 240, extending from the intermediate portion. In the illustrated embodiment, there are approximately the same number of compliant portions 240 on each shield 236 as there are signal conductors in the wafer. This number of compliant portions provides for an appropriate flow of ground current and also the appropriate amount of compliance. More compliant portions 240 additionally provide greater shielding.

10 A forward portion 434 extends from the compliant portions 240. Forward portion 434 is secured to cap 124. Shield contacts 234 are formed on forward portion 434.

As with the signal contacts, the shield 236 might be formed after stamping to provide features that extend out of the plane of the conductive sheet used to make the shield. Contact portions 230 also extend from the intermediate portion of shield 236 and 15 can be formed.

FIG. 4D shows wafer 210 at a later stage of assembly. A shield plate 236 is overlaid on the insulator 420. The shield plate is pressed to engage the hubs 238 in holes 430. The tie bars 414 are cut to release wafer 210 from the carrier strips 412. Wafer 210 is then ready for insertion into housing 122.

20 Other manufacturing operations as known in the art might be included in addition to the ones shown herein. For example, it might be desirable to coin the edges of the signal contact portions 232. Alternatively, it might be advantageous to gold plate some of the contact portions.

FIG. 5 shows additional details of a compliant portion 240. As can be seen, the 25 compliant portion is generally elongated. However, in the illustrated embodiment, the compliant portion includes bends to increase the amount of compliance. In the illustrated embodiment, bends 510 and 512 are included. Preferably, bend 510 and 512 bend in opposite directions to provide compliance in the X and Y directions, without permanent deformation of the contact, thereby providing a self-centering feature to the connector.

30 The number, size and shape of the bends could be varied. However, it is preferable that the compliant portion include smooth bends to provide more desirable electrical properties. In addition, the curved portions additionally provide compliance in the Z direction. While it is generally preferred that the caps engage to preclude motion in the Z direction, there will be some manufacturing tolerances that allow some motion in that 35 direction.

WO 02/061889

PCT/US02/02862

In the preferred embodiment, the compliant portions are approximately 8 mm long made with material with a cross section that is approximately 8 mils square. The amount of compliance can be increased by increasing the length of the compliant section or increasing the radius or number of curved portions. Conversely, if less compliance is needed, the curves could be removed, the segments shortened or a thicker material might be used.

5 Turning to FIG. 6, additional details of features of shield 236 are shown. FIG. 6A shows a contact 234. The contact is stamped into forward portion 434. A gap 610 is provided. Slots 612 and 614 are also stamped in the shield, leaving beams 618 and 620.

10 Gap 610 is narrower than the thickness of a shield 250. Thus, as shield 250 is pressed into the slot 610, beams 618 and 620 will be deformed back into slots 612 and 614. However, beams 618 and 620 will generate a substantial amount of force against shield 250. Preferably, the amount of force is sufficient to create a gas tight seal between shield 250 and shield 236.

15 Turning to FIG. 6B, details of contact tail 230 on shield 236 are shown. In the preferred embodiment, contact tail 230 includes a press-fit portion 650. Tab 652 joins press fit portion 650 to the intermediate portion of shield 236. Here, tab 652 has been bent out of the plane of the intermediate portion of shield 236. The bend aligns the press fit portion 650 with the press fit sections of the signal conductors.

20 FIG. 4A shows that the contact tails of the signal conductors are grouped in pairs with a gap in between each pair. When shield 236 is installed on a wafer 210, each of the contact tails for the shield 236 will fit between an adjacent pair of signal conductors.

25 Turning now to FIG. 7, additional details of the compliant attachment between cap 124 and housing 122 are shown. In the illustrated embodiment, the attachment features are on two opposing sides of the housing 122. There are three sets of attachment features 260 and 262 aligned to engage.

Feature 260 includes a tab 716 held away from the surface 714 of cap 124 by a projection 720. This arrangement creates a slot 752 between surface 714 and lip 716.

30 Feature 262 includes an opening 722 with a rear wall 712. A lip 718 extends into the opening 722 a distance spaced from rear wall 712. This arrangement creates a slot 754 between rear wall 712 and lip 718.

