WO 2005/029382 A2 || 000 000 0 000 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

31 March 2005 (31.03.2005)

AT O OO A

(10) International Publication Number

WO 2005/029382 A2

GO6F 17/60

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/030256

(22) International Filing Date:
15 September 2004 (15.09.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/504,401
60/605,923

UsS
us

19 September 2003 (19.09.2003)
31 August 2004 (31.08.2004)

(71) Applicant (for all designated States except US): LATTIX,
INC. [US/US]; 8 Harper Circle, Andover, MA 01810 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SANGAL, Neeraj
[US/US]; 8 Harper Circle, Andover, MA 01810 (US).
JORDAN, Everette, T. [US/US]; 219 Stratford Road,
Needham, MA 02492 (US). WALDMAN, Francis, A.
[US/US]; 35 Maple Street, Stoneham, MA 02180 (US).
PARISI, Carl, D. [US/US]; 12 State Street, Chelmsford,
MA 01824 (US).

(74) Agents: SUNSTEIN, Bruce, D. et al.; Bromberg & Sun-
stein LLP, 125 Summer Street, Boston, MA 02110-1618

(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with declaration under Article 17(2)(a); without abstract;
title not checked by the International Searching Authority

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: APPARATUS AND METHOD FOR MANAGING DESIGN OF A SOFTWARE SYSTEM USING DEPENDENCY

STRUCTURE

(57) Abstract:

5

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

Apparatus and Method for Managing Design of a Software System

Using Dependency Structure

Technical Field and Background Art

The present invention relates to apparatus and methods for managing design of a
software system, and more particularly to methods and apparatus that address dependency
structure of the software system.

Relationships between different parts of a software system have been displayed
diagrammatically in several ways in the prior art. As an example, Figure 1 illustrates an
example provided by HEADWAY REVIEW™ (from Headway Software, Waterford,
Ireland). A directed arrow, such as directed arrow 102, shows that the subsystem at the
source of the arrow, such as source subsystem 104, depends on the subsystem at the target of
the arrow, such as target subsystem 106. Furthermore, HEADWAY REVIEW™ also allows
a user to display what the dependency is. For a software system written in an object oriented
language such as Java, some dependencies may be method calls or references to the fields of
an object or inheritance relationships. The complexity of displaying inter-relationships, for
even the limited nine subsystem system of Figure 1, is evident.

Figures 2A and 2B from Yassine 2004 (Ali Yassine, "An Introduction to Modeling

‘and Analyzing Complex Product Development Processes Using the Design Structure Matrix

(DSM) Method", Quaderni di Management (Italian Management Review), www.quaderni-
di-management.it, No.9, 2004) is a prior art description of a system containing two
subsystems. Dependency relationships between the subsystems are one of three possible
types. In Figure 2A, the Graph Representation 200 chart of these three types of relationships
shows the two systems in a Parallel 202 relationship where neither subsystem A nor
subsystem B depend on the other, a Sequential 204 relationship where subsystem B depends
on subsystem A, but subsystem A does not depend on subsystem B, and a Coupled 206
relationship where subsystems A and B each depend on the other.

The types of directed graphs shown in Figure 2A, also known as digraphs, may also
be rendered in the form of a matrix, known as a Design Structure Matrix, or DSM as shown

in Figure 2B. The DSM Representation 250 of the digraph Parallel 202 relationship
1

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

corresponds to the DSM Parallel 252 relationship, the digraph Sequential 204 relationship to
the DSM Sequential 254 relationship, and the digraph Coupled 206 relationship to the DSM
Coupled 256 relationship.

A DSM is a square matrix where a subsystem of a given system is placed as a header
of a row of the matrix, and as a header of a column of the matrix. The row and column order
of the subsystems is the same so that each subsystem is shown with a row named on the left
and is shown with a column named at the top. Typically, the DSM is a binary matrix, where
matrix cells contain either a 1 or a 0, or equivalently, an ‘X’ or the absence of any character.
An indicator located at a grid location having commonality with a row and a column
indicates a dependency of the subsystem associated with the row on the subsystem associated
with the column. The indicators such as ‘X’ or ‘1’ of these dependencies are also known as
dependency marks.

In the Sequential 254 DSM representation, the subsystem A does not depend on
subsystem B. Consequently, the cell in the row with A in the header, and the column with B
in the header is empty, having no dependency mark. The contents of the cells in a row
associated with a subsystem indicate what other subsystems the subsystem in the row header
depends upon. Sirﬁilarly, the contents of cells in a column associated with a subsystem
indicate for the subsystem in the column header what other subsystems depend upon the
subsystem in the column header. For the row with the header B in the Sequential 254 DSM
representation, the ‘X’ in the cell corresponding to the row B and the column A indicates that
B depends on A. Cells where A intersects itself and B intersects itself are rendered in black.
As dependency of a given subsystems upon itself is generally not of interest in the types of
analysis enabled by DSM, these are frequently drawn as black, or with a period or a dot.

Figure 3A, taken from Maurer et.al. (Maik Maurer, Udo Pulm, Udo Lindemann,
“Tendencies toward more and more flexibility”, 2003) includes a prior art engineering DSM
310 showing a dependency model of an automotive mechanical system with a limited use of
hierarchy. Elements of the engineering DSM 300 correspond to a mixture of Subsystems
(Components), Functions, and Requirements. The Maurer engineering DSM 310 shows the
interrelated-ness between these different aspects of an automotive design.

The Maurer engineering DSM 310 represents hierarchy with names of parents 315

(component 320, function 330, and requirement 340) to the DSM elements rotated 90

2

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

degrees. DSM element parents 315 are not represented in the DSM 310 distinctly, only
through children. For example component 320 is represented through children pump 321,
engine 322, cylinder 323, casing 324, piston 325, and wheels 326. However, the parent
elements 315 are essentially separate aspects of the design, and not hierarchal within any of
the three aspects. Further, the Maurer engineering DSM is limited to two levels. Figure 3B
from Maurer et al. illustrates an engineering DSM 350 showing a dependency model of a
mechanical system with limited use of hierarchy in the DSM. Figure 3 contains a two level
component hierarchy where both parents, for example, pump 360, and children, for example,
centrifugal pump 362 and plunger pump 364, in the hierarchy each have their own row and
column for displaying dependencies. Representation shows hierarchy Parents grayed but in
same list with children.

Engineering DSM 370 shows a hierarchy where parent grid cells have a gray
background color, but indicate dependencies by inclusion of Xs that are redundant with the
X-indicated dependencies for the children. Engineering DSM 370 is similarly a two-level
display. Figure 4 is a prior art diagram from Sabbaghian et al. 1998 (Sabbaghian, Nader,
Eppinger, Steven D., and Murman, Earll, "Product Development Process Capture & Display
Using Web-Based Technologies", Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, San Diego, CA, Oct. 11-14, 1998, pp. 2664-2669) showing
conceptually how DSM’s ma'ly be thought of as a hierarchy through a series of completely
separate DSM’s representing different levels of hierarchy. However, any hierarchy in Figure
4 is shown in separate DSM’s. There is no rendering mechanism implied other than separate
DSM’s.

Figure 5 is an illustration of a prior art DSM 500 from Dong 1999 (Qi Dong -
"Representing Information Flow and Knowledge Management in Product Design Using the
Design Structure Matrix," MIT ME Dept SM Thesis, January, 1999) showing how a second
level of hierarchy may ‘be provided by coloring the row and column headers with different
colors. In this illustration, DSM 500 contains four top level subsystems (spatial function
510, sheet metal 520, electrical 530, and moveable glass 540) each having children, for
example sheet metal function subsystem 520 with children including outer panel shape
subsystem 522, pillars 524, halo 526, etc. The four top level subsystems are differentiated by

color. However, this is also a two-level display.

3

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

Summary of the Invention

In a first aspect of the invention, there is provided a method for managing, in a
computer system, design of a software system comprising receiving an input to the computer
system specifying dependency relationships among subsystems of the software system and
providing an output from the computer system responsive to the input. A rule is imposed on
at least one of the dependency relationships and data for the rule is provided as part of the
input.

The rule may allow, disallow, or require the dependency relationship or require
dependency on a subsystem not specified in the dependency relationship. In certain
embodiments, a plurality of rules may be imposed on at least one of the dependency
relationships and data for the rules may be provided as part of the input. Input to the
computer system specifying dependency relationships may be determined from metadata
definitions.

In other embodiments, specifying dependenéy relationships may include processing
program code associated with the software system to determine existing dependency
relationships in such code and specifying such existing dependency relationships explicitly.
The processing of the program code may occur automatically on providing of the program
code as an input to the computer system. ‘

In further embodiments, a graphical output may be provided in which appears a
hierarchical display of the subsystems where the hierarchy is selectively expandable and
collapsible. The display graphically may indicate dependencies among subsystems. The
display may be represented as a dependency structure matrix. In an instance when a given
parent subsystem has been expanded to show its hierarchical children, 'dependencies may be
shown for such hierarchical children but not for such parent subsystem. The display may use
color in a manner consistent with hierarchical relationships of subsystems to assist in
identifying related subsystem and may be represented as a dependency structure matrix.

The hierarchical display of the subsystems may be altered and the dependencies
among the subsystems automatically aitered to be consistent with the altered hierarchical
display.

The hierarchical display of a subsystem may be moved while preserving the

dependencies of the subsystem, removed while removing dependencies of the subsystem,

4

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

copied and inserted at another location in the hierarchical display while preserving the
dependencies of the subsystem.

In certain embodiments, receiving an input to the computer system specifying
dependency relationships among subsystems may include receiving an inheritable rule for a
given subsystem so that the inheritable rule is inherited by any descendants of the given
subsystem in the hierarchy.

In additional embodiments, receiving an input to the computer system specifying
dependency relationships among subsystems may include receiving an override rule that has
the effect of overriding any inheritable rule applied to an ancestor subsystem in the
hierarchy. Such an override rule may itself be an inheritable rule. The override rule may
have the effect of overriding any inheritable rule applied to an ancestor subsystem in the
hierarchy, such override rule being itself an inheritable rule. Further, the display may be
represented as a dependency structure matrix.

In still further embodiments, a reference to the rule imposed on the at least one
dependency relationship may be provided as an output. Also, an output may be provided that
includes a graphical output in which appears a hierarchical display of the subsystems
graphically indicating dependencies among subsystems, and a graphical indication of a state :
of the rule imposed on the at least one dependency relationship. The display and the
graphical indication may viewable simultaneously. The display may be represented as a
dependency structure matrix where th“e\indicatidn of the state of the rule may be in a
pertinent cell of the matrix. The indicétion of the state of the rule may include use of color,
use of a symbol, or use of location of placement in the cell.

The display may be represented as a dependency structure matrix, and the indication
of the state of the rule may be provided in a panel separate from the dependency structure
matrix and viewable simultaneously with the matrix. The state of a rule, involving a given
subsystem in the display for which children thereof are also displayed, may be indicated for
such children and not for the given subsystem.

The display may be represented as a dependency structure matrix, and subsystems
used by a subsystem selected in the hierarchical display' may provided in a first panel
separate from the dependency structure matrix and viewable simultaneously with the matrix.

The subsystems used by the selected subsystem may be provided in the first panel in the

5

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

form of a tree-structure. Subsystems that use a subsystem selected from the subsystenis
provided in the first panel may be provided in a second panel separate from the dependency
structure matrix and the first panel and viewable simultaneously with the matrix and the first
panel. Subsystems may be provided in the second panel in the form of a tree-structure.

In still further embodiments, a graphical output may be provided in which appears a
hierarchical display of the subsystems graphically indicating dependencies among
subsystems, and an input may include an inheritable rule for a given subsystem so that the
inheritable rule is inherited by any descendants of the given subsystem in the hierarchy. The
display may be represented as a dependency structure matrix.

In still other embodiments, the rule imposed on the at least one dependency
relationship may be based on classification of relevant subsystems. The classification may
be assignable manually, may be assigned automatically on the basis of prespecified criteria,
or may be based on properties of the relevant subsystems. The properties may be assigned or
may be determined automatically on the basis of prespecified criteria. The classification
may be defined as part of a hierarchical classification system.

In still additional embodiments, the rule imposed on the at least one dependency
relationship may be based on properties of the relevant subsystems. The properties may be
assignable manually, may be determined automatically on the basis of prespecified criteria,
or may include allowed sources of changes to the relevant subsystems, so that editing of the
subsystems is subject to control in relation to sources.

In a second aspect of the invention, there is provided a method for rﬁanaging, ina
computer system, testing of a software system, including receiving an input to the computer
system specifying dependency relationships among subsystems of the software system and
providing a graphical output from the computer system responsive to the input. The
graphical output includes an indicator of any subsystem changed by editing or addition of
code.

In certain embodiments, the graphical output may include a hierarchical display of
the subsystems indicating dependencies among subsystems in a dependency structure matrix.
The graphical output may also include an indicator of any subsystem affected by editing or
addition of code or a hierarchical display of the subsystems graphically indicating

dependencies among subsystems in a dependency structure matrix. The graphical output

6

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

may also include a subsystem label style for the graphical output of 2 changed subsystem
different from a subsystem label style for the graphical output of a subsystem affected by the
change. The indicator of a dependency relationship affected by a change to a subsystem may
differ from an indicator of dependency unaffected by the change.

In a third aspect of the invention, there is provided a method for managing, in a
computer system, design of a software system that includes receiving an input to the
computer system specifying dependency relationships among subsystems of the software
system; and providing a graphical output from the computer system responsive to the input,
where the graphical output includes indicators of sources of the subsystems. The subsystems
may be grouped according to a taxonomy, where the graphical output includes a matrix
display including a series of taxonomical entities along one axis and sources along another
axis. Sources may be associated with taxonomical entities for which they have had
responsibility.

In certain embodiments, the graphical output may include a matrix display where the
matrix includes a hierarchical display of the subsystems and the hierarchy is selectively
expandable and collapsible, to facilitate indication of the sources of the subsystems. The
matrix may also include a hierarchical organizational display of human resources associated

“with the sources where the hierarchical organizational display may be selectively expandable
and collapsible.

In a third aspect of the invention, a method is provided for managing, in a computer
system, design of a sg.oftware system including receiving an input to the computer system
specifying dependency relationships among subsystems of the software system and
providing a graphical output in which appears a hierarchical display of the subsystems. The
hierarchy is selectively expandable and collapsible and the display graphically indicates
dependencies among subsystems.

In some embodiments, the display may be represented as a dependency structure
matrix or, in an instance when a given parent subsystem has been expanded to show its
hierarchical children, dependencies may be shown for such hierarchical children but not for
such parent subsystem. Relation of such hierarchical children to such parent subsystem may
be shown by placing the parent subsystem sidewise alongside such children.

In a fourth aspect of the invention, a method is provided for managing, in a computer

7

10

15

20

25

WO 2005/029382 PCT/US2004/030256

system, design of a software system including receiving an input to the computer system
specifying dependency relationships among subsystems of the software system and
providing an output containing a hierarchy of the éubsystems and the dependency
relationships among the subsystems. The hierarchy is selectively expandable and
collapsible.

