du Canada

Office de la Proprieté
Intellectuelle

Un organisme

d'Industrie Canada

Canadian CA 2320240 C 2006/01/24

Intell | P
otes.T||| anen 2 320 240
ﬁgﬁg’[en%yaﬁ; " 12y BREVET CANADIEN
Y CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 1999/02/12

(51) ClL.Int.”/Int.CI." GOBF 12/02

(87) Date publication PCT/PCT Publication Date: 1999/08/19 | (72) Inventeurs/Inventors:

(45) Date de délivrance/lssue Date: 2006/01/24
(85) Entree phase nationale/National Entry: 2000/08/02

BAMFORD, ROGER J., US;
KLOTS, BORIS, US

(73) Proprietaire/Owner:

(86) N° demande PCT/PCT Application No.: US 1999/002965 ORACLE INTERNATIONAL CORPORATION (OIC), US
(87) N° publication PCT/PCT Publication No.: 1999/041664 (74) Agent: MOFFAT & CO.

(30) Priorntes/Priorities: 1998/02/13 (60/074,587) US,
1998/11/24 (09/199,120) US

(54) Titre : PROCEDE ET APPAREIL DE TRANSFERT DE DONNEES DE LA MEMOIRE CACHE D'UN NOEUD A LA
MEMOIRE CACHE D'UN AUTRE NOEUD

54) Title: METHOD AND APPARATUS FOR TRANSFERRING DATA FROM THE CACHE OF ONE NODE TO THE
CACHE OF ANOTHER NODE

CURSOR
CONTROL
f1f

DiSK DRIVES 635 {

(57) Abréegée/Abstract:

MAIN ROM
MEMORY
806 608

guUS

STORAGE
DEVICE

610

COMMUNICATION
INTERFACE

PROCESSOR
04

—_— — — p— —
fr— —r— — — —_— —
— — —i i ——— .
— - R — a— — .-

SYSTEM AREA
NETWORK 653

A method and apparatus are provided for transferring a resource from the cache of one database server to the cache of another
database server without first writing the resource to disk. WWhen a database server (Requestor) desires to modify a resource, the
Requestor asks for the current version of the resource. The database server that has the current version (Holder) directly ships the
current version to the Requestor. Upon shipping the version, the Holder loses permission to modify the resource, but continues to
retain the resource in memory. When the retained version of the resource, or a later version thereof, is written to disk, the Holder
can discard the retained version of the resource. Otherwise, the Holder does not discard the retained version. Using this technigque,
single-server fallures are recovered without having to merge the recovery logs of the various database servers that had access to

the resource.

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

OPIC - CIPO 191

CA 02320240 2000-08-02

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
o . . - L P
(51) International Patent Classification © : | (11) International Publication Number: WO 99/41664
GO6F 11/14 Al
(43) International Publication Date: 19 August 1999 (19.08.99) |
(21) International Application Number: PCT/US99/02965 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CZ, DE, DK, EE, ES, Fl, GB, GD, GE, |
(22) International Filing Date: 12 February 1999 (12.02.99) GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, |
(30) Priority Data: ™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
60/074,587 13 February 1998 (13.02.98) US (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
09/199,120 24 November 1998 (24.11.98) US (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
! (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI.
(71) Applicant: ORACLE CORPORATION [US/US); 500 Oracle CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
Parkway, Redwood Shores, CA 94065 (US). ’

(72) Inventors: BAMFORD, Roger, J.; 2430 Hyde Street, San | Published

Francisco, CA 94109 (US). KLOTS, Boris; 1566 Winding With international search report.
Way, Belmont, CA 94002 (US). Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(74) Agents: CARLSON, Stephen, C. et al.; McDermott, Will & amendments.
Emery, 600 13th Street, N.-W., Washington, DC 20005-3096
(US).

(54) Title: METHOD AND APPARATUS FOR TRANSFERRING DATA FROM THE CACHE OF ONE NODE TO THE CACHE OF
ANOTHER NODE

(57) Abstract

A method and apparatus are provided for transferring a resource from the cache of one database server to the cache of another
database server without first writing the resource to disk. When a database server (Requestor) desires to modify a resource, the Requestor
asks for the current version of the resource. The database server that has the current version (Holder) directly ships the current version
| to the Requestor. Upon shipping the version, the Holder loses permission to modify the resource, but continues to retain the resource in

memory. When the retained version of the resource, or a later version thereof, is written to disk, the Holder can discard the retained version
of the resource. Otherwise, the Holder does not discard the retained version. Using this technique, single-server failures are recovered
without having to merge the recovery logs of the various database servers that had access to the resource.

