US 20050149698A1

a2 Patent Application Publication (o) Pub. No.: US 2005/0149698 A1l

a9 United States

Yeh et al. (43) Pub. Date: Jul. 7, 2005
(549) SCOREBOARDING MECHANISM IN A (60) Provisional application No. 60/324,344, filed on Sep.
PIPELINE THAT INCLUDES REPLAYS AND 24, 2001.
REDIRECTS
Publication Classification
(76) Inventors: Tse-Yu Yeh, Milpitas, CA (US); David (51) Int. CL7 oo GO6F 9/30
A. Kruckemyer, Mountain View, CA (52) US. Cli e vnevesevecenees 712/217
(US); Randel P. Blake-Campos, San
Jose, CA (US); Robert Regenmoser, 57 ABSTRACT
2::;ZIELa;a,SgrlAlggic):}slsgbéX (US) An apparatus for a processor includes a first scoreboard, a
? ’ second scoreboard, and a control circuit coupled to the first
Correspondence Address: scoreboard and the second scoreboard. The control circuit is
GARLICK HARRISON & MARKISON LLP configured to update the first scoreboard to indicate that a
P.O. BOX 160727 write is pending for a first destination register of a first
AUSTIN, TX 78716-0727 (US) instruction in response to issuing the first instruction into a
’ first pipeline. The control circuit is configured to update the
(21) Appl. No.: 11/069,375 second scoreboard to indicate that the write is pending for
the first destination register in response to the first instruc-
(22) Filed: Mar. 1, 2005 tion passing a first stage of the pipeline. Replay may be
signaled for a given instruction at the first stage. In response
to a replay of a second instruction, the control circuit is
Related U.S. Application Data configured to copy a contents of the second scoreboard to the
first scoreboard. In various embodiments, additional score-
(63) Continuation of application No. 10/066,941, filed on boards may be used for detecting different types of depen-

Feb. 4, 2002.

dencies.

Start: Integer Scoreboard
Updates, Instruction

)

IYES

Set Bit for Destination Register
in Issue Scoreboard
L

~ Integer
Load Issued?

52

54

Set Bit for Destination Register
in Replay Scoreboard
[

Integer Load in
TLB Stage?

Arg

Clear Bit for Destination
Register in Issue Scoreboard
|

60

62

Yes
¥
Clear Bit for Destination Register
in All Scoreboards

56

Set Bit for Destination Register in
Graduation Scoreboard
I

Integer Load
Miss Fill?

64

68

"

End: Integer Scoreboard >

Updates, Instruction

Patent Application Publication Jul. 7, 2005 Sheet 1 of 20 US 2005/0149698 A1
[nstruction Cache |_
12
y
Fetch .
Addréss Instructions
A
Branch Prediction Fetch/Deco_de/
. < > Issue Unit
Unit 16
14
T A 4
Y
Exception
Bus Interface Unit
Redirect 32
Replay
A
22A] — 22B] ~ 24A] — 24B| ~ 26A| ~ 268
Y A
Int. P Int. P e P> >
—1 Unit ke Unit FPU FPU o L/S L/s
op A A A A y A BUS
cmpl!
A y y y 4 A
F N A
y A
Register File 28 Data Cache 30 |«
Miss/Fill

10_,/

FIG. 1

Patent Application Publication Jul. 7, 2005 Sheet 2 of 20 US 2005/0149698 A1

46 —

Floating Point
Scoreboards

A

from Decode
44—
l Instructions integer
Scoreboards
¢ v

«» Issue Control Circuit 42

|
|
I
I
|
[
I
I
J
I
!
!
I
I
o
Issue Queue 40 :
|
|
[
[
|
|
|
|
I
i
!
[
|
|
I
|
|

Dest. | Sre1 | Src2 | Src3 | Pipe . op
Type Reg. | Reg. | Reg. | Reg. | State Miss Redirect cmpl
48 Instructions [Fill_ |Exception| | Replay

to Integer Units 22A-22B, FPUs
24A-24B, and L/S Units 26A-26B

FIG. 2

US 2005/0149698 A1

Patent Application Publication Jul. 7, 2005 Sheet 3 of 20

(ppY)
2x3

(Ppv)
X3

IM

(ppv)
HY

(In)
X3

¥x3

‘peID

‘pe1y

(‘pein)

(Inw)
£x3

€x3

€ Dld
(Inwy) (Inw)
¢xd X3
2x3d X3
IM ax3
IM
g (Aeiday)
14

a4

a]a]

HY

ayoen

oINS

cMOXS

cMaxiS

gL

LMaXS

NS

FMaXS

usgny

anss)

anss|

enss|

H4d
anss|

(enssy)

PPEN d4

sadid d4

sadid |

sadid S/1

Patent Application Publication Jul. 7, 2005 Sheet 4 of 20

US 2005/0149698 A1

. | R3t |
44A

l R31K
448

. | R31 &
44C

.| F31 |
46A

.| F31 |
468

. | F31 |
46C

.| Fat k
46D

. | Fa1 k
46E

| r=31}L
46F

N
46G

... | Fa1 |
46H

... | Fa1 |\~4e|

RO | R1|... Integer Issue
[RO [R1 | ... Integer Replay
| RO [R1[... Integer Graduation
“—

FIG. 4
| Fo | F1 [... FP RAW Load Replay
| Fo | F1 [... FP RAW Load Graduation
| Fo | F1] ... FP EXE RAW Issue
| Fo [A1 [... FP EXE RAW Replay
| Fo [F1 | ... FP Madd RAW Issue
| Fo | F1] ... FP Madd RAW Replay
| Fo [F1 | ... FP EXE WAW lIssue
| FO | F1 | ... FP EXE WAW Replay
lrOJF1 ... FP Load WAW Issue
| Fo | F1] ... FP Load WAW Replay

46

-

FIG. 5

...|F:N
46J

Patent Application Publication Jul. 7, 2005 Sheet 5 of 20 US 2005/0149698 A1

Start: Integer Scoreboard
Updates, Instruction

Integer
Load Issued?

50

£Yes

Set Bit for Destination Register
in Issue Scoreboard No

Lszr]

Integer Load in
TLB Stage?

54 Yesi

Clear Bit for Destination
Register in Issue Scoreboard
Yes

]
N
Integer Load Miss?
4

58
Set Bit for Destination Register
in Replay Scoreboard No

— SOI y

Integer Load
Miss Graduating?

No
L

62

Set Bit for Destination Register in
Graduation Scoreboard

| ¥64

Arg

Integer Load

Yes Miss Fill?

4

Clear Bit for Destination Register
in All Scoreboards

| ol

68
End: Integer Scoreboard
Updates, Instruction

66

FIG. 6

Patent Application Publication Jul. 7, 2005 Sheet 6 of 20 US 2005/0149698 A1

(Start: Integer Scoreboard)

Updates,

Global

IYes

Copy Replay Scoreboard to
Issue Scoreboard

No

Replay or Redirect?

Exception?

70

Yes¢

Copy Graduation Scoreboard
to Replay Scoreboard

76

y

78 —

Copy Replay Scoreboard to
Issue Scoreboard

~

A

(End: Integer Scoreboard)

Updates, Global

FIG.

7

Patent Application Publication Jul. 7, 2005 Sheet 7 of 20 US 2005/0149698 A1

Start: Integer
instruction Issue

Instruction
to L/S Pipe?

80

Yes

Source
Registers Busy in Issue
Scoreboard?

82

No

g

— 84
Issue Instruction

End: Integer
Instruction Issue

FIG. 8

Patent Application Publication Jul. 7, 2005 Sheet 8 of 20 US 2005/0149698 A1

Start: Integer Instruction
, in Pipe

Source
Register Read?

90

Yes

92

Source
Registers Busy in Replay
Scoreboard?

94 \

No Signal Replay

96

Destination
Register Write?

Yes
98

Destination
Register Busy in Replay
Scoreboard?

J—Yes

Signal Replay ~— 100

No

A 4 l‘ y

End: Integer
Instruction in Pipe

FIG. 9

Patent Application Publication Jul. 7, 2005 Sheet 9 of 20 US 2005/0149698 A1

Start: FP Scoreboard Sets,
Instruction
IYes FP Load Miss?

Set Bit for Destination Register
in FP RAW Load Replay _
Scoreboard No

\—112 | =|

110

114

Set Bit for Destination Register
in FP RAW Load Graduation
No _ Scoreboard

|
116—/

118

/— 120 Y+es

Set Bit for Destination Register in FP
EXE RAW Issue Scoreboard, FP Madd
RAW lIssue Scoreboard, FP EXE WAW
Issue Scoreboard, and FP Load WAW No

Issue Scoreboard J
i

FP OP Pass Repl tage?
122 OP Pass Replay Stage

Set Bit for Destination Register in
FP EXE RAW Replay Scoreboard,
FP Madd RAW Replay Scoreboard,
No | FP EXE WAW Replay Scoreboard,
and FP Load WAW Replay -

Scoreboard

<]
<

y
End: FP Scoreboard Sets,
Instruction

FIG. 10

Patent Application Publication Jul. 7, 2005 Sheet 10 of 20 US 2005/0149698 A1

(Start: FP Scoreboard Clears, Instruction)

FP Load Fill?

Clear Bit for Destination Register in FP
RAW Load Replay and FP RAW Load
Graduation Scoreboards

| J

;Yes

130

132

FP OP to Write

Resultin 9 cycles?

134 Yesl

Clear Bit for Destination
Register in FP Madd RAW Issue
No and FP Madd RAW Replay
Scoreboards

< |
¥136.

FP OP to Write
Result in 8 cycles?

/— 140 lYes

Clear Bit for Destination
Register in FP EXE WAW Issue
and FP EXE WAW Replay
Scoreboards

138

No

'

FP OP to Write
Result in 5 cycles?

Yesl /— 144

Clear Bit for Destination
Register in FP EXE RAW lIssue
No and FP EXE RAW Replay
Scoreboards
|

142

Y §

FP OP to Writ 146
o Write
148 LYes Result in 4 cycles?
Clear Bit for Destination
Register in FP Load WAW Issue FIG. 11
and FP Load WAW Replay N
o}
Scoreboards
[.

N
(_ End: FP Scoreboard Clears, Instruction)

Patent Application Publication Jul. 7,2005 Sheet 11 of 20 US 2005/0149698 A1

Start: FP Scoreboard Updates,
Global

Replay or Redirect?

150

IYes

Copy Replay Scoreboards to
Issue Scoreboards

|
\— 152
154 Exception? Yesi /—— 156

Copy FP RAW Load
Graduation Scoreboard to FP
RAW Load Replay Scoreboard

No ¢

Copy Other Replay Scoreboards
to Issue Scoreboards

L | \— 158

End: FP Scoreboard Updates,
Global

No
|

FIG. 12

Patent Application Publication Jul. 7, 2005 Sheet 12 of 20 US 2005/0149698 A1

Start: FP
Instruction Issue

Yes FP Load?

160

162

" No (FPOP)

Destination
Register Busy in FP Load
WAW lIssue
Scoreboard?

Destination
Register Busy in FP EXE
WAW Issue
Scoreboard?

168

No

170

Source
Register (except fr for Madd)
Busy in FP EXE RAW Issue
Scoreboard?

No
172

fr for Madd
Busy in FP Madd RAW lIssue
Scoreboard?

le—No
A

Issue
Instruction [>~—— 164 Yes

\ 4

166
\| Don't Issue

Instruction

~ v

End: FP
Instruction Issue

FIG. 13

Patent Application Publication Jul. 7, 2005 Sheet 13 of 20 US 2005/0149698 A1

Start: FP Instruction in
Pipe

Source
Register Read?

180

Yes
182

Source Registers
Busy in FP RAW Load Replay
Scoreboard?

Yes

!

184 —
No Signal Replay

186

Destination
Register Write?

Yes

188

Destination Register
Busy in FP RAW Load Replay
Scoreboard?

Signal Replay |\ 190

y A 4 A A 4

End: FP
Instruction in Pipe FIG. 14

US 2005/0149698 A1

Patent Application Publication Jul. 7, 2005 Sheet 14 of 20

GL Ol
(1) ¥y
IM ¥x3 £x3 gx3 X3 |4y ZMa)S | LMa)S | enss|
1g Mvd Ppen |dd fes|D
IM 8+NX3 | Z+NXT | O+NXT | G+NXI | p+NX3 | €+NX3 | 2+NX3 | L+NX3 | Nx3
6+N 8+N LN 9+N G+N #+N E+N Z+N L+N N

(4 uo) do
ppen deqQ

dO d4

US 2005/0149698 A1

Patent Application Publication Jul. 7, 2005 Sheet 15 of 20

IM

ol
+N

91 'Ol
vx3 €x3 ¢x3 IX3 (44 CMBYS | MBS | 8nss|
Hq MVYM 3X3 dd 1es|]
IM 8+NX3 [LZ*NX3 | 9tNX3 | GHNXT | P+NX3 | €+NX3 | 2+NX3 | L+Nx3
6+N 8+N LN 9tN S+N 7+N E+tN ¢tN N

NX3

(Mvym)
do d4 daq

dO d4

US 2005/0149698 A1

Patent Application Publication Jul. 7, 2005 Sheet 16 of 20

L1 Old
1x3 |uY zmods | Lmes | enss
1a Mvy 3X3 d4 fesin ‘
IM | 8+NxT | z4Nxa | o+Nxa | sta | penxg
6+N g+N L+N O+N G+N PN

E+NX3

€*N

¢tNx3

¢tN

F+NX3

N

NX3

(MvH)
do d4-deq

dO d4

Patent Application Publication Jul. 7, 2005 Sheet 17 of 20 US 2005/0149698 A1

(0>} [
3 =
Q
© -
ks = E
(@)
% 3 3 =
-
= | <
= =
=
ks -
©
+ 8 S 8
< o <
™
g
0 o o)
+ o O a
—
¥ 9 =
z wu L
i
™ o
+
Z
oy S
+
pa 2
%)
3
+
z 2
n
Q
z a
B2
o T <
S 2z
o
E 83

Patent Application Publication Jul. 7, 2005 Sheet 18 of 20 US 2005/0149698 A1

Replay due to Cache
Miss

Fill Data Returned

FIG. 19

Bus Interface Unit 32

| [
[|
Issue Control Circuit 42 DestReg | Read Queue 210 !