In certain embodiments, the hierarchy of the subsystems may be altered and the
dependency relationships among the subsystems automatically altered to be consistent with
the altered hierarchy. The hierarchy of a subsystem may be moved or may be copied and
inserted at another location in the hierarchy of the subsystems while preserving the
dependencies of the subsystem. The hierarchy may be removed while removing
dependencies of the subsystem.

In further embodiments, graphical output may be provided in which appears é
hierarchical display of the subsystems, such display graphically indicating the dependencies
among subsystems. The display may be represented as a dependency structure matrix. In an
instance when a given parent subsystem has been expanded to show its hierarchical children,
dependencies may be shown for such hierarchical children but not for such parent subsystem.
Relation 6f such hierarchical children to such parent subsystem may be shown by placing the
parent subsystem sidewise alongside such children.

In other embodiments, apparatus are provided which correspond to each of the
foregoing methods and which implement them. In similar additional embodiments, there are
provided program products, each of which includes computer readable code that establishes

an apparatus corresponding with one of the foregoing methods.

Brief Description of the Drawings

The foregoing features of the invention will be more readily understood by reference
to the following detailed description, taken with reference to the accompanying drawings, in
which:

Figure 1 is a prior art Directed Graph rendering of subsystem relationships from

Headway Review;

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

Figures 2A and 2B provide a comparison between a graph representation and a DSM
representation of relationships between two subsystems in accordance with the prior art;

Figures 3A and 3B show prior art DSM renderings with two fixed levels of hierarchy,
in one case, with rotated first level headers from Maurer et al. (2003);

Figure 4 is a prior art DSM series showing multiple level as a series of separate yet
related DSMs from Sabbaghian et al. (1998);

Figure 5 is a prior art DSM rendering with one level of hierarchy and a second, fixed
level implied by header color from Dong (1999);

Figure 6 provides an architectural block diagram of ArchMap, which has been
implemented in accordance with an embodiment of the present invention;

Figure 7 is a flow chart architectural diagram of ArchMap;

Figure 8 is an architectural block diagram of ArchCheck;

Figure 9 is a flow chart architectural diagram of ArchCheck;

Figure 10 illusﬁates a software system DSM shown with a subsystem usage tree from
an ArchMap screen shot, all in accordance with an embodiment of the present invention;

Figure 11 illustrates a software syétem DSM shown with design rules in the same
embodiment as Fig. 10;

Figure 12 illustrates the software system DSM of Fig. 10 with design rules and
“Rules View”;

Figure 13A and 13B illustrate design rule editing suitable for use with the
embodiment of Fig. 10;

Figure 14 illustrates implementation of exception rules for the same embodiment;

Figure 15 illustrates a software system DSM in accordance with the embodiment of
Fig. 10 shown with rule violations;

Figure 16 illustrates a software system DSM in accordance with the embodiment of Fig.
10 shown in one window and the selected Class shown in an editor window;

Figures 17A-D illustrate a multilevel DSM rendering in accordance with the
embodiment of Fig. 10;

Figure 18 illustrates a definition of software subsystem classification criteria for

“persistence” in accordance with an embodiment of the present invention;

WO 2005/029382 PCT/US2004/030256

Figure 19 illustrates a definition of software subsystem classification criteria for
“presentation” in accordance with an embodiment of the present invention;

Figures 20A and 20B illustrate a definition of software subsystem classification
hierarchy for “presentation” variants in accordance with an embodiment of the present

5 invention;

Figure 21 illustrates a definition of software subsystem classification hierarchy for
higher level “presentation” classification comprising “presentation” classification variants in
accordance with an embodiment of the present invention;

Figure 22 illustrates design rules using subsystem classifications in accordance with

10 an embodiment of the present invention;

Figure 23 illustrates classification definition criteria based on subsystem properties in
accordance with an embodiment of the present invention;

Figure 24 illustrates a display of all software subsystems affected by a change to the
software system in accordance with an embodiment of the present invention; and

15 - Figure 25 illustrates a display of the level oflknowledge of developers regarding
implementation of individual software subsystems in accordance with an embodiment of the

present invention

Detailed Description of Specific Embodiments

20 Definitions. As used in this description and the accompanying claims, the following
terms shall have the meanings indicated, unless the context otherwise requires:
A “dependency structure matrix” is a symmetric matrix, frequently a binary matrix,
with matching horizontal and vertical axes, so that a corresponding row and column relate to
the same subsystem and each cell has a value indicative of the presence or absence of a
25 dependency. A DSM has also been referred to in the literature as a “dependency structure
matrix”, “dependency structure model”, and “adjacency matrix.”
A “subsystem” means any portion of a software system, regardless of the level of
granularity, so that a subsystem includes class, package, module, component, layer, file,
directory, partition, etc, depending on the level of granularity selected.

30 A “rule” means a design rule that relates to design of a software system.

10

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

The “state” of a rule means any one or more of: the existence of the rule, or the fact
of violation of the rule,‘or the fact of compliance with the rule, or the nature of the rule.

The “classification” of a subsystem is the systematic grouping of subsystems into
categories on the basis of characteristics or structural relationships between them. A
“classification” of a software system is one of these categories assigned based on the criteria
for systematic grouping.

lA “property”, generally, is a characteristic trait or peculiarity, especially one serving
to define or describe its possessor. A “property” of a subsystem is a characteristic trait of
that subsystem that is discernable externally and may be used for comparison, calculation, or
in establishing criteria.

A “source” of a change or an edit to a subsystem means a person or group of persons
who implemented the change or the edit.

A “taxonomy” of subsystems is an organizational scheme by which similar kinds of
subsystems may be grouped together for purpose of identifying sources, wherein, for
example, “user interface” and “presentations”, might constitute distinct taxonomical entities.

A target subsystem is “affected” by a change made by editing or addition of code to a .
given subsystem if either (i) the target subsystem is the given subsystem or (ii) the target
subsystem has a Hependency reiation with the given subsystem.

“Metadata” is “information about data” that describes the content, quality, condition,
or other characteristics of data. Metadata is sometimes used to provide information about
relationships between data, datasets, or entities. This includes information about
relationships between user actions within a computer application or between objects in a
computer application or between subsystems in a computer application.

Embodiments of the invention permit developers to more readily understand how
different parts of a complex software system relate to one another. A designer may precisely
define dependencies of one part of the software system on another part of the system in terms
of a textual description, design rules, and set of actual dependencies. The design rules define
the permissible ways in which subsystems may interact with each other, while the actual
usage contains the actual dependencies. Designers may use the design rules to capture many

of the design decisions, thereby permitting automatic verification and enforcement of the

11

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

design rules. Consequently, the integrity of the product may be communicated and
maintained over the life of the product.

Figure 6 is a block diagram of an embodiment of the present invention, termed
“ArchMap”, computer application 600. In ArchMap, the Presentation (UI) subsystem 602
provides features for user interaction via a graphical windowing system, including, in certain
cases, windows, menus, dialogs, and similar features.

In ArchMap, Object Model subsystem 604 provides the basic data structures and .
programming model for use by subsystems that perform user-level actions available as part
of the ArchMap computer application 600. The ArchMap Object Model subsystem 604
provides (1) a layered interface to the lower subsystems of the overall system, (2) system
functionality to group lower layer capabilities into user level actions, and (3) caching of
certain data for improved system performance.

Project subsystem 606 pfovides business logic, data structures, and methods for the
internal core of the ArchMap computér application 600, including internal System
Representation 620 of Software System 608 being analyzed and provided with architecture
management. The Project subsystem 606 also includes Rule Engine 622 for creating,
modifying, and evaluating design rules.

Stored Project 610 is the stored portion of the Project 606, which is retained in non-
volatile storage, such as hard disk, where System Partitions & Dependencies 624 and Design
Rules 626 of the Software System 608 are stored for ongoing use.

Partitioner subsystem 612 and Dependency Extractor subsystem 616 initially parse
the Software System 608. The Partitioner subsystem 612 produces an in-memory
representation of System Partitions 614, which are part of the overall in-memory System |
Representation 620. As used herein, software partitions are equivalent to software
subsystems. In Figure 6, the Software Partitions 614 indicates information related to
subsystems of the Software System 608 being analyzed and managed. Dependency
Extractor 616 produces an in-memory representation of Dependency information 618 for
dependencies between different System Partitions 614.

Following initial parsing of the Software System 608, the user of ArchMap computer
application 600 may begin to define Design Rules 626 for the Software System 608. Design

Rules 626 are rules regarding permissible or asserted Dependency 618 relationships between

12

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

System Partitions 614. Rule Engine 622 evaluates Design Rules 626 and determines if any
violations of the Design Rules 626 exist between the System Partitions 614 and the
Dependency 618 relationships. The Rule Engine 622 also provides methods for creating,
modifying, and deleting the Design Rules 626.

Figure 7 provides a flow chart of information processing of the embodiment of the
ArchMap computer application 600. The Software System 608 to be analyzed and managed
is parsed using Partition System 702 and Extract Dependencies 704. Partition System 702
partitions the Software System 608 and produces an in-memory representation of the system
partitions, System Partitions 614, which are part of the overall in memory System
Representation 706. As mentioned previously, software partitions are equivalent to software
subsystems and Software Partitions 614 contain information related to the subsystems of the
Software System 608 being analyzed and managed.

The Extract Dependencies 704 process produces an in-memory representation of the
dependency information, Dependency 618, for dependencies between different system
partitions, System Partitions 614. Together, the Partition System 702 and the Extract
Dependencies 704, produce the In Memory System Representation: System Partition &
Dependencies 706. From the In Memory System Representation: System Partition &
Dependencies 706, Create Presentation for System Representation with Design Rules
Applied” 710 may create User Presentation 712, which is the on-screen presentation of this
information to the user. With creation of User Presentation 712, the user of the ArchMap
computer application 600 may define Design Rules 626 applicable to the In Memory System
Representation 706. '

The user of ArchMap computer application 600 may use Create/Modify Additional
System Representation and Design Rules 716 to augment In-Memory System
Representation: System Partition & Dependencies 706 by partition editing operations such as
creating new partitions, splitting partitions, aggregating partitions, deleting partitions, and
renaming partitions. When Design Rules 626 are created or modified by the process
Create/Modify Additional System Representation and Design Rules 716, Design Rules 626
are initially stored in In-Memory Design Rules 708 data. In-Memory System
Representation: System Partition & Dependencies 706 and In-Memory Design Rules 708

13

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

data may be written out to-the stored versions of System Partitions & Dependencies 624 and
Design Rules 626.

Once stored as System Partitions & Dependencies 624 and Design Rules 626, In-
Memory System Representation: System Partition & Dependencies 706 and In-Memory
Design Rules 708 data may be read from the stored versions of System Partitions &
Dependencies 624 and Design Rules 626, rather than as a result of re-executing processes
Partition System 702 and Extract Dependencies 704. Alternatively, an updated In-Memory
System Representation: System Partition & Dependencies 706 may be generated by Partition
System 702 and Extract Dependencies 704 processing a ne\;v version of the Software System
608. Create Presentation for System Representation with Design Rules Applied 710 may
include information on the evaluation of the In-Memory Design Rules 708 against In-
Memory System Representation: System Partition & Dependencies 706 in the User
Presentation 712. The updated In-Memory System Representation: System Partition &
Dependencies 706 may be written back out to update the stored System Partition &
Dependencies 624.

Figure 8 illustrates ArchCheck 800, an additional embodiment of the present
invention, as a block diagram. ArchCheck 800 is a command-line computer application
suitable for inclusion in Software System 608 build processes or other related software
development activities such as source code revision-control submission procedures.

. ArchCheck Command-line Interface subsystem 808 provides command-line access to
functionality to evaluate a new version of the Software System 608 against a previously
saved Stored Project 610, in particular, against the previously saved Design Rules 626.
Furthermore, the ArchCheck computer application 800 may update the Stored Project 610
with new information regarding the System Partitions & Dependencies 624. The ArchCheck
Command-line Interface subsystem 802 utilizes the same subsystems as the ArchMap
Presentation (UI) subsystem 602.

The ArchCheck computer application 800 may operate when there exists a Stored
Project 610 created from a prior version of the Software System 608 under analysis and
management. ArchCheck computer application 800 may allow comparison of a new version
of the Software System 608 with the prior version of Software System 608 and evaluation

against the established Design Rules 626. The new version of the Software System 608 is

14

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

again parsed by the Partitioner 612 and Dependency Extractor 616 subsystems and produces
an In-Memory System Representation 620 of the new version of the Software System 608.

The Project subsystem 606 compares the new System Representation 620 with the
previously stored System Partitions & Dependencies 624, and logs System Partition 614
additions and removals. The Project subsystem 606 also uses the Rule Engine 622
subsystem to evaluate the Dependency 618 relationships of the new version of the Software
System 608 against the existing Design Rules 626, and logs a list of violations, or the fact
that there no violations exist. The Project 606 may then update the Stored Project 610
information, System Partitions & Dependencies 624.

Figure 9 illustrates ArchCheck 800 as a flow chart of the information processing of

. the embodiment. First, the stored version of the System Partitions & Dependencies 624 is

read into the in-memory data, Previously Saved System Representation: System Partitions &
Dependencies 902. Then the stored version of Design Rules 626 is read into the in-memory
data, Previously Saved Design Rules 904.

Then, the Software System 608, which is a new version of the Software System 608

- relative to the stored versions in System Partitions & Dependencies 624, is parsed using

" Partition System 702 and the Extract Dependencies 704. Partition System 702 partitions the

Software System 608 to produce an in-memory representation of the System Partitions
portion of New Version of System Representation: System Partitions & Dependencies 906.
As mentioned previously, software partitions are equivalent to software subsystems. The
Extract Dependencies 704 process produces an in-memory representation of the
Dependencies portion of the New Version of System Representation: System Partitions &
Dependencies 906, for dependencies between different system partitions of the System
Partitions portion of New Version of System Representation: System Partitions &
Dependencies 906. Together, Partition System 702 and Extract Dependencies 704, produce
the New Version of System Representation: System Partitions & Dependencies 906.
Previously Saved System Representation: System Partitions & Dependencies 902,
Previously Saved Design Rules 904, and New Version of System Representation: System
Partitions & Dependencies 906 as in-memory data are used by the process Compare System
Representations and Evaluate New Version Against Design Rules 908 to produce log file
ArchCheck Log 910. ArchCheck Log 910 logs information about Partition additions and

15

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

removals in New Version of System Representation: System Partitions & Dependencies 906
as compared to Previously Saved System Representation: System Partitions & Dependencies
902, and logs the list of violations, or the fact that there were no violations after evaluating
Previously Saved Design Rules 904 against New Version of System Representation: System
Partitions & Dependencies 906. “

The Compare System Representations and Evaluate New Version against Design
Rules 908 also writes out a new version of System Partitions & Dependencies 624 based on
the New Version of System Representation: System Partitions & Dependencies” 906.

Figure 10 shows a DSM 1002 for a hierarchical software system along with a
subsystem usage tree in a usage tab 1012 in a screenshot of the ArchMap computer
application, an embodiment of the invention. A menu bar 1022 and a toolbar 1024 for the
ArchMap computer application are also shown.