10

15

20

25

30

CA 02320240 2005-04-21

METHOD AND APPARATUS FOR TRANSFERRING DATE FROM THE CACHE
OF ONE NODE TO THE CACHE OF ANOTHER NODE

FIELD OF THE INVENTION

The present invention relates to techniques for reducing the penalty associated with one
node requesting data from a data store when the most recent version of the requested data resides
in the cache of another node.

BACKGROUND OF THE INVENTION

To improve scalability, some database systems permit more than one database server (each
running separately) to concurrently access shared storage such as stored on disk media. Each
database server has a cache for caching shared resources, such as disk blocks. Such systems are
referred to herein as parallel server systems.

One problem associated with parallel server systems is the potential for what are referred
to as “pings”. A ping occurs when the version of a resource that resides in the cache of one server
must be supplied to the cache of a different server. Thus, a ping occurs when, after a database
server A modifies resource x in its cache, and database server B requires resource x for
modification. database servers A and B would typically run on different nodes, but in some cases
might run on the same node.

One approach to handling pings 1s referred to herein as the “disk intervention” approach.
The disk intervention approach uses a disk as intermediary storage to transfer the latest version
of the resource between two caches. Thus, in the example given above, the disk intervention
approach requires database server 1 to write its cache version of resource x to disk, and for
database server 2 to retrieve this version from disk version of resource x to disk, and for database
server 2 to retrieve this version from disk into its cache. The disk intervention approach’s reliance
on two disk I/0’s per inter-server transfer of a resource limits the scalability of parallel server
systems. Specifically, the disk I/Os required to handle a ping are relatively expensive and time
consuming, and the more database servers that are added to the system, the higher the number of
pings.

However, the disk intervention approach does provide for relatively efficient recovery
from single database server failures, in that such recovery only needs to apply the recovery (redo)
log of the failed database server. Applying the redo log of the failed database server ensures that
all of the committed changes that transactions on the failed database server made to the resources

in the cache of the failed server are recovered. The use of redo logs during recovery are described

in detail in U.S. Patent No. 5,832,516, entitled “CACHING DATA IN RECOVERABLE
OBJECTS?”, filed on January 21, 1997.

10

15

20

25

30

CA 02320240 2005-04-21

-

Parallel server systems that employ the disk intervention approach typically use a protocol
in which all global arbitration regarding resource access and modifications 1s performed by a
Distributed Lock Manager (DLLM). The operation of an exemplary DLM is described 1n detail in
U.S. Patent No. 6,574,654, entitled “METHOD AND APPARATUS FOR LOCK CACHING”,
filed on June 24, 1996.

In typical Distributed Lock Manager systems, information pertaining to any given resource
1s stored in a lock object that corresponds to the resource. Each lock object 1s stored in the
memory of a single node. The lock manager that resides on the node on which a lock object is
stored 1s referred to as the Master of that lock object and the resource it covers.

In systems that employ the disk intervention approach to handling pings, pings tend to
involve the DLM in a variety of lock-related communications. Specifically, when a database
server (the “requesting server’) needs to access a resource, the database server checks to see
whether 1t has the desired resource locked 1n the apptopriate mode: either shared in case of a read,
or exclusive in case of a write. If the requesting database server does not have the desired
resource locked in the right mode, or does not have any lock on the resource, then the requesting
server sends a request to the Master for the resource to acquire the lock in specified mode.

The request made by the requesting database server may conflict with the current state of
the resource (e.g. there could be another database server which currently holds an exclusive lock
on the resource). If there 1s no conflict, the Master for the resource grants the lock and registers
the grant. In case of a conflict, the Master of the resource initiates a conflict resolution protocol.
The Master of the resource instructs the database server that holds the conflicting lock (the
“Holder”) to downgrade its lock to a lower compatible mode.