35 In a preferred embodiment, slot 752 is the same thickness as the width of lip 718 and slot 750 is the same width as the thickness of tab 716. Thus, when attachment features 260 and 262 are engaged, tab 716 is held in slot 750 and lip 718 is held in slot 752. Neither has sufficient play to move a significant amount in the Z direction.

However, the fit should not be so tight as to create an interference fit that precludes all movement. Tab 716 should be able to slide in the X-Y direction within slot 750 and lip 718 should be able to slide in the X-Y direction in slot 752.

Attachment features 262 includes stops that prevent cap 124 from sliding so far as to become disengaged from housing 122. Stop 754 prevents excessive motion to the left in FIG. 7A. Stop 756 prevents excessive motion to the right in FIG. 7A. Up motion is restrained by lip 718 pressing against projection 720. Down motion is restrained when an alignment feature 260 presses against the alignment feature 262 below it.

However, as shown more clearly in the partially cut away view of the engaged alignment features, there is sufficient play between the features 260 and 262 to allow motion in the X-Y plane. For example, projection 720 is made narrow enough to provide 0.5mm of movement before either stop 754 or 756 is engaged. And, slot 722 is long enough to allow 0.5mm of movement before lip 718 engages tab 716 or attachment feature 260 bottoms on the attachment feature 262 below it. To provide this amount of compliance, the compliant portions are made approximately 8mm long of material that is approximately 8 mils square.

Turning to FIG. 8, details of a wafer 310 are shown. As with wafer 210, wafer 310 is preferably made by first embedding a lead frame containing signal contacts in an insulator 820 to make a signal contact subassembly. The lead frame is stamped from a sheet of conductive metal and then formed into the desired shape. In the illustrated embodiment, mating contact portions 832 are formed into split beam type contacts by first stamping two beams and then bending the beams to a shape which generates adequate spring force for mating. Once the lead frame is encapsulated in insulator 820, the individual signal contacts are severed.

Separately, a shield 336 is stamped and formed. In the preferred embodiment, it is attached to insulator 820 to create a shielded subassembly. Holes 834 engage hubs 836 to hold shield 336 in place. FIG. 8A shows the wafer with the shield attached. FIG. 8B shows the signal contact subassembly and the shield separately.

Shield 336 also has features stamped and formed in it for making electrical connection. A contact tail 230 is attached to a tab 852. Tab 852 is bent such that when shield 336 is attached to insulator 820 the contact tails 230 of the shield 336 are aligned with the contact tails from the signal contacts. As described above, the contact tails 230 are intended to make electrical connection to signal traces within a printed circuit board.

Shield 336 also makes an electrical connection to a shield 250 in a mating connector. A beam 830 is stamped in each finger 354. The beam is bent out of the plane of shield 336 so that, as fingers 354 slide against the shield 250, beams 830 are pressed

back into the plane of the shield, thereby generating the required spring force to make an electrical connection between the shields in the mating connectors.

In this way, a connector that is easy to manufacture is provided for a matrix application. Waferized construction is used for both halves of the connector. And, the 5 connector is self-aligning, allowing it to correct for greater positional inaccuracies in the manufacture of the matrix assembly, making it easier to manufacture an electronic system using a matrix configuration of printed circuit boards. A self-aligning connector is particularly important for a matrix assembly because without a single structure, like a backplane or a midplane, to provide references, there is greater opportunity for 10 manufacturing tolerances of the boards to result in mis-alignment of the connectors. The designs shown herein are capable of mating despite misalignment of over 1 mm.

Furthermore, the design allows for shielding over substantially the full length of the signal contact portions. Shielding adjacent the signal contacts reduces crosstalk between signal conductors. It can also be important to controlling the impedance of the 15 signal conductors.

Having described one embodiment, numerous alternative embodiments or variations might be made. For example, the orientation of the boards was described as horizontal and vertical. These dimensions are used in the illustration solely to give a 20 frame of reference for the description of the preferred embodiment. In a commercial embodiment, the boards might be mounted with any different orientations driven by the requirements of the electronic assembly. Also, it should be appreciated that the type A and type B connectors need not be mounted on a board with any particular orientation. For example, the locations of the type A and type B connectors might be reversed.