I Lad
Fill Data : !
N Returned | Tag : :
D MissTag P = K] |
/ 7 3 214 : Dest Reg. | Tag | Other | |
212 —/ Fill Tag { N\—216 \-218 \-220!
[[
| j

Patent Application Publication Jul. 7, 2005 Sheet 19 of 20 US 2005/0149698 A1

Stall_FP

OR of FP Madd RAW lssue
Scoreboard Bits = 0

FIG. 21

CStart: Issue State)

240

FP Exceptions Enabled?

No Yes

244

FP Op Selected for Issue?

242 Y
/[v

246
Stal_FP =0 Inhibit Co-lssuance of |/
Subsequent Int.or L/S Ops

FP Op = Short OP?

No
A 4

250
Inhibit Co-lssuance of /—
Subsequent FP Ops

248

[«
¥ Yes

2
Stal FP=1 [2

v
(o FIG. 22

sue State)

Patent Application Publication Jul. 7, 2005 Sheet 20 of 20 US 2005/0149698 A1

Carrier Medium
300

Processor 10

FIG. 28

US 2005/0149698 A1l

SCOREBOARDING MECHANISM IN A PIPELINE
THAT INCLUDES REPLAYS AND REDIRECTS

PRIORITY INFORMATION

[0001] This application is a continuation of and claims
priority to U.S. Patent Application having an application Ser.
No. 10/066,941; filed Feb. 4, 2002, which application claims
benefit of priority to U.S. Provisional application Ser. No.
60/324,344, filed Sep. 24, 2001, and in which both are
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention

[0003] This invention is related to the field of processors
and, more particularly, to dependency checking using score-
boards in processors.

[0004] 2. Description of the Related Art

[0005] Processors generally include some mechanism for
performing dependency checking between instructions. In
pipelined processors, dependency checking may be used to
ensure that source operands for a first instruction which are
generated by one or more preceding instructions (i.e. the
preceding instruction writes a result to one of the source
operands) are not read for the first instruction until the
preceding instruction(s) update the source operands. If mul-
tiple parallel pipelines are used, dependency checking may
be used to ensure that several instructions which write the
same destination operand perform those writes in the correct
order. Additionally, if out of order execution is employed,
dependency checking may be used to ensure that each
instruction receives the proper operands and that updates to
operands occur in the correct order.

[0006] One mechanism for dependency checking is to use
a scoreboard to track which operands (e.g. registers) have
pending writes corresponding to instructions which are
outstanding within the processor. The scoreboard may be
checked to determine if dependencies exist for a given
instruction.

SUMMARY OF THE INVENTION

[0007] An apparatus for a processor includes a first score-
board, a second scoreboard, and a control circuit coupled to
the first scoreboard and the second scoreboard. The control
circuit is configured to update the first scoreboard to indicate
that a write is pending for a first destination register of a first
instruction in response to issuing the first instruction into a
first pipeline. The control circuit is configured to update the
second scoreboard to indicate that the write is pending for
the first destination register in response to the first instruc-
tion passing a first stage of the pipeline. Replay may be
signaled for a given instruction at the first stage. In response
to a replay of a second instruction, the control circuit is
configured to copy a contents of the second scoreboard to the
first scoreboard.

[0008] In some embodiments, the copying of the second
scoreboard to the first scoreboard may delete the effects of
instructions which have not reached the first stage from the
first scoreboard. Thus, the first scoreboard may be recovered
to a state which reflects the replay of the second instruction.

Jul. 7, 2005

[0009] In various embodiments, additional scoreboards
may be used for detecting different types of dependencies
(e.g. source operands which are read at different points in the
pipeline, read after write dependencies vs. write after write
dependencies, etc.). The appropriate scoreboard may be
used to check for each type of dependency, and the score-
boards may be updated at different times to indicate that a
write is no longer pending due to a given instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The following detailed description makes reference
to the accompanying drawings, which are now briefly
described.

[0011] FIG. 1 is a block diagram of one embodiment of a
Processor.

[0012] FIG. 2 is a block diagram of one embodiment of a
portion of the fetch/decode/issue unit 14.

[0013] FIG. 3 is a timing diagram illustrating one embodi-
ment of pipelines which may be used in one embodiment of
the processor shown in FIG. 1.

[0014] FIG. 4 is a block diagram of one embodiment of a
set of integer scoreboards.

[0015] FIG. 5 is a block diagram of one embodiment of a
set of floating point scoreboards.

[0016] FIG. 6 is a flowchart illustrating one embodiment
of updates to the integer scoreboards shown in FIG. 4 due
to individual instruction processing.

[0017] FIG. 7 is a flowchart illustrating one embodiment
of global updates to the integer scoreboards shown in FIG.
4 due to replays, redirects, or exceptions.

[0018] FIG. 8 is a flowchart illustrating one embodiment
of issue of integer instructions.

[0019] FIG. 9 is a flowchart illustrating operation of one
embodiment of integer instructions in the pipelines of the
Processor.

[0020] FIG. 10 is a flowchart illustrating one embodiment
of the setting of bits in the floating point scoreboards shown
in FIG. 5§ in response to individual instructions.

[0021] FIG. 11 is a flowchart illustrating one embodiment
of the clearing of bits in the floating point scoreboards
shown in FIG. § in response to individual instructions.

[0022] FIG. 12 is a flowchart illustrating one embodiment
of global updates to the floating point scoreboards shown in
FIG. 5 due to replays, redirects, or exceptions.

[0023] FIG. 13 is a flowchart illustrating one embodiment
of issue of floating point instructions.

[0024] FIG. 14 is a flowchart illustrating operation of one
embodiment of floating point instructions in the pipelines of
the processor.

[0025] FIG. 15 is a timing diagram illustrating a first
example of floating point instruction processing.

[0026] FIG. 16 is a timing diagram illustrating a second
example of floating point instruction processing.

[0027] FIG. 17 is a timing diagram illustrating a third
example of floating point instruction processing.

US 2005/0149698 A1l

[0028] FIG. 18 is a timing diagram illustrating a fourth
example of floating point instruction processing.

[0029] FIG. 19 is a state machine diagram illustrating one
embodiment of a power saving technique.

[0030] FIG. 20 is a block diagram of circuitry which may
be used for one embodiment of the power saving technique.

[0031] FIG. 21 is a state machine diagram illustrating one
embodiment of issue operation in a pipeline in which
floating point instructions graduate later than integer opera-
tions.

[0032] FIG. 22 is a flowchart illustrating additional issue
constraints which may be used in one embodiment of the
processor 10.

[0033] FIG. 23 is a block diagram of one embodiment of
a carrier medium.

[0034] While the invention is susceptible to various modi-
fications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and
will herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS
[0035] Processor Overview

[0036] Turning now to FIG. 1, a block diagram of one
embodiment of a processor 10 is shown. Other embodiments
are possible and contemplated. In the embodiment of FIG.
1, the processor 10 includes an instruction cache 12, a
fetch/decode/issue unit 14, a branch prediction unit 16, a set
of integer execution units 22A-22B, a set of floating point
execution units 24A-24B, a set of load/store execution units
26A-26B, a register file 28, a data cache 30, and a bus
interface unit 32. The instruction cache 12 is coupled to the
bus interface unit 32, and is coupled to receive a fetch
address from, and provide corresponding instructions to, the
fetch/decode/issue unit 14. The fetch/decode/issue unit 14 is
further coupled to the branch prediction unit 16 and the
execution units 22A-22B, 24A-24B, and 26A-26B. Specifi-
cally, the fetch/decode/issue unit 14 is coupled to provide a
branch address to the branch prediction unit 16 and to
receive a prediction and/or a target address from the branch
prediction unit 16. The fetch/decode/issue unit 14 is coupled
to provide instructions for execution to the execution units
22A-22B, 24A-24B, and 26A-26B. Additionally, the fetch/
issue/decode unit 14 is coupled to receive a redirect indica-
tion from the integer unit 22A, op completing (op cmpl)
indications from the floating point execution units 24A-24B,
exception indications from the execution units 22A-22B,
24A-24B, and 26A-26B, and miss/fill indications from the
data cache 30. The fetch/issue/decode unit 14 is coupled to
provide a replay signal to the execution units 22A-22B,
24A-24B, and 26A-26B. The execution units 22A-22B,
24A-24B, and 26 A-26B are generally coupled to the register
file 28 and the data cache 30, and the data cache 30 is
coupled to the bus interface unit 32.

Jul. 7, 2005

[0037] Generally speaking, the fetch/decode/issue unit 14
is configured to generate fetch addresses for the instruction
cache 12 and to receive corresponding instructions there-
from. The fetch/decode/issue unit 14 uses branch prediction
information to generate the fetch addresses, to allow for
speculative fetching of instructions prior to execution of the
corresponding branch instructions. Specifically, in one
embodiment, the branch prediction unit 16 include an array
of branch predictors indexed by the branch address (e.g. the
typical two bit counters which are incremented when the
corresponding branch is taken, saturating at 11 in binary, and
decremented when the corresponding branch is not taken,
saturating at 00 in binary, with the most significant bit
indicating taken or not taken). While any size and configu-
ration may be used, one implementation of the branch
predictors 16 may be 4 k entries in a direct-mapped con-
figuration. Additionally, in one embodiment, the branch
prediction unit 16 may include a branch target buffer com-
prising an array of branch target addresses. The target
addresses may be previously generated target addresses of
any type of branch, or just those of indirect branches. Again,
while any configuration may be used, one implementation
may provide 64 entries in the branch target buffer. Still
further, an embodiment may include a return stack used to
store link addresses of branch instructions which update a
link resource (“branch and link” instructions). The fetch/
decode/issue unit 14 may provide link addresses when
branch instructions which update the link register are
fetched for pushing on the return stack, and the return stack
may provide the address from the top entry of the return
stack as a predicted return address. While any configuration
may be used, one implementation may provide 8 entries in
the return stack.

[0038] The fetch/decode/issue unit 14 decodes the fetched
instructions and queues them in one or more issue queues for
issue to the appropriate execution units. The instructions
may be speculatively issued to the appropriate execution
units, again prior to execution/resolution of the branch
instructions which cause the instructions to be speculative.
In some embodiments, out of order execution may be
employed (e.g. instructions may be issued in a different
order than the program order). In other embodiments, in
order execution may be used. However, some speculative
issue/execution may still occur between the time that a
branch instruction is issued and its result is generated from
the execution unit which executes that branch instruction
(e.g. the execution unit may have more than one pipeline
stage).

[0039] The integer execution units 22A-22B are generally
capable of handling integer arithmetic/logic operations,
shifts, rotates, etc. At least the integer execution unit 22A is
configured to execute branch instructions, and in some
embodiments both of the integer execution units 22A-22B
may handle branch instructions. In one implementation, only
the execution unit 22B executes integer multiply and divide
instructions although both may handle such instructions in
other embodiments. The floating point execution units 24A-
24B similarly execute the floating point instructions. The
integer and floating point execution units 22A-22B and
24A-24B may read and write operands to and from the
register file 28 in the illustrated embodiment, which may
include both integer and floating point registers. The load/
store units 26A-26B may generate load/store addresses in
response to load/store instructions and perform cache

US 2005/0149698 A1l

accesses to read and write memory locations through the
data cache 30 (and through the bus interface unit 32, as
needed), transferring data to and from the registers in the
register file 28 as well.

[0040] The instruction cache 12 may have any suitable
configuration and size, including direct mapped, fully asso-
ciative, and set associative configurations. Similarly, the
data cache 30 may have any suitable configuration and size,
including any of the above mentioned configurations. In one
implementation, each of the instruction cache 12 and the
data cache 30 may be 4 way set associative, 32 kilobyte (kb)
caches including 32 byte cache lines. Both the instruction
cache 12 and the data cache 30 are coupled to the bus
interface unit 32 for transferring instructions and data into
and out of the caches in response to misses, flushes, coher-
ency activity on the bus, etc.

[0041] In one implementation, the processor 10 is
designed to the MIPS instruction set architecture (including
the MIPS-3D and MIPS MDMX application specific exten-
sions). The MIPS instruction set may be used below as a
specific example of certain instructions. However, other
embodiments may implement the IA-32 or IA-64 instruction
set architectures developed by Intel Corp., the PowerPC
instruction set architecture, the Alpha instruction set archi-
tecture, the ARM instruction set architecture, or any other
instruction set architecture.

[0042] Tt is noted that, while FIG. 1 illustrates two integer
execution units, two floating point execution units, and two
load/store units, other embodiments may employ any num-
ber of each type of unit, and the number of one type may
differ from the number of another type.

[0043] The redirect, replay, op cmpl, exception, and miss/
fill indications may be used in the management of specula-
tive instruction execution and dependency management, as
described in more detail below. Generally, the redirect
indication may indicate whether or not a predicted branch
was predicted correctly. The op cmpl indication may be used
for long latency floating point instructions, to indicate that
the operation will be completing. The indication may be
provided a number of clock cycles before the operation will
be completing (e.g. 9 clock cycles, in one embodiment). The
miss indication may indicate cache misses (one for each
load/store unit 26A-26B). The fill indication may indicate
that fill data is returning (which may include an indication of
the register number for which fill data is being returned).
Alternatively, the fill indication may be provided by the bus
interface unit 32 or any other circuitry. Each of execution
units 22A-22B, 24A-24B, and 26A-26B may indicate
whether or not an instruction experiences an exception using
the corresponding exception indication. The replay indica-
tion may be provided by the fetch/decode/issue unit 14 if a
replay condition is detected for an instruction.