A tab pane 1004 allows viewing and interaction with different information pertaining
to the hierarchical software system pictured in the DSM 1002. A subsystem general
information pane 1006 displays information about a currently selected “content” subsystem
1010 in the DSM 1002. A messages pane 1008 displays informational messages regarding
the operation of ArchMap. In the embodiment of Figure 10, the messages pane 1008
displays class count, dependency count, and total number of unique dependencies for the
hierarchical software system input to the ArchMap computer application.

A usage tab 1012 of the tab pane 1004 contains information about the subsystems
used by the subsystem “content”. Selection of a subsystem “constants” 1014, a subsystem
used by subsystem “content”, results in a Used By display 1016 showing all of the
subsystems within the hierarchical software system that use the subsystem “constants” 1014,
i.e., a “Used By” list for the subsystem “constants” 1014.

Figure 11 shows the DSM 1002 of a hierarchical software system along with design
rules displayed in the tab pane 1004. A row header “xenon” 1102 is highlighted and also
rotated 90 degrees, since subsystem “xenon” is displayed in expanded form (see Figqre
17A). Within DSM 1002, a bordered grouping of cells 1106 corresponds to the subsystems
(java classes in this instance) contained within a parent subsystem, “xenon”. A dependency
mark “X” 1104 in the DSM 1002 shows that the subsystem in the row corresponding to the

dependency mark 1104 has a dependency on the subsystem in the column corresponding to

16

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

the dependency mark 1104. The two dependency marks 1104 indicated show that

edu.mit.lcs.haystack.xenon.XenonConstants depends on edu.mit.lcs.haystack.rdf, and that

.edu.mit.Ics.haystack.xenon. XenonException depends on edu.mit.Ics.haystack..*.

In Figure 11, tab pane 1004 again allows viewing and interaction with different
information pertaining to the hierarchical software system DSM 1002. As in Figure 10, the
subsystem general information pane 1006 displays information about a currently selected
subsystem, “xenon” in this case. Here, the tab pane 1004 displays a design rules tab 1120.
Design rules tab 1120 contains Design Rules 1114 which are made up of three components.
“Source” 1108 corresponds to a subsystem subject of a rule. This may also correspond to a

classification of a subsystem (see Figure 22) subject of a rule. “Rule” 1110 may be of the

type, can-use, cannot-use, must-use, etc. “Target” 1112 specifies the subsystem that is the

“ object of the rule, i.e., the object of the relationship constraint such as can-use (allow),

cannot-use (disallow), or must-use (assert).

Rules having a gray background 1114 are inherited and cannot be edited from
selected subsystem “xenon”. Editing of grayed out rules 1114 requires selection of the
proper subsystem higher in the system hierarchy. Rules with a white background 1116 are
associated with this selected subsystem, “xenon”, and may be edited (modified, created,
deleted, re-ordered, etc). Generally, rules are inherited from the subsystem in which they are
defined by descendents of the subsystem in which the rules were defined. Inherited rules
may be overridden in descendent sub-systems by creating an overriding rule local to the
descendent subsystem. Rules are evaluated in the order they appear in the Design rules tab
1120 and may be created later in the evaluation sequence that overrides a prior rule. This is
useful to create an override for a subset of the subsystems affected by an inherited rule.

Figure 12 shows a software system DSM with design rules and a “Rules View.”
DSM 1002 contains indicators 1202 visually indicating presence of a design rule affecting a
specific dependency relationship, and, in addition, indicating the type of design rule that
affects that dependency relationship. Subsystem “xenon” is again selected in the DSM 1002.
Design rules pertaining to “xenon” and its ancestors are listed in the tab pane 1004 which is
showing design rules in design rules tab 1120.

Cells within software system DSM 1002 contain triangles in one or more corners of

the cells. Row header cells 1220 contain triangles when there is a violation regarding the use

17

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

of an external system. A triangle in the upper left corner of a cell 1202 indicates presence of
arule allowing (can-use) a dependency. “Can-use” indicator triangles may also be displayed
in green when color is available. A triangle in the lower left corner of cell 1204 indicates
presence of a rule disallowing (cannot-use) a dependency. “Cannot-use” indicator triangles
may also be displayed in yellow when color is available.

Indicators of violations of design rules 1206 apply when a “cannot-use” rule is
applicable to a dependency and there is, in fact, a dependency as shown by a dependency
mark in the cell. A triangle in the upper right corner triangle indicates presence of a design
rule violation in this cell. Design rule violation indicator triangles may also displayed in red
when color is available. In a dependency cell with a violation, both the lower left corner
cannot use indicator and the upper right design rule violation indicator are displayed.

Toolbar button 1208 may turn the display of can-use and cannot-use indicator
triangles on and off. Toolbar button 1210 may turn the display of design rule violation
indicator triangles on and off.

Figure 13A shows a dialog for editing design rules, depicting the ArchMap computer
application in the same state as shown in Figure 11 and Figure 12. Rule editing dialog 1302

' shown in front includes rule creation and rule modification. “Source” 1304 is the label for
the source subsystem (partition) 1310 to which the rule to be edited applies, i.e., source
subsystem edu.mit.lcs.haystack.xenon in this case. “Rule” 1306 is the label for a rule verb
1312 for the rule being edited, i.e., cannot-use in this case. Examples of rule verbs are can-
use, cannot-use, must-use, etc. “Target” 1308 is the label for a target subsystem 1314 to
which the rule verb applies. Dropdown list 1316 shows that the target subsystem 1314 may
be selected from a dropdown list of the hierarchical software system or of externally used
subsystems. Entry into the rule editing dialog 1302 may be done manually as well as by
selection from a dropdown list.

Figure 13B shows another user interface for editing design rules, depicting the
ArchMap computer application in the same state as shown in Figure 11, Figure 12, and
Figure 13A. In the design rules tab 1120, a checkbox toggle, Tree View 1352, may be
shown. If the Tree View 1352 checkbox is checked, then the design rules tab 1120, displays
a column with rotated text 1354 indicating the source subsystem to which the rules will

apply, a column for Rule 1356 which contains the rule verbs for specific verbs, and a column

18

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

with rule Target 1358 which contains a tree control of the subsystems that may be specified
as targets of arule. Items in the Rule 1356 column may cgntain a rule verb, or may be blank
1372. Gray background 1360 on a rule verb indicates that from the perspective of this
subsystem, edu.mit.Ics.haystack.xenon 1354, this rule is inherited and may not be edited
from the subsystem selected 1102. 7

The toplevel subsystem in this system, $root, is shown 1362 expanded. The user
interface of Figure 13B shows the same rules as depicted in Figure 13A. For example,
edu.mit.lcs.xenon Cannot-Use 1364 the subsystem edu.mit.lcs.haystack 1366. The higher
scope rule in 1364 and 1366 is overridden by several more precisely scoped rules. For
instance, the Cannot-Use 1364 is overridden with a Can-Use 1368 rule for
edu.mit.lcs.haystack.security 1370.

A row in the Tree View 1354 design rules tab 1120 may be selected such that the rule
verb field 1374 and the rule target field 1376 are selected. Once selected, the ArchMap
computer application user may create or modify a rule ‘applying to the selection by pressing
one of the buttons, Can-Use 1378 or Cannot-Use 1380. In the Target 1358 column, the
hierarchical tree shown may be expanded and collapsed by clicking on the icons 1382 to the
left of the subsystem name, allowing the ArchMap computer application user to create rules
at the most appropriate level of subsystem hierarchy. As shown by the override Can-Use
1368 rule for edu.mit.lcs.haystack.security 1370, rules are inherited down from subsystems
higher in the hierarchy to their descendents, but may be overridden as in 1368 and 1370 to
create rules with a more precise scoping.

Figure 14 shows an example of an exception rule. This is a design rule where a
specific dependency relationship is allowed, but the architect is identifying this allowance as
an exception to what the actual design intent is for these two subsystems. “Can-use” rule
1402 shows such an allowed, but undesired dependency, labeled as an exception. Exceptions
are a mechanism whereby architects may mark an architecturally unsound dependency as an
exception. This communicates the undesirable nature of the dependency, but removes it
from rule violation lists.

Figure 15 shows a software system DSM 1002 with rule violations displayed in the
tab pane 1004. Subsystem “rdf” 1502 is selected in the software system DSM 1002.

Triangle 1504 in the upper right corner of the row header cell for subsystem “rdf” indicates

19

i

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

that there is a design rule violation for “rdf” and its use of external systems. In this context,
external systems are systems or subsystems outside of those shown in the software system
DSM 1002, but used or referenced by the subsystems that are shown in the software system
DSM 1002. For example, all of the referenced Java runtime subsystéms (java.**) would be
considered an external system. If color is available, the design rule “violation” indicator
triangles may also be displayed in red. Indicator triangles 1506 and 1508 show violations in
the dependency relationships between specific subsystems. Rule violation indicator triangle
1506 indicates that subsystem edu.mit.lcs.haystack.rdf should not have a dependency on
subsystem edu.mit.lcs.haystack.server, but, in fact does have such a dependency. Rule
violation indicator triangle 1508 indicates that subsystem edu.mit.lcs.haystack.rdf should not
have a dependency on subsystem edu.mit.lcs.haystack.ozone, but, in fact does have such a
dependency.

Rule violations tab 1510 diéplayed in the tab pane 1004 contains violations 1512 in a
subsystem that depends on an external subsystem. In this example, the subsystem,
edu.mit.Ics.haystack.rdf, violates a design rule where it depends upon the external subsystem,
org.apache.log4j.Logger. Specifically the violation is caused by
edu.mit.lcs.haystack.rdf FederationRDFContainer having a dependency upon
org.aﬁache.log4j.Loggcr. Violation 1514 indicates a violation in a §ubsystem that depends
on another subsystem within the overall system. In this example, the subsystem,

'edu.mit.Ics.haystack.rdf, violates a design rule where it depends upon the subsystem
edu.mit.lcs.haystack.ozone.Context. Specifically the violation v15 14 is caused by
edu.mit.lcs.haystack.rdf.ListUtilities having a dependency upon
edu.mit.lcs.haystack.ozone.Context.

Violation 1516 indicates that individual violations may be selected in the rule
violations tab 1510. Once selected, the user of the ArchMap computer application may then
add a rule that would allow this dependency, or allow an exception that would allow this
dependency by right-clicking on violation 1516 and choosing from a menu that allows
creation of a can-use rule or creation of an exception to a cannot-use rule. In this example,
the highlighted violation is caused by a dependency that edu.mit.lcs.haystack.rdf.ListUtilities

has on the external subsystem, org.apache.log4j.Logger.

20

A

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

Other features include the ability to click on the cells such as the ones indicated by
1506 and 1508. When an individual cell in DSM 1002 such as 1506 or 1508 is clicked on,
only the violations associated with the two subsystems that intersect at that cell are displayed
in the rule violations tab 1510. In the case of cell 1506, the two subsystems are
edu.mit.Ics.haystack.rdf and edu.mit.lcs.haystack.server.

Figure 16 shows a software system DSM 1602 in one window and a java source—ﬁle
editor 1604, in an editor window. edu.mit.lcs.haystack.xenon.Token 1606 is selected, i.e.,
highlighted, in the DSM 1602 pane. Source-file for the class Token, Token.java 1608 is
displayed in the java source-file editor adjacent to the DSM pane 1602. An ArchMap
computer application user may drill down through the system hierarchy all the way down to
the source code of the classes of a system. In this example, class is the smallest subsystem in
the software system DSM 1602. However, for a system implemented in the C language, the
smallest subsystem chosen would be the file (e.g. file.c).

Figure 17A is a rendering of a multi-level DSM, where DSM 1002 is depicted in a
hierarchical fashion. Each row header 1702 at the left of the hierarchical DSM 1002
represents a specific subsystem. Dependency cells 1704 on the right indicate existence of a
dependency between the two subsystems whose row and column intersect at that cell. “Plus”
icon 1706 before the name of a subsystem indicates that the subsystem has descendent
subsystems. “Minus” icon 1720 indicates that the direct children of this subsystem are being
displayed.

Row header cell 1708 is rotated 90 degrees such that it now spans the number of
children subsystems that are now displayed. In this example, subsystem “ozone”
(edu.mit.lcs.haystack.ozone) is displayed with header cell 1708 rotated 90 degrees.
Subsystem descendents of “ozone” are displayed to the right of the rotated ozone header cell
1708. Subsystem boundary 1710 encloses the “ozone” dependency cells. The area of the
DSM enclosed by boundary 1710 has a darker border and is shaded differently (see Figure
17B).

Expanded subsystem “ozone” does not have its own row or column to show
dependency relationships. Instead, the dependency relationships shown are the more granular
relationships of its subsystem descendents. When subsystem “ozone” is collapsed,

representation of “ozone” corresponds to a single line and to a single column. All of the

21

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

dependencies for the rows corresponding to the rows in the boundary 1710 are aggregated
into that single row. The collapsed row for “ozone”, with the now aggregated dependencies
from the descendents of “ozone”, shows as a dependency of “ozone” on other subsystems
such as “proxy”, “xenon”, and “adenine” in this example where any descendent of “ozone”
had a dependency. Similarly, any dependency on a descendant within the columns
corresponding to the columns in the boundary 1710 shows as a dependency in the collapsed
(aggregated) column. Subsystem 1712 illustrates a DSM expanded to the 5™ Jevel at the
deepest expanded point for this example. Level 1 is “haystack051804.zip”, level 2 is
“edu.mit.lcs.haystack”, level 3 is “ozone”, and level 4 is “graphics”, and level 5 is comprised
of the children subsystems of “graphics”. The ArchMap computer application can support
an arbitrary number of levels of hierarchy.

Figures 17C and 17D provide additional information regarding aggregation and
si)litting of dependencies when subsystems are collapsed or expanded. Figure 17C also
describes edu.mit.lcs.haystack in the software system DSM 1002. The subsystem, “proxy” is
expanded, and the rotated row header for proxy 1772 corresponds to the bordered and shaded
area 1773. There is no row or column for expanded subsystem “proxy” to show dependency
relationships. Instead, the dependency relationships shown are the more granular
relationships of its subsystem descendents. The six cells indicated by 1774 and the twelve
cells indicated by 1775 show the dependencies that the children subsystems of “proxy” have
on the visible subsystems outside of “proxy”. For example, the dependency of “proxy.*” on
“security” is shown by 1780, the dependency of “proxy.algae” on “server” is shown by 1781,
and the dependency that “proxy.*” has on “adenine” is shown by 1782. When collapsed, all -
of these dependencies will be aggregated such that when “proxy” is shown with only a single
row and column, the row will indicate a dependency on each of “security”, “server”, and
“adenine.”

The six cells indicated by 1776 and the twelve cells indicated by 1777 show that the
children subsystems of “proxy” are depended upon by one of the visible subsystems outside
of “proxy”. Specifically, in this example, the other subsystems that depend on “proxy.*”
include “security” 1783, “server” 1784, “ozone” 1785, “adenine” 1786, and “Haystack”
1787. There exists a dependency coupling, or cycle, in the dependency relationships where,

for example, “proxy” depends on “security” and “security” depends on “proxy.”