It is also not necessary that the wafers be held in a housing, as shown. An 25 organizer of any type might be used to position the wafers. For example, a metal strip having holes in which to receive features from each of the wafers could be used. Or, the wafers might be held in position by securing the wafers into a block with sufficient rigidity. The wafers, for example, might be held together with adhesive. Likewise, in an application in which the mechanical positioning of the contact tails is not critical, the 30 housing might be eliminated.

As an example of another alternative, it should be appreciated that compliance in a plane was provided in the preferred embodiment by attachment features between cap 35 124 and housing 122 that allowed motion in two orthogonal directions in the X-Y plane. As an alternative, attachment features that allow compliance in only one direction might be provided with a type B connector. Compliance in the orthogonal direction might be

provided by a similar structure on the type A connector -- with the combination of the two thereby providing compliance in the plane.

The shield plates are shown in the mating area to be divided into fingers. In the illustrated embodiment, there are half as many fingers as there are signal conductors. In 5 such an arrangement, signal conductors are grouped in pairs adjacent shield fingers. Such an embodiment is useful for making a differential connector in which one signal is carried on a pair of signal conductors. To further enhance the performance of the electrical connector, slits might be cut in the various shield plates. For example, slits might be cut in shields 236 to remove the conducting material between the signal conductors that form 10 a pair carrying a differential signal. Conversely, slits might be cut in shield plates 336 to remove conducting material between the pairs of signal conductors, thereby increasing the electrical isolation between the signals carried by each pair.

Also, it should be appreciated that shields such as 236 are illustrated as having been stamped from a sheet of metal. A shield plate might alternatively be created by a 15 conducting layer on the plastic.

Additionally, contacts 234 are shown with two beams pressing against opposing sides of shield 250. It would be possible to make an electrical contact with a single beam pressing against one side of the shield. Alternatively, it is not necessary that the beams be secured at both ends. A cantilevered beam might alternatively be used.

20 As another variation, it might be desirable to form cap 124 from a material with greater structural strength than plastic. Because the alignment of the connectors is achieved by forcing the connectors together until the walls of cap 124 guide cap 120 into position, there can be significant force placed on the walls of cap 124 during mating -- depending on the number of conductors in a connector and the degree of misalignment 25 between printed circuit boards. An alternative would be to cast cap 124 from anodized aluminum or otherwise form it from metal. If a conducting metal is used, it would then be necessary to insulate the signal conductors from the metal to avoid shorting the signal conductors. Plastic grommets or other insulator might be inserted in the holes in floor 252 to insulate the signal conductors from the metal. It might also be desirable to insulate 30 the ground plates from the metal.

Also, it should be appreciated that alignment features such as 128 are illustrative of the shape and position of alignment features. More generally, any tapered surfaces that act to urge the connector pieces into proper alignment might be used. And, it is not necessary that the alignment features be formed into the connector pieces themselves.

35 Separate alignment structures, such as alignment pins and holes might be attached to the connector housings or caps.

WO 02/061889

PCT/US02/02862

Further, it is not necessary that the wafers be manufactured by molding plastic over signal contacts. As an alternative way to embed the conductors in the insulator, an insulator might be molded over the shield piece, leaving space for the signal conductors in the insulator. The signal conductors might then be pressed into those spaces and 5 affixed to the insulator. The signal conductors might be affixed to the insulator by using barbs on the signal conductors. Or features could be included in either the conductors or insulators to form an interference fit. Or, an over-molding of insulator might be applied to seal the space around the signal conductors, holding them in the insulator.

Also, it is not necessary that the shields be affixed to the signal subassemblies at 10 all. It would be possible to construct a connector in which loose shield pieces are placed between signal subassemblies.

Another variation might be to place insulating members between adjacent signal conductors or between shield members and signal conductors. For example, shield 336, particularly fingers 354, might be coated with an insulator to prevent contact to signal 15 conductors. Or, forward 422 insulator might be expanded to include openings to receive the contact portions. Thus, rather than insert the contacts into openings in cap 124, the openings would be already molded around the contacts and cap 124 would resemble more of a open frame.

Therefore, the invention should be limited only by the spirit and scope of the 20 appended claims.

