发明名称
一种耐高温分散型油井水泥降失水剂及制备方法

摘要
本发明提供了一种耐高温油井分散型水泥降失水剂及制备方法，采用该方法制备的降失水剂用于石油、天然气钻井固井过程中降低水泥浆的失水量。该发明所提供的降失水剂具有良好的控制失水能力和改善水泥浆流变性的能力，并具有良好的耐温抗盐能力，适用范围宽。
1. 一种耐高温分散型油井水泥降失水剂制备方法，所述合成方法包括：
 a) 配制原料水溶液，所述原料水溶液包括四种单体：2-丙烯酰胺基-2-甲基丙磺酸 (AMPS)、N，N’-二甲基丙烯酰胺 (DMAA)、丙烯酰胺 (AM)、马来酸酐 (MA)，其中四种单体的重量份数为：2-丙烯酰胺基-2-甲基丙磺酸 (AMPS) 50 份～ 65 份，N，N’-二甲基丙烯酰胺 (DMAA) 8 份～ 25 份，丙烯酰胺 (AM) 10 份～ 15 份，马来酸酐 (MA) 5 份～ 10 份。
 b) 采用调整溶液的浓度、溶液的 pH 值、反应温度、引发剂加量等溶液聚合条件的方法，使原料水溶液进行反应。
 c) 引发剂为过硫酸铵与亚硫酸氢钠 (质量比 1 : 1)。

2. 根据权利要求 1 所述的分散型油井水泥降失水剂合成方法，单体重量总和占去离子水重量的 25%～ 35%。

3. 根据权利要求 1 至 2 所述的分散型油井水泥降失水剂合成方法：将所有单体溶解在去离子水中，用氢氧化钠溶液将单体溶液的 pH 值调为 6～7，将溶液加入到三口烧瓶中，将三口烧瓶放入 40℃～ 60℃的恒温水浴中，向三口烧瓶中通入氩气排除氧气，待三口烧瓶内水溶液的温度达到设定温度后，加入占单体质量总和 0.2%～1.5%的过硫酸铵和亚硫酸氢钠 (质量比 1 : 1) 用以引发反应，反应持续 2～5 个小时，制成四元共聚物溶液，经干燥、粉碎得到粉剂，获得分散型油井降失水剂。

4. 根据权利要求 1 至 3 中所述的合成方法所合成的聚物类油井水泥降失水剂。
一种耐高温分散型油井水泥降失水剂及制备方法

技术领域
[0001] 本发明涉及一种油田固井用分散型的降失水剂及制备方法，属于油田化学及油气井固井领域。采用该方法制备的降失水剂用于石油、天然气井的固井过程中降低水泥浆的失水量。

背景技术
[0002] 油气井钻井完成后，需要下入套管并泵入水泥浆来封固套管与地层之间的环形空间。通常情况下，水泥浆是通过套管泵达井底，然后从环形空间上返。由于地层条件比较复杂，井下条件恶劣，固井时水泥浆在压差的作用下，水泥浆中的自由水会从水泥浆中溢出，进入地层，通常将这种过程称为水泥浆的失水。如果水泥浆的失水得不到很好的控制，随着水泥浆液相含量的降低，水泥浆的流动性变差，硬化时间缩短，严重时导致水泥浆失去流动性，变得不可泵送，造成严重的事故。大量的水泥浆滤液进入油气层，会对油气层产生伤害，不利于油气层的保护；在固井的候凝阶段，如果水泥浆失水量得不到控制，会引起严重的水泥浆失重，而引发环空气窜。因此，水泥浆降失水剂在固井施工的安全和提高固井质量方面，起着至关重要的作用。