22

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

In Figure 17D, the software system DSM 1002 of Figure 17C 1s shown with “proxy”
collapsed 1788. As described above, “proxy” now shows the dependencies aggregated from
its descendents. The collapsed “proxy” has a dependency on “security” 1790, “server” 1791,
and “adenine” 1792 and shows an aggregation of the dependency relationships where other
systems are dependant on “proxy”, specifically “security” 1795, “server” 1796,
“ozone”1797, “adenine” 1798, and “Haystack” 1799. The shaded afea of expanded “proxy”
1773 is now depicted as a single cell with a period or dot 1789, indicating that all of the
previously expanded dependencies of the children of “proxy” on each other, now fall into the
category of a dependency on itself and are no longer of interest in this view.

The ArchMap computer application also supports editing of the structural
relationships shown in the hierarchical DSM 1002 where subsystems may be created,
deleted, renamed, aggregated, split,‘ and moved. In the example of Figure 17A, an ArchMap
computer application user may create a subsystem as a direct child of “edu.mit.lcs.haystack”
called “newsub”, may delete a subsystem such as “edu.mit.Ics.haystack.xenon”, and may cut
“ColorEntry”, “FontEntry” and “FontDescription” from subsystem '
“edu.mit.Ics.haystack.ozone.graphics” and then paste them into
“cdu.mit.lcs.haystack.newsub” where the dependencies associated with “ColorEntry”,
“FontEntry”, and “FontDescription” move with these subsystems to any new location in the
DSM 1002. "

Furthei‘, the “edu.mit.lcs.haystack* subsystem “security” may be split into two
subsystems, “securityl”, and “security2”, placing portions of the descendents of “security”
into “security1” and the remaining descendents into “security2”. The dependencies of the
subsystems moved from “security” into “securityl” move with the subsystems into
“securityl”, and the dependencies of the subsystems moved from “security” into “security2”
would move with those subsystems into “security2.” The subsystems
“edu.mit.Ics.haystack.ozone.parts” and “edu.mit.lcs.haystack.ozone.widgets” may be
aggregated into another new subsystem “edu.mit.lcs.haystack.ozone.items” where the
dependencies of “parts” and “widgets” also move into “items”.

These editing features are useful for many purposes. For example, “what-if” changes
may be made to a system’s architecture that may allow a user to examine potential changes

to determine impact on the architecture. The concrete architecture may be adjusted to better

23

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

match the conceptual architecture. A map of a system yet to be built may be created and the
DSM model used for forward engineering of a system.

Figure 17B shows a multilevel or hierarchical DSM 1751 where cells corresponding
to levels in the hierarchy have visual indicators of their level. The hierarchical DSM 1701 in

. Figure 17B is identical to the hierarchical DSM 1002 in Figure 17A except that hierarchical

DSM 1701 shows the hierarchical levels with patterns rather than colors. Subsystem 1752 is
at level one, as indicated with a solid white background. Subsystem 1754 is at level 2, as
indicated with by a pattern of sparse dots on a white background. A number of dependency
cells 1764 are also at level 2 in the hierarchy. In this case, dependency cells 1764 and
1762are directly part of the subsystem 1754. Subsystem 1756 shows level 3, where level 3 is
indicated with by a pattern of diagonal lines on a white background. Subsystem 1758 shows
level 4, where level 4 is indicated with by a pattern of denser dots on a white background.
Subsystem 1760 shows level 5, where level 5 is indicated with by a pattern of reverse
diagonal lines on a white background. Comparison between subsystem 1754 and cell 17 62
again shows that all level 2 cells have the same pattern of sparse dots on a white background.
The similar patterning between subsystem 1754 and cell 1762 emphasizes that the subsystem
“edu.mit.lcs,haystack” 1754 arréyed as a header cell with the sparse dots on white
background is the same level as the dependency cells 1762 with the same sparse dots on
white background. More specifically, cells 1762 are the dependency cells displayed for level
2 in the hierarchy. Comparison of cell 1766 and subsystem 1765 shows that the level 3 cells,
both header and dependency cells, have the same pattern - diagonal lines on a white
background. When color is available, each of these levels has a unique color displayed as
the background of the cells at that level. In the ArchMap computer application, users may
set the level colors as part of a set of preferences.

Figure 18 shows an example of defining a software subsystem classification based on
criteria. In this example, the subsystem classification defined is called “persistence”, but
may be any arbitrarily defined classification name. The criteria begin with the conditional
“If Subsystem” 1802. The conditional operator 1804, in this case, is “uses”. Use of specific
other subsystems 1806 establishes subsystem 1802 as meeting the criteria for this specified
classification. In this example, the other subsystems are “java.sql.**” or “javax.jdo.**”.

Label 1808 identifies a field 1810 containing the textual name of the classification meeting

24

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

the criteria. The field 1810 itself contains the textual name of the classification meeting the
criteria defined. The field 1810 may be a dropdown list of previously defined classifications,
or the user of the ArchMap computer application may type in a new classification name. In
this example, the classification defined is “Persistence”.

Figure 19 shows a second example of defining a software subsystem classification
based on criteria. In this example, the subsystem classification defined is called
“Presentation”, but may be any arbitrarily defined classification name. The criteria begin
with the conditional “If Subsystem” 1802. A conditional operator 1804, in this case , is
“uses”. Use of specific other subsystems 1902 establishes the subsystem as meeting the
criteria for this specified classification. In this e)](ample, those other subsystems are
“java.swing.**” or “org.eclipse.swt.**” or “java.awt.**” or “javax.servlet.http.**”. A field
1904 contains the textual name of the classification meeting the criteria defined for this
specific example. In this example, the classification defined is “Presentation”.

Figures 20A and 20B and 21 show the definition of software subsystem classification
hierarchy for presentation “variants”. Figure 20 contains two criteria definitions. In Figure
20A, classification “Desktop_Presentation” is defined, and, in Figure 2B, a classification
“Web_Presentation” is defined. A subsystem fulfilling usage criteria 2002, “java.swing.**
or java.awt.** or org.eclipse.swt.**” has the classification of field 2004, in this case,
“Desktop_Presentation.” In Figure 20B, a subsystem fulfilling usage criteria 2006,
“javax.servlet.http.**” has the classification of field 2008, in this case, “Web_Presentation.”

Figure 21 illustrates creation of a super-classification for “Presentation” using the
classifications “Desktop_Presentation” and “Web_Presentation” defined in Figures 20A and
20B, respectively. Figure 21 shows a definition of software subsystem classification
hierarchy for higher level “presentation” classification comprising “presentation”
classification variants. Conditional operator 2102, in this case, is “Is Classified”. Specific
classifications 2104 result in definition of a new, super classification 2106. In this example,
the specific classifications are “Desktop_Presentation or Web_Presentation” and the super
classification is “Presentation.”

In Figure 19, classification “Presentation” is directly based on external subsystems
“ysed”. In Figures 20A and 20B and Figure 21, the classification “Presentation” is defined

by first defining two, more granular, classifications, and then defining “Presentation” as a

25

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

super classification made up of the two more granular classifications,
“Desktop_Presentation”, and “Web Presentation”. In the example presented in Figures 19-
21, the “uses” criteria is ultimately the same for both methods of defining “Presentation”.

Figure 22 illustrates defining design rules using subsystem classifications.
Classifications, once defined, may be used in rules to make powerful, more re-usable rules.
New external systems may be added to the system, and, as iong as they are properly
classified, may be affected subsystems in design rule evaluation. Complete rule 2202
employs a classification for both the Source and the Target. Although classifications are
identified by a preceding character “#”, the selection of “#” is an arbitrary choice. The
identification character may be any character not generally found as the first character of a
subsystem name. In this example, the “Source” 2204 of the rule identifying the subsystem to
which the rule is applied, are subsystems having the classification “Persistence”. The
“Target” 2206 of the rule are subsystems having the classification “Presentation.” The
design rule “#Persistence CANNOT-Use #Presentation” establishes that subsystems
handling the persistence of information in a system cannot use sﬁbsystems that create
presentation for interaction with users. f

Figure 23 sho/ws a subsystem classification criteria based on subsystem properties.
The conditional “If subsystem property” 2302 is applied to property 2304. In this example, -
the property 2304 is “numChildren”, which is the number of subsystems that are directly in a
parent subsystem. “numChildren” differs from “numDescendents” which includes not only
the number of systems directly in the Parent subsystem, but also, all of their descendants.
Conditional operator 2306 for the criteria is “>", meaning “greater than”. Operators may
also include “<” for “less than”, “<=" for “less than or equal to”, “>=" for “greater than or
equal to”, “==" for “equal to”, etc. Property 2304 is evaluated against the value 2308 using
the operator 2306. In Figure 23, the value is “100”. Field 2310 contains the textual name of
the classification meeting the criteria defined, in this case, “Large Subsystem”. The field
2310 may be specified by a selection from a dropdown list containing previously defined
classifications or by manual typing by the user of the ArchMap computer application.

In Figure 23, the criteria for setting the classification is “If subsystem property,
numChildren, is greater than 100, then set the classification for this subsyétem to

‘LargeSubsystem’”. The user interface may also be implemented in other ways, depending

26

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

upon user preferences for simplicity versus power. One implementation may be as a single
criteria field such that the criteria to be evaluated is: if “numChildren > 100”. Other
implementations may include more programming language-like syntax such as “If
(property.numChildren > 100) then classification = LargeSubsystem”. Additional logical
operators such “and”, “or”, and similar, may also be supported.

Subsystem properties come within two categories, default properties and user defined
properties. Default properties may be determined by and assigned by the ArchMap computer
application by default. Examples of default properties are “name”, “numChildren”, and
“aumDescendents”. User defined properties may be directly assigned by the user, or
determined based on criteria or calculations pertinent to a specific customer or project. For
example, if a user wants to know the number of siblings associated with a subsystem, and the
number is not a default property, a user defined property corresponding to “numSiblings =
this.getParent().getProperty(“numChildren”) — 1” may be employed.

Classification, sometimes discussed as categorization, has been used previously in
several domains. Two are data mining and product lifecycle management (PLM).

In data mining, a taxonomy is established and used to aid in the categorizing of
structured, semi-structured, and largely unstructured data. Document categorization is an
example of semi-structured or unstructured data being categorized. Commercial and
}esemch offerings associated with document categorization typically-assign a classification
or category based on the content of the data being processed, either keywords or specific
relationships between the data being processed. These categorizations are applied to data
including documents, and not to software subsystems.

Within PLM, classification is used to create groupings of similar parts for easier
navigation and retrieval for mechanical product designers. A PLM system may involve
storing the part information including meta-data, CAD models, supplier information, etc that
are part of a list of parts used in a product d‘ésigned for manufacture. Generally, products
are described and navigated as a series of Bills of Material (BOMs). However, when a new
product or subsystem is being designed, it is preferable to find parts already in use in other

products already being built. It is easier to find and navigate previously utilized parts in a

classification system than in a BOM. Part re-use creates economies of scale because of

volume purchasing, use of approved vendors, etc. Typically, in PLM, these classifications

27

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

are assigned manually, though some automated processing may be utilized to establish
classifications. Often, the classification schemes are hierarchical. These classifications are
applied to mechanical parts, and not to software subsystems, and are not based on
dependency relationships.

As discussed herein software subsystems are classified, and software subsystems
usage of other software subsystems information is used to automatically classify software
subsystems. |

Figure 24 illustrates display of all software subsystems affected by a change to a
software system in the context of a hierarchical software system DSM 1002. “LoanSys.jar”
2402, the system under analysis and being.changed, corresponds to a jar file or other toplevel
container or root of the system. “LoanSys”, an example software system, is a web
application for processing applications for home and auto loans. “Server” 2430 is the top
level subsystem of LoanSys and is comprised of seven subsystems. In this case, the
subsystems are Java packages including “utils” 2432, “calc” 2434, “base” 2436, “applicant”
2438, “auto” 2440, “home” 2442, and “present” 2444 Tn Figure 24, the DSM 1002 is in
block triangular form, a DSM term meaning that there are no dependency marks above the
diagonal and outside of intrapackage interactions.

Java implementation language has some specific names for certain types of
subsystems. The most granular or smallest subsystem that may stand alone is called a
“class”, and the first level of aggregation of subsystems in Java implementation is called a
“package”. Packages contain classes. Both class and package are herein considered
subsystems. (

Although used by the most other packages, subsystem Server.utils 2432 does not use
any other package itself. Because all of the other six packages use Server.utils 2432,
changes to Server.utils 2432 may lead to unexpected behaviors or defects in many parts of
the system. Figure 24 identifies both the parts of Server.utils 2432 changed and the other
packages and classes affected by such a change, allowing testing of only those subsystems
affected by the change. Change in Server.utils. HTMLstringUtils 2404 is indicated by the
classname being bold and italic. When color is available, the classname

Server.utils. HTMLstringUtils may also be colored, for example, in red. Change of

28

10

15

20.

25

30

WO 2005/029382 PCT/US2004/030256

Server.utils.seqList 2406 is indicated by its classname being bold and italic. When color is
available, the classname Server.utils.seqList may also be colored, for example, in red.

Determining all affected DSM elements may be accomplished first by traversing a
column associated with a changed element. In Figure 24, the software system DSM is fully
expanded such that all DSM elements with row and column numbers, that is, subsystems, are
java classes. A DSM element means the subsystem that appears in horizontal text in the
Row Headers with a row number, and has a corresponding numbered column. Examination
of column 2480 associated with Server.utils. HTMLstringUtils 2404 indicates that three other
classes 2408 depend on Server.utils. HTMLstringUtils 2404: Server.present.header 2410,
Server.present.PageBuilder 2412, and Server.present.formBuilder 2414. The dependency
marks for the classes 2408 are now italic. They are also red when color is available. An
italic font also indicates Server.present.header 2410, Server.present.pageBuilder 2412, and
Server.present.formBuilder 2414 are affected classes and may also be red when color is
évailable. Classes affected by change to Server.utils. HTMLstringUtils 2404 are thus
identified.

Dependency marks 2416 in column 2485 associated with Server.utils.seqList 2406
indicate that two other classes depend on Server.utils.seqList 2406 where dependency marks
2416 are in italic and may be red when color is available. Labels for Server.base.individual
2418 and Server.applicant.profile 2420 also indicate dependency by being italic and,
possibly, in red when color is availabie.

Identification of affected subsystems is repeated with all changed classes, and, then,
with all affected classes. For example, examination of column 11 2490 associated with
affected class Server.applicant.individual 2418 identifies three dependency marks indicating
that three classes depend on Server.base.individual 2418. In this example, those three classes
are already identified as affected classes. The process of examining the associated columns
of affected classes to identify other classes dependent upon them continues until the list of
changed classes and affected classes is e){hausted.

If the above change scenario occurs near the end of a software release cycle, where
limited changes are accepted, without identification of those parts of the system affected, a

QA analyst may have to assume that a full system functional test is required because a

~ change occurred in Server.utils 2432 and because all packages may use Server.utils 2432.

i

29

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

However, with the identification of affected subsystems, the QA analyst may obtain much
finer grained information about the change to the system, and more importantly, may see the
complete list of affected sub-systems. In the example illustrated in Figure 24, although
Server.utils 2432 is used by all other packages in the system, only Server.base 2436,
Server.applicant 2438 and Server.present 2444 packages are affected by changes to
Server.utils 2432, and, in fact, only seven classes in all are affected.