WO 02/061889

PCT/US02/02862

What is claimed is

1. 1. A matrix connector comprising:
 2. a) a plurality of subassemblies, each having an insulative portion and each with a plurality of conductive elements embedded therein, each conductive element having a mating contact portion extending from a first face of the insulative portion and a contact tail extending from a second face of the insulative portion;
 7. b) an organizer attached to the insulative portion of each of the subassemblies, holding the subassemblies in parallel;
 8. c) a plurality of first type shield members each first type shield member disposed parallel to and adjacent a subassembly;
 9. d) an cap having an opening therein with the contact portions of the subassemblies extending into the opening; and
 10. e) a plurality of second type shields, each electrically connected to at least one first type shield, said second type shields having portions disposed in the opening of the cap between adjacent mating contact portions of signal conductors on the same subassembly.
11. 2. The connector of claim 1 wherein the organizer comprises an insulative housing.
12. 3. The matrix connector of claim 2 wherein the insulative housing has a plurality of slots formed therein and the insulative portion of each of the subassemblies includes a tab engaged in one of the slots.
13. 4. The matrix connector of claim 1 wherein the organizer comprises a metal organizer.
14. 5. The matrix connector of claim 1 wherein each of the subassemblies has an insulative portion molded around a plurality of conductive elements.
15. 6. The matrix connector of claim 1 wherein the conductive elements in each of the subassemblies has a contact portion that comprises a pin.
16. 7. The matrix connector of claim 1 wherein the first face and the second face are orthogonal.

- 1 8. The matrix connector of claim 1 wherein each of the first type shields includes at
2 least one slot therein with a compliant portion therein, with a second type shield
3 inserted in the slot and making electrical connection to the compliant portion.
- 1 9. The matrix connector of claim 1 wherein first type shield members each comprise
2 a contact tail, adapted for making electrical connection to a printed circuit board,
3 whereby the second type shields are electrically connected to the printed circuit
4 board through shields of the first type.
- 1 10. The matrix connector of claim 1 wherein each of the second type shields is
2 connected to each of the first type shields.
- 1 11. The matrix connector of claim 1 wherein each of the second type shields includes
2 a plurality of contact regions, adapted to make electrical connection to a shield in
3 a mating electrical connector.
- 1 12. The matrix connector of claim 1 wherein the cap is made of an insulator.
- 1 13. The matrix connector of claim 1 wherein the cap comprises a plurality of side
2 walls adapted for receiving a mating connector therebetween.
- 1 14. The matrix connector of claim 1 additionally comprising a printed circuit board,
2 with the contact tails electrically connected to the printed circuit board.
- 1 15. The matrix connector of claim 14 in a matrix assembly comprising a first plurality
2 of boards mounted parallel to said printed circuit board and a second plurality of
3 printed circuit boards mounted perpendicular to said board.
- 1 16. A matrix connector assembly comprising:
 - 2 a) a first connector, comprising:
 - 3 i) a plurality of first type subassemblies, each having an insulative
4 portion and each with a plurality of conductive elements embedded
5 therein, each conductive element having a mating contact portion
6 extending from a first face of the insulative portion and a contact
7 tail extending from a second face of the insulative portion, each of

WO 02/061889

PCT/US02/02862

WO 02/061889

PCT/US02/02862

1 20. The matrix connector of claim 17 wherein each of the first type shields includes at
2 least one slot therein with a compliant portion therein, with a second type shield
3 inserted in the slot and making connection to the compliant portion.