[0003] 由于固井作业时，水泥浆需流经套管与地层之间的环形空间，而环形空间间隙往往只有 2～3cm，对于小井眼的环空间隙，甚至小于 1cm。水泥浆如果流变性不好，会从以下两方面对固井施工产生影响：(1) 由于水泥浆太稠，无法完全泵出套管，进入环空，使得水泥浆在套管内部结固，往往造成整口井的报废；(2) 在泵送的过程中水泥浆流动阻力较大，过大的流动阻力叠加在静液柱压力上，会超过地层破裂压力，最终造成地层压漏现象的发生，从而使得水泥浆大量向地层漏失，从而导致环空液柱压力降低，如果泵柱压力低于气层压力，则会进一步造成井涌或井喷事故的发生。因此水泥浆的流变性对于固井施工影响重大，目前常规的降失水剂均存在增稠现象严重的问题，现场上为了使水泥浆满足流变性施工要求，往往向水泥浆中加入大量的分散剂，分散剂的加入不但使得固井成本增加，而且分散剂的引入由于会和缓凝剂等外加剂在水泥颗粒表面发生竞争吸附等原因，使得水泥浆配方的调整变得复杂。因而有必要研究一种既具有良好的降失水作用，又不过分增稠的油井水泥降失水剂来解决这一问题。

[0004] 目前，已有许多类型的油井水泥降失水剂用于注水泥作业。常用的有纤维素醚类（羟乙基纤维素、羧甲基纤维素和羧甲基羟乙基纤维素等）、聚乙烯醇类、聚丙烯酰胺类、聚 2-丙烯酰胺 -2- 甲基丙磺酸 (AMPS) 类。聚丙烯酰胺类和聚 2-丙烯酰胺 -2- 甲基丙磺酸 (AMPS) 类是合成聚合物，其控制失水能力强、抗盐和耐温，特别是 AMPS 聚合物类降失水剂更具有优异的耐高温和抗盐性能，AMPS 已成为高温降失水剂的主要合成单体。

[0005] 国内开发的 2-丙烯酰胺基 -2- 甲基丙磺酸 (AMPS) 共聚物主要是 2-丙烯酰胺基 -2- 甲基丙磺酸 (AMPS) / 丙烯酰胺 (AM) / 丙烯酸 (AA) 三元共聚物。但是 AMPS/AM/AA 共聚物有一个缺陷，就是配制的水泥浆会影响水泥浆的固结时间，在 70℃以上时会出现固结时间“倒挂”现象，即同一配方情况下温度越高固结时间反而越长。固结时间“倒挂”现象
使得水泥浆凝固期间上部水泥先凝固而下部水泥后凝固，有时会有相当长的时间差，这就造成其凝固过程中的水泥浆失重，容易发生“气窜”，不利于封固油气层。这种现象的产生主要原因在于，丙烯酰胺（AM）的酰胺基水解生成羧基的速度随着温度升高而加快，并超过水泥随温度升高水化加快的速率，造成温度升高水泥浆凝固时间反而延长的情况。专利号为200810226689.4 的专利中为避免水泥浆的‘倒灌’现象，而不在降失水剂中引人丙烯酰胺单体，而是引入了N, N’-二甲基丙烯酰胺来代替丙烯酰胺——N, N’-二甲基丙烯酰胺酰胺基中两个活泼氢原子被甲基取代，可以有效地抑制酰胺基的水解。但是N, N’-二甲基丙烯酰胺单体较为昂贵，大量的引入这种单体不利于产品的推广，并且该单体的增粘能力不如丙烯酰胺，造成水泥浆体的悬浮稳定性较差。本课题组的前期研究表明，适当的引入丙烯酰胺不会产生水泥浆的倒灌，并有利于浆体的稳定和降低产品的成本。

文章“高温超压地层固井降失水剂 AMPS/DMAM/FA/AM 共聚物的合成与特征研究”（四川大学博士论文）进行了 2-丙烯酰胺基-2- 甲基丙磺酸（AMPS）、N, N’-二甲基丙烯酰胺（DMAA）、丙烯酰胺（AM）、富马酸（FA）四元共聚物作为油井水泥降失水剂的研究。最终确定了单体的浓度为10%。四种单体的重量比为 AMPS40 份，AM35 份，DMA5 份，FA20 份，反应温度 40℃，反应时间 6h，引发剂（过硫酸铵与亚硫酸氢钠）加量为 0.5%。该降失水剂的有良好的耐高温抗盐效果，但是需要加入 0.5%～0.7%的分散剂才能满足水泥浆流变性要求。