Unfortunately, if the Holder (e.g. database server A) currently has an updated (“dirty”)
version of the desired resource in its cache, it cannot immediately downgrade its lock. In order
to downgrade its lock, database server A goes through what is referred to as a “hard ping”
protocol. According to the hard ping protocol, database server A forces the redo log associated
with the update to be written to disk, writes the resource to disk, downgrades its lock and notifies
the Master that database server A 1s done. Upon receiving the notification, the Master registers
the lock grant and notifies the requesting server that the requested lock has been granted. At this
point, the requesting server B reads the resource into its cache from disk.

As described above, the disk intervention approach does not allow a resource that has been

updated by one database server (a “dirty resource”) to be directly shipped to

10

15

20

25

30

35

SR M b s ey A A AT il § ML A L 3 125 o P4 0 o a0 | VRN Lo A L] el AP FRYIE 4 MET e ¢ (Al AT AL LT BT o ¢ v N H - o i e I0d 1 T e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
3.

another database server. Such direct shipment 1s rendered unfeasible due to recovery
related problems. For example, assume that a resource 1s modified at database server A,
and then is shipped directly to database server B. At database server B, the resource 1s
also modified and then shipped back to database server A. At database server A, the
resource is modified a third time. Assume also that each server stores all redo logs to disk
before sending the resource to another server to aillow the recipient to depend on prior
changes.

After the third update, assume that database server A dies. The log of database
server A contains records of modifications to the resource with a hole. Specifically,
server A’s log does not include those modifications which were done by database server
B. Rather, the modifications made by server B are stored in the database server B’s log.
At this point, to recover the resource, the two logs must be merged before being applied.
This log merge operation, if implemented, would require time and resources proportional

to the total number of database servers, including those that did not fail.

The disk intervention approach mentioned above avoids the problem associated
with merging recovery logs after a failure, but penalizes the performance of steady state
parallel server systems in favor of simple and efficient recovery. The direct shipment
approach avoids the overhead associated with the disk intervention approach, but involves
complex and nonscalable recovery operations 1n case of failures.

Based on the foregoing, it is clearly desirable to provide a system and method for

reducing the overhead associated with a ping without severely increasing the complexity
or duration of recovery operations.

SUMMARY OF THE INVENTION

A method and apparatus are provided for transferring a resource from the cache
of one database server to the cache of another database server without first wniting the
resource to disk. When a database server (Requestor) desires to modify a resource, the
Requestor asks for the current version of the resource. The database server that has the
current version (Holder) directly ships the current version to the Requestor. Upon
shipping the version, the Holder loses permission to modify the resource, but continues
to retain a copy of the resource in memory. When the retained version of the resource,
or a later version thereof, 1s written to disk, the Holder can discard the retained version
of the resource. Otherwise, the Holder does not discard the retained version. In the case
of a server failure, the prior copies of all resources with modifications 1n the faiied
server’s redo log are used, as necessary, as starting points for applying the failed

server’s redo log. Using this technique, single-server failures (the most common form

SUBSTITUTE SHEET (RULE 26)

TS TR [TP IO BT [o v Y] S g ogpe ey ST JT N T IO ST PE I e van Trndap Pl b B Ee R ealst S AN ST T L S AR AP R e S e 1 D AT L e AR PO Ll o S Al (BT 7 T St RO ST 1 A A 1 SN DA (b SN U1 o e SO Al 4 {7 RCRad S 41

“2IC AN

[E O T EPOR P ST E R RS STl AR

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-4 -

of failure) are recovered without having to merge the recovery logs of the various

database servers that had access to the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like reference

numerals refer to similar elements and in which:

Figure 1 is a block diagram illustrating cache to cache transfers of the most
recent versions of resources;
10 Figure 2 is a flowchart illustrating steps for transmitting a resource from one
cache to another without disk intervention according to an embodiment of the invention;

Figure 3 is a flowchart illustrating steps for releasing past images of resources,
according to an embodiment of the invention;

Figure 4 is a flowchart illustrating steps for recovering after a single database

15 server failure according to an embodiment of the invention;

Figure 5 is a block diagram illustrating a checkpoint cycle according to an
embodiment of the invention; and