WO 02/061889

PCT/US02/02862

1/10

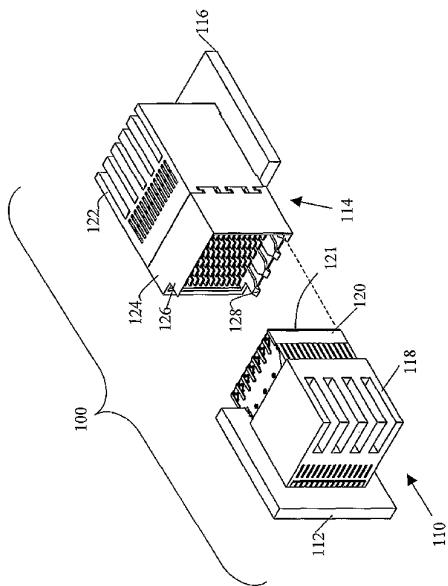


FIG. 1

WO 02/061889

PCT/US02/02862

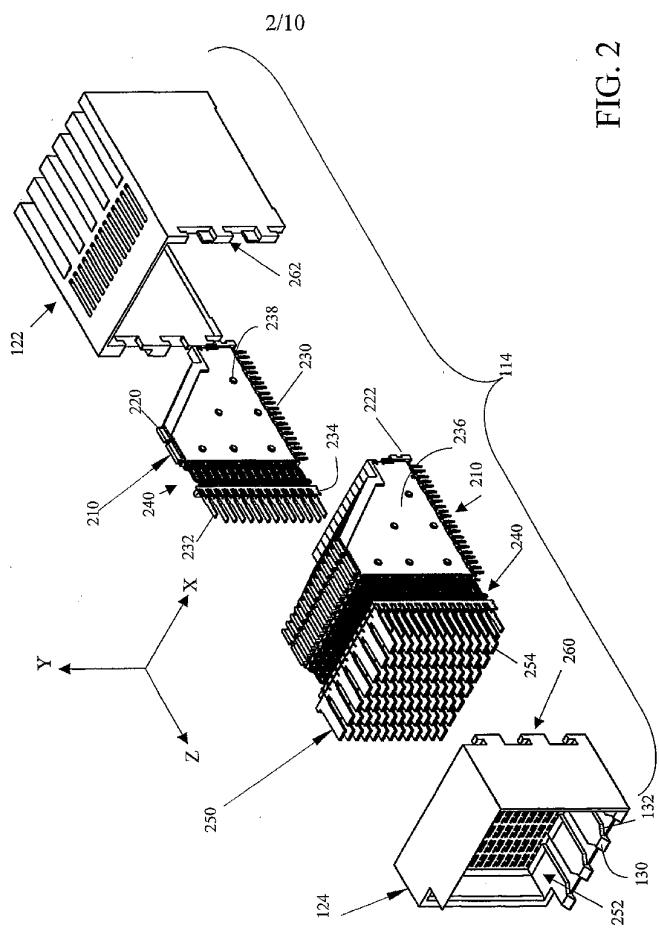
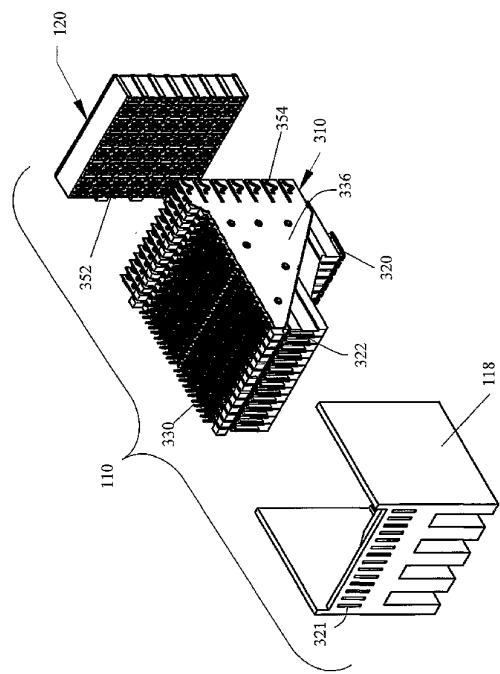