[0044] Scoreboarding

[0045] 1In one embodiment, the processor 10 may include
a set of scoreboards designed to provide for dependency
maintenance while allowing for certain features of the
processor 10. In one implementation, for example, the
processor 10 may support zero cycle issue between a load
and an instruction dependent on the load data and zero cycle
issue between a floating point instruction and a dependent
floating point multiply-add instruction where the depen-

Jul. 7, 2005

dency is on the add operand. That is, the load and the
dependent instruction may be issued concurrently or the
floating point instruction and the dependent floating point
multiply-add instruction may be issued concurrently.

[0046] The processor 10 may implement a pipeline in
which integer and floating point instructions read their
operands after passing through one or more skew stages. The
number of skew stages may be selected so as to perform the
operand read in a stage in which a concurrently issued load
instruction is able to forward load data (assuming a hit in the
data cache 30). Thus, the forwarded load data may bypass
the operand reads from the register file 28 and be provided
for execution of the dependent instruction. Similarly, the
operand read for the add operand of the floating point
multiply-add instruction may be delayed until the add opera-
tion is to be started. In this manner, the instructions and their
dependent instructions may be issued concurrently. The
scoreboards and associated issue control circuitry may be
designed to reflect the above features.

[0047] The scoreboards may further be designed to cor-
rectly track instructions when replay/redirects occur and
when exceptions occur. A redirect occurs if a predicted
branch is executed and the prediction is found to be incor-
rect. Since the subsequent instructions were fetched assum-
ing the prediction is correct, the subsequent instructions are
canceled and the correct instructions are fetched. The score-
board indications generated by the subsequent instructions
are deleted from the scoreboards in response to the redirect.
However, instructions which are prior to the branch instruc-
tion are not canceled and, if still outstanding in the pipeline,
remain tracked by the scoreboards. Similarly, an instruction
may be replayed if one of its operands is not ready when the
operand read occurs (for example, a load miss or a prior
instruction requiring more clock cycles to execute than
assumed by the issue logic) or a write after write dependency
exists when the result is to be written. An instruction is
“replayed” if its current execution is canceled (i.e. it does not
update architected state of the processor 10) and it is later
re-issued from the issue queue. In other words, the instruc-
tion is retained in the issue queue for possible replay after it
is issued. In one embodiment, execution of instructions is in
order and the replay also causes the cancellation of subse-
quent instructions (including the deletion of corresponding
scoreboard indications), but prior instructions (and their
scoreboard indications) are retained. Other embodiments
may be designed for out of order, in which case the cancel-
lation/deletion from the scoreboard for the subsequent
instructions may be selective based on whether or not the
subsequent instruction has a dependency on a replayed
instruction. Additionally, an instruction may experience an
exception (e.g. architected exceptions), which causes sub-
sequent instructions to be canceled but again prior instruc-
tions are not canceled.

[0048] Generally, a scoreboard tracks which registers are
to be updated by instructions outstanding within the pipe-
line. The scoreboard may be referred to as “tracking instruc-
tions” herein for brevity, which it may do using scoreboard
indications for each register. The scoreboard includes an
indication for each register which indicates whether or not
an update to the register is pending in the pipeline. If an
instruction uses the register as an operand (either source or
destination), the instruction may be delayed from issue or
replayed (depending on the scoreboard checked, as dis-

US 2005/0149698 A1l

cussed below). In this fashion, dependencies between the
instructions may be properly handled. When an instruction
is to be represented in a scoreboard, the indication in the
scoreboard corresponding to the destination register of that
instruction is set to a state indicating that the register is busy
(that an update is pending). The indication is changed to a
non-busy state based on when the register is updated by the
instruction. The indication may actually be changed to the
non-busy state prior to the update of the register, if it is
known that an instruction released by changing the indica-
tion does not access the register prior to the actual update (or
prior to a bypass being available, if the released instruction
is reading the register).

[0049] Several scoreboards may be used to track instruc-
tions and to provide for correction of the scoreboards in the
event of replay/redirect (which occur in the same pipeline
stage in this embodiment, referred to as the “replay stage”
herein, although other embodiments may signal replay and
redirect at different pipeline stages) or exception (signaled at
a graduation stage of the pipeline in which the instruction
becomes committed to updating architected state of the
processor 10). The issue scoreboard may be used by the
issue control logic to select instructions for issue. The issue
scoreboard may be speculatively updated to track instruc-
tions early in the pipeline (with assumptions made that cache
hits occur on loads and that branch predictions are correct).
The replay scoreboard may track instructions which have
passed the replay stage. Thus, if replay occurs the replay
scoreboard may contain the correct state to be restored to the
issue scoreboards. The graduation scoreboard may track
instructions which have passed the graduation stage (e.g.
cache misses or long latency floating point operations). If an
exception occurs, the graduation scoreboard may contain the
correct state to be restored to the replay scoreboard and the
issue scoreboard.

[0050] Turning next to FIG. 2, a block diagram of one
embodiment of a portion of the fetch/decode/issue unit 14 is
shown. Other embodiments are possible and contemplated.
In the embodiment of FIG. 2, the fetch/decode/issue unit 14
includes an issue queue 40, an issue control circuit 42,
integer scoreboards 44, and floating point scoreboards 46.
The issue queue 40 is coupled to receive instructions from
the decode circuitry (not shown), and is configured to
provide instructions to the integer execution units 22A-22B,
the floating point execution units 24A-24B, and the load/
store units 26A-26B. The issue queue 40 is coupled to the
issue control circuit 42, which is further coupled to the
integer scoreboards 44 and the floating point scoreboards 46.
The issue control circuit 42 is further coupled to receive the
miss/fill indications, the redirect indication, the exception
indications, and the op cmpl indications shown in FIG. 1,
and to provide the replay indication shown in FIG. 1.

[0051] The issue queue 40 receives decoded instructions
from the decode logic and queues the instructions until they
are graduated. The issue queue comprises a plurality of
entries for storing instructions and related information. Cer-
tain fields of information in an exemplary entry 48 are
shown in FIG. 2. The type of instruction is stored in a type
field of the entry. The type may be the opcode of the
instruction (possibly decoded by the decode logic), or may
be a field which indicates instruction types used by the issue
control circuit 42 for selecting instructions for issue. For
example, the type field may indicate at least the following

Jul. 7, 2005

instruction types: integer load instruction, integer instruc-
tion, floating point load instruction, short floating point
instruction, floating point multiply-add instruction, and long
latency floating point instruction. The destination register
number is stored in a dest. reg. field. Similarly, the source
register numbers may be stored in the srcl reg. field, the src2
reg. field, and the src3 reg. field. Most instructions may have
two source register operands indicated by the register num-
bers in the srcl and src2 reg. fields. However, the floating
point multiply-add instruction may have three source oper-
ands (e.g. srcl and src2 may be the multiplicands and src3
may be the add operand).

[0052] Finally, a pipe state field is shown. The pipe state
stored in the pipe state field may track the pipe stage that the
corresponding instruction is in. The pipe state may be
represented in any fashion. For example, the pipe state may
be a bit vector with a bit corresponding to each pipeline
stage. The first bit may be set in response to the issuance of
the instruction, and the set bit may be propagated down the
bit vector on a cycle-by-cycle basis as the instruction
progresses through the pipeline stages. Alternatively, the
pipe state may be a counter which is incremented as the
instruction progresses from pipeline stage to pipeline stage.
In one embodiment, the pipelines in the integer, floating
point, and load/store execution units do not stall (instruction
replay may be used where an instruction may otherwise stall
in the pipeline). Accordingly, the pipe state may change to
the next stage each clock cycle until the instruction is either
canceled or graduates.

[0053] The pipe state may be used by the issue control
circuit 42 to determine which pipeline stage a given instruc-
tion is in. Thus, the issue control circuit 42 may determine
when source operands are read for a given instruction, when
the instruction has reached the replay or graduation stage,
etc. For the long latency floating point instructions (those for
which the floating point execution units 24A-24B indicate
that the operation is completing using the op cmpl signals),
the pipe state may be altered when the op cmpl signal is
received and may be used to track the remaining pipeline
stages of those instructions. For example, in one embodi-
ment, the op cmpl signal may be asserted for a given floating
point instruction 9 cycles before the floating point instruc-
tion completes (writes its result). The pipe state may track
the remaining 9 cycles for updating the scoreboards as
discussed below. Other embodiments may track the pipeline
stage for each instruction in other fashions as well.

[0054] The issue control circuit 42 scans the instructions
in the issue queue 40 and selects instructions for issue to the
integer execution units 22A-22B, the floating point execu-
tion units 24A-24B, and the load/store units 26 A-26B. The
selection of instructions may be affected by the scoreboards
maintained by the issue control circuit 42. The issue control
circuit 42 maintains the integer scoreboards 44 for integer
instructions (which read and write integer registers in the
register file 28) and the floating point scoreboards 46 for
floating point instructions (which read and write floating
point registers in the register file 28 separate from the integer
registers). Load instructions may be tracked in one of the
integer scoreboards 44 or the floating point scoreboards 46
depending on whether the load is an integer load (its
destination register is an integer register) or a floating point
load (its destination register is a floating point register).
Additional details for an exemplary embodiment of the issue

US 2005/0149698 A1l

control circuit 42 for managing the scoreboards and using
the scoreboards for issue selection is described with respect
to FIGS. 3-18.

[0055] If an instruction is selected for issue, the issue
control circuit 42 may signal the issue queue 40 to output the
instruction to the unit selected by the issue control circuit 42
for executing the corresponding instruction. Load/store
instructions are issued to one of the load/store units 26A-
26B. Integer instructions are issued to one of the integer
execution units 22A-22B. In the present embodiment, cer-
tain integer instructions may be issued to either the load/
store units 26 A-26B or the integer execution units 22A-22B
(e.g. instructions which may be executed using the address
generation hardware in the load/store pipeline, such as add
instructions). Floating point instructions are issued to the
floating point execution units 24A-24B.

[0056] Generally, the issue control circuit 42 attempts to
concurrently issue as many instructions as possible, up to the
number of pipelines to which the issue control circuit 42
issues instructions (e.g. 6 in this embodiment). In some
embodiments, the maximum number of concurrently issued
instructions may be less than the number of pipelines (e.g.
4 in one embodiment).

[0057] In addition to using the scoreboards for issuing
instructions, the issue control circuit 42 may use the score-
boards to detect replay scenarios. For example, if a load miss
occurs and an instruction dependent on the load was sched-
uled assuming a cache hit, the dependent instruction is
replayed. When the dependent instruction reads its operands
(for a read after write (RAW) dependency) or is prepared to
write its result (for a write after write (WAW) or write after
read (WAR) dependency), the replay scoreboards may be
checked to determine if the register being read or written is
indicated as busy. If it is, a replay scenario is detected. The
issue control circuit 42 may signal the replay to all execution
units using the replay indication. In response to the replay
indication, the execution units may cancel the replayed
instruction and any subsequent instructions in program
order. The issue control circuit 42 may update the pipe state
to indicate the replayed instructions are not in the pipe,
allowing the instructions to be reissued from the issue queue
40.

[0058] If a redirect is signaled by the integer execution
unit 22A or if a replay scenario is detected by the issue
control circuit 42 using the scoreboards 44 and 46, the issue
control circuit 42 may recover the state of the issue score-
boards using the replay scoreboards. Similarly, the state of
the issue scoreboards and the replay scoreboards may be
recovered using the graduation scoreboards if an exception
is signaled by an execution unit 22A-22B, 24A-24B, or
26A-26B.

[0059] A read-after-write (RAW) dependency exists
between a first instruction which is prior to a second
instruction in program order if the first instruction writes a
register (has the register as a destination register) and the
second instruction reads the register. A write-after-write
(WAW) dependency exists between the first instruction and
the second instruction exists if both the first and second
instructions write the same register.

[0060] Turning now to FIG. 3, a timing diagram is shown
illustrating the pipelines implemented in one embodiment of

Jul. 7, 2005

the processor 10. Other embodiments are possible and
contemplated. In FIG. 3, 10 clock cycles are illustrated. The
clock cycles are delimited by solid vertical lines and are
labeled O through 9 at the top. Clock cycle 0 is the issue
stage. Clock cycle 4 is the replay stage. Clock cycle 7 is the
graduation stage for the integer and floating point pipelines.
The pipelines, beginning with the issue stage, for the load/
store units 26A-26B (L/S pipes in FIG. 3), the integer units
22A-22B (Int. pipes in FIG. 3), and the floating point unit
for short floating point operations (FP pipes in FIG. 3) and
the floating point multiply-add instruction (FP Madd in FIG.
3) are illustrated.

[0061] The load/store pipelines include a register file read
(RR) in the issue stage, followed by an address generation
(AGen) stage in clock cycle 1, a translation lookaside buffer
(TLB) stage in clock cycle 2, a cache read (Cache) stage in
clock cycle 3, a register file write (Wr) stage in clock cycle
4, and a graduation (Grad.) stage in clock cycle 7. In the
issue stage, the load/store instruction is selected for issue
(and the register operands are read near the end of the issue
stage as well). In the AGen stage, the virtual address of the
load or store operation is generated by adding one or more
address operands of the load/store instruction. In the TLB
stage, the virtual address is translated to a physical address.
The physical address is looked up in the data cache 30 in the
Cache stage (and the data may be forwarded in this stage).
In the Wr stage, the data corresponding to a load is written
into the register file 28. Finally, in the graduation stage, the
load instruction is committed or an exception corresponding
to the load is signaled. Each of the load/store units 26A-26B
may implement independent load/store pipelines and thus
there are two load/store pipelines in the present embodi-
ment. Other embodiments may have more or fewer load/
store pipelines.