专利号为20091076431.5 的专利也发布了一种共聚物降失水剂，该共聚物的主要配制成分包含；选择 2-丙烯酰胺基-2- 甲基丙磺酸、乙烯基磺酸或甲基丙烯酸中的一种为第一单体，选择 N, N’-二甲基丙烯酰胺、丙烯酰胺或 N, N’-二乙基丙烯酰胺中的一种为第二单体，选择马来酸酐、马来酸或富马酸中的一种为第三单体，选择丙烯磺酸钠、十二烷基硫醇和甲基丙烯磺酸钠中的一种为第一调节剂，其原料水溶液按重量份数比为 65～95份：1～30 份：1～5 份：0.01～5 份。该降失水剂有较好的耐高温抗盐效果，粉剂加量 1.2%（由水剂加量 5%按水剂的浓度转化而来），API 失水量（60℃）为 19.2ml，稠度系数（60℃）为 0.72Pa•s，API 失水量（120℃）为 48ml。

专利号为 200510119005.7 的专利中，涉及一种分散型的降失水剂，但是该降失水剂的主体采用的是交联的聚乙烯醇聚合物，由于采用聚乙烯醇导致该降失水剂耐高温耐盐能力较差。

发明内容

本发明的目的在于提供一种油田固井用耐高温分散型降失水剂及其制备方法。利用该方法合成的降失水剂可以在降低水泥浆失水量的同时改善水泥浆的流变特性，解决常规降失水剂引起的水泥浆稠度大而问题，实际施工中可以不使用分散剂就可以满足施工要求，该降失水剂拥有良好的抗高温抗盐效果。

为达到上述目的，本发明提供了一种分散型油井水泥降失水剂及其制备方法，所述制备方法包括：

a) 配制原料水溶液，所述原料水溶液包括四种单体：2-丙烯酰胺基-2- 甲基丙磺酸（AMPS）、N, N’-二甲基丙烯酰胺（DMAA）、丙烯酰胺（AM）、马来酸酐（MA），其中四种单体的重量份数为：2-丙烯酰胺基-2- 甲基丙磺酸（AMPS）50 份～65 份，N, N’-二甲基丙烯酰胺
(DMAA) 8 份 — 25 份，丙烯酰胺 (AM) 10 份 — 15 份，马来酸酐 (MA) 5 份 — 10 份。

[0012] b) 采用调整溶液的浓度、溶液的 p H 值、反应温度、引发剂加量等溶液聚合条件的方法，使原料水溶液进行反应。

[0013] c) 引发剂为过硫酸铵与亚硫酸氢钠 (质量比 1 : 1)。

[0014] 反应单体的总溶解度影响聚合反应速率和产物降失水性能。单体总浓度过大，易发生暴聚或产物粘度过大；反之，单体总浓度过小则易造成反应速率过低，产品有效浓度降低。因此本发明优选的单体总重量和占去离子水重量的 25% ~ 35%。

[0015] 所述的采用分散型油井水泥降失水剂的合成方法为水溶液聚合方法。一个典型的聚合方法为：将所有单体溶解在去离子水中，用氢氧化钠溶液将单体溶液的 p H 值调为 6 ~ 7，将溶液加入到三口烧瓶中，将三口烧瓶放入 40℃ ~ 60℃的恒温水浴中，向三口烧瓶中通入氮气排除氧气，待三口烧瓶内水溶液的温度达到设定温度后，加入占单体总计和 0.2% ~ 1.5%的过硫酸铵和亚硫酸氢钠 (质量比 1 : 1) 用以引发反应，使反应持续 2~5 小时，制成四元聚物溶液，经干燥、粉碎制成粉剂，获得分散型油井水泥降失水剂。