Figure 6 is a block diagram of a computer system on which an embodiment of

the invention may be implemented.
20
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A method and apparatus for reducing the overhead associated with a ping 1s
described. In the following description, for the purposes ot explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
75 invention. It will be apparent, however, to one skilled 1n the art that the present
invention may be practiced without these specific details. In other database servers,

well-known structures and devices are shown in block diagram form 1n order to avold

unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW
30 According to one aspect of the invention, pings are handled by shipping updated
versions of resources directly between database servers without first being stored to
disk, thus avoiding the /O overhead associated with the disk intervention approach.
Further, the difficulties associated with single-instance failure recovery are avolded by
preventing a modified version of a resource from being replaced in cache until the
15 modified resource or some successor thereof has been written to disk, even 1if the

resource has been transferred to another cache.

SUBSTITUTE SHEET (RULE 26)

N b PR 2 A M R TIPE B ¢ 3 A OO ETE TPy LY © b, B AL g ATy € S S RN 254 5 R N o o LR PRVICTOe S e QT U T IIPY TTSe, et e D 1g 1At PO SUTTT IS T T R SR B P ST BRI RTINS U YRR, L R

e dobe BIIRAA Y T2 N T it D Rt b B A G o P i A of A 1INy © - S 3 P 1 Gy S Pt s B0k 1

A a4 A BG40 AT A AR 1 ML ot - O TR AT EAI I 1 1 B Pl S AL A o M 3N L T

e b e e A iy 3 RO £ O T T LG b - AN VIV AARRICE (e 4 M v e AN 0 AR AN, b AU TE N+ - 121 A G s T TS 2 e 3100 it I AR DR i - R DD e - 30 B i IR I g E b

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
_5.

For the purpose of explanation, a copy of a resource that cannot be replaced n
cache is referred to herein as a “pinned’” resource. The act of making a pinned resource

replaceable is referred to as *““releasing” the resource.

THE M AND W LOCK APPROACH
5 According to one aspect of the invention, the modify and write-to-disk
permissions for a resource are separated. Thus, a database server that has permission to
write an updated version of a resource from cache to disk does not necessarily have
permission to update the resource. Conversely, a database server that has permission to
modify a cached version of a resource does not necessarily have permission to write that

10 cached version to disk.

According to one embodiment, this separation of permissions 1s enforced
through the use of special locks. Specifically, the permission to modify a resource may
be granted by a ““M” lock, while the permission to write a resource to disk may be
granted by a “W” lock. However, it should be noted that the use of M and W locks as

15 described herein represents but one mechanism for preventing a transferred version of a

resource from being replaced in cache until that version or a successor thereof 1s written
to disk.

Referring to Figure 2, it illustrates the steps performed in response to a ping in a
database system that uses M and W locks, according to one embodiment of the

20 invention. At step 200, a database server that desires to modify a resource requests the
M lock from the Master for the resource (i.e. the database server that manages the locks
i for the resource). At step 202, the Master instructs the database server currently holding
the M lock for the resource (“‘ the Holder”)to transfer the M lock together with 1ts
cached version of the resource to the requesting database server via direct transier over
25 the communication channel(s) connecting the two servers (the *interconnect™).
At step 204, the Holder sends the current version of the resource and the M lock
to the Requestor. At step 206, the Holder informs the Master about the transfer of the M

lock. At step 208, the Master updates the lock information for the resource to indicate
that the Requestor now holds the M lock.

30 PI RESOURCES
The holder of the M lock does not necessanly have the W lock, and therefore
may not have permission to write the version of the resource that is contained i 1ts
cache out to disk. The transferring database server (i.e. the database server that last held

the M lock) therefore continues to pin its version of the resource in dynamic memory

35 because it may be asked to write out its version to disk at some future point, as

SUBSTITUTE SHEET (RULE 26)

Tt I 2D rtagta o ApkE] S R PR A T T A 2 = A A LT SV RA % Yo M ae o WU TN L AR T S AT b AL e % ekt 2 VIR AR W AT D Ve = M ARG N AN TS O S 0 DU AL SRR TS -

MRV ORI /o e’ TP AL S Gt ML S U a Lk e ST M CIPOUCMA G- A TR0 M/ 0.5 111 1 . et S (w1 4l DRI 1 R ST S

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-6-
described below. The version of the resource that remains in the transferming database
server will become out-of-date if the receiving database server modifies its copy of the
resource. The transferring database server will not necessarily know when the recetving
database server (or a successor thereof) modifies the resource, so from the time the
5 transferring database server sends a copy of the resource, it treats its retained version as

“potentially out-of-date”. Such potentially out-of-date versions of a resource are

referred to herein as past-image resources (Pl resources).