Figure 25 illustrates display of the level of knowledge of developers regarding
implementation of individual software subsystems. When the ArchMap computer
application is integrated with a source code revision control system, the association of
developers with changes in subsystems, the number of lines of code written by each
developer, and similar information are available to the ArchMap computer application. A
grid user interface containing subsystem decomposition as rows and system developers as
columns allows ready assessment of the implementétion expertise of the developers of a
software system. For application LoanSys.jar 2502, the subsystem decomposition used for
the basis for the DSM representation in Figure 24 appears as the rows of
knowledge/expertise map 2500. List 2506 includes developers who have made
modifications to the code-base. Cells 2508 corresponding to a subsystem and developer
contain a score indicative of the level of knowledge that the developer has about the
subsystem. In this embodiment, scores range from O (not displayed) to 5. The highest score
(5) is based on a percentage of total lines of code in a subsystem checked in, in this case,
50%. The range of the scores and the percentages to achieve the scores may be changed to
suit the individual needs of a specific software development organization.

In another embodiment, subsystem classifications are placed as rowheaders rather
than the actual subsystem decomposition hierarchy. Thus with classifications such as
“Presentation” and “Persistence”, this map will indicate which developers have relevant
Presentation (User Interface) expertise or relevant Persistence (e.g. database) expertise.

A further embodiment displays the developers in a hierarchy. Rows contain system
decomposition hierarchy or classification hierarchy, and the columns contain an
organizational hierarchy. This presentation may be used to determine levels and to balance

levels of specific expertise among groups or departments.

30

WO 2005/029382 PCT/US2004/030256

The described embodiments of the invention are intended to be merely exemplary
and numerous variations and modifications will be apparent to those skilled in the art. All
such variations and modifications are intended to be within the scope of the present invention

as defined in the appended claims.

31

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

What is claimed is:

1. A method for managing, in a computer system, design of a software system, the
method comprising:

‘receiving an input to the computer system specifying dependency relationships
among subsystems of the software system wherein a rule is imposed on at least one of the
dependency relationships and data for the rule is provided as part of the input; and

providing an output from the computer system responsive to the input.

2. The method according to claim 1, wherein a plurality of rules are imposed on at
least one of the dependency relationships and data for the rules is provided as part of the
input.

3. The method according to claim 1, wherein the rule allows the dependency
relationship.

4. The method according to claim 1, wherein the rule disallows the dependency
relationship.

5. The method according to claim 1, wherein the rule requires the dependency
relationship.

6. The method according to claim 1, wherein the rule requires dependency on a

subsystem not specified in the dependency relationship.

7. The method according to claim 1, wherein the rule allows an otherwise disallowed

dependency relationship.
8. The method according to claim 1, wherein specifying dependency relationships

includes processing program code associated with the software system to determine existing

dependency relationships in such code and specifying such existing dependency relationships

explicitly.

9. A method according to claim 8, wherein the processing of the program code
occurs automatically on providing of the program code as an input to the computer system.
10. The method according to claim 1, wherein input to the computer system

specifying dependency relationships is determined from metadata definitions.

- 11. A method according to claim 1, wherein providing an output includes providing a
graphical output in which appears a hierarchical display of the subsystems, the hierarchy
being selectively expandable and collapsible, such display graphically indicating

32

5

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

dependencies among subsystems.

12. A method according to claim 11, wherein the hierarchical display of the
subsystems can be altered and the dependencies among the subsystems automatically altered
to be consistent therewith. /

13. A methdd according to claim 12, wherein the hierarchical display of a subsystem
can be moved in a manner as to preserve the dependencies of the subsystem.

14. A method according to claim 12, wherein the hierarchical display of a subsystem
can be removed in a manner as also to cause removal of dependencies of the subsystem.

15. A method according to claim 12, wherein the hierarchical display of a subsystem
can be copied and inserted at another location in the hierarchical display in a manner as to
preserve the dependencies of the subsystem.

16. A method according to claim 11, wherein the display is represented as a
dependency structure matrix.

17. A method according to claim 16, wherein, in an instance when a given parent
subsystem has been expanded to show its hierarchical children, dependencies are shown for
such hierarchical children but not for such parent subsystem.

18. A method according to claim 11, wherein receiving an input to the computer
system specifying dependency relationships among subsystems includes receiving an
inheritable rule for a given subsystem so that the inheritable rule is inherited by any
descendants of the given subsystem in the hierarchy.

19. A method according to claim 18, wherein receiving an input to the computer
system specifying dependency relationships among subsystems includes receiving a override
rule that has the effect of overriding any inheritable rule applied to an ancestor subsystem in
the hierarchy, such override rule being itself an inheritable rule.

20. A method according to claim 18, wherein the display is represented as a
dependency structure matrix.

21. A method according to claim 18, wherein the inheritable rule can be imposed at
any desired point in the hierarchy.

22. A method according to claim 21, wherein the display is represented as a
dependency structure matrix.

23. A method according to claim 1, wherein providing an output further includes

33

i0

15

20

25

30

WO 2005/029382 PCT/US2004/030256

providing a reference to the rule imposed on the at least one dependency relationship.

24. A method according to claim 1, wherein providing an output includes (i)
providing a graphical output in which appears a hierarchical display of the subsystems, such
display graphically indicating dependencies among subsystems, and (ii) providing a
graphical indication of a state of the rule imposed on the at least one dependency
relationship.

25. A method according to claim 24, wherein such display and the graphical
indication are viewable simultaneously.

26. A method according to claim 24, wherein the display is represented as a
dependency structure matrix, and the indication of the state of the rule is in a pertinent cell of
the matrix.

27. A method according to claim 26, wherein the indication of the state of the rule
includes use of color.

28. A method according to claim 26, wherein indication of the state of the rule
includes use of a symbol.

29. A method according to claim 26, wherein indication of the state of the rule
includes use of location of placement in the cell.

30. A method according to claim 24, wherein the display is represented as a
dependency structure matrix, and the indication of the state of the rule is provided in a panel
separate from the dependency structure matrix and viewable simultaneously with the matrix.

31. A method according to claim 30, wherein the state of a rule, involving a given
subsystem in the display for which children thereof are also displayed, is indicated for such
children and not for the given subsystem.

32. A method according to claim 11, wherein the display uses color in a manner
consistent with hierarchical relationships of subsystems to assist in identifying related
subsystems.

33. A method according to claim 32, wherein the display is represented as a
dependency structure matrix.

34. A method according to claim 24, wherein the display is represented as a
dependency structure matrix, and subsystems used by a subsystem selected in the

hierarchical display are provided in a first panel separate from the dependency structure

34

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

matrix and viewable simultaneously with the matrix.

35. A method according to claim 34, wherein the subsystems used by the selected
subsystem are provided in the first panel in the form of a tree-structure.

36. A method according to claim 34, wherein subsystems that use a subsystem
selected from the subsystems provided in the first panel are provided in a second panel
separate from the dependency structure matrix and the first panel and viewable
simultaneously with the matrix and the first panel.

37. A method according to claim 36, wherein the subsystems that use a subsystem
selected from the subsystems provided in the first panel are provided in the second panel in
the form of a tree-structure.

38. A method according to claim 1, wherein (i) providing an output includes
providing a graphical output in which appears a hierarchical display of the subsystems, such
display graphically indicating dependencies among subsystems, and (ii) wherein receiving
an input to the computer system specifying dependency relationships among subsystems
incll,ldes receiving an inheritable rule for a given subsystem so that the inheritable rule is |
inherited by any descendants of the given subsystem in the hierarchy.

39. A method according to claim 38, wherein the display is represented as a
dependency structure matrix.

40. A method according to claim 1, wherein the rule imposed on the at least one
dependency relationship is based on classification of relevant subsystems.

41. A method according to claim 40, wherein the classification is assignable
manually.

42. A method according to claim 40, wherein the classification is assigned
automatically on the basis of prespecified criteria.

43. A method according to claim 40, wherein the classification is based on properties
of the relevant subsystems.

44. A method according to claim 43, wherein the properties are assignable manually.

45. A method according to claim 43, wherein the properties are determined
automatically on the basis of prespecified criteria.

46. A method according to claim 40, wherein the classification is defined as part of a

hierarchical classification system.

35

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

47. A method according to claim 1, wherein the rule imposed on the at least one
dependency relationship is based on properties of the relevant subsystems.

48. A method according to claim 47, wherein the properties are assignable manually.

49. A method according to claim 47, wherein the properties are determined
automatically on the basis of prespecified criteria.

50. A method according to claim 47, wherein the properties of the relevant
subsystems include allowed sources of changes to the relevant subsystems, so that editing of
the subsystems is subject to control in relation to source

51. A method for managing, in a computer system, testing of a software system, the
method comprising:

receiving an input to the computer system specifying dependency relationships
among subsystems of thé software system; and

providing a graphical output from the computer system responsive to the input,
wherein the graphical output includes an indicator of any subsystem changed by editing or
addition of code.

52. A method according to claim 51, wherein the graphical output includes a
hierarchical display of the subsystems, such display graphically indicating dependencies
among subsystems in a dependency structure matrix.

53. A method according to claim 51, wherein the graphical output includes an
indicator of any subsystem affected by editing or addition of code.

54. A method according to claim 53, wherein the graphical output includes a
hierarchical display of the subsystems, such display graphically indicating dependencies
among subsystems in a dependency structure matrix.

55. A method according to claim 54, wherein the graphical output includes a
subsystem label style for the graphical output of a changed subsystem different from a
subsystem label style for the graphical output of a subsystem affected by the change.

56. A method according to claim 54, wherein the indicator of a dependency
relationship affected by a change to a subsystem differs from an indicator of dependency
unaffected by the change.

57. A method for managing, in a computer system, design of a software system, the

method comprising:

36

5

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

receiving an input to the computer system specifying dependency relationships
among subsystems of the software system; and '

providing a graphical output from the computer system responsive to the input,
wherein the graphical output includes indicators of sources of the subsystems.

58. A method according to claim 57, wherein the graphical output includes a matrix
display, the mat¥ix including a hierarchical display of the subsystems, the hierarchy being
selectively expandable and collapsible, to facilitate indication of the sources of the
subsystems.

59. A method according to claim 58, wherein the matrix also includes a hierarchical
organizational display of human resources associated with the sources.

60. A method according to claim 59, wherein the hierarchical organizational display
is selectively expandable and collapsible.

61. A method according to claim 57, further comprising grouping the subsystems
according to a taxonomy, wherein the graphical output includes a matrix display, the matrix
including a series of taxonomical entities along one axis and sources along another axis,
wherein the sources are associated with taxonomical entities for which they have had
responsibility.

62. A method for managing, in a computer system, design of a software system, the
method comprising:

receiving an input to the computer system specifying dependency relationships among
subsystems of the software system; and

providing a graphical output in which appears a hierarchical display of the subsystems, the
hierarchy being selectively expandable and collapsible, such display graphically indicating
dependencies among subsystems.

63. A method according to claim 62, wherein the display is represented as a
dependency structure matrix.

64. A method according to claim 62, wherein, in an instance when a given parent
subsystem has been expanded to show its hierarchical children, dependencies are shown for
such hierarchical children but not for such parent subsystem.

65. A method according to claim 64 where relation of such hierarchical children to

such parent subsystem is shown by placing the parent subsystem sidewise alongside such

37

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

‘children.

66. A method for managing, in a computer system, design of a software system, the
method comprising: |
receiving an input to the computer system specifying dependency relationships among
subsystems of the software system; and
providing an output containing a hierarchy of the subsystems and the dependency
relationships among the subsystems, the hierarchy being selectively expandable and
collapsible.

67. A method according to claim 66, wherein the hierarchy of tﬂe subsystems can be
altered and the dependency relationships among the subsystems automatically altered to be
consistent therewith. |

68. A method according to claim 67, wherein the hierarchy of a subsystem can be
moved in a manner as to preserve the dependencies of the subsystem.

69. A method according to claim 66, wherein the hierarchy of a subsystem can be
removed in a manner as also to cause removal of dependencies of the subsystem.

70. A method according to claim 66, wherein the hierarchy of a subsystem can be
copied and inserted at another location in the hierarchy of the subsystems in a manner as to
preserve the dependencies of the subsystem. ’

71. A method according to claim 66, further providing a graphical output in which
appears a hierarchical display of the subsystems, such display graphically indicating the
dependencies 2among subsystems.

72. A method according to claim 71, wherein the display is represented as a
dependency structure matrix.

73. A method according to claim 71, wherein, in an instance when a given parent
subsystem has been expanded to show its hierarchical children, dependencies are shown for
such hierarchical children but not for such parent subsystem.

74. A method according to claim 73 where relation of such hierarchical children to
such parent subsystem is shown by placing the parent subsystem sidewise alongside such
children.

75. An apparatus for managing, in a computer system, design of a software system,

the apparatus comprising:

38

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

means for receiving an input to the computer system specifying dependency relationships‘
among subsystems of the software system wherein a rule is imposed on at least one of the
dependency relationships and data for the rule is provided as part of the input; and

means for providing an output from the computer system responsive to the input.

76. A computer program product for use on a computer system for managing design
of a software system, the computer program product comprising a computer usable medium
having computer readable program code thereon, which, when loaded into the computer
system, establishes an apparatus comprising:

an input to the computer system specifying dependency relationships among
subsystems of the software system, wherein a rule is imposed on at least one of the
dependency relationships and data for the rule is provided as part of the input; and

an output from the computer system responsive to the input.

77. The computer pr)ogram product of claim 76, wherein a plurality of rules is
imposed on at least one of the dependency relationships and the input receives data for the
rules. \

78. A computer program product according to claim 76, wherein the apparatus further
comprises:

a graphical output in which appears a hierarchical display of the subsystems, the
hierarchy being selectively expandable and collapsible, such display graphically indicating
dependencies among subsystems.

79. A computer program product according to claim 78, wherein the apparatus
further comprises:

a graphical input for altering the hierarchical display of the subsystems; and

means for automatically altering the dependencies among the subsystems to be
consistent with the altered hierarchical display.

80. A computer program product according to claim 79, wherein the apparatus
further comprises:

a graphical input for moving a given subsystem within the hierarchical display; and

means for moving the given subsystem within the hierarchical display in response to
the graphical input while preserving dependencies of subsystems that depend on the given

subsystem.

39

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

81. A computer program product according to claim 79, wherein the apparatus
further comprises:

a graphical input for removing a given subsystem within the hierarchical display; and

means for removing the given subsystem within the hierarchical display in response
to the graphical input while removing dependencies of subsystems that depend on the given
subsystem.

82. A computer program product further according to claim 79, wherein the
apparatus further comprises:

a graphical input for copying, and inserting at another location, a given subsystem
within the hierarchical display; and

means for copying and inserting at the other location of the given subsystem within
the hierarchical display in response to the graphical input while preserving dependencies of
the given subsystem.

83. A computer program product according to cléim 78, wherein the display is a
dependency structure matrix.

84. A computer program product according to claim 83, wherein the apparatus further
comprises:

means for showing dependencies, in an instance when a given parent subsystem has
been expanded to show its hierarchical children, for such hierarchical children but not for
such parent subsystem.