[0016] 本发明从以下三方面解决了现有油井水泥降失水剂所存在的不足。(1) 通过在聚合物中引入具有分散能力的磺酸基团和羧酸基团，并通过调整聚合物的聚合条件和单体配比来解决现有降失水剂增加水泥浆粘度的问题。(2) 解决了现有分散型降失水剂耐温耐盐能力差的问题，淡水条件下降失水剂加入量为 1% 时 120℃和 150℃水泥浆的失水量分别为 32ml 和 54ml，加入量为 1.5%时 120℃和 150℃水泥浆的失水量分别为 20ml 和 50ml；在 90℃，盐水浓度为 30%的情况下降失水剂加入量为 1% 时水泥浆失水量 104ml，加入量为 1.5%时失水量 52ml。(3) 通过调节 N,N'-二甲基丙烯酰胺与丙烯酰胺的比例，解决了水泥浆“倒挂”问题和水泥浆体系稳定性差的问题，缓解了降失水剂成本过高的问题。

附图说明

[0017] 图 1 是聚合物的红外光谱图，3430cm⁻¹ 为 -NH₂ 的吸收峰；2920cm⁻¹ 为 -CH₃ 的不对称伸缩振动峰；1650cm⁻¹ 为 -NH 为 -C = 0 的伸缩振动峰；1650cm⁻¹ 和 1390cm⁻¹ 两个吸收峰说明了羧酸盐的存在，由于 1800 cm⁻¹ 和 1760 cm⁻¹ 附近不存在吸收峰，说明不存在羧酸，即羧酸酸酐变成了羧酸基团；1440cm⁻¹ 为长链亚甲基的不对称弯曲振动峰；1040cm⁻¹ 和 1200cm⁻¹ 为 -SO₃⁻ 的对称和不对称振动吸收峰；623cm⁻¹ 处为 C-S 的伸缩振动峰，这表明共聚物是由这四种单体合成的，得到了所设计的目的产物。

具体实施方式

[0018] 实施例 1，说明耐高温分散型油井水泥降失水剂的制备方法

[0019] 称取 2-丙烯酰胺基 -2- 甲基丙磺酸 (AMPS) 61.4 份，N, N’ - 二甲基丙烯酰胺 (DMAA) 18.3 份，丙烯酰胺 (AM) 13.07 份，马来酸酐 (MA) 7.23 份。溶于 308 份去离子水中，加入适量氢氧化钠溶液，将 pH 值调为 7。将溶液加入到三口烧瓶内，将三口烧瓶放入 40℃的恒温水浴中，开始搅拌，并向三口烧瓶中通入氮气排除氧气，待三口烧瓶内水溶液的温度达到 40℃以后，加入 4 份过硫酸铵和亚硫酸氢钠的质量浓度均为 10%的混合溶液引发反应，反应持续 5 个小时，制成四元聚物溶液，经干燥、粉碎得到分散型油井水泥降失水剂粉剂。代号为样品 1。
实施例 2，本发明油井水泥降失水剂的降失水性能评价

在胜利油井 G 级水泥中加入一定质量百分数（以水泥质量为基准）的粉剂样品 1，按 GB10238-88 标准制备水灰比为 0.44 的水泥浆，然后按中华人民共和国石油天然气行业标准 SY/T 5960-94 “油井水泥降失水剂评价方法” 测定样品 1 的失水量，评定样品 1 的降失水性能。

按照上述方法评定样品 1 对油井水泥的降失水效果，结果见表 1。实验结果表明，本发明的油井水泥降失水剂，在 60℃～150℃范围内的淡水溶液中不仅具有良好的降失水性能，而且在 NaCl 质量百分浓度为 30%的盐水溶液中仍具有较好的降失水能力，并且水泥浆的游离液含量为 0，这说明本发明的油井水泥降失水剂具有较好的耐高温抗盐、降失水性能。

