7106959 A2 NI 0O 0O OO A

r~

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 September 2007 (27.09.2007)

lﬂfb A0 000 OO

(10) International Publication Number

WO 2007/106959 A2

(51) International Patent Classification:
GOG6F 15/80 (2006.01)

(21) International Application Number:
PCT/BE2007/000027

(22) International Filing Date: 19 March 2007 (19.03.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

0605349.0 17 March 2006 (17.03.2006) GB

(71) Applicants (for all designated States except US): IN-
TERUNIVERSITAIR MICROELEKTRONICA
CENTRUM VZW [BE/BE]; Kapeldreef 75, B-3001
Leuven (BE). FREESCALE SEMICONDUCTORS
INC. [US/US]; 6501 William Cannon Dr., Austin, TX
78735 (US).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): KANSTEIN,
Andreas [DE/BE]; Gouvernementsweg 168, B-1950
Kraainem (BE). BEREKOVIC, Mladen [DE/DE];
Laubeichenfeld 32, D-30966 Hemmingen (DE).

(74) Agents: BIRD, William, E. et al.; Bird Goén & Co, Klein

Dalenstraat 42A, B-3020 Winksele (BE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv))

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: RECONFIGURABLE MULTI-PROCESSING COARSE-GRAIN ARRAY

Mode, Flow
Changei | Controller 26
24 i
: Program
L H Counter
i 21
“C"ﬁgﬁég.!‘?‘-’! Contfroller 27 |«--
25 1
: Program
l) Counter
1 22
Controller 28 |<--:
Program
Counter
23

instruction Fetchi
29¢

Third partition
19

instruction Fetch
29b

Second partition

Instruction Fetch
29a

First partition
18 17

(57) Abstract: A signal processing device adapted for simultaneous processing of at least two process threads in a multi-processing
manner is described. It comprises a plurality of functional units capable of executing word- or subword- level operations on data,
a means for interconnecting said plurality of functional units, said means for interconnecting supporting a plurality of interconnect
& arrangements that can be dynamically switched, at least one of said interconnect arrangements interconnecting said plurality of
& functional units into at least two non- overlapping processing units each with a pre-determined topology, the signal processing device
furthermore comprising at least two control modules, each control module being assigned to one of said processing units. The
present invention also provides a method for executing an application on such a signal processing device, a method for compilation
of application source code in order to obtain compiled code being executable on such a signal processing device, and to optimisation
methods for applications to be executed on such a signal processing device.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

Reconfigurable multi-processing coarse-grain array

Technical field of the invention

The present invention relates to signal processing devices adapted for
simultaneously processing at least two threads in a multi-processing or multi-
threading manner, to methods for executing an application on such a signal
processing device, to methods for compilation of application source code in
order to obtain compiled code being executable on such a signal processing
device, to methods for adjusting applications to be executed on such a signal
processing device, to a computer program product for executing any of the
methods for executing an application on such a signal processing device, to
machine readable data storage devices storing such computer program
product and to transmission of such computer program products over local or

wide area telecommunications networks.

Background of the invention

Nowadays, a typical embedded system requires high performance to
perform tasks such as video encoding/decoding at run-time. It should consume
little energy so as to be able to work hours or even days using a lightweight
battery. It should be flexible enough to integrate multiple applications and
standards in one single device. It has to be designed and verified in a short
time-to-market despite substantially increased complexity. The designers are
struggling to meet these challenges, which call for innovations of both
architectures and design methodology.

Coarse-grained reconfigurable architectures (CGRAs) are emerging as
potential candidates to meet the above challenges. Many designs have been
proposed in recent years. These architectures often comprise tens to hundreds
of functional units (FUs), which are capable of executing word-level operations
instead of bit-level ones found in common FPGAs. This coarse granularity
greatly reduces the delay, area, power and configuration time compared with
FPGAs. On the other hand, compared with traditional "coarse-grained"
programmable processors, their massive computational resources enable

them to achieve high parallelism and efficiency. However, existing CGRAs

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

have not yet been widely adopted mainly because of programming difficulty for
such a complex architecture.

Summary of the invention

In a first aspect, the present invention relates to a signal processing
device adapted for simultaneous processing of at least two process threads in
a multi-processing manner. The signal processing device comprises a plurality
of functional units capable of executing word- or subword-level operations on
data, and routing resources for interconnecting said plurality of functional units,
said routing resources supporting a plurality of interconnect arrangements that
can be dynamically switched, at least one of said interconnect arrangements
interconnecting said plurality of functional units into at least two non-
overlapping processing units each with a pre-determined topology, each of
said processing units being configured to process a respective one of said
process threads. Another of said interconnect arrangements can interconnect
said plurality of functional units into a single processing unit. The signal
processing device furthermore comprises at least two control modules, each
control module being assigned to one of said processing units for control
thereof. With word- or subword-level operations is meant non-bit level
operations.

It is an aspect of the invention that said functional units can be grouped
in predetermined/static groupings including at least one functional unit, each of
said groupings defining a processing unit.

The control modules may include instruction fetch units and control
units. Said control modules are adapted for controlling the word- or sub word-
level (non-bit level) operations within their assigned processing unit.