[0062] The integer pipelines include an issue stage in
clock cycle 0, skewl and skew2 stages in clock cycles 1 and
2, respectively, a register file read (RR) stage in clock cycle
3, an execute (Exe) stage in clock cycle 4, a register file write
(Wr) stage in clock cycle 5, and a graduation (Grad.) stage
in clock cycle 7. In the issue stage, the integer instruction is
selected for issue. The skew1 and skew2 stages may be used
to align the register file read stage of the integer pipelines
(clock cycle 3) with the data forwarding stage from the L/S
pipelines (Cache stage—clock cycle 3). The instructions
may simply pass through the skewl and skew2 stages
without performing any processing on the instructions. In
the RR stage, source registers for the instruction are read (or
data is forwarded from a load instruction or a preceding
integer instruction (in the Exe stage) on which the instruc-
tion is dependent). The instruction is executed in the Exe
stage, and the result is written to the register file 28 in the Wr
stage. The instruction graduates in the graduation stage.
Each of the integer execution units 22A-22B may implement
independent integer pipelines and thus there are two integer
pipelines in the present embodiment. Other embodiments
may have more or fewer integer pipelines.

[0063] The floating point execution units 24A-24B each
implement the floating point pipeline (which includes the
short floating point pipeline illustrated as the FP pipes in
FIG. 3, the pipeline for the multiply-add instruction illus-
trated as FP Madd in FIG. 3, and the long floating point
pipeline for the long latency floating point instructions, not
shown in FIG. 3). Thus, there are two floating point pipe-

US 2005/0149698 A1l

lines in the present embodiment. Other embodiments may
have more or fewer floating point pipelines.

[0064] For the short floating point operations (which may
generally include most of the floating point arithmetic
instructions such as add, subtract, multiply, etc.), the FP
pipes pipeline shown in FIG. 3 may apply. Like the integer
pipeline, the FP pipes pipeline includes an issue stage in
clock cycle 0, skew1 and skew2 stages in clock cycles 1 and
2, respectively, and a register file read stage (RR) in clock
cycle 3. The short floating point instruction may comprise
four clock cycles of execution (Ex1, Ex2, Ex3, and Ex4 in
clock cycles 4, 5, 6, and 7, respectively) and a register file
write (Wr) stage in clock cycle 8. The instruction is executed
through the four execute stages and the result is written in
the Wr stage.

[0065] The floating point multiply-add instruction is simi-
lar to the short floating point instruction except that the
multiply-add instruction passes through the execution por-
tion of the pipeline twice. Thus, similar to the short floating
point instructions, the multiply-add instruction has an issue
stage in clock cycle 0, skewl and skew2 stages in clock
cycles 1 and 2, respectively, a register file read (RR) stage
in clock cycle 3, and 4 execute stages (Ex1-Ex4 in clock
cycles 4-7). Additionally, in clock cycle 7, a register file read
stage (RR) is included for the add operand used by the
multiply-add instruction. Generally, the floating point mul-
tiply-add instruction may include three source operands.
Two of the source operands are the multiplicands for the
multiply operation, and these operands are read in the RR
stage in clock cycle 3. The third operand is the operand to
be added to the result of the multiply. Since the third operand
is not used until the multiply operation is complete, the third
operand is read in the second RR stage in clock cycle 7. The
floating point multiply-add pipe then passes through the
execute stages again (Ex1-Ex4 in clock cycles 8-11,
although only clock cycles 8 and 9 are shown in FIG. 3) and
then a register file write (Wr) stage is included in clock cycle
12 (not shown).

[0066] The long latency floating point instructions (which
may include such operations as divide, square root, recip-
rocal, and other complex functions such as sine, cosine, etc.)
are processed in the floating point pipeline as well. The long
latency pipeline is not shown in FIG. 3, but generally
includes the issue stage in clock cycle 0, the skew and skew2
stages in clock cycles 1 and 2, respectively, and the register
file read (RR) stage in clock cycle 3. Execution of the
instruction begins in clock cycle 4 and continues for N clock
cycles. The number of clock cycles (N) may vary depending
on which of the long latency floating point instructions is
executed, and may, in some cases, be dependent on the
operand data for the instruction.

[0067] In the embodiment of FIG. 3, clock cycle 4 is the
replay stage for the pipelines. That is, replay is signaled in
the stage shown in clock cycle 4 for each instruction. Other
embodiments may have the replay stage at other stages, and
may have different replay stages in different pipelines. The
detection of a replay may occur prior to the replay stage, but
the replay stage is the stage at which the replay is signaled,
the replayed instruction is canceled from the pipeline, and
subsequent instructions are also canceled for replay. Addi-
tionally, redirects for mispredicted branches also occur in the
replay stage in the present embodiment, although other

Jul. 7, 2005

embodiments may have redirects and replays occur at dif-
ferent stages. The graduation stage (at which exceptions are
signaled) is the stage at clock cycle 7 in the load/store and
integer pipelines. A graduation stage is not shown for the
floating point instructions. Generally, floating point instruc-
tions may be programmably enabled in the processor 10
(e.g. in a configuration register). If floating point exceptions
are not enabled, then the floating point instructions do not
cause exceptions and thus the graduation of floating point
instructions may not matter to the scoreboarding mecha-
nisms. If floating point exceptions are enabled, in one
embodiment, the issuing of subsequent instructions may be
restricted. An embodiment of such a mechanism is described
in further detail below.

[0068] 1t is noted that, while the present embodiment
includes two skew stages in the integer and floating point
pipelines, other embodiments may include more or fewer
skew stages. The number of skew stages may be selected to
align the register file read stage in the integer and floating
point pipelines with the stage at which load data may be
forwarded, to allow concurrent issuance of a load instruction
and an instruction dependent on that load instruction (i.e. an
instruction which has the destination register of the load
instruction as a source operand).

[0069] Turning now to FIG. 4, a block diagram illustrating
one embodiment of the integer scoreboards 44 is shown.
Other embodiments are possible and contemplated. In the
embodiment of FIG. 4, the integer scoreboards include an
integer issue scoreboard 44A, an integer replay scoreboard
44B, and an integer graduation scoreboard 44C.

[0070] Each scoreboard includes an indication for each
integer register. In the present embodiment, there are 32
integer registers (R0-R31). Other embodiments may include
more or fewer integer registers, as desired. In one embodi-
ment, the indication may be a bit which may be set to
indicate the register is busy (and thus a dependent instruc-
tion is not to be issued or is to be replayed, depending on the
scoreboard) and clear to indicate that the register is not busy
(and thus a dependent instruction is free to be issued or does
not require replay). The remainder of this description will
use a bit with the set and clear states as set forth above.
However, other embodiments may reverse the meanings of
the set and clear states of the bit or may use multibit
indications.

[0071] Turning now to FIG. 5, a block diagram illustrating
one embodiment of the floating point scoreboards 46 is
shown. Other embodiments are possible and contemplated.
In the embodiment of FIG. §, the floating point scoreboards
include a floating point (FP) read-after-write (RAW) load
reply scoreboard 46A, an FP RAW load graduation score-
board 46B, an FP execute (EXE) RAW issue scoreboard
46C, an FP EXE RAW replay scoreboard 46D, an FP Madd
RAW issue scoreboard 46E, an FP Madd RAW issue score-
board 46F, an FP EXE write-after-write (WAW) issue score-
board 46G, an FP EXE WAW replay scoreboard 46H, an FP
load WAW issue scoreboard 461, and an FP load WAW
replay scoreboard 46J.

[0072] Each scoreboard includes an indication for each
floating point register. In the present embodiment, there are
32 floating point registers (F0-F31). Other embodiments
may include more or fewer floating point registers, as
desired. In one embodiment, the indication may be a bit

US 2005/0149698 A1l

which may be set to indicate the register is busy (and thus
a dependent instruction is not to be issued or is to be
replayed, depending on the scoreboard) and clear to indicate
that the register is not busy (and thus a dependent instruction
is free to be issued or does not require replay). The remain-
der of this description will use a bit with the set and clear
states as set forth above. However, other embodiments may
reverse the meanings of the set and clear states of the bit or
may use multibit indications.

[0073]

[0074] The operation of the issue control circuit 42 for
maintaining the issue scoreboards 44 shown in FIG. 4 and
for issuing integer instructions and detecting replays will
next be described. Generally, the integer scoreboards may
track integer loads. Other integer instructions may be
executable in one clock cycle (either the AGen stage, if the
integer instruction is issued to the load/store pipeline, or the
Exe stage in the integer pipeline) and may forward results to
the register file read stages for dependent instructions, and
thus scoreboarding of these instructions may not be
required. In one embodiment, the integer multiply instruc-
tion uses more than one clock cycle for execution and may
also be scoreboarded (the bit for the multiply instruction’s
destination register may be set in response to issuing the
multiply instruction and may be cleared in response to the
multiply instruction reaching the pipeline stage that a result
may be forwarded from).

Integer Scoreboarding and Issue

[0075] The integer issue scoreboard 44A may track integer
load instructions assuming that the integer load will hit in the
cache. Thus, if an integer load instruction is issued, the issue
control circuit 42 may set the scoreboard bit corresponding
to the destination register of the integer load instruction. The
load instruction data is forwarded from the Cache stage in
the present embodiment, so the issue control circuit 42 may
clear the scoreboard bit corresponding to the destination
register of the integer load instruction when the integer load
instruction reaches the TLB stage.

[0076] 1If the load instruction is a miss in the data cache 30
(determined in the Wr stage of the load/store pipeline, in one
embodiment), the update to the destination register of the
load instruction is pending until the miss data is returned
from memory. Retrieving the data from memory may
involve more clock cycles than exist in the pipeline before
the graduation stage (e.g. on the order of tens or even
hundreds of clock cycles or more). Accordingly, the load
misses are tracked in the integer replay scoreboard 44B and
the integer graduation scoreboard 44C. The issue control
circuit 42 may update the integer replay scoreboard 44B in
response to a load miss passing the replay stage (setting the
bit corresponding to the destination register of the load). In
response to the load miss passing the graduation stage, the
issue control circuit 42 may set the bit corresponding to the
destination register of the load miss in the graduation replay
scoreboard 44C. In response to the fill data for the load miss
being provided (and thus the destination register being
updated), the issue control circuit 42 clears the destination
register of the load miss in each of the integer issue, replay,
and graduation scoreboards 44A-44C.

[0077] During the selection of instructions for issue, the
issue control circuit 42 may check the integer issue score-
board 44A. Particularly, the integer issue scoreboard 44A
may selectively be used in the selection of instructions for

Jul. 7, 2005

issue depending on which pipeline the integer instruction is
to be issued to. If the integer instruction is to be issued to the
load/store pipeline, the issue control circuit 42 may check
the integer issue scoreboard 44A and inhibit issue if a source
register is busy in the scoreboard. If the integer instruction
is to be issued to the integer pipeline, the issue control circuit
42 may not use the contents of the integer issue scoreboard
44A in the issue selection process (since the integer pipeline
does not read registers until the load data is to be forwarded
to the integer pipelines). If the load is a miss and the integer
instruction is dependent, the replaying of the integer instruc-
tion may ensure proper instruction execution. Integer load/
store instructions are issued to the load/store pipelines and
thus the issue control circuit 42 may use the integer issue
scoreboard 44A in the issue selection for those instructions
as well.

[0078] The issue control circuit 42 checks the source
registers of integer instructions against the integer replay
scoreboard 44B responsive to the integer instruction reach-
ing the register read (RR) pipeline stage to detect whether or
not the integer instruction is to be replayed. The issue control
circuit may also include in this check the concurrent detec-
tion of a load miss in the Wr stage of the load/store pipelines,
since such load misses are not yet represented in the integer
replay scoreboard 44B and correspond to load instructions
which are prior to the integer instructions in program order
(and thus the integer instructions may depend on the load
miss). In other embodiments, the issue control circuit 42
may delay the check to the clock cycle after the register file
read. In such embodiments, the check for concurrently
detected load misses may not be used.

[0079] In response to a replay or redirect due to branch
misprediction, the issue control circuit 42 may copy the
contents of the integer replay scoreboard 44B to the integer
issue scoreboard 44A. In this fashion, the updates to the
integer issue scoreboard 44A due to instructions which were
issued but canceled due to the replay may be deleted.

[0080] Additionally, the state of the scoreboard for
instructions which were not canceled (those beyond the
replay stage) may be retained. Similarly, in response to an
exception, the issue control circuit 42 may copy the contents
of the integer graduation scoreboard 44C to both the integer
replay scoreboard 44B and to the integer issue scoreboard
44A. In this manner, updates to the integer issue scoreboard
44A and to the integer replay scoreboard 44B in response to
instructions which are canceled due to the exception may be
deleted from the integer issue and replay scoreboards 44A-
44B and the state of the scoreboard for instructions which
were not canceled (load misses which have progressed
beyond the graduation stage) are retained. In one embodi-
ment, the integer graduation scoreboard 44C is copied to the
integer replay scoreboard 44B, which is subsequently copied
to the integer issue scoreboard 44A.

[0081] FIGS. 6-9 are flowcharts illustrating the operation
of one embodiment of the issue control circuit 42 for the
integer scoreboards and integer instruction issue. Generally,
the circuitry represented by FIGS. 6-9 may determine which
pipe stage an instruction is in by examining the pipe state in
the corresponding entry of the issue queue 40. Viewed in
another way, the circuitry represented by a given decision
block may decode the type field in each entry and the
corresponding pipe state to detect if an instruction in any

US 2005/0149698 A1l

isSsue queue entry is an instruction in the pipe stage searched
for by that decision block. The circuitry may also include the
indications provided by the execution units and/or the data
cache (e.g. the miss indications and fill indications from the
data cache 30). Turning now to FIG. 6, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for updating the integer scoreboards
44 in response to individual instructions being processed.
Other embodiments are possible and contemplated. While
the blocks shown in FIG. 6 are illustrated in a particular
order for ease of understanding, any order may be used.
Furthermore, some blocks may represent independent cir-
cuitry operating in parallel with other circuitry. Specifically,
in FIG. 6, each decision block may represent independent
and parallel circuitry.

[0082] If an integer load is issued to one of the load/store
pipelines (decision block 50), the issue control circuit 42 sets
the bit corresponding to the destination register of the load
in the integer issue scoreboard 44A (block 52). If an integer
load is in the TLB stage of the load/store pipeline (decision
block 54), the issue control circuit 42 clears the bit corre-
sponding to the destination register in the integer issue
scoreboard 44A (block 56).