RELEASING PI RESOURCES

10 After a cached version of a resource is released, it may be overwritten with new
data. Typically, a dirty version of a resource may be released by writing the resource to
disk. However, database servers with PI resources in cache do not necessarily have the
right to store the PI resources to disk. One technique for releasing PI resources under
these circumstances is 1llustrated in Figure 3.

15 Referring to Figure 3, when a database server wishes to release a PI resource 1n
its cache, it sends a request for the W lock (step 300) to the distributed lock manager
(DLM). In step 302, the DLM then orders the requesting database server, or some
database server that has a later version of the resource (a successor) in 1ts cache, to write
the resource out to disk. The database server thus ordered to write the resource to disk 1s

20 granted the W lock. After the database server that was granted the W lock writes the
resource to disk, the database server releases the W lock.

The DLM then sends out a message to all database servers indicating the version
of the resource written out (step 304), so that all earlier PI versions of the resource can
be released (step 306). For example, assume that the version written to disk was

25 modified at time T10. A database server with a version of the resource that was last
modified at an earlier time T5 could now use the buffer in which 1t 1s stored for other

data. A database server with a version that was modified at a later time T11, however,

would have to continue to retain its version of the resource in 1ts memory.

PING MANAGEMENT UNDER THE M AND W LOCK APPROACH
30 According to one embodiment of the invention, the M and W lock approach may
be implemented to handle pings as shall now be described with reference to Figure 1.
Referring to Figure 1, it is a block diagram that illustrates four database servers A, B, C
and D, all of which have access to a database that contains a particular resource. At the
time illustrated, database servers A, B and C all have versions of the resource. The

35 version held in the cache of database server A is the most recently modified version of the

SUBSTITUTE SHEET (RULE 26)

Lands k. 2Ry & TR RANT L b r AR AR L Lt AR s S . . 1SN % S0 01 S TURE J andn e AR N e et . L g oo 0 e OMkp] 563 3 ShareT N Ui e A S ALY e I IR O NS AL A I f 0 it A 4 ity Al A O el Lo it e Mg ¢ LD LT Ao A P A ity i S ey w0 e

4o VAT AL D e ‘s AN R R A (1A wd (B D L IACRE I RANY TR e ArRICEYParSo

10

15

20

25

30

35

Pou g oL A <o

1 1ar Snded o B s il AR R e A R A s i e e S N RO O Bt e s ot e R R R A (7 e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-7
resource (modified at time T10). The versions held in database servers B and C are Pl
versions of the resource. Database scrver D 1s the Master for the resource.

At this point, assume that another database server (the “Requestor”) desires to
modify the resource. The Requestor requests the modify lock from the Master. The
Master sends a command to database server A 1o down-convert the lock (a “BAST”) due
to the conflicting request from the Requestor. In response to the down-convert command,
the current image of the resource (whether clean or dirty) 1s shipped from database server
A to the Requestor, together with a permission to modify the resource. The permission
thus shipped does not include a permission to wnte the resource to disk.

When database server A passes the M lock to the Requestor, database server A
downgrades his M lock to a **hold™ lock (and “"H lock™). The H lock indicates that the
database server A is holding a pinned P1 copy. Ownership of an H lock obligates the
owner to keep the PI copy 1n its buffer cache. but does not give the database server any

rights to write the PI copy to disk. There can be multiple concurrent H holders for the
same resource, but not more than one databasc server at a time can write the resource,

therefore only one database server can hold a W lock on the resource.

Prior to shipping the resource, database server A makes sure that the log 1s forced
(1.e. that the recovery log generated for the changes made by database server A to the
resource are durably stored). By passing the modification permission, database server A
loses its own right to modify the resource. The copy of the resource (as 1t was just at the

moment of shipping) is still kept at the shipping database server A. After the shipment of
the resource, the copy of the resource retained in database server A 1s a Pl resource.