85. A computer program product according to claim 78, wherein the apparatus
further compn'sesf

means for allowing an inheritable rule for a given subsystem to be inherited by any
descendants of the given subsystem.

86. A computer program product according to claim 85, wherein the apparatus further
comprises:

means for overriding an inheritable rule applied to an ancestor subsystem in the
hierarchy, such overriding being itself inheritable.

87. A computer program product according to claim 85, wherein the display is a
dependency structure matrix.

88. A computer program product according to claim 85, wherein the apparatus

40

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

further comprises:

means for imposing the inheritable rule at any desired point in the hierarchy.

89. A computer program product according to claim 88, wherein the apparatus
further comprises:

means for representing the display as a dependency structure matrix.

90. A computer program product according to claim 76, wherein the apparatus
further comprises:

a graphical output in which appears a reference to the rule imposed on the at least one
dependency relationship.

91. A computer program product according to claim 76, wherein the apparatus
further comprises:

a graphical output in which appears a hierarchical display of the subsystems, such
display graphically indicating dependencies among subsystems; the graphical output also
including a graphical indication of a state of the rule imposed on the at least one dependency
relationship.

92. A computer program product according to claim 91, wherein the display and the
graphical indication are presented simultaneously.

93. A computer program product according to claim 91, wherein the display is a .
dependency structure matrix and the state of the rule is indicated graphically within a
pertinent cell of the matrix.

94. A computer progra:rﬁ product according to claim 93, wherein color is used to
indicate the state of the rule.

95. A computer program product according to claim 93, wherein a symbol is used to
indicate the state of the rule.

96. A computer program product according to claim 93, wherein location of
placement in the cell indicates the state of the rule.

97. A computer program product according to claim 91, wherein the display is a
dependency structure matrix and the state of the rule is indicated in a panel separate from the
dependency structure matrix and viewable simultaneously with the matrix.

98. A computer program product according to claim 97, wherein the state of a rule,

involving a given subsystem in the display for which children thereof are also displayed, is

41

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

indicated for such children and not for the given subsystem.

99. A computer program product according to claim 79, wherein the display uses
color in a manner consistent with hierarchical relationships of subsystems to assist in
identifying related subsystems.

100. A computer program product according to claim 99, wherein the display is a
dependency structure matrix.

101. A computer program product according to claim 91, wherein the display is a
dependency structure matrix; and subsystems used by a subsystem selected in the
hierarchical display are viewable simultaneously in a first panel separate from the
dependency structure matrix.

102. A computer program product according to claim 101, wherein the subsystems
used by the selected subsystem in-the first panel are presented in a tree-structure.

103. A computer program product according to claim 101, wherein subsystems that
use a subsystem, selected from the subsystems provided in the first panel, are simultaneously
viewable in a second panel separate from the dependency structure matrix and the first panel.

104. A computer program product according to claim 103, wherein subsystems, that
use a subsystem selected from the subsystems provided in the first panel, are presented in the
second panel in a tree-structure.

105. A computer program product according to claim 76, wherein the apparatus
further comprises:

a graphical output in which appears a hierarchical display of the subsystems, such
display graphically indicating dependencies among subsystems, and

means for receiving an inheritable rule for a given subsystem so that the inheritable
rule is inherited by any descendants of the given subsystem in the hierarchy.

106. A computer program product according to claim 105, wherein the display is a
dependency structure matrix.

107. A computer program product according to claim 76, wherein the rule imposed
on the at least one dependency relationship is based on classification of relevant subsystems.

108. A computer program product according to claim 107, wherein the classification
is determined manually based on data provided at the input.

109. A computer program product according to claim 107, wherein the classification

42

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

is assigned automatically on the basis of prespecified criteria.

110. A computer program product according to claim 107, wherein the classification
is based on properties of the relevant subsystems.

111. A computer program product according to claim 110, wherein the properties are
assigned manually.

112. A computer program product according to claim 110, wherein the properties are
determined automatically on the basis of prespecified criteria.

113. A computer program product according to claim 107, wherein the classification
is defined as part of a hierarchical classification system

114. A computer program product according to claim 76, wherein the rule imposed
on the at least one dependency relationship is based on properties of the relevant subsystems.

115. A computer program product according to claim 114, wherein the properties are
assigned manually.

116. A computer program product according to claim 114, wherein the properties are
determined automatically on the basis of prespecified criteria.

117. A computer program product according to claim 114, wherein the properties of
the relevant subsystems include allowed sources of changes to the relevant subsystems, so
that editing of the subsystems is subject to control in relation to source

118. An apparatus for managing, in a computer system, testing of a software system,
the apparatus comprising:

an input to the computer system specifying dependency relationships among
subsystems of the software system; and |

a graphical output from the computer system responsive to the input, wherein the
graphical output includes an indicator of any subsystem changed by editing or addition of
code.

119. A computer program product for use on a computer system for managing, in a
computer system, testing of a software system, the computer program product comprising a
computer usable medium having computer readable program code thereon, which, when
loaded into the computer system, establishes an apparatus comprisingf

an input specifying dependency relationships among subsystems of the software

system; and

43

10

15

20

25

30

WO 2005/029382 PCT/US2004/030256

a graphical output responsive to the input, wherein the graphical output includes an
indicator of any subsystem changed by editing or addition of code.

120. A computer program product according to claim 119, wherein the graphical
output including a hierarchical display of the subsystems in the graphical output, such
display graphically indicating dependencies among subsystems in a dependency structure
matrix.

121. A computer program product according to claim 119, wherein the graphical
output includes an indicator of any subsystem affected by editing or addition of code.

122. A computer program product according to claim 121, wherein the graphical
output includes a hierarchical display of the subsystems, such display graphically indicating
dependencies among subsystems in a dependency structure matrix.

123. A computer program product accgrding to claim 122, wherein the graphical
output includes a subsystem label style for the graphical 6utput of a changed subsystem
different from a subsystem label style for the graphical output of a subsystem affected by the
change. |

124. A computer program product according to claim 122, wherein the indicator of a
dependency relationship affected by a change to a subsystem differs from an indicator of
dependency unaffected by the change.

125. An apparatus for managing, in a computer system, design of a software system,
the apparatus comprising:

an input to the computer system specifying dependency relationships among
subsystems of the software system; and

a graphical output from the computer system responsive to the input, wherein the
graphical output includes indicators of sources of the subsystems.

126. A computer program product for use on a computer system for managing design
of a software system, the computer program product comprising a computer usable medium
having computer readable program code thereon, which, when loaded into the computer
system, establishes an apparatus comprising:

an input specifying dependency relationships among subsystems of the software

system; and

44

10

15

20

25

WO 2005/029382 PCT/US2004/030256

a graphical output responsive to the input, wherein the graphical output includes
indicators of sources of the subsystems.

127. A computer program product according to claim 126, wherein the graphical
output includes a matrix display, the matrix including a hierarchical display of the
subsystems, the hierarchy being selectively expandable and collapsible, to facilitate
indication of the sources of the subsystems.

128. A computer program product according to claim 127, wherein the matrix also
includes a hierarchical organizational display of human resources associated with the
sources.

‘ 129. A computer program product according to claim 128, wherein the hierarchical
ofganizational display is selectively expandable and collapsible.

130. A computer program product according to claim 126, wherein the subsystems
are grouped according to a taxonomy, and the graphical output includes a matrix display, the
matrix including a series of taxonomical entities along one axis and sources along another
axis, wherein the sources are associated with taxonomical entities for which they have had
responsibility.

131. An apparatus for managing, in a computer system, design of a software system,
the apparatus comprising:

an input to the computer system specifying dependency relationships among
subsystems of the software system; and

a graphical output in which appears a hierarchical display of the subsystems, the
hierarchy being selectively expandable and collapsible, such display graphically indicating
dependencies among subsystems.

132. An computer program product for use on a computer system for managing, in a
computer system, design of a software system, the computer program product comprising a
computer usable medium having computer readable program code thereon, which, when
loaded into the computer system, establishes an apparatus comprising:

an input specifying dependency relationships among subsystems of the software

system; and

45

WO 2005/029382 PCT/US2004/030256

a graphical output in which appears a hierarchical display of the subsystems, the
hierarchy being selectively expandable and collapsible, such display graphically indicating
dependencies among subsystems.

133. A computer program product according to claim 132, wherein the display is a

5 dependency structure matrix.

134. A computer program product according to claim 132, wherein, in an instance
when a given parent subsystem has been expanded to show its hierarchical children,
dependencies are shown for such hierarchical children but not for such parent subsystem. -

135. A computer program product according to claim 132, wherein relation of such

10 hierarchical children to such parent subsystem is shown by placing the parent subsystem

sidewise alongside such children.

02837/00001 334425.1

46

WO 2005/029382

PCT/US2004/030256

104
AN

102
\

e

LRI e

Figure 1
106

PCT/US2004/030256

WO 2005/029382

952 414 2se
W e W= m - ﬂ
~ Bl B K T uoneuasardey
xl v B As my NSQ
gl v gl v| g v
pordno) enusnbag PIeIvg duysuoneayy
TIA)SAS U SZLISJIRIRY)) JUT) SUONUINSIIUO)) 93T T,
0T 20z
I
| uoneuasarday
] ydein
pardno) [enusnbeg IS CRCE diysuone[sy

UWI)SAG € 9ZLIDJIRINT) JUT]) SHORINSHUO0)) 33T T,

/ 05z

ge @Inbi4

™~

vz ainbi4

00¢

Figure 3A

WO 2005/029382 PCT/US2004/030256

Ajigisusyxe] XIX| PXPX XL XX
E Buljpuey Aseg] X% | XX | x| x| Ix
qE)Iuogeoudde snoeue||essgu1|>< X XX XX XXl X%
E Buines-ABIsUs]x< < < X[x]x X Ix
af - podsuespAses] || [x|X|x X[X]x
aoueusuiew Asesl <] | x
JuBLILOAAUS J0810d]< [<< X[X]X[X[x X
- R asiou PIoAELX X || < XX |x X X
S| - uswsaaow Apog mojjolf X |X]x X x X
§ MIp arowalf< X[} Ix<I<P<p<] <[1%
= ABious wiojsuenx < X[x| oIx| Xfx S EIIIES
aunssaid 8jealoX XX Ix]x X[X
sjeaym X X I EIES
= joysidf< ; I ETES x| IXx[x[x<
= Buiseof<[><[>< X X[Px|x X[
g- : Jopuliho] [X] . |X XX x
8r suibus]<| |X<|x x XX PP
dwnd] [x XX XXX XXX XX
\ \ f ey
\ il
ot 1y wht
gl =
JERERE M
= ﬁ%t‘>,m“§$0.'§8§3.
™ Ll clBIBI2|S1E| I B S BIE
s alEl ol 8l 0| o) el 5| 9]] §la
oja J| s}
ol9lo |elelll> SIBIE|l S STl <lo
e8|l elzlEl el 2lziel s> D85 5
EEHEEEEHEEH R EE RE
2l 5|31 8lalz)6l5] 0108|813 8| Gl E]| 8] &
0 I
2 lllfelIOd,lU(fO /‘ uopoun Juswanba
SSISES b o o
q @ 5
(ap] (2] (32

300

Figure 3B

PCT/US2004/030256

WO 2005/029382
sa1y oqny <
Jaqqn. pijosj XX
SEEND >
X epow] [x[x
s jepow] [X|x
j03s1d]<
wnjuwinge <l
onsejdl <
Burses <
yLxa0l }
} X490
JapuijAg)
auibus pugAy
auibus 21408)8]
puibus uopsnquodj |
. aujbualx< <"1 1
dwind t1ebunid . X IXPX
dwnd [ebnjnuao x| % x|t Ix[x
i dwind} - ' ' =< =l
2
o al £
M~ —— o
© Ell 15[2]e
SEl {clBle 5
g3 (2[5 E I -1
b~ | 51+ 0 Of = =2 n|x o
/Q’: g 2| 312 el Bl<|<| S elE 5 || 3|2l 2=
o] = By Bt B RT ! Al il Bt B=1 0 i
S — JEEEEEE e E B EEEE
® ol ojal o] o|olEl ol Gl alolalwlal E]l El 3] ol 2
()}
£ 8
)
C
C©
(@) R
g
< =
© ©
® o SPouM <
103s1d]<
[Buises]>|x< < =
Jepugho] [x<] X
subusix| [x<|x
dundf [x<] [x[x
&)
o g ol 2 sl@
El25| 2| 3|2
améga;
o
Te]
[32]

Figure 4

WO 2005/029382

Level 3

PCT/US2004/030256

Level 1

PCT/US2004/030256

WO 2005/029382

“ - [F:ESEVTYY
___|L-=
B "] ' IR R N SieualsE]]
ﬂ ¥ Y - i Il ol M ‘B SUIA 7 UBKSad)]
G s P — 0 = T T TSR
% T« ve| =g ~g| ¥ -2 -wl-v] e -¥ :
- 3215 M)
¥
- Seogde] Wadn) Uxmg
v-
2! S B g TOVOF])) DM JHAKNY
' 8- vof o v v -
N | TSAE 9 ngeld
....“ ¥ . :
- — = - SSRUIEH 91 DUR J005
~ag [-5 g S U29NISY 10 aRULRY
< - =% B - B < o
el w- R ER - ¥- 2+ w4 v
s g} a- . g hk
Lk - -o| vy
oo EE ¥ ~%| -8
] 6|
i - -¥|
2 7 7] = 7]
- -] ¥yl ¥
5 T
R v
¥ K V|
¥ -¥ ~¥|
q L8 -¥|
(22 ._.* vY
B E R R
-M JR¥] I IR <ol vg
v
-¥|
~8) -3 ~gf ~v| 33ays 213 uo sufp3 dizysg
- - = e 7] K5H035 3J0H 559997
=¥ ~¥ -0 -
- B - B B 0By,
-aug - ag|ve 8% 2 1e adeys joue Jauuy,
= JojENGOY
\& JE jeLISIEN [BURd Jauy)
= oD P=dan] Si9003 OjeH
-8 5 R
B B - GUEELIRIEr)
-0 -y -vl
¥ - - jauEd jIES
¥si =g b |¥
3 =
-l ~5
A Lo
j=21 -0 !
= 2 = =5 = T o
ENE B EHEE FEEHAEEE
5 = P = = 1 R) Y et B S|Bla
z |@lZ z %dﬁ@ﬂu...ﬂ..%%% W=
& I=z|E 1 ron|eg s agiziz g |2
s |#|x - - Sz FEFIEIE! o 3
- E = =%e| Bz e |2
] i zu 3 &l g5
= we =

00s
G ainbi4

PCT/US2004/030256

WO 2005/029382

108[01 poIoIS

oo | o) e by A 809
v29 | e | weyshg
0L9 ..____ -
_ - \ / S - 919
v
¥ o
lopenxgy __Jf-----""""
fouspuadaq wuonped Ll cL9
Ve N
........... 819
— N e St I N ¥19
sulbug s|ny Aouspuada(suoniNed WajsAg
rAA° R N |
A . 029
uonejuesaudey weyshg | | 909
. 108l0id
[epoly 108[q0 depyyory [09
(1n) uonejussaid depyory B B c09