FIG. 2

3/10

FIG. 3

4/10

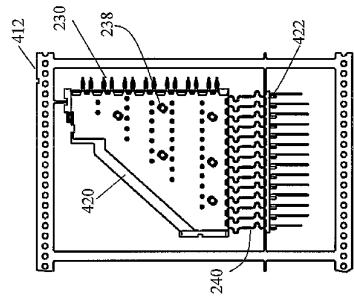


FIG. 4B

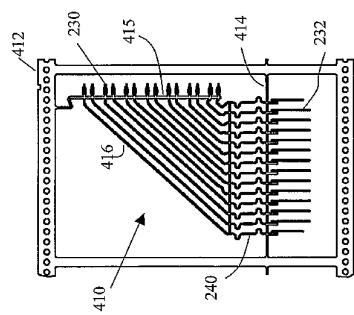


FIG. 4A

5/10

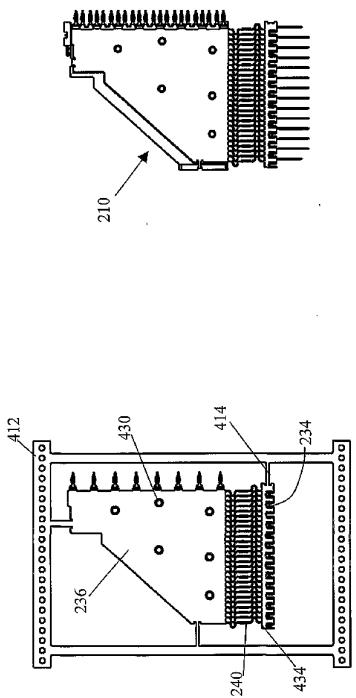
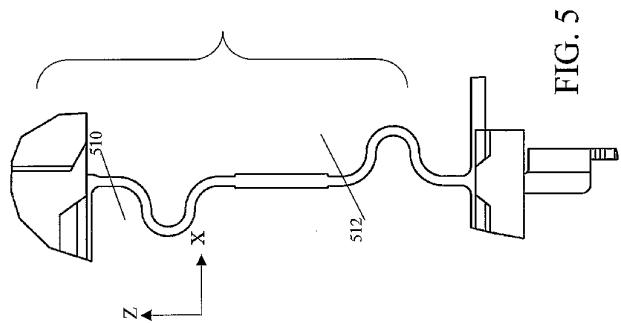


FIG. 4D


FIG. 4C

WO 02/061889

PCT/US02/02862

6/10

240

7/10

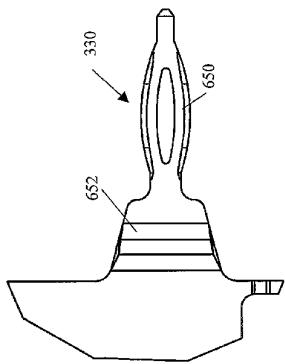


FIG. 6B

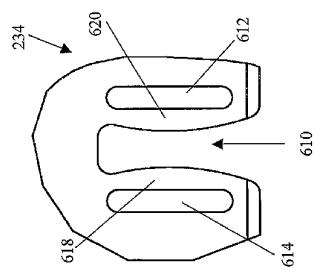


FIG. 6A

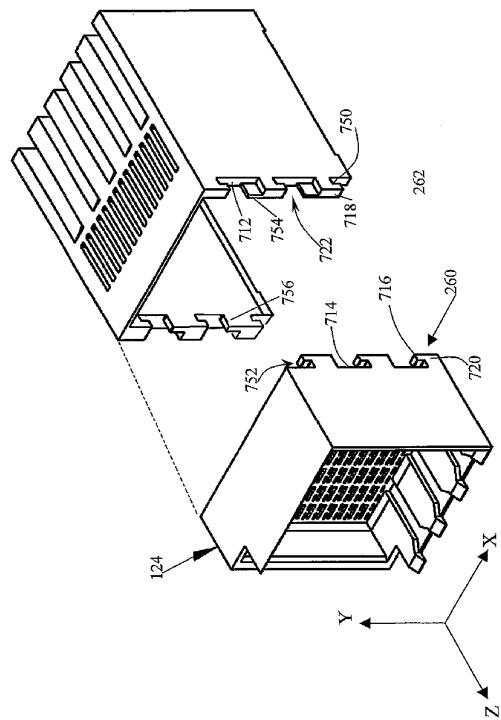
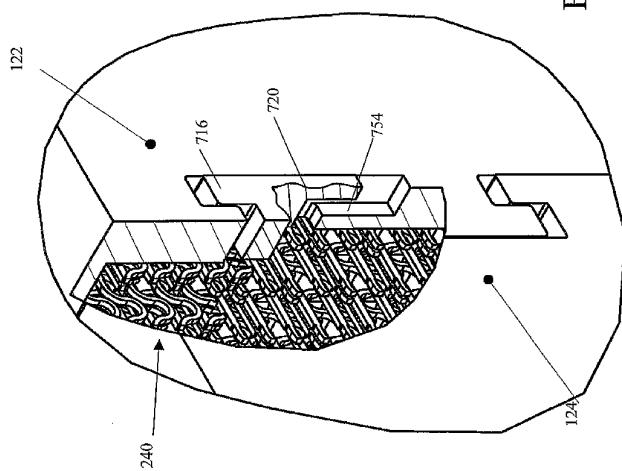