[0083] If an integer load miss is detected (decision block
58), the issue control circuit 42 sets the bit corresponding to
the destination register in the integer replay scoreboard 44B
(block 60). As mentioned above, the pipe state may indicate
which load/store pipeline the integer load is in and the stage
of the pipeline that it is in. If the integer load is in the stage
in which cache hit/miss information is available (e.g. the Wr
stage of the load/store pipeline in one embodiment) and the
miss indication corresponding to the load/store pipeline that
the integer load is in indicates a miss, then an integer load
miss may be detected. For example, the miss indication from
the data cache 30 may comprise a signal corresponding to
each pipeline, which may be asserted if a load in the
corresponding pipeline is a miss and deasserted if the load
is a hit (or there is no load in the Wr stage that clock cycle).
In the present embodiment, the load miss is detected in the
replay stage. The integer replay scoreboard 44B may be
updated in the clock cycle after the load miss is in the replay
stage (thus indicating that the instruction is beyond the
replay stage).

[0084] If an integer load miss passes the graduation stage
(decision block 62), the issue control circuit 42 sets the bit
corresponding to the destination register of the load in the
integer graduation scoreboard 44C (block 64). Finally, if a
fill is received for an integer load miss (decision block 66),
the bit corresponding to the destination register of the load
is cleared in each of the integer issue scoreboard 44A, the
integer replay scoreboard 44B, and the integer graduation
scoreboard 44C (block 68). The fill indication may include
a tag identifying the issue queue entry storing the load miss
which for which the fill data is received to match the fill with
the correct load miss. Alternatively, another indication such
as the destination register number identifying the destination
register of the load miss or a tag assigned by the bus
interface unit 32 to the load miss may be used. The desti-
nation register is cleared in the integer issue scoreboard 44A
because it may have been copied into the integer issue
scoreboard 44A from the integer replay scoreboard 44B if a
replay occurred, or from the integer graduation scoreboard
44C if an exception occurred.

Jul. 7, 2005

[0085] Turning next to FIG. 7, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for updating the integer scoreboards
44 in a global sense (e.g. each scoreboard bit is updated) in
response to various events detected by the issue control
circuit 42 or the execution units 22A-22B, 24A-24B, and
26A-26B. Other embodiments are possible and contem-
plated. While the blocks shown in FIG. 7 are illustrated in
a particular order for ease of understanding, any order may
be used. Furthermore, some blocks may represent indepen-
dent circuitry operating in parallel with other circuitry.
Specifically, in FIG. 7, each decision block may represent
independent and parallel circuitry.

[0086] If a replay is detected by the issue control circuit 42
or if a redirect is signaled by the integer execution unit 22A
(decision block 70), the issue control circuit 42 copies the
contents of the integer replay scoreboard 44B to the integer
issue scoreboard 44A (block 72). If an exception is detected
by an execution unit 22A-22B, 24A-24B, or 26A-26B
(decision block 74), the issue control circuit 42 copies the
contents of the integer graduation scoreboard 44C to the
integer replay scoreboard 44B (block 76) and may subse-
quently copy the contents of the integer replay scoreboard
44B (now equal to the contents of the integer graduation
scoreboard 44C) to the integer issue scoreboard 44A (block
78). In this manner, both the integer issue scoreboard 44A
and the integer replay scoreboard 44B may be recovered to
a state consistent with the exception. It is noted that, by first
copying the contents of the integer graduation scoreboard
44C to the integer replay scoreboard 44B and then copying
the contents of the integer replay scoreboard 44B to the
integer issue scoreboard 44A, both scoreboards may be
recovered without having two global update paths to the
integer issue scoreboard 44A (one for the integer replay
scoreboard 44B and one for the integer graduation score-
board 44C). Other embodiments may provide the two paths
and may copy the contents of the integer graduation score-
board 44C into the integer replay scoreboard 44B and into
the integer issue scoreboard 44A in parallel.

[0087] 1t is noted that the copying of the contents of one
scoreboard to another may be delayed by one or more clock
cycles from the detection of the corresponding event (e.g.
the detection of replay/redirect or exception).

[0088] Turning next to FIG. 8, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for determining if a particular integer
instruction or integer load/store instruction may be selected
for issue. Other embodiments are possible and contem-
plated. While the blocks shown in FIG. 8 are illustrated in
a particular order for ease of understanding, any order may
be used. Furthermore, some blocks may represent indepen-
dent circuitry operating in parallel with other circuitry. The
operation of FIG. 8 may represent the circuitry for consid-
ering one instruction in one issue queue entry for issue.
Similar circuitry may be provided for each issue queue entry,
or for a number of issue queue entries at the head of the
queue (e.g. for in order embodiments, the number of issue
queue entries from which instructions may be issued may be
less than the total number of issue queue entries).

[0089] If the instruction is being selected for the load/store
pipeline (e.g. the instruction is an integer load/store instruc-
tion or the instruction is an integer instruction which may be

US 2005/0149698 A1l

issued to the load/store pipeline and is being considered for
issue to the load/store pipeline—decision block 80), the
issue control circuit 42 checks the integer issue scoreboard
44 A to determine if the source registers of the instruction are
indicated as busy (decision block 82). If at least one of the
source registers is busy, the instruction is not selected for
issue. If the source registers are not busy, the instruction is
eligible for issue (assuming any other issue constraints not
related to dependencies are met—block 84). Other issue
constraints (e.g. prior instructions in program order issuable
to the same pipeline) may vary from embodiment to embodi-
ment and may affect whether or not the instruction is
actually issued.

[0090] If the instruction is not being selected for the
load/store pipeline (i.e. the instruction is being selected for
the integer pipeline), then the source registers of the instruc-
tion are not checked against the integer issue scoreboard
44A (decision block 80, “no” leg) and the instruction may be
eligible for issue (assuming other issue constraints are
met—block 84). Since the register file read in the integer
pipeline is skewed to align with the data forwarding from the
load/store pipeline, dependencies on the load destination
register need not inhibit issue. If a load miss dependency
exists, it may be detected in the replay stage and cause the
instruction to be replayed.

[0091] Turning now to FIG. 9, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for detecting replay scenarios for an
integer instruction or integer load/store instruction. Other
embodiments are possible and contemplated. While the
blocks shown in FIG. 9 are illustrated in a particular order
for ease of understanding, any order may be used. Further-
more, some blocks may represent independent circuitry
operating in parallel with other circuitry. Specifically, deci-
sion blocks 90 and 92 may represent independent circuitry
from decision blocks 96 and 98. The operation of FIG. 9
may represent the circuitry for considering one instruction in
one issue queue entry for detecting replay. Similar circuitry
may be provided for each issue queue entry, or for a number
of issue queue entries at the head of the queue, as desired.

[0092] For each source register read (decision block 90),
the issue control circuit 42 may check the integer replay
scoreboard 44B to determine if the source register is busy
(decision block 92). If the source register is busy in the
integer replay scoreboard 44B, then the instruction is to be
replayed due to a RAW dependency on that source register
(block 94). The actual assertion of the replay signal may be
delayed until the instruction reaches the replay stage, if the
check is done prior to the replay stage. For example, in one
embodiment, the check for source registers is performed in
the register file read (RR) stage of the integer pipeline and
in the AGen stage of the load/store pipeline. In such an
embodiment, the check may also include detecting a con-
current miss in the load/store pipeline for a load having the
source register as a destination (since such misses may not
yet be recorded in the integer replay scoreboard 44B). It is
noted that, in the load/store pipeline, the source register
replay check is performed after the source registers have
been read. The state of the integer replay scoreboard 44B
from the previous clock cycle may be latched and used for
this check, to ensure that the replay scoreboard state corre-
sponding to the source register read is used (e.g. that a load

Jul. 7, 2005

miss subsequent to the corresponding instruction does not
cause a replay of that instruction).

[0093] The destination register written by the instruction
may also be checked against the integer replay scoreboard to
detect a WAW dependency (decision block 96). If the
destination register is busy in the integer replay scoreboard
44B (decision block 98), a replay may be signaled (block
100). Again, the signaling of replay is delayed to the replay
stage if the check is performed prior to the replay stage for
the instruction. For example, in one embodiment, the check
for destination registers is performed in the Cache stage of
the load/store pipeline and in the register file read (RR) stage
of the integer pipeline.

[0094] Floating Point Scoreboarding and Instruction Issue

[0095] Similar to the integer instructions above, floating
point instructions may have dependencies on load instruc-
tions (in this case, floating point load instructions). Particu-
larly, the source registers of floating point instructions may
have a RAW dependency on the destination register of the
floating point load. Since the floating point pipelines are
skewed to align their register file read (RR) stages with the
forwarding of data for a load instruction in the load pipeline,
an issue scoreboard for these dependencies is not used
(similar to the issuing of integer instructions into the integer
pipelines as described above). However, replays may be
detected for floating point load misses. Accordingly, the FP
RAW Load replay scoreboard 46A and the FP RAW Load
graduation scoreboard 46B are used to track floating point
load misses. The bit corresponding to the destination register
of a floating point load miss is set in the FP RAW Load
replay scoreboard 46A in response to the load miss passing
the replay stage of the load/store pipeline. The bit corre-
sponding to the destination register of the floating point load
miss is set in the FP RAW Load graduation scoreboard 46B
in response to the load miss passing the graduation stage of
the load/store pipeline. The bit in both scoreboards is cleared
in response to the fill data for the floating point load miss
being provided.

[0096] While most integer instructions in the above
described embodiment have a latency of one clock cycle,
with forwarding of results to dependent instructions, the
floating point instructions in this embodiment may have
execution latencies greater than one clock cycle. Particu-
larly, for the present embodiment, the short floating point
instructions may have 4 clock cycles of execution latency,
the floating point multiply-add instruction may have 8 clock
cycles of execution latency, and the long latency floating
point instructions may have varying latencies greater than 8
clock cycles. The latencies of any of the above groups of
floating point instructions may vary from embodiment to
embodiment.

[0097] Since the execution latency is greater than one
clock cycle, other types of dependencies may be score-
boarded. Particularly, a RAW dependency may exist
between a first floating point instruction which updates a
destination register used as a source register by a second
floating point instruction. The FP EXE RAW issue score-
board 46C may be used to detect these dependencies. The FP
EXE RAW replay scoreboard 46D may be used to recover
the FP EXE RAW issue scoreboard 46C in the event of a
replay/redirect or exception. The bit corresponding to the
destination register of a floating point instruction may be set

US 2005/0149698 A1l

in the FP EXE RAW issue scoreboard 46C in response to
issuing the instruction. The bit corresponding to the desti-
nation register of the floating point instruction may be set in
the FP EXE RAW replay scoreboard 46D in response to the
instruction passing the replay stage. The bit may be cleared
in both scoreboards 5 clock cycles before the floating point
instruction updates its result. The number of clock cycles
may vary in other embodiments. Generally, the number of
clock cycles is selected to align the register file read (RR)
stage of the dependent instruction with the stage at which
result data is forwarded for the prior floating point instruc-
tion. The number may depend on the number of pipeline
stages between the issue stage and the register file read (RR)
stage of the floating point pipeline (including both stages)
and the number of stages between the result forwarding
stage and the write stage of the floating point pipeline.

[0098] As mentioned above, the register file read (RR)
stage for the add operand of the floating point multiply-add
instruction is skewed with respect to the register file read of
the multiply operands. Thus, if issue of a floating point
multiply-add instruction is inhibited because of a depen-
dency for the add operand of the floating point multiply-add
instruction on a preceding floating point instruction, the
floating point multiply-add instruction may be issued earlier
in time than for a dependency on other operands. Since the
busy state for the add operand of the multiply-add instruc-
tion is cleared earlier (with regard to the write of the register
by the preceding floating point instruction) than other busy
states, a separate scoreboard may be used for the add
operand. The FP Madd RAW issue scoreboard 46E may be
used for this purpose. The FP Madd RAW replay scoreboard
46F may be used to recover the FP Madd RAW issue
scoreboard 46E in the event of a replay/redirect or excep-
tion. The bit corresponding to the destination register of a
floating point instruction may be set in the FP Madd RAW
issue scoreboard 46E in response to issuing the instruction.
The bit corresponding to the destination register of the
floating point instruction may be set in the FP Madd RAW
replay scoreboard 46F in response to the instruction passing
the replay stage. The bit may be cleared in both scoreboards
9 clock cycles before the floating point instruction updates
its result. The number of clock cycles may vary in other
embodiments. Generally, the number of clock cycles is
selected to align the register file read (RR) stage for the add
operand of the floating point multiply-add instruction with
the stage at which result data is forwarded for the prior
floating point instruction. The number may depend on the
number of pipeline stages between the issue stage and the
register file read (RR) stage for the add operand of the
floating point multiply-add pipeline (including both stages)
and the number of stages between the result forwarding
stage and the write stage of the floating point pipeline.

[0099] Since the execution latencies of the various floating
point instructions may differ, the floating point instructions
may also experience WAW dependencies. For example, a
long latency floating point instruction updating register F1
followed by a short floating point instruction updating
register F1 is a WAW dependency. To allow more overlap of
instructions having WAW dependencies than those having a
RAW dependency (since the write by the dependent instruc-
tion occurs later than a read of the dependent instruction in
the pipeline), a separate scoreboard may be used to detect
WAW dependencies. The FP EXE WAW issue scoreboard
46G may be used for this purpose. The FP EXE WAW replay

Jul. 7, 2005

scoreboard 46H may be used to recover the FP EXE WAW
issue scoreboard 46G in the event of a replay/redirect or
exception. The bit corresponding to the destination register
of a floating point instruction may be set in the FP EXE
WAW issue scoreboard 46G in response to issuing the
instruction. The bit corresponding to the destination register
of the floating point instruction may be set in the FP EXE
WAW replay scoreboard 46H in response to the instruction
passing the replay stage. The bit may be cleared in both
scoreboards 8 clock cycles before the floating point instruc-
tion updates its result. The number of clock cycles may vary
in other embodiments. Generally, the number of clock cycles
is selected to ensure that the register file write (Wr) stage for
the dependent floating point instruction occurs at least one
clock cycle after the register file write (Wr) stage of the
preceding floating point instruction. In this case, the mini-
mum latency for floating point instructions is 9 clock cycles
for the short floating point instructions. Thus, 8 clock cycles
prior to the register file write stage ensures that the floating
point instructions writes the register file at least one clock
cycle after the preceding floating point instruction. The
number may depend on the number of pipeline stages
between the issue stage and the register file write (Wr) stage
for the lowest latency floating point instruction.