009

9 ainbi4

PCT/US2004/030256

WO 2005/029382

solousuadag
@ suoljiued

ws)sAg
alem)jos

0L
saouspuadaq walsAg)
JoelXg uonlued --f------------- ¢0.
A 4
/ sepuspuadeq
sa|ny uoniyed we)sAs
Q0L ----=-7-=--- ubiseq :UONRIUSSSIdDS -~-fmmmmmmm e 904
Aloway uj wolsAs
Alowsw u|
peiddy
....... | so|ny ubiseq pue
9L CO_uNuC®w®._Q®m Emuw>w mm_Dm C@_mOD _.B._\Slll ||||||||||||||||||||||||| 0Ll
uopejussaldey WelsAs
[euoIppE Apow/eiesid 10} uoyeuasald sl

A

A 4

mco_uwn—cwwm._n_ ..mm@ |||||||||||||||||||||||||| 4%

ndu) enuepy Jesn
147 M cTr

J @inbi4

PCT/US2004/030256

WO 2005/029382

j08l0id palols

sopny selousuadaq waysAs el 809
929 —oo___l. - ubiseq 8 suoniued 2JeM}0S
e N O e | weyshg
09 .o -
A
..... 919
v _ SN e
¥ RIS
>m_m%ﬂwwo souonMed | oooooooofe 219
- L 819
- ---W.v.--:--------------- 719
229 auibug ajny Aouapuadaq suoed welsAs
........... |
A 029
uonejuaseldey waysAs | | ___________ 909
y09loid
N
[opPoW 198lqO denyosy S 709
99BLIS)U| SUl-PUBLLILIOD 308YDUdIY R T LTS o8

008

g ainbi4

PCT/US2004/030256

WO 2005/029382

~sajousuadeq

walshAs -

® suohiyed
wayshs oIEMyos
12074
V06 .__
) salouapuadaq we)shAg
Joenx3 uonied -f-CTTTTTTT c0L
L 4 el _ v
sapuspuadaq B At salouapuadaq B Y A
suoiued WaisAs cmm _w_w suoned weisAg 906
:uonejussaldal on wn_ :uopejussaidal
€06~ """\ Tt wieyshs £ mu:o_?w wa)sAs
paneg Ajsnoinaad ISnoinsid 1O UOISIOA MON
sa|ny ubisa(Jsulebe
UOISIBA MBU @Jenjeas ~ |~~~ T TTTTTTTTTTTTT T 806
pue ‘suonejuasaldal
we)sAs aredwon
0L6

308YOyoIY

6 aInbi4

Y101 910l . 800}

PCT/US2004/030256

WO 2005/029382

".N 1 e — T 081z teatouspuadep snbrun T30, _
= §TLZZ tauncy Aouspusdagy'
[=i £69T_:3umog 86813
T " wipp EwBaﬁuﬁmsﬁ%%;%%ﬁ%po B
LK S - T Txlxxi %] |xlx|=llz JaLjeACH
i weoxaeueny] % x1x] x X 12 slopeysq B '
i MMMMMM " X XX b « xixpxlxixtxlsiwlxixlioz syl @& H
|] N 215 Ery ' i
,., joe; %:mxnrm . B X% XIXIX % Gl Sphim-E :
T SO E g] % K X IR sas 7)
I -
" | W 3 xix] Jwixlx|] |xp |xlx|% X| |14y seBoucweondero: | o
: H '
i npa b =~ 3 %1 ot »._Emmmﬁ___#ﬁc_:_s.: . . !
] m>m asnE -5 X 5l AjugehwuuBEo | o
SJMEISUCD JOBISABY SO U NP3 F - '
m i st s ol 0 %] |xixix x| |vb cemmnsodeio | .
* i ; el Anuzpog: | & :
; L uohduasequiods W m
. . !
|; ssﬂmm | : m Ao | B B
M wf . . ol O « B
- seoTsseiRUENTl & X XXX x| x| x]ioL ogEp B 5 .
,. - youjshey mllm X X X X% X ZIxX{xlie ¥ U!Dn :
,v" 9] m.l..m_ . ¥ ¥iwlx xlxixlla suitape [< m
. WET-E - wiwn X X|%|% | xlalxlxlxllz sonies B B
i hpa ml..m.mm] X! ix XixixHo Emﬁou:mww] . oLoL
s8N F_ -5 o el B E IR
i [Eoe_a.v_%ﬁ%:ﬁ_.xs.%m 1 LIR X x1xnse Ao g2 1y
K = = J : x| xll# uousx- =1 ‘G 1 & | B
] | suoneioA %m; @lld | seiny uBlsed | efiesn - B1=1
FEEEET -l,-ILI,rml ,l,l-l-wlu,l,li TErEElh X X £ fpnoas: [W, .«m “
L4 - X Xixjx XX Xz I ENS) IR
-~ T 'sadA} 40 Jaquinii e i X L B E-EE
: Z ‘suoipued-gns Jo taguinpd mlolole(x@lw]s o] alo]alo|w]m]eln]s]o]al -
_lil et oBlsABY sap wrnps aieN - = - -

001 Zlol

¥c0l ¢col €00l

0l @nbi4

PCT/US2004/030256

WO 2005/029382

m Wy vcm vmn_v_oﬂm%Sv_uwﬁmu;wﬁ_oﬁ:ogm? D

9LLL VLLL

ctil 0Ll

801 Vv0OL

9001 0ct)

90L1

. ’ B s Y] 1) ¥ ¥
U _59“_ @.&E i IS K4 X1 x| My ﬁrﬁmcz
- p— XL R Hixt s X | X x||E suozo {3
‘.,“_,J_m‘\.u%._ - ‘,mﬁm Bm?@ o a._sm %m “ . bk _ou.q % At AL A wi Xt ®her aupspe - [
‘ : xlal [xl x| %] |x x| x| x|l tonies 5]
. wl vl x| x|lob pepion [%)
Ipryoeisheysorpwrnpe] asn-ued| uouaX HoBISABY SOl W NPa) <1 % %l %] % M o [
. < HOBISABY SO IWINpal asMueD| UoUSX joBISARL SO I Nps) — , .
AjinossjoeisAey'saf Jurnpsl asn-ued UoUaX yoBISABY SO JUI'Npa LG IR A X X|i8 lspdon -
UoURX yoBISABY SOl JWIMPa] &S-UBD] UoUaX joBISARY SOl Jurnpe A R v!| vtz esiog -
w_o%ﬁ}ws.mo_.u_w:.:_om* asf-jouue))| cocmxxom«m»ws.mo_es.:umm ey min ubplsoxIUOURY, 1 L 4 le
\ o xgm.m asfj-uedD Bo,_ﬁ 1 g5 |n
)] | W'l asa-uBd WoisH ’ # / g SpiejsuogUcUsy o M: W
m,d,.,_ \ \ 1004 asnrued 0048 B veyoy raw M w
g B .m -
NI UoIUd 83403 " % e Ainaes E e m
T SUOeISIA, Sifed | Sl wmzm\cm_mo mm%: I\ A3 |8
___ \ | i s , T m m‘_‘ a/ x| x| x| [x|x| | /x/.m w1l |2
\ T) X / _.r s = B E
,,.rq \,:o s ol e foial ol e ol wl e ol ,ﬁ.iM
. G suoyied-yns 1o Jag = - : i
m‘ﬂ. ucuxX HaRISARY sajluurnpe @
mwnc.ﬁll .‘ . . =1

0Ll ¢0LL 200l

L1 @Inbi

PCT/US2004/030256

WO 2005/029382

m WY P08 LSOH0BISABUOBISABHIBIBRISNIAVAGIR D
a "~ - 4 9 g - ; - ay T - T T a“ — 1 - = ‘Uﬁ ﬂ%bﬁ .‘J“..., -..u”ﬂ\
ughGI BAO] RIS _ A) IR ffozyzAeH
: e , — RSN RIRIRIES } Ly Xi A x||eb auozo {7
* e W A orRd “ b “ AMPRY LW D) I xx] x x| x| xlle atspe - ()
: ‘,w Lo T “.w.. IEIRS NP EIRSEI NN X)) xpu lantes - [E
- , RIS I %) x| x]lov Wepioo [&
ORISABY SOF W npal 9S-uEs| UoUaX HoBISABL SOf W npa wl x _ w w “«.(%. u\. l'g Axaud H
pooBIsABY SOFIUINpal BS-UBD| UoUBX YOBISABL SOl W hpaj A N : I IRAN A 32 A
APINOSS ORISABY 80| [Npa] 98[]-Uey)| UDUaX HoBISABL SO] JWrNpg) :.,m, 118 Jefidwog
Liouax JoejsAey SOl Jurnpal asf-usd|LouaX yjoejsAey SOl I npa M 2 Jasihzd
»_uﬁm»ms.mo;&:_om BSM-1BuUUBD] UoUSX yoBjSARY ST W hpa) = - g uogdeaxauousy _ ol
/ e T 1063 - -]
/ T weRE] Bs[rue)) 10048 / , g SsUogUoUsy m_ Wy W
m \ \ ooisl asn-ue)) P04 / / T\ i b usio) mm mm
' Ry o 51 hoc
. w \ ﬁ@w Ll ! m s : _vm o B SOITOS - / V/ \ W £ Aginoes |31)m
I A) UOIEI0IA 3 =TT ‘akesn et 2 I A W I e T B :
| | [puommoin afiu 3314 | sqmy ueiseq - sBesn IEIKIE: W\ x| | x] NI\ wi |[WIF |8
KL Sy RNV DA \ A\ JElala
P o " o Yo X — ‘ ok gl et o
Fem § 'sadgH40 sBqunN| | e TS e T\ S =S T I A)
i & 'spoped-gnE Jo ssaquin t T) i
~ uouax yaeisieu oy juy nps auisy W “ m p
Il I . |
O W ; ,
ﬂ@z FABIEIS
001
oLl pLLL cLibl OLLL 80LL 900k OzLL oLzl 802L 902l v0zZl zozt 0zzL 2OLL 200l

Zl ainbig

PCT/US2004/030256

WO 2005/029382

Py

« WaoXioBleABH oIS ABY SO Jurrpal

yoBlsARH jorisABY SO W nps
aresnaleeuady jorisAy S0l I hps)

"otz :e9Touspuadsp embTUR TBAOJ
§TLZZ. auno) Xouspusds(
LG9T :3UNo] ssefl

 ysydsuondanxg joslsABy Sal Iurhpa)

SWBISUOD joBS ARy SO IUrhps] ™

§ L AL 3

OBISABLAYOBISABHIBIERISNAASE, D

SHOBISABL SO IUINPa i
joBisAvy Sop W tps
oy i
m o ’ ; D =
_ sy awapy ,“ Ny SPE(EG _ 2l Thn T e e s e mm:.ﬁ:mw&
~ upuax «_omﬁ%smozs%m” ojied 89n0S joeisAeH
auozo [¥]
T auep: 3]
VM: R taates 7] |
wawioz [¥]
104 JOISARY ST W Tpa SS[1-UBD| UOUBX HOBISABL SOy Jur fipal Axouch - [
THOBISREY SO TIPS Bafien| UoUBX J5EieAeY SO JUPpa -
G JOBISABY SI] JTPS SS-UBD| UOUBX 40BISAEY o] JWIhpa o
HOBISACY SO[JUITRS| SSM-iouUe)] UoUSX joBisAey Sof W Nps Jesitd
/ w XGAE[BS[TuBD, 100ig] g uoilaoxguouey, - | i |
PONP——— . - . - ; - = Q.
. / \ hd wawm ISfrUeD); 10048} . < cpEsUoIUUa) ._nh. m i
f~1 | T ol asprued) 100 RN 2 y || 5
[t [anw | uompedeonog | IR Bk umos - MG
[Ysuongion ging | e | sanyfusisaq -afesq) - - IR \ ' € / Apoes JEE| & m
S U . [Fp JORA R T N i - T a1 N =
aLlLL vLLL ¢lil OLLL 80LL alel viel clel oigl 80El 90¢L ¥0gl c0gl c0LL

Vel ainbidg

PCT/US2004/030256

WO 2005/029382

- =¥ [wRr 1" pOB 1S DIvEISARPBISABHIEIERISNAASK D
aalp 8aaL A [Al feoue
| Uakag 3o
a8 UBs.
zgeL || o
! \ uns-[¢]
0scl , I
9 Nm_.\‘m XCABI[] FE(UED
iy plojueyE npa-[7
zge1—1I rnpa-L
L m_n,_.u_..m_ P—
— 4 1 : 5
9LEL™ | 1 BARI3] asn-ue) Jxlxlx % x| x| xiivr jopisheH | |
vieL—f} TG e e o _ Sl
JoRISACH] 1xlx]x)x 1 Ixl =) x)xlle auozo (7]
i i B, e s, % s % A 2 . y 7 3 EN
; BU0Za-fx] w \“ A wl %l % x| wl %tz auuape - [+
zJ6L—1t aLiuape-[5 I T I A I S B B TAE AP §-N
m D}.—M.W..B [nd x(«. wA:q.,) 4 x_ x,«. x«. o vﬁ x x,. L—.P BAIES n
Weuoo-f T ——0 = x| % x| x| xjlot waos [3]
g9¢g] —1ii | Axo1d-[q % S m m e wat I =
0LgL—1i S El S| & delxl Jop b i xixlxile Axod
. Apnoas | ssrrued) ¥, w ¥ xvm.x% X x| xli8 Jelichuag -,
y9gL——H] i sSArueDl 2 Prlxlxxp Ixlx}jz 1z -
99¢g |~ o i as-ued! & . T Tt - =l =
eEEAC o ITpeE (| —— aspjouued] E] M ;!.,.‘._ A X _._n__ﬁ_m...xm_._a:mxw m m .
dIZ $08 | SOBIEAGH] E: Ll b el s emesuoguouex gl & 8
o o YT - ¢ -
29eL— ™ s IBENE | v vl HE) 3
oom_‘\\.\\ Lm.ﬁ sind . / / 4] ¥ y x| rm Apnoss - 5] w m
x| X | x{ || |- Ixlle w8 B 8
= R . INEIR v JH EE
! Mwm .ﬁ m o) ol 0] I SE] R M T
E)
mmm_\ooov 0ZLlL 9ggl PSEl ¢0LL <200l

gel aanbly

PCT/US2004/030256

WO 2005/029382

umoq anop

dn aAnoN

ePPea up3

pPY

N6 weisAs Eo:amwxm_v asn-uen Hodxa wa)sAs
| 3.xm>m_. o \ ;mmj,.:.md_ 100.$
o enel | ‘ \ . esnrued 10044
_ j0044 o \ \ .m_)w,D.c.mo 1004¢
1061 | \ a|ny 90IN0g
/
zLLL 2ovk ‘ obLL 8011

1 ainbi4

PCT/US2004/030256

WO 2005/029382

i) m T mv) m WRT #08 | SONDRISABU0BISABHEIBRISNOASIR'D -
JUBAUDHBUUBPY SISHBALOD JPI joBishey SO pwnpa | ; TR S s s Tt et ; S
. ey payorishey oy pwnpe I
o SO Jp1 HoRISARL SO JUNpa |
(WU HIBWEIRIS 0 HoBISABY SO Jurnps |
H MBWBIRIS P ORI AR SO JUrNpS [
, PAOOBYYOIBAAISIT P OB SABY ST W hpa m.l,
' 1abfBoT [phol aydede B0 M- LONNTD T " pvey
.wEmo_imm.mo_?_mmc_m?_.m.xuw«m%s.mu_.u_s.%m S~ LONNYD M,{ ARAR X ARIR N b faoisher
,m._mﬁ_._n_om.maﬁﬁ.._oi"m.v_umﬁ%:.mo_.ﬁ_s.suo ISM-LONNYD & Wl LKL AL AT XX A X X ,rm auozo [+
i IXSOY SUGZO ORISARL SO YW TIPS 351~ LONNYD & —| yl-Pxlwtlu %l %l %lle suuepe (3]
m IS JPA HOBISACY SOp IWTIPa =
U0 JNBSOp Jpr HoBjSABY SO JUrnpa ALRL LR U ALK R RS lantes - [3]
_ seupepi0D \aueusr pr yoRysAey SOp U Npe [T AR x|l xfle wispion iff 2
4 . JobRo {phit ayoede 10 ISN-LONNYD & " » 1.8
"uoISISIad B0IAIBS S ES HORISABL SO W hPa IS LONNYD MH_ XX ARIR I Axoud HW
DT JBUIPIOD AQHUONRIaRa JpI JorisAeL SOy Jurhpe [) K| XY - uousx £y i
v o X Aw £ Apnoss [}
_ | eveskonemy s ssmvBesasen | ST)| | [xjle T e-EE
- vt SadAL0 BaunN Er o o T P m...s_i T TV ea e
! + Suoped-gns Jo Jaguiny D ;
mﬂ. 4 jaBYSABL SOF Jur hps [auteN m ! /
9161 451 A 4514 0161 9001 80S1L 9051 ‘ y0SL <206l 200!}

00!