表 1 水泥浆失水量性能表

<table>
<thead>
<tr>
<th>样品 1 加量 (%)</th>
<th>温度 (℃)</th>
<th>NaCl (%)</th>
<th>失水量 (mL)</th>
<th>游离液 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>60</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>90</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>120</td>
<td>0</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>1.0</td>
<td>120</td>
<td>0</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>1.5</td>
<td>120</td>
<td>0</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>2.0</td>
<td>120</td>
<td>0</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>1.0</td>
<td>150</td>
<td>0</td>
<td>54</td>
<td>—</td>
</tr>
<tr>
<td>1.5</td>
<td>150</td>
<td>0</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>2.0</td>
<td>150</td>
<td>0</td>
<td>47</td>
<td>—</td>
</tr>
<tr>
<td>1.0</td>
<td>90</td>
<td>30</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>30</td>
<td>52</td>
<td>0</td>
</tr>
</tbody>
</table>

实施例 3，本发明的油井水泥降失水剂的分散性能评价

在胜利油井 G 级水泥中加入一定质量百分数（以水泥质量为基准）的粉剂样品 1，按 GB10238-88 标准制备水灰比为 0.44 的水泥浆，按中华人民共和国石油天然气行业标准 SY/T5546-92 “油井水泥应用性能试验方法” 测定加入样品 1 的水泥浆的流变性能。

按照上述方法评定样品 1 对水泥浆流变性能的影响，测试结果见表 2。实验结果表明，加有样品 1 的水泥浆的稠度系数较小，虽然随着样品 1 加量的增加，稠度系数有所增加，但水泥浆仍具有较好的流变性。油田常用的一种 AMPS 类的油井水泥降失水剂的分散效果，如表 3 所示，通过与表 2 中的数据对比，样品 1 具有出色的分散特性。
表 2 水泥浆流变性参数

<table>
<thead>
<tr>
<th>样品 1 加量 (%)</th>
<th>温度 (℃)</th>
<th>NaCl(%)</th>
<th>流变性指数 (n)</th>
<th>稠度系数 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>52</td>
<td>0</td>
<td>0.99</td>
<td>0.03</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>0</td>
<td>0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>1.5</td>
<td>52</td>
<td>0</td>
<td>0.94</td>
<td>0.14</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>0</td>
<td>0.87</td>
<td>0.36</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>0</td>
<td>0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>0</td>
<td>0.95</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>0</td>
<td>0.88</td>
<td>0.35</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>30</td>
<td>0.99</td>
<td>0.04</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>30</td>
<td>0.96</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>30</td>
<td>0.91</td>
<td>0.32</td>
</tr>
</tbody>
</table>

表 3 油田常用的 AMPS 类降失水剂的分散特性

<table>
<thead>
<tr>
<th>样品加量 (%)</th>
<th>温度 (℃)</th>
<th>NaCl(%)</th>
<th>流变性指数 (n)</th>
<th>稠度系数 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>90</td>
<td>0</td>
<td>0.87</td>
<td>0.17</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>0</td>
<td>0.74</td>
<td>0.33</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>0</td>
<td>0.81</td>
<td>0.42</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>0</td>
<td>0.77</td>
<td>1.02</td>
</tr>
</tbody>
</table>

实施例 4. 本发明的油井水泥降失水剂对稠化时间的影响评价

在胜油井 G 级水泥中加入质量百分数（以水泥质量为基准）为 1% 的粉剂样品，按 GB10238-88 标准制备水泥浆，按中华人民共和国石油天然气行业标准 SY/T5546-92 “油井水泥应用性能试验方法” 测定加入样品 1 的水泥浆不同温度下的稠化时间。

按照上述方法评定样品 1 对水泥浆稠化时间的影响，测试结果见表 4。实验结果表明，分散型降失水剂的加入使得水泥浆的稠化时间稍有延长；随着温度的增加，加有该降失水剂的水泥浆稠化时间减少，没有出现随着温度的增加稠化时间增加的“倒挂现象”。

7
表 4 不同温度下的水泥浆硬化时间

<table>
<thead>
<tr>
<th>样品</th>
<th>加量 (％)</th>
<th>温度 (℃)</th>
<th>硬化时间 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>60</td>
<td>122</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>60</td>
<td>139</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>120</td>
<td>90</td>
</tr>
</tbody>
</table>
图 1