[0100] The floating point load instruction has a lower
latency than other floating point instructions (5 clock cycles
from issue to register file write (Wr) in the case of a cache
hit). To account for WAW dependencies between a floating
point instruction and a subsequent floating point load, the FP
Load WAW issue scoreboard 461 may be used and the FP
Load WAW replay scoreboard 46] may be used to recover
from replay/redirect and exceptions. The bit corresponding
to the destination register of a floating point instruction may
be set in the FP Load WAW issue scoreboard 461 in response
to issuing the instruction. The bit corresponding to the
destination register of the floating point instruction may be
set in the FP Load WAW replay scoreboard 46J in response
to the instruction passing the replay stage. The bit may be
cleared in both scoreboards 4 clock cycles before the float-
ing point instruction updates its result. The number of clock
cycles may vary in other embodiments. Generally, the
number of clock cycles is selected to ensure that the register
file write (Wr) stage for the floating point load instruction
occurs at least one clock cycle after the register file write
(Wr) stage of the preceding floating point instruction. In this
case, the minimum latency for floating point load instruc-
tions is 5 clock cycles. Thus, 4 clock cycles prior to the
register file write stage ensures that the floating point load
writes the register file at least one clock cycle after the
preceding floating point instruction. The number may
depend on the number of pipeline stages between the issue
stage and the register file write (Wr) stage for the floating
point load instruction.

[0101] Tt is noted that the floating point instructions may
have a WAW dependency on a preceding floating point load
instruction as well. These scenarios may be handled by
checking the FP RAW relay scoreboard 46A for the desti-
nation register of the floating point instruction and replaying
the floating point instruction if a dependency is detected.

[0102] Tt is noted that other embodiments may employ
fewer scoreboards. For example, the FP EXE WAW score-
boards 46G and 46H may be eliminated and the FP Load
WAW scoreboards 461 and 46]J may be checked instead for

US 2005/0149698 A1l

detecting WAW dependencies for floating point instructions
(and less overlap between floating point instructions and the
floating point load instructions which depend on those
floating point instructions). Similarly, FP EXE RAW score-
boards 46C and 46D may be eliminated and one or both of
the FP Load WAW scoreboards 461 and 46] or the FP EXE
WAW scoreboards 46G and 46H may be used. The FP Madd
RAW scoreboards 46E and 46F may be eliminated and the
FP EXE RAW scoreboards 46C and 46D may be used.

[0103] FIGS. 10-14 are flowcharts illustrating the opera-
tion of one embodiment of the issue control circuit 42 for the
floating point scoreboards and floating point instruction
issue. Generally, the circuitry represented by FIGS. 10-14
may determine which pipe stage an instruction is in by
examining the pipe state in the corresponding entry of the
issue queue 40. Viewed in another way, the circuitry repre-
sented by a given decision block may decode the type field
in each entry and the corresponding pipe state to detect if an
instruction in any issue queue entry is an instruction in the
pipe stage searched for by that decision block. The circuitry
may also include the indications provided by the execution
units and/or the data cache (e.g. the miss indications and fill
indications from the data cache 30).

[0104] Turning now to FIG. 10, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for setting bits in the floating point
scoreboards 46 in response to individual instructions being
processed. Other embodiments are possible and contem-
plated. While the blocks shown in FIG. 10 are illustrated in
a particular order for ease of understanding, any order may
be used. Furthermore, some blocks may represent indepen-
dent circuitry operating in parallel with other circuitry.
Specifically, in FIG. 10, each decision block may represent
independent and parallel circuitry.

[0105] If a floating point load instruction is a miss (deci-
sion block 110), the issue control circuit 42 sets the bit for
the destination register of the floating point load in the FP
RAW Load replay scoreboard 46A (block 112). If a floating
point load miss is passing the graduation stage (decision
block 114), the issue control circuit 42 sets the bit for the
destination register of the floating point load in the FP RAW
Load graduation scoreboard 46B (block 114). In response to
issuing a floating point instruction into one of the floating
point pipelines (decision block 118), the issue control circuit
42 sets the bit for the destination register of the floating point
instruction in each of the FP EXE RAW issue scoreboard
46C, the FP Madd RAW issue scoreboard 46E, the FP EXE
WAW issue scoreboard 46G, and the FP Load WAW issue
scoreboard 461 (block 120). Similarly, in response to a
floating point instruction passing the replay stage (decision
block 122), the issue control circuit 42 sets the bit for the
destination register of the floating point instruction in each
of the FP EXE RAW replay scoreboard 46D, the FP Madd
RAW replay scoreboard 46F, the FP EXE WAW replay
scoreboard 46H, and the FP Load WAW replay scoreboard
46] (block 124).

[0106] 1t is noted that, for embodiments employing the
pipeline shown in FIG. 3, the short floating point instruc-
tions are eight clock cycles away from the Wr stage at issue.
Accordingly, in such embodiments, the issue control circuit
42 may not set bits in the FP EXE WAW issue and replay

Jul. 7, 2005

scoreboards 46G-46H or the FP Madd RAW issue and replay
scoreboards 46E-46F in blocks 120 and 124 for short
floating point instructions.

[0107] Turning now to FIG. 11, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for clearing bits in the floating point
scoreboards 46 in response to individual instructions being
processed. Other embodiments are possible and contem-
plated. While the blocks shown in FIG. 11 are illustrated in
a particular order for ease of understanding, any order may
be used. Furthermore, some blocks may represent indepen-
dent circuitry operating in parallel with other circuitry.
Specifically, in FIG. 11, each decision block may represent
independent and parallel circuitry.

[0108] In response to floating point fill data being pro-
vided (decision block 130), the issue control circuit 42 clears
the bit for the destination register of the corresponding
floating point load in the FP RAW ILoad replay and gradu-
ation scoreboards 46A-46B (block 132). The fill may be
linked to a particular floating point load in any fashion,
similar to the description above for fills and integer load
instructions.

[0109] The remaining events which cause bits to be
cleared in the floating point scoreboards are timed from the
corresponding instruction reaching the pipeline stage at
which the instruction writes its result to the register file. As
mentioned above, the specific numbers used are based on the
pipeline illustrated in FIG. 3, and the numbers may vary
from embodiment to embodiment. For simplicity in this
discussion, the specific numbers are used. For the short
floating point instructions and the floating point multiply-
add instruction, the issue control circuit 42 may determine
the stage at which the instruction will write its result
internally using the pipe state, and thus may determine the
intervals mentioned below internally as well. For the long
latency floating point instructions, the issue control circuit
42 may rely on receiving the op cmpl indication for the
instruction. The floating point execution units 24A-24B may
provide these indications for long latency floating point
instructions in time to allow the issue control circuit 42 to
calculate the intervals. Thus, the indication may be at least
the number of clock cycles before the register file write as
the earliest of the conditions checked for (e.g. 9 clock cycles
before, in this embodiment).

[0110] In response to a floating point instruction in the
pipeline being 9 clock cycles away from the register file
write (Wr) stage (decision block 134), the issue control
circuit 42 clears the bit for the destination register of the
floating point instruction in the FP Madd RAW issue and
replay scoreboards 46E and 46F (block 136). In response to
a floating point instruction in the pipeline being 8 clock
cycles away from the register file write (Wr) stage (decision
block 138), the issue control circuit 42 clears the bit for the
destination register of the floating point instruction in the FP
EXE WAW issue and replay scoreboards 46G and 46H
(block 140). In response to a floating point instruction in the
pipeline being 5 clock cycles away from the register file
write (Wr) stage (decision block 142), the issue control
circuit 42 clears the bit for the destination register of the
floating point instruction in the FP EXE RAW issue and
replay scoreboards 46C and 46D (block 144). In response to
a floating point instruction in the pipeline being 4 clock

US 2005/0149698 A1l

cycles away from the register file write (Wr) stage (decision
block 146), the issue control circuit 42 clears the bit for the
destination register of the floating point instruction in the FP
Load WAW issue and replay scoreboards 461 and 46] (block
148).

[0111] Examples of each of the above clearings of score-
boards and the corresponding issuance of a dependent
instruction are shown in FIGS. 15-18 and are discussed
below.

[0112] Turning next to FIG. 12, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for updating the floating point
scoreboards 46 in a global sense (e.g. each scoreboard bit is
updated) in response to various events detected by the issue
control circuit 42 or the execution units 22A-22B, 24A-24B,
and 26A-26B. Other embodiments are possible and contem-
plated. While the blocks shown in FIG. 12 are illustrated in
a particular order for ease of understanding, any order may
be used. Furthermore, some blocks may represent indepen-
dent circuitry operating in parallel with other circuitry.
Specifically, in FIG. 12, each decision block may represent
independent and parallel circuitry.

[0113] Ifareplay is detected by the issue control circuit 42
or if a redirect is signaled by the integer execution unit 22A
(decision block 150), the issue control circuit 42 copies the
contents of each of the replay scoreboards 46D, 46F, 46H,
and 46J to the corresponding issue scoreboards 46C, 46E,
46G, and 461 (block 152). If an exception is detected by an
execution unit 22A-22B, 24A-24B, or 26A-26B (decision
block 154), the issue control circuit 42 copies the contents
of the FP RAW Load graduation scoreboard 46B to the FP
RAW Load replay scoreboard 46A (block 156). Addition-
ally, the contents of the replay scoreboards 46D, 46F, 46H,
and 46] may be copied to the corresponding issue score-
boards 46C, 46E, 46G, and 461 (block 158). In one embodi-
ment, to account for the instructions which are between the
replay stage and graduation when an exception is signaled,
the copying of replay scoreboards to issue scoreboards may
be delayed until these instructions exit the pipeline (and thus
their effects are deleted from the replay scoreboards).

[0114] Tt is noted that, in another embodiment, the issue
control circuit 42 may delay subsequent instruction issue
after an exception is signalled until any previously issued
long latency floating point instructions have completed in
the floating point execution units 24A-24B. Once the long
latency floating point instructions have completed, the issue
control circuit 42 may clear the replay scoreboards (since no
instructions that have passed the replay stage are in the
floating point pipelines) and may copy the cleared replay
scoreboards over the corresponding issue scoreboards (thus
clearing the issue scoreboards as well). The clearing of the
replay scoreboards may be the natural result of the instruc-
tions completing, or the issue control circuit 42 and/or the
replay scoreboards may include circuitry to perform the
clearing. Alternatively, the issue control circuit 42 may clear
both the issue and the replay scoreboards and may not copy
the replay scoreboards over the issue scoreboards.

[0115] Tt is noted that the copying of the contents of one
scoreboard to another may be delayed by one or more clock
cycles from the detection of the corresponding event (e.g.
the detection of replay/redirect or exception).

[0116] Turning now to FIG. 13, a flowchart is shown
representing operation of one embodiment of circuitry in the

Jul. 7, 2005

issue control circuit 42 for determining if a floating point
instruction or a floating point load instruction is eligible for
issue. Other embodiments are possible and contemplated.
While the blocks shown in FIG. 13 are illustrated in a
particular order for ease of understanding, any order may be
used. Furthermore, some blocks may represent independent
circuitry operating in parallel with other circuitry. Particu-
larly, decision blocks 162, 168, 170, and 172 may each
represent circuitry independent of and operating in parallel
with the others. FIG. 13 may represent the circuitry for
considering one instruction in one issue queue entry for
issue. Similar circuitry may be provided for each issue queue
entry, or for a number of issue queue entries at the head of
the queue (e.g. for in order embodiments, the number of
issue queue entries from which instructions may be issued
may be less than the total number of issue queue entries).
FIG. 13 illustrates detecting if a floating point instruction is
eligible for issue based on dependencies indicated by the
scoreboards. Other issue constraints (e.g. prior instructions
in program order issuable to the same pipeline, etc.) may
vary from embodiment to embodiment and may affect
whether or not the instruction is actually issued.

[0117] If the instruction is a floating point load instruction
(decision block 160), the issue control circuit 42 checks the
destination register of the load against the FP Load WAW
issue scoreboard 461 (decision block 162). If the register is
not indicated as busy, the instruction may be issued (block
164). If the register is indicated as busy, the instruction may
not be issued (block 166).

[0118] If the instruction is not a floating point load instruc-
tion (decision block 160), the instruction is a floating point
instruction to be issued to the floating point pipelines. For
these instructions, the issue control circuit 42 may check the
destination register of the instruction against the FP EXE
WAW issue scoreboard 46G (decision block 168). If the
destination register is busy in the FP EXE WAW issue
scoreboard 46G, the instruction is not issued (block 166).
Additionally, the issue control circuit 42 may check the
source registers of the floating point instruction (except the
add source operand for the floating point multiply-add
instruction, denoted “fr” in FIG. 13) against the FP EXE
RAW issue scoreboard 46C (decision block 170). If one of
the source registers is indicated as busy in the FP EXE RAW
issue scoreboard 46C, the instruction is not issued (block
166). Still further, if the instruction is a floating point
multiply-add instruction, the add source operand is checked
against the FP Madd RAW issue scoreboard 46E (decision
block 172). If the add source operand register is indicated as
busy in the FP Madd RAW issue scoreboard, the instruction
is not issued (block 166). If each of the checks represented
by decision blocks 168, 170, and 172 indicate not busy, the
instruction may be issued (block 164).