Gl ainbi4

PCT/US2004/030256

WO 2005/029382

b1 gg)’ wosurll ol

{)BUTIAILOT " GS WINFII:
¢ {u {4) puadde- as

¢{({}Hutaagoa- {}axou 1) puadde qs

¢{u u)puadde-qs i
} {{)axsNsey T} oTTuR '

£ () 2098IVAT "UDAPTIYA W = T I03eA82I°TTan wvael
¢ {uuulpuadde g
¢ {uajoa w)pusdde g !

luul tusyol ¢,)pusdde s B

¢ {2d& w)puadde ds

${,; 12dAL),;)pusdde gs

${)} 29IInEBUTIIC H#oU = CF IITINGOUTIAIS
} {jButasgod Butaag arTand

{SUTT = SULT W !
S0l = uUDJ0d W i
tadfiq = odiq w
} {(SuTT qur ‘usyol Putzag ‘adia jur)usyol arTynd

¢ (}25T77ABIIY HAU = UDIAPTTIYR W 2ASTTABIAY aTTynd
{0 = odiy w gur oTTynd

7~ = BUTT W JUT oTLHnd

tuu = uUSyOl W BuTaag orrumd |

{g = TTYEILIT JUT OTTRd Teury JTIe3s
urnamoaaﬁwuﬁﬁimﬂm:ﬂuo.mum»m

{9 = NO'TODIMIS 3IMT OTTHRd TRWEF 0T3S
{8 = SIOVYE T OTTYRd TRUTT DTIIRIS

% = TENQIXIITEd HUr oTTmd TRUTT OTYe3s
‘e = Idn ur orTumd TRUTY OTIRLS

¢z = SLEIAOVYE JUT OTTHNd TRULE OTIES |
{1 = XIJ9dd FuF OTFLHnd TeuIT 0TIRIS |
{0 = LNMEWHOD 3UT OFTund TRUTT 0TIE}s |
} u2j0l sseyn oTrnd

{

w1

[wrrvo TS OTOBISABUOOBISABHABTEPISNAAGIA D

209l

XXX X Xix|xliv) joBjeAtH
LTI XIX[X% X XiA|XUHEL 8UDZOo {
b4 XXX Xixix{es aujuape &
XX XiX|X XIXTE XL .ﬁimwﬂ
XX XixixX{jol Wapioo &
X% : Xxixi%il e Axoud
- ®1lg uondeoxguousy,
£ /L smeuoguousy - | | o091}
. o wenl{|Elg|d
: mama.l 18IS
XIX| ¥ B XIX| G $8512d [} m.]
XIX{¥Xi% XiXl Y agpdwoy - | E m 8
% o I Anoss E m m
Xi%iX Xi% % ¥lie JIARET| .m .w,
L4 v G X
giMmiti— I Oiomlomit{miinirimioi ,
4 Ll Bl ot B
b

91 ainbiy

PCT/US2004/030256

b4

>

n

2

%

=

M

=

iy Jystaciosienizp |

11
10

/16

WO 2005/029382

i T
al sioaoyay 5]
im spud T
9l spEipim - 3
S sgiea (3]
¥l sefcucysondeid
£l AnugsBeupuoumung
ZiL AnugsBawgoubuo ¢ L~
wo (}
b commnisorklers ~L]
ot ANUINIo 4 m
. £2,
uopdasaaLiod g
Angugioles - |- o
[
<
\ ! B
— 5
v \ g
£ \ ﬂ/.m./
Z \ m,u&d
! \ e
c0ll 2001

TAWAS

80.L
0c/L

90/}

V.1l @inbid

PCT/US2004/030256

WO 2005/029382

99/l

GoLL

2oLl

il

sIolARYa(q

sued

sjobpim

SQI9A

hics

gr

ejep

haystack051804.zip

09/1 8G/L 9G.}

(272"

LGLL ZG11

g/1 ainbid

PCT/US2004/030256

WO 2005/029382

1811
9811
S8.L1L
¥8L.Ll

SLLL

L1111

€LL)

A

8.l 18l1

9.1 €811

1Z¥A°

c00l

R W L \ X somsheH [
5 s :F“. “ﬂ\\ﬁ. ¥ Buoza- [+]
v w i X ¥ aUuepe (%)
_ I : wiwl x| sanses-H| |
“ﬁmr--lill-lllll-ll-l lllnl_wﬂill-llrl‘\llll\-, L] nlIlI, .1110“m|1 Mll.- .H
] X I ¥ | =R | S =
E § : S I -~
= T N L
] W ¥ ¥ apfe | | S| &
E T R
P) 1Nl =
-I..l.. lllll ||_|| s TEREBUANRRNRE NN NN IV/ - e m = Amm
: uovex -[F]l S| &
|\ W\ | g
/ /w : / . Auinoas H m m
R EENREELNN xndxul, - aw i
I O - e) ,,s ..?, 1 =z |\ Vi - = | Sl
Foonp o e Y P ek e
- rr,“v- g 4-. - ,— —

0.1 8inbi4

Figure 17D

WO 2005/029382 PCT/US2004/030256

© I~ [e0] N
(o] D (o)) »
~ NN ~
- = h h ol
=
A £
P Xl
~
A A A e A
- ,
E E
- E A S - .
8 /
N ‘ -5 =
~ 3
N - '/‘1‘ " 'J:;' | - ."L — Af 77777
Al ' Vg Pig P LF-
(=] /
(o]
~ ;
-~ .
P : n =]
= S S~ &
s 5 5 T E £ &
£3 o o bl P S 0
L A = = 1) o]
2 = [T,] 63 (= E
N e e S
ol
N B 3 . ol
= (1} sdu.njitlos haystack
0} hays%asl:ﬂ:ﬂ 804 zip

1788 __

PCT/US2004/030256

WO 2005/029382

oi8i

jpoue)

Mo

90uUdjsIslod

« OpI'xeael Jo ., |bs-eael

uonesisse[o wa)sAsgns

ses

waysAsqns J

9081

081

c08l

8] aunbi4

PCT/US2004/030256

WO 2005/029382

Y061

|poue) Mo

A uolejuasaid

« AU 19jAI0s XRAR[JO |, IME BAR[
1o z.tsm.mma__om.m(_oxo < DUIMS BAR[

uoneoljisselo walsAsqns

sos waisAsgns J

/

co6l 9081

081 zo8L

61 anbi4

PCT/US2004/030256

WO 2005/029382

800¢ 9002

uonejussald gapA

JO ..’

« IMS 0sdi[09°6l0
ne-eael 1o | Buims-enel

sos

A UONEONISSE[D Wa)sAsgns
« dNU18IeS XeAE] sosn | wesAsqns J|

g0z enbi4
A uonejussald dopiseQ UONEOLISSEJD Wo)sAsgns

wia)sAsqns Jj

¥00¢ 2002

VO0Z 24nbi4

PCT/US2004/030256

WO 2005/029382

901

|[oouen MO

uonejussalid

uolneasald gapn

JO uoljejusg

ald dopise

uoieoljisse|o walsAsqns

payisse[d S|

wiasAsqns Jj

yoile

[AV] X4

12 ainbi4

PCT/US2004/030256

9022 ¥0ZZ 2022

WO 2005/029382

umoq oAb | dn ero °L91Ie@ | | MWP3 PPV
uoljejuasaid# 9sSN-LONNVYD aoua)sIsiad#
o (\-| asn-ue)n J00i$
«x BAB[asn-uen 1004
J001¢ asn-ued 1004$
1064e] a|ny 82InN0g

g aInbi4

PCT/US2004/030256

WO 2005/029382

oilee

jgoue)

MO

wa)sAsqgngabie]

uoneslIssejo wa)sAsqns

001l

A UsJpjiyownu

Auadoud waisAsgns

80€C

90€e ¥0€c coee

€z aInbi4

PCT/US2004/030256

WO 2005/029382

8012

S X X IXiy /// N (o7
Sl M e b e e X x [X x N[>z
. lag
=7
XXX X XX X X ¥ tz| uonedljddyawoy
X AEAEAE X €7 1es \OEpeXY
XXX X X (44 1ea \Glpsxy m 1444
b R X 1z wak e | o |
X . X | xx X i sjqeisnipe | S| W
XIXIK XX X X X X 6L uoneoiddyieas |
) by Wi ¥ ¥ =1 ajaAdiolow
X X IxixIx] |x m NoAOI#MBU |
X . X1 Ixixdx] [x 9} ejmeu | g
% - ¥ =1 AlO1SIHUpPSIS m
. ¥ ¥l SJUNOD2wiaylo l@m.\
X X £l smons dgl |
- Zl tondeoxgueo] | [oeve
Jlx Ll ez N
117 oL UETTOITIE | o | 8iie
/ w 6 ueo .W//
o saxejdoid
\ \ W 7 3ZIN0WE
\ \ 1% 9 yofed
\ . G SB8XE||ed0|
) ¥ T
/1] c dejlpaiapio
[/ z SINBUNSTIAK
| | Spesesne e
mxmxmmnmmwmwmwmmummesiesqazﬂ | \
S I A s R |
062 oWz sz osye gooh Dove VOve

¢ 2Inbly

PCT/US2004/030256

WO 2005/029382

806 T—]

90¢6¢

g L i8] JaplinguLoj
g Vil Jepingebed | &
L4 z! 1joe] peay | ©
g 1 1 ig2 uoboj e
Lig zil y| ipzl uoneoiddyaoy
l 4 g| leg| leaA0epaxy |
b 4 S| ez 1eaAGLpexy | E
: v [4 S| iz teakzlpe | <
b 4 G| loz a|qeisnipe
Liziv Lz T6Ll Uoneonddyses
|4 2 gl epfoiojow | o
4 Z 1 noAoIMau | @
14 4 ol JeOMau 5
14 l Sl Aosiypes0 1€l @ &
-+ 8 2ld
14 2) SIUNOJOVIBUI0 |21 & e
€ ¥ L €l aoid | & S
14 Zl uondsoxgueo| |
el |2 € Ll ENPAPUL | @ N
v [4 z oL ueoj04dde | S
4 b 6 ueo |
Gig soxe | doid
} € b pil oZjowe | o
L Gi9 yoked | 8 //
. l igig sexe] [edo|
[e 4 I 1S bes
l 14 e deNpeiaplo |
‘ € € z SIINBUSTNX | 5
F € € L | smnBuMlsTNLAH
SRR EERHERE
I M S E R L T
gl @ O Fin

00se

¢0s¢

0S¢

Gz @inbi4

PATENT COOPERATION TREATY

PCT . \recp §6 FEB 2005

DEGCLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SL‘WW'PO PCT

(PCT Atticle 17(2)(a), Rules 13ter.1(c) and Rule 39)

Applicant's or agent's file reference IMPORTANT DECLARATION Date of mailing(day/month/year)
2837/103 WO 14/01/2005
International application No. * ~ |International filing date(day/month/year) (Earliest) Priority date{day/month/year)
PCT/US2004/030256 15/09/2004 19/09/2003
International Patent Classification (IPC) or both national classification and IPC
GO06F17/60
Applicant

LATTIX, INC.

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will
be established on the international application for the reasons indicated below

1. [:[The subject matter of the international application relates to:
a. D scientific theories.

mathematical theories

plant varieties.

animal varieties.

e o 0 U

)

essentially biological processes for the production of plants and animals, other than microbiological processes
and the products of such processes.

schémes, rules or methods of doing business.

schemes, rules or methods of performing purely mentél acts.
schemes, rules or methods of playing games.

methods for treatment of the human body by surgery or therapy.

methods for treatment of the animal body by surgery or therapy.
k.
I
m.

diagnostic methods practised on the human or animal body.
mere presentations of information.
computer programs for which this International Searching Authority is not equipped to search prior art.

2. D The failure of the following paris of the international application to comply with prescribed requirements prevents a
meaningiul search from being carried out:

D the description El the claims I:l the drawings

3. [:l The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex G of the
Administrative Instructions prevents a meaningful search from being carried out:

D the written form has not been furnished or does not comply with the standard.
[[] thecomputer readable form has not been fumished or does not comply with the standard.
4. D The failure of the tables related to the nucleotide and/or amino acid sequence listing to comply with the technical

requirements provided for in Annex C-bis of the Administrative Instructions prevents a meaningful search from being
carried out:

D the written form has not been furnished.
|:| the computer readable form has not been furnished or does not comply with the technical requirements.

5. Further comments:

Name and malling address of the International Searching Authority Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2 .
)) NL-2280 HV Rijswijk Marie-Frangoilse Provot

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Mes? Fax: +31-70 340-3018

Form PCT/ISA/203 (January 2004)

international Application No. PCT/ US2004/ 030256

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 203

The claims relate to subject matter for which no search is required
according to Rule 39 PCT. Given that the claims are formulated in terms
of such subject matter or merely specify commonplace features relating to
its technological implementation, the search examiner could not establish
any technical problem which might potentially have required an inventive
step to overcome. Hence it was not possible to carry out a meaningful
search into the state of the art (Art. 17(2)(a)(i) and (ii) PCT; see
Guidelines Part B Chapter VIII, 1-3).

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter 1I procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guideline C-VI, 8.5), R
should the problems which led to the Article 17(2) declaration be

overcome.

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