COURTESY WRITES

After a database server ships a dirty resource directly to another database server,
the retained copy of the resource becomes a pinned PI resource whose bufter cannot be
used for another resource until released. The buffers that contain PI resources are referred
to herein as PI buffers. These buffers occupy valuable space 1n the caches of the database
servers, and eventually have to be reused for other data.

To replace PI buffers in the buffer cache (to be aged out or checkpointed) a new
disk write protocol, referred to herein as “courtesy wrtes”, 1s employed. According to the
courtesy write protocol, when a database server needs to write a resource to disk, the

database server sends the request to the DLM. The DLM selects a version of the resource

to be written to disk, finds the database server that has the selected version, and causes

that database server to write the resource to disk on behalf of the database server which
initiated the write request. The database server that actually wntes the resource to disk

SUBSTITUTE SHEET (RULE 26)

v od B e Lt B TR ¢ RN A Sl CES s L G et e . . T e N A AR AEN Dyl iy AN R R Y

3 1< b . AT 2 1 G ALY L DA B v T 4= Nl R 11423 U - e MR At i NN AAMTIICTOIR Yo MDA 3 TG o THNC 4 § BEAMILICHCAPMIA Sl # s o m I A0 Wi S plrishodh (A ok s Al W30 0 = £ R

10

15

20

25

30

i B N LR w e < R UNTYFIC TS ST ¥ S Rt

- 7 o2 ORI LTI LSy PR Al Bt s8] i vdie ot ® mir o lm it Al d e Nt W Gl 0N A e e D AR T R e, st e B e T T T R e Y = e

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
_8.

may be the database server which requested the write, or some other database server,
depending on the latest trajectory of the resource.

Writing the selected version of the resource to disk releases all PI versions of the
resource in all buffer caches of a cluster that are as old or older than the selected version
that was written to disk. The criteria used to select the version that will be written to disk
shall be described in greater detail hereafter. However, the selected version can be either
the latest PI version known to the Master or the current version (“CURR?") of the resource.
One benefit of selecting a version other than the current version is that selection of
another version leaves the current copy uninterruptedly available for modifications.

A database server that is holding a PI resource can write out its PI copy provided
that it has acquired a W lock on the resource. The writes of the resource are decoupled

from the migration of the CURR resource image among the various database servers.

EFFICIENCY FACTORS
There is no need to write a PI copy each time a resource 1s shipped to another
database server. Therefore, the goal of durably storing resources is to keep the disk copies

recent enough, and to keep the number of non-replaceable resources in the buffer caches
reasonable. Various factors determine the efficiency of a system that employs the courtesy
write protocol described above. Specifically, it 1s desirable to:

(1) minimize I/O activity caused by writing dirty resources to disk;

(2) keep the disk versions of resources current enough to speed up recovery
operations after a failure; and

(3) prevent overflow of the buffer cache with pinned PI resources.

Maximizing the first criteria has a negative impact on the second and third critena,
and visa versa. Therefore, a trade off is necessary. According to one embodiment of the
invention, a self-tuning algorithm may be used which combines different techniques of

checkpointing (LRU mixed with occasional continuous checkpointing) coupled with a
control over the total IO budget.

THE NEWER-WRITE APPROACH
An altemative to the courtesy-write protocol described above i1s referred to
herein as the write-newer approach. According to the write-newer approach, all
database servers have permission to write their PI resources to disk. However, pnor to

doing so, a database server acquires a lock on the disk-based copy of the resource. After
acquiring the lock, the database server compares the disk version with the PI version

that it desires to write. If the disk version is older, then the PI version is written to disk.

SUBSTITUTE SHEET (RULE 26)

Jreti s MR 1B B W 3. b 15 R O RO) Tl IR I a0 S e e (WA L A Skl e R | A) Tl rE I) i 14 2V [V- 79O T HT FANECT R P T R e Y T

10

15

20

25

30

35

a3 I AR, . e O ST AT 13 € 6, A N SN BNV R TS BB, 5 A BCHD FEMA LTCHAMEAE - AW T E RNI 62 12, 27 M |7 oA 240 YO 3 G - S S SR S R A € B4 e o rek e fos Al

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
. -9

If the disk version is newer, then the PI version may be discarded and the buffer that it
occupied may be reused.