[0119] Turning now to FIG. 14, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for detecting replay scenarios for a
floating point instruction. Other embodiments are possible
and contemplated. While the blocks shown in FIG. 14 are
illustrated in a particular order for ease of understanding,
any order may be used. Furthermore, some blocks may
represent independent circuitry operating in parallel with
other circuitry. Specifically, decision blocks 180 and 182
may represent independent circuitry from decision blocks
186 and 188. FIG. 14 may represent the circuitry for

US 2005/0149698 A1l

considering one instruction in one issue queue entry for
detecting replay. Similar circuitry may be provided for each
issue queue entry, or for a number of issue queue entries at
the head of the queue, as desired.

[0120] For each source register read (decision block 180),
the issue control circuit 42 may check the FP RAW Load
replay scoreboard 46A to determine if the source register is
busy (decision block 182). If the source register is busy in
the FP RAW Load replay scoreboard 46A, then the floating
point instruction is to be replayed due to a RAW dependency
on that source register (block 184). The actual assertion of
the replay signal is delayed until the instruction reaches the
replay stage, if the check is done prior to the replay stage.
For example, in one embodiment, the check for source
registers is performed in the register file read (RR) stage of
the floating point pipeline. In such an embodiment, the
check may also include detecting a concurrent miss in the
load/store pipeline for a floating point load having the source
register as a destination (since such misses may not yet be
recorded in the FP RAW Load replay scoreboard 46A).

[0121] The destination register written by the instruction
may also be checked against the FP RAW Load replay
scoreboard 46A to detect a WAW dependency (decision
block 186). If the destination register is busy in the FP RAW
Load replay scoreboard 46A (decision block 188), a replay
may be signaled (block 190). Again, the signaling of replay
is delayed to the replay stage if the check is performed prior
to the replay stage for the instruction.

[0122] FIGS. 15-18 are timing diagrams illustrating
examples of the overlap of a floating point instruction (FP
OP in each diagram) and a dependent instruction (Dep Madd
Op in FIG. 15, Dep FP Op (WAW) in FIG. 16, Dep FP OP
(RAW) in FIG. 17, and Dep Ld (WAW) in FIG. 18). In each
timing diagram, several clock cycles are shown delimited by
vertical dashed lines. The clock cycles are labeled N through
N+9 in each diagram (and N+10 in FIG. 16). The pipeline
stages that each instruction is in for each clock cycle are
illustrated horizontally from the corresponding label. Addi-
tionally, the clearing of the bit in the corresponding score-
board is illustrated by an arrow from the FP OP to the clock
cycle before issuance of the dependent instruction. In each
example, it is assumed that the illustrated dependency is the
last issue constraint preventing issue of the dependent
instruction.

[0123] FIG. 15 is an example of a long latency floating
point instruction and a dependent floating point multiply-
add instruction, where the dependency exists on the add
operand register (denoted “fr” in FIG. 15). The FP OP
passes through execution stages ExN to ExN+8 in clock
cycles N to N+8 in FIG. 15. In clock cycle N+9, the FP OP
reaches the register file write (Wr) stage. Nine clock cycles
prior to the FP OP reaching the Wr stage, the bit correspond-
ing to the destination register of the FP OP is cleared in the
FP Madd RAW issue scoreboard 46E (and the corresponding
replay scoreboard 46F). That is, the clearing of the bit in the
FP Madd RAW issue scoreboard 46E occurs in clock cycle
N. Thus, the floating point multiply-add is issued in clock
cycle N+1. The floating point multiply-add instruction
progresses through the pipeline, reaching the register file
read stage for the add operand register (RR(fr)) at clock
cycle N+8. The FP OP forwards its result in clock cycle N+8,
thus supplying the add operand to the floating point multi-
ply-add instruction.

Jul. 7, 2005

[0124] FIG. 16 is an example of a long latency floating
point instruction FP OP and a dependent floating point
instruction (Dep FP Op), where the dependency is a WAW
dependency (that is, the FP OP and the Dep FP Op update
the same destination register). The FP OP passes through
execution stages ExN to ExXN+8 in clock cycles N to N+8 in
FIG. 16. In clock cycle N+9, the FP OP reaches the register
file write (Wr) stage. Eight clock cycles prior to the FP OP
reaching the Wr stage, the bit corresponding to the destina-
tion register of the FP OP is cleared in the FP EXE WAW
issue scoreboard 46G (and the corresponding replay score-
board 46H). That is, the clearing of the bit in the FP EXE
WAW issue scoreboard 46G occurs in clock cycle N+1.
Thus, the Dep FP Op is issued in clock cycle N+2. The Dep
FP Op progresses through the pipeline, reaching the register
file write stage (Wr) at clock cycle N+10. Accordingly, the
Dep FP Op updates the register file one clock cycle after the
FP OP.

[0125] FIG. 17 is an example of a long latency floating
point instruction FP OP and a dependent floating point
instruction (Dep FP Op), where the dependency is a RAW
dependency (that is, the FP OP has a destination register
which is the same as a source register of the Dep FP Op). The
FP OP passes through execution stages ExN to ExN+8 in
clock cycles N to N+8 in FIG. 17. In clock cycle N+9, the
FP OP reaches the register file write (Wr) stage. Five clock
cycles prior to the FP OP reaching the Wr stage, the bit
corresponding to the destination register of the FP OP is
cleared in the FP EXE RAW issue scoreboard 46C (and the
corresponding replay scoreboard 46D). That is, the clearing
of the bit in the FP EXE RAW issue scoreboard 46C occurs
in clock cycle N+4. Thus, the Dep FP Op is issued in clock
cycle N+5. The Dep FP Op progresses through the pipeline,
reaching the register file read stage (RR) at clock cycle N+8.
The FP OP forwards its result in clock cycle N+8, thus
supplying the source operand to the Dep FP Op (which
begins execution in clock cycle N+9).

[0126] FIG. 18 is an example of a short floating point
instruction FP OP and a dependent floating point load
instruction (Dep Ld), where the dependency is a WAW
dependency (that is, the FP OP and the Dep Ld have the
same destination register). The FP OP is issued in clock
cycle N and passes through the stages of the short FP
pipeline to reach the register file write (Wr) stage in clock
cycle N+8. Four clock cycles prior to the FP OP reaching the
Wr stage, the bit corresponding to the destination register of
the FP OP is cleared in the FP Load WAW issue scoreboard
461 (and the corresponding replay scoreboard 46J). That is,
the clearing of the bit in the FP Load WAW issue scoreboard
461 occurs in clock cycle N+4. Thus, the Dep FP L.d is issued
in clock cycle N+5. The Dep FP Op progresses through the
pipeline, reaching the register file write stage (Wr) at clock
cycle N+9. Accordingly, the Dep FP L.d updates the register
file one clock cycle after the FP OP.

[0127] Power Saving Technique

[0128] As mentioned above, a load miss may result in a
large number of clock cycles of delay before the fill data is
returned. While waiting for the fill data, one or more
instructions dependent on the load may be issued to the
integer and/or floating point pipelines and may be replayed.
Since the replay scoreboards are copied to the issue score-
boards in the event of replay, the issue scoreboards are

US 2005/0149698 A1l

updated with registers indicated as busy in the replay
scoreboard. This update prevents issue of integer instruc-
tions to the load/store pipeline (since the integer issue
scoreboard is checked for issuing integer instructions to the
load/store pipeline). However, integer instructions may be
issued to the integer pipelines (since the integer issue
scoreboard is not checked for issuing instructions to the
integer pipelines) and floating point instructions may be
issued to the floating point pipelines (since the load miss is
tracked in replay and graduation scoreboards but not an
issue scoreboard). If these instructions are dependent on the
load miss, then they may be replayed repeatedly until the fill
data is returned. Power is wasted in these cases via the
repeated attempts to execute the dependent instructions.

[0129] In one embodiment, the issue control circuit 42
may implement a technique for power savings if replays are
occurring due to dependencies on load misses in the data
cache 30. Generally, the issue control circuit 42 may detect
if a replay is occurring due to a load miss, and may inhibit
issue of instructions if replay is occurring due to the load
miss until fill data is returned. Other causes of replay may be
included in various embodiments. For example, as men-
tioned above, one embodiment of the processor 10 uses
more than one execute cycle to perform integer multiplies
(e.g. two clock cycles may be used). In such an embodiment,
the integer multiply may be tracked in the integer score-
boards 44. In other embodiments, the only cause of replay
may be the dependency on the load miss and thus the
detection of a replay may cause the inhibiting of instruction
issue. The detection of fill data being returned may be a
signal from the data cache 30 or the source of the fill data
(e.g. the bus interface unit 32) that fill data is being provided.
In this case, the signal is not specific to the particular load
miss that caused the repeated replay. The fill data may
actually be for another load miss. In such an embodiment,
replay may be detected again after issuing instructions in
response to the fill signal. Instruction issue may then again
be inhibited until fill data is returned. In other embodiments,
a tag identifying the load miss causing the replay may be
used to identify the fill data corresponding to the load miss.

[0130] Turning now to FIG. 19, a state machine diagram
illustrating a state machine that may be used by one embodi-
ment of the issue control circuit 42 for controlling the
issuing of instructions and for implementing one embodi-
ment of the power saving technique is shown. Other embodi-
ments are possible and contemplated. In the embodiment of
FIG. 19, the state machine includes an issue state 200 and
a stall state 202.

[0131] In the issue state 200, the issue control circuit 42
may apply various issue constraints to the instructions in the
issue queue 40 which have not been issued, and may select
instructions for issue which meet the issue constraints. For
example, in one embodiment, the issue control circuit 42
may apply the issue constraints illustrated in FIGS. 8 and 13
to instructions while in the issue state 42. In the stall state
202, the issue control circuit 42 may inhibit any instruction
issue.

[0132] The issue control circuit 42 may remain in the issue
state 200 unless a replay is detected due to a cache miss (that
is, a replay is detected due to an outstanding write to a
destination register of a load which misses in the data cache
30). Responsive to detecting a replay due to a cache miss,

Jul. 7, 2005

the issue control circuit 42 transitions to the stall state 202
and inhibits instruction issue. The issue control circuit 42
may remain in the stall state 202 until fill data is returned.
The issue control circuit 42 may transition from the stall
state 202 to the issue state 200 in response to detecting fill
data being returned.

[0133] FIG. 20 is a block diagram illustrating one
embodiment of the issue control circuit 42 and a read queue
210. Other embodiments are possible and contemplated. In
the embodiment of FIG. 20, the read queue 210 is illustrated
in the bus interface unit 32, although other embodiments
may locate the read queue 210 anywhere in processor 10
(e.g. load/store units 26A-26B, the data cache 30, etc.). The
issue control circuit 42 in FIG. 20 includes a miss tag
register 212, a comparator 214 coupled to the miss tag
register 212 and coupled to receive a fill tag (e.g. from the
bus interface unit 32 or another unit, as desired). The output
of the comparator 214 indicates that fill data is being
returned (e.g. a transition from the stall state 202 to the issue
state 200 may be performed). The issue control circuit 42 is
coupled to provide a destination register number to the read
queue 210, which is coupled to return a tag to the issue
control circuit 42.

[0134] The read queue 210 is a queue for storing addresses
and other information for cache misses from the data cache
30 (and from the instruction cache 12 as well, in one
embodiment). Each entry may result in a read transaction on
the bus interface (or other interconnect to which the pro-
cessor 10 may be configured to couple) initiated by the bus
interface unit 32. The read transaction results in a return of
a cache block of data to the processor 10 for storage in the
data cache 30 or the instruction cache 12.

[0135] Generally, the read queue 210 comprises a plurality
of entries, each entry capable of storing information for a
cache miss. The fields of one entry are illustrated in FIG. 20
and include the destination register number field 216 storing
the destination register number (used for load misses), a tag
field 218 storing a tag for the entry, and an other field 220
storing other information. The other field may store any
desired information in various embodiments, including the
address of the cache block to be read from memory, the
location of the data being read by the load within the cache
block for load misses, etc.

[0136] Inresponse to the fill data being returned for a read
transaction corresponding to a given entry in the read queue
210, the read queue 210 may supply the destination register
number from the entry to the register file 28. Additionally,
the data accessed by the load may be selected from the
returned cache block and provided to the register file 28 for
storage in the destination register. The destination register
field 216 in each entry may also be compared to a destination
register number supplied by the issue control circuit 42 as
described below, to read the tag from the tag field 218 of the
corresponding entry.

[0137] The tag field 218 stores a tag which identifies the
fill corresponding to the cache miss represented in that entry.
The tag may be any sort of tag. In one embodiment, the tag
may be a transaction identifier assigned to the read transac-
tion initiated by the bus interface unit 32 when the read
transaction is initiated. The tag may also be a tag assigned
to the read queue entry or identifying the read queue entry.
In such an embodiment, the tag may be inherent in the entry

US 2005/0149698 A1l

and thus may not be explicitly stored in the entry. The tag
could also be a tag assigned to the load instruction by the
issue control circuit 42 (e.g. a tag identifying the issue queue
entry storing the load instruction or a tag indicating the
sequence of the load instruction in the outstanding instruc-
tions within the pipeline).

[0138] The embodiment of FIG. 20 supports the specific
identification of a load miss which caused the replay of
dependent instructions. The issue control circuit 42, in
response to detecting a replay for a load miss, transmits the
destination register number of the load miss to the read
queue 210 to read the tag corresponding to the entry having
that destination register number. The destination register
number may include a bit distinguishing floating point
registers from integer registers, or a separate signal may be
supplied indicating whether the register number is an integer
or floating point register (and a separate indication of the
type of register may be stored in the destination register field
216 or the other field 220).

[0139] In response to the read request with the destination
register number from the issue control circuit 42, the read
queue 210 may compare the destination register numbers to
the destination register numbers in the destination register
fields 216 of each entry and may return the tag from the tag
field 218 of the entry storing a matching destination register
number. The issue control circuit 42 may store the tag in the
miss tag register 212.