FIG. 7A

FIG. 7B

WO 02/061889

PCT/US02/02862

10/10

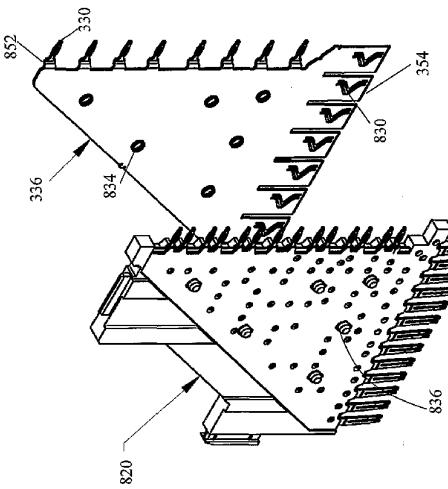


FIG. 8B

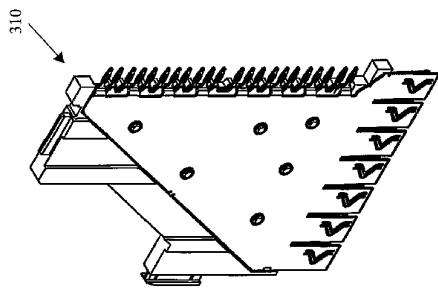


FIG. 8A

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/02862
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01R12/16		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01R		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 993 259 A (ALLEN STEVEN J ET AL) 30 November 1999 (1999-11-30) cited in the application column 3, line 40 -column 9, line 13; figure 1 ---	1-20
A	US 5 316 501 A (MAIR EDWARD) 31 May 1994 (1994-05-31) column 3, line 18 -column 4, line 18; figure 1 ---	1-20
A	US 5 934 939 A (THENNAISIE JACKY ET AL) 10 August 1999 (1999-08-10) column 3, line 1 -column 5, line 37; figure 1 ---	1-20
<input type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the International filing date		
U document which may throw doubt on the novelty, claim(s) or with respect to the classification of the document of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the International filing date but later than the priority date claimed		
T later document published after the International filing date or priority date which, in conflict with the application, is cited to understand the principle or theory underlying the invention		
X document of particular relevance; the claimed invention cannot be constructed novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
& document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report	
27 June 2002	10/07/2002	
Name and mailing address of the ISA European Patent Office, P.B. 5518 Patentam 2 NL-2280 RD The Hague Tel: (+31-70) 340-2040, Tx: 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer Stirn, J-P	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT
Information on patent family members

Interc
nal Application No
PCT/US 02/02862

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5993259	A 30-11-1999	EP	1021854 A1	26-07-2000
		JP	2001510627 T	31-07-2001
		WO	9835409 A1	13-08-1998
		US	6379188 B1	30-04-2002
		US	6238245 B1	29-05-2001
US 5316501	A 31-05-1994	DE	9015255 U1	14-02-1991
		AT	127625 T	15-09-1995
		CA	2095531 A1	07-05-1992
		WO	9208261 A1	14-05-1992
		DE	59106437 D1	12-10-1995
		EP	0556200 A1	25-08-1993
		FI	932023 A	05-05-1993
US 5934939	A 10-08-1999	JP	6501591 T	17-02-1994
		FR	2747516 A1	17-10-1997
		EP	0801445 A1	15-10-1997
		JP	10083864 A	31-03-1998

Form PCT/ISA2/0 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P,L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZM,ZW

(74)代理人 100096013

弁理士 富田 博行

(72)発明者 ストコー, フィリップ・ティー

アメリカ合衆国マサチューセッツ州02703, アトルボロ, カントリー・ビュー・ロード 23

(72)発明者 コーエン, トーマス・エス

アメリカ合衆国マサチューセッツ州03070, ニュー・ポストン, スコビー・ロード 63

F ターム(参考) 5E021 FA05 FB02 FB14 FC19 LA12 LA15

5E023 AA04 AA16 BB02 BB22 CC12 CC23 FF07 HH20