Unlike the courtesy-write protocol, the newer-write approach allows a database
server to release its own PI version, either by writing it to disk or determiming that the

disk version is newer. However, the newer-write approach increases contention for the

lock of the disk-based copy, and may incur a disk-I/O that would not have been incurred
with the courtesy-write approach.

PERMISSION STRINGS

Typical DLMs govemn access to resources through the use of a limited number of
lock modes, where the modes are either compatible or conflicting. According to one
embodiment, the mechanism for governing access to resources is expanded to substitute
lock modes with a collection of different kinds of permissions and obligations. The
permissions and obligations may nclude, for example, the permission to write a resource,
to modify a resource, to keep a resource 1n cache, etc. Specific permissions and |
obligations are described in greater detail below.

According to one embodiment, permissions and obligations are encoded in
permission strings. A permission string might be augmented by a resource version
number since many permissions are related to a version of a resource rather than to the
resource itself. Two different permission strings are conflicting 1f they demand the same
exclusive permission for the same version of the resource (e.g. current version for

modification or a disk access for write). Otherwise they are compatible.

CONCURRENCY USING PERMISSION TRANSFERS

As mentioned above, when a resource 1s modified at one database server and 1s
requested for further modifications by another database server, the Master 1nstructs the
database server that holds the current copy (CURR copy) of the resource to pass its M
lock (the right to modify) together with the CURR copy of the resource to the other
database server. Significantly, though the request for the M lock 1s sent to the master, the
grant is done by some other database server (the previous M lock holder). This triangular
messaging mode] deviates significantly from the traditional two-way communication
where the response to a lock request is expected from the database server contamning the
lock manager to which the lock request was 1nitially addressed.

According to one embodiment of the invention, when the holder of the CURR

copy of a resource (e.g. database server A) passes the M lock to another database server,
database server A notifies the Master that the M lock has been transferred. However,

database server A does not wait for acknowledgment that the Master received the

SUBSTITUTE SHEET (RULE 26)

2 nrdmEEY. e v

L DR O o T TSR 0] 4 2 M e T8 A SR 54% G2 e B T T3 T 3T LI NI A G | N A s wiargniic, LONCANMMMIO N Ll el AV A - P B P S AL TMETD | e - Pl LN AR 1Y Lt A atAn e

eat A B A L rrid BN h AL e AP LT 0 ot e i a9 AL AT IR LA ¢ - - o = 1 e i ST AR RIS LI PRI I B e U M | Y R R R A 1 L e e DY DN [s D2 BB s B MmN M P 1 oD e St s '

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-10- |

notification, but sends the CURR copy and the M lock prior to receiving such

acknowledgement. By not waiting, the round trip communication between the master and
database server A does not impose a delay on the transfer, thereby yielding a considerable
saving on the protocol latencies.

5 Because permissions are transferred directly from the current holder of the
permission to the requestor of the permission, the Master does not always know the exact

global picture of the lock grants. Rather, the Master knows only about the trajectory of the
M lock, about the database servers which just ‘held it lately’, but not about the exact

location of the lock at any given time. According to one embodiment, this “lazy”
10 notification scheme is applicable to the M locks but not to W, X, or S locks (or their

counterparts). Various embodiments of a locking scheme are described 1n greater detail
below.

FAILURE RECOVERY
Within the context of the present invention, a database server is said to have
15 failed if a cache associated with the server becomes inaccessible. Database systems that
employ the direct, inter-server shipment of dirty resources using the techmques
described herein avoid the need for merging recovery logs in response to a single-server
failure. According to one embodiment, single-server failures are handled as illustrated in

Figure 4. Referring to Figure 4, upon a single-database server failure, the recovery

20 process performs the following for each resource held in the cache of the failed database
Server:

(step 400) determine the database server that held the latest version of the
resource;
(step 402) if the database server determined in step 400 1s not the failed database
25 server, then (step 404) the determined database server writes its cached version of the
resource to disk and (step 406) all PI versions of the resource are released. This version
will have all the committed changes made to the resource (including those made by the
failed database server) and thus no recovery log of any database server need be applied.
If the database server determined 1n step 402 1s the failed database server, then
30 (step 408) the database server holding the latest PI version of the resource writes out its
cached version of the resource to disk and (step 410) all previous PI versions are
released. The version written out to disk will have the committed changes made to the
resource by all database servers except the failed database server. The recovery log of

the failed database server 1s applied (step 412) to recover the committed changes made
35 by the failed database server.