[0140] If a valid tag is stored in the miss tag register 212
(e.g. if the issue control circuit 42 is in the stall state 202),
the issue control circuit 42 may monitor a fill tag provided
by the bus interface unit 32 for a match with the miss tag
stored in the miss tag register 212.

[0141] The bus interface unit 32 may transmit the fill tag
with the fill data to be stored in the data cache 30, and the
comparator 214 may also receive the fill tag. The fill tag is
the tag from the tag field 218 of the entry of the read queue
210 for which fill data is being provided. If the fill tag
matches the miss tag, the issue control circuit 42 detects that
fill data is being returned and may transition from the stall
state 202 to the issue state 200.

[0142] Floating Point Exception Handling

[0143] Floating point instructions may be defined to gen-
erate exceptions during execution (e.g. for overflow, under-
flow, generation of not-a-number results, etc.). In one
embodiment, the exceptions may include those specified in
the Institute for Electrical and Electronic Engineers (IEEE)
standard 754 for floating point arithmetic. In one specific
embodiment, the exceptions may be those defined by the
MIPS instruction set architecture.

[0144] Generally, floating point exceptions are program-
mably enabled in a configuration/control register of the
processor 10 (not shown). Most programs which use the
floating point instructions do not enable floating point
exceptions. Accordingly, the mechanisms described above
may assume that floating point exceptions do not occur.
Particularly, the graduation stage of the integer and load/
store pipelines (at which time updates to the architected state
of the processor, including writes to the register file 28,
become committed and cannot be recovered) is in clock
cycle 7 in FIG. 3. However, the register file write (Wr) stage
for floating point instructions (at which exceptions may be

Jul. 7, 2005

detected) is in clock cycle 8 for the short floating point
instructions. Accordingly, an integer instruction or a load/
store instruction which is subsequent to a short floating point
instruction in program order but is co-issued with the short
floating point instruction may commit an update prior to the
detection of the exception for the short floating point instruc-
tion. The register file write (Wr) stage for the floating point
multiply-add and long latency floating point instructions is
even later, which may allow instructions which are issued in
clock cycle after the issuance of the multiply-add or long
latency instruction to commit updates. Additionally, co-
issuance of short floating point instructions subsequent to
the multiply-add or long latency floating point instructions
may allow for updates to be committed prior to the signaling
of an exception.

[0145] If floating point exceptions are not enabled, the
above operation does not present any issues. If floating point
exceptions are enabled, the above operation could allow an
instruction subsequent to a floating point instruction in
program order to commit an update even if the floating point
instruction experiences an exception. To support precise
exceptions, one embodiment of the issue control circuit 42
may support additional issue constraints if floating point
exceptions are enabled. Particularly, if a floating point
instruction is selected for issue in a given clock cycle, the
issue control circuit 42 may inhibit the co-issuance of any
subsequent integer instructions or load/store instructions, in
program order, with the floating point instruction. Thus, any
co-issued integer instructions or load/store instructions are
prior to the floating point instruction and graduation of these
instructions before the floating point instruction results in
correct exception handling. Similarly, if a multiply-add or
long latency floating point instruction is selected for issue,
co-issue of subsequent floating point instructions is inhib-
ited.

[0146] The inhibiting of instruction issue may be applied
in any fashion. For example, the circuitry for selecting each
instruction for issue may integrate the above constraints
(conditional based on whether or not floating point excep-
tions are enabled). Alternatively, the issue control circuit 42
may preselect instructions for issue without regard to the
issue constraints implemented when floating point excep-
tions are enabled. The preselected group of instructions may
be scanned, and any inhibited instructions may be detected
and prevented from issuing.

[0147] Additionally, the issue control circuit 42 may pre-
vent subsequent issue of instructions until it is known that
the issued floating point instructions will report exceptions,
if any, prior to any subsequently issued instructions com-
mitting an update (e.g. passing the graduation stage). In one
embodiment, the FP Madd RAW issue scoreboard 46E may
be used for this purpose. Since the FP Madd RAW issue
scoreboard 46E bits are cleared 9 clock cycles before the
corresponding floating point instruction reaches the register
file write (Wr) stage (and reports an exception), a subsequent
instruction may be issued 8 clock cycles before the corre-
sponding floating point instruction reaches the register file
write (Wr) stage. For floating point instructions, to ensure
the Wr/graduation stage is after the corresponding floating
point instruction’s Wr stage, the result of the OR may be
delayed by one clock cycle and then used to allow issue of
the floating point instructions to occur (e.g. the subsequent
floating point instructions may issue 7 clock cycles prior to

US 2005/0149698 A1l

the corresponding floating point instruction reaching the
register file write stage, in the embodiment of FIG. 3). For
integer instructions and load/store instructions (which
graduate one clock cycle earlier than floating point instruc-
tions in the present embodiment) the result of the OR may
be delayed by two clock cycles and then used to allow issue
of the integer and load/store instructions. Accordingly, the
issued instructions may be canceled prior to committing
their updates if an exception is detected. In other embodi-
ments, subsequent instruction issue may be delayed using
other mechanisms. For example, an embodiment may delay
until the floating point instruction actually reaches the Wr
stage and reports exception status, if desired.

[0148] 1t is noted that, while the integer and load/store
pipelines commit their updates at the graduation stage, these
pipelines write the register file 28 prior to the graduation
stage (e.g. at clock cycle 4 in FIG. 3 for the load/store
pipelines and at clock cycle 5 in FIG. 3 for the integer
pipelines). The processor 10 may maintain a history stack of
prior register states between clock cycles 4/5 and 7 for
recovering the register file 28 in the event of an exception.
Alternatively, a future file or any other speculative structure
may be used to allow the updates and recovering from the
updates if an exception is detected.

[0149] Turning now to FIG. 21, a state machine diagram
is shown illustrating a state machine that may be employed
by one embodiment of the issue control circuit 42 for
handling floating point exceptions. Other embodiments are
possible and contemplated. In the embodiment of FIG. 21,
the state machine includes an issue state 230 and a stall state
232.

[0150] In the issue state 230, the issue control circuit 42
may apply various issue constraints to the instructions in the
issue queue 40 which have not been issued, and may select
instructions for issue which meet the issue constraints.
Additionally, the issue constraints used if floating point
exceptions are enabled may be applied if floating point
exceptions are enabled. For example, in one embodiment,
the issue control circuit 42 may apply the issue constraints
illustrated in FIGS. 8 and 13 to instructions (and optionally
the floating point exceptions enabled constraints) while in
the issue state 42. In the stall state 232, the issue control
circuit 42 may inhibit any instruction issue.

[0151] The issue control circuit 42 may remain in the issue
state 230 unless a stall due to floating point instruction issue
is detected (Stall_FP=1). The flowchart in FIG. 22 illus-
trates the generation of the Stall_FP indication. Responsive
to the Stall_FP indication being asserted, the issue control
circuit 42 transitions to the stall state 232 and inhibits
instruction issue. The issue control circuit 42 may remain in
the stall state 232 until the OR of the bits in the FP Madd
RAW issue scoreboard 46E is equal to zero (i.e. until the FP
Madd RAW issue scoreboard 46E is not tracking dependen-
cies for any floating point instructions). The issue control
circuit 42 may transition from the stall state 232 to the issue
state 230 in response to the OR of the FP Madd RAW issue
scoreboard 46E bits equaling zero.

[0152] As mentioned above, in the present embodiment
the OR result may be delayed by one clock cycle for
allowing the issue of floating point instructions and for two
clock cycles for allowing issue of integer and load/store
instructions. Accordingly, the transition to the issue state 230

Jul. 7, 2005

from the stall state 232 may be followed by one or two clock
cycles of delay in this embodiment. Alternatively, separate
state machines may be used for integer and load/store
instructions and for floating point instructions, with the
transition to the issue state delayed appropriately for each
type of instruction. In other embodiments, all instruction
issue may be restarted at the same time for simplicity (e.g.
after two clock cycles of delay, for the pipelines illustrated
in FIG. 3). Furthermore, in other embodiments, scoreboards
may be included for use when floating point exceptions are
enabled.

[0153] Turning now to FIG. 22, a flowchart is shown
representing operation of one embodiment of circuitry in the
issue control circuit 42 for issuing instructions if floating
point exceptions are enabled. Other embodiments are pos-
sible and contemplated. The issue constraints illustrated in
FIG. 22 may be the issue constraints used when floating
point exceptions are enabled. Other issue constraints (e.g.
FIG. 8 and FIG. 13) may also be applied. While the blocks
shown in FIG. 22 are illustrated in a particular order for ease
of understanding, any order may be used. Furthermore,
some blocks may represent independent circuitry operating
in parallel with other circuitry.

[0154] 1If floating point exceptions are not enabled (deci-
sion block 240), the issue control circuit 42 generates the
Stall_FP indication equal to zero (block 242) and imposes no
issue constraints related to floating point exceptions being
enabled. The “no” leg of decision block 240 and block 242
may thus represent operation when floating point exceptions
are not enabled, and transitions to the stall state 232 do not
occur.

[0155] 1If floating point exceptions are enabled (decision
block 240), but no floating point instructions are selected for
issue (decision block 244), the issue control circuit 42
generates the Stall_FP indication equal to zero (block 242)
and issues the selected instructions. On the other hand, if a
floating point instruction is selected for issue, the issue
control circuit 42 inhibits the co-issuance of subsequent
integer instructions or load/store instructions (in program
order) (block 246). Additionally, if any floating point
instruction selected for issue is not a short floating point
instruction (decision block 248), the co-issuance of any
subsequent floating point instructions to that floating point
instruction (in program order) is inhibited (block 250). In
either case, if a floating point instruction is issued, the
Stall_FP indication is generated equal to one (block 252).

[0156] It is noted that, in another embodiment, stalling of
instruction issue after the issuance of a floating point instruc-
tion may only be performed in the floating point instruction
is not a short floating point instruction. Short floating point
instructions, in one embodiment, reach the write stage in
clock cycle 8 in FIG. 3. Thus, the short floating point
instructions are cleared from the FP Madd RAW scoreboards
immediately (or do not set bits in the FP Madd RAW
scoreboard at all). Accordingly, stalling instruction issue
after short floating point instruction issue may not be
required, in some embodiments.

[0157] 1t is noted that instructions have been described
herein as concurrently issued or co-issued. These terms are
intended to be synonymous. A first instruction is concur-
rently issued or co-issued with a second instruction if the
first instruction is issued in the same clock cycle as the
second instruction.

US 2005/0149698 A1l

[0158] Turning next to FIG. 23, a block diagram of a
carrier medium 300 including one or more data structures
representative of the processor 10 is shown. Generally
speaking, a carrier medium may include storage media such
as magnetic or optical media, e.g., disk or CD-ROM, volatile
or non-volatile memory media such as RAM (e.g. SDRAM,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
media or signals such as electrical, electromagnetic, or
digital signals, conveyed via a communication medium such
as a network and/or a wireless link.

[0159] Generally, the data structure(s) of the processor 10
carried on carrier medium 300 may be read by a program
and used, directly or indirectly, to fabricate the hardware
comprising the processor 10. For example, the data struc-
ture(s) may include one or more behavioral-level descrip-
tions or register-transfer level (RTL) descriptions of the
hardware functionality in a high level design language
(HDL) such as Verilog or VHDL. The description(s) may be
read by a synthesis tool which may synthesize the descrip-
tion to produce one or more netlist(s) comprising lists of
gates from a synthesis library. The netlist(s) comprise a set
of gates which also represent the functionality of the hard-
ware comprising the processor 10. The netlist(s) may then be
placed and routed to produce one or more data set(s)
describing geometric shapes to be applied to masks. The
masks may then be used in various semiconductor fabrica-
tion steps to produce a semiconductor circuit or circuits
corresponding to the processor 10. Alternatively, the data
structure(s) on carrier medium 300 may be the netlist(s)
(with or without the synthesis library) or the data set(s), as
desired.

[0160] While carrier medium 300 carries a representation
of the processor 10, other embodiments may carry a repre-
sentation of any portion of processor 10, as desired, includ-
ing a fetch/decode/issue unit 14, issue control circuit 42,
scoreboards 44 and/or 46, issue queue 40, read queue 210,
ete.

[0161] Numerous variations and modifications will
become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the fol-
lowing claims be interpreted to embrace all such variations
and modifications.

1-17. (canceled)
18. A method comprising:

updating a first scoreboard to indicate that a write is
pending for a first destination register of a first instruc-
tion in response to issuing the first instruction into a
first pipeline;

Jul. 7, 2005

updating a second scoreboard to indicate that the write is
pending for the first destination register in response to
the first instruction passing a first stage of the pipeline,
wherein replay is signaled at the first stage; and

in response to a replay of a second instruction, copying a
contents of the second scoreboard to the first score-
board.

19. The method as recited in claim 18 further comprising:

updating a third scoreboard to indicate that the write is
pending for the first destination register in response to
the first instruction passing a second stage of the
pipeline, wherein an instruction graduates at the second
stage; and

in response to an exception for a third instruction, copying
a contents of the third scoreboard to the second score-
board and to the first scoreboard.

20. The method as recited in claim 19 wherein the copying
the contents of the third scoreboard comprises:

copying the contents of the third scoreboard to the second
scoreboard; and

subsequently copying a contents of the second scoreboard
to the first scoreboard.

21. The method as recited in claim 18 further comprising:

detecting a redirect due to a mispredicted branch instruc-
tion at the first stage; and

in response to the redirect, copying the contents of the

second scoreboard to the first scoreboard.

22. The method as recited in claim 18 further comprising
detecting the replay of the second instruction by checking
operands of the second instruction against the second score-
board.

23. The method as recited in claim 18 wherein the first
scoreboard and the second scoreboard track pending writes
to integer registers.

24. The method as recited in claim 23 further comprising
selectively inhibiting issuance of a third instruction depen-
dent on which of a plurality of pipelines to which the third
instruction is to be issued if the first scoreboard indicates a
write pending to one of the operands of the third instruction.

25-33. (canceled)