SUBSTITUTE SHEET (RULE 26)

Ut al e le SR HEN LA M AT 30 S RN L e T, I SO T o RN OO HERAR 143 GUMACEE e g, e i AN o R TR AR A MDA, AL SO AT L o S LA AR £ e Atk i o SACHIRO bl 48 I - e LG b s SOANAT b W AN Br N e St

10

15

20

25

30

35

I e 0ot o K Qe 40 AT TOR S AALLE W16 T MNEIAAC U . 11 A5 0 O T An R LA 3 T MM MV #5040 = 120000 1+ aSAPIIMCIRING WA 6 1 1o ML LA I A S D 32 0 i e 2 Bl I il e Pl 0 N 110 3550

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-11-
Alternatively, the latest PI version of the resource may be used as the starting
point for recovering the current version in cache, rather than on disk. Specifically, the
appropriate records from the recovery log of the failed database server may be applied
directly to the latest PI version that resides in cache, thus reconstructing the current
version 1n the cache of the database server that holds the latest PI version.

MULTIPLE DATABASE SERVER FAILURE

In case of a multiple server failure, when neither the latest PI copy nor any
CURR copy have survived, it may happen that the changes made to the resource are
spread over multiple logs of the failed database servers. Under these conditions, the logs
of the failed database servers must be merged. However, only the logs of the failed
database servers must be merged, and not logs of all database servers. Thus, the amount
of work required for recovery 1s proportional to the extent of the failure and not to the
size of the total configuration.

In systems where it 1s possible to determine which failed database servers
updated the resource, only the logs of the failed database servers that updated the
resource need to be merged and applied. Similarly, in systems where 1t 1s possible to
determine which failed database servers updated the resource subsequent to the durably
stored version of the resource, only the logs of the failed database servers that updated

the resource subsequent to the durably stored version of the resource need to be merged
and applied.

EXEMPLARY OPERATION

For the purpose of explanation, an exemplary series of resource transfers shall be
described with reference to Figure 1. During the series of transfers, a resource 1s
accessed at multiple database servers. Specifically, the resource 1s shipped along a
cluster nodes for modifications, and then a checkpoint at one of the database servers
causes a physical I/0 of this resource.

Referring again to Figure 1, there are 4 database servers: A,B,C, and D.
Database server D is the master of the resource. Database server C first modifies the
resource. Database server C has resource version 8. At this point, database server C also
has an M lock (an exclusive modification right) on this resource.

Assume that at this point, database server B wants to modify the resource that
database server C currently holds. Database server B sends a request (1) for an M lock

on the resource. Database server D puts the request on a modifiers queue associated
with the resource and instructs (message 2: BAST) database server C to:

(a) pass modification permission (M lock) to database server B,

SUBSTITUTE SHEET (RULE 26)

1R AR e OO BRTNRSE R R N 5 RGNS A RS P ¢ S I IR D0 SO ROV e R UMMM e DI tvehk M vl g O T

C B et kA L A G A D VG L b L e B MY Ximarr PRSPPI T TPV FONIV TR NN PRI EEF 1 PP TPPY SEFCSCVIRCTSNNIDI CRVT-OC V- TTTY. TRFPCRUTE ERVTI TRVE TTTRPOF SR NP F | N SITRR S LIC! L PR PSRN R P PR 70 SEEERTIF o e e 2 GV L Lol B RIE 20 T o g b ol Stk :

CA 02320240 2000-08-02

WO 99/41664 PCT/US99/02965
-12-
(b) send current image of the resource to database server B, and
(c) downgrade database server C’s M lock to an H lock.
After this downgrade operation, C 1s obligated to keep 1ts version of the resource
(the PI copy) in 1ts buffer cache.

S Database server C performs the requested operations, and may additionally force
the log on the new changes. In addition, database server C lazily notifies (3 AckM) the
Master that it has performed the operations (AST). The notification also informs the
Master that database server C keeps version 8. Database server C does not wait for any
acknowledgment fro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>