In embodiments of the present invention, said control module may
perform operations (increment, change) on a program counter. Preferably it
also supports some debugging.

In embodiments of the present invention, a plurality of data storages
may be provided, wherein the routing resources interconnect the plurality of
functional units and the plurality of data storages. The data storages may be

registers. The data storages may be shared between said functional units. In

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

embodiments of the present invention, one data storage may be provided for
each processing unit.

A signal processing device according to embodiments of the present
invention may include a data storage in which an application code is stored,
said application code defining a process comprising the at least two process
threads and being executable by said processing units. The routing resources
may then be adapted for dynamically switching between interconnect
arrangements at pre-determined points in the application code.

In a signal processing device according to embodiments of the present
invention, the routing resources may be adapted for dynamically switching
interconnect arrangements depending on data content of a running application.
Such data content may for example be a parameter file describing to which
processing unit functions of a thread are to be mapped, or data, e.g. one or
more bits, in a data storage of one of the functional units. The routing
resources may comprise multiplexing and/or demultiplexing circuits. The signal
processing device may have a clock, wherein the multiplexing and/or
demultiplexing circuits are adapted to be configured with appropriate settings
for dynamically switching interconnect arrangements, wherein the settings may
change every clock cycle.

A signal processing device according to embodiments of the present
invention may furthermore comprise at least one global storage shared
between a plurality of functional units.

A signal processing device according to embodiments of the present
invention may include at least two different types of functional units.

In a signal processing device according to embodiments of the present
invention, at least another of said interconnect arrangements may interconnect
said plurality of functional units into a single processing unit under control of a
single control module.

In a signal processing device according to embodiments of the present
invention, at least one of the at least two control modules may be part of a
global control unit for use in an interconnect arrangement with a single
processing unit. In at least one interconnect arrangement with a single

processing unit, at least one of the control modules may drive control signals

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

of all the functional units by having at least one other control module to follow
it.

A signal processing device according to embodiments of the present
invention may be adapted for re-using, in an interconnect arrangement with a
single processing unit, at least part of the control modules assigned to the
processing units in an interconnect arrangement with a plurality of non-
overlapping processing units in the control module used.

In a second aspect, the invention relates to methods for executing at
least one application on a signal processing device as disclosed above. An
application is typically executed on a signal processing device as a single
process thread, meaning under control of a single control module.

It is an aspect of the invention to provide a method for executing at least
one application wherein switching between a single thread approach and a
multi thread approach is applied, wherein a portion of the application is split in
parts, and each part is executed as a separate process thread, on one of the
predefined processing units. The method according to embodiments of the
presént invention thus comprises dynamically switching the signal processing
device into a device with at least two non-overlapping processing units, and
splitting a portion of the application in at least two process threads, each
process thread being executed simultaneously as a separate process thread
on one of the processing units, each processing unit being controlled by a
separate control module.

This single or multi-threading switching method of executing an
application is supported by the configuration capabilities of the signal
processing device, in particular the capability to operate it in unified mode,
wherein all functional units of the device operate in one thread of control and in
split mode, wherein all functional units within a single processing unit operate
in one thread of control, and the processing units themselves simuitaneously
operate in different threads of control.

Or thus, the signal processing device comprises of a plurality of
partitions, each capable of running independently a process thread.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

A consequence is that within each processing unit the instruction flow
can change, for instance due to a branching in the code, independently of the
instruction flow in another processing unit.

The use of a signal processing device with a plurality of functional units
enables instruction level parallelism while the organization of these functional
units in groupings defining processing units enables thread-level parallelism.
Because the groupings can be changed dynamically, more flexibility can be
obtained than with a multi-core approach.

The capability is realized by providing said two or more control modules,
each of said control modules being capable o‘% executing a single thread of
control.

In accordance with embodiments of the present invention, switching the
signal processing device into a device with at least two processing units may
be determined by a first instruction in application code determining the
application. The first instruction may contain a starting address of the
instructions of each of the separate process threads. The starting address may
be an indicator of where instructions are to be found. It can be a direct
reference to a location or a pointer to a location, the location for exampie being
in a register or in a data storage.

A method according to embodiments of the present invention may
furthermore comprise dynamically switching back the signal processing device
into a device with a single processing unit, synchronising the separate control
modules and joining the at least two threads of the application into a single
process thread, the single process thread being executed as a process thread
on the single processing unit under control of the synchronised control
modules. Switching back the signal processing device into a device with a
single processing unit may be determined by a second instruction in the
application code determining the application. The second instruction may
contain a starting address of the instructions to be executed as the single
process thread.

In accordance with embodiments of the present invention, the single
control module may re-use at least one of the separate control modules when

executing the application as a single process thread.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

In accordance with embodiments of the present invention, in an
interconnect arrangement with a single processing unit, one of the separate
control modules may drive control signals of all the functional units by having
the other control modules to follow it.

It is clear that this single or multi-threading switching method is easily
extendable toward a method wherein switching between a first organization of
partitions, wherein some of the partitions are executed together as a single
thread and others as another thread and a second different organization of
partitions.

This generalised switching method may be rephrased as a dynamically,
run-time reconfiguring of the device, supported by a static, predetermined
organization of the device.

A method is furthermore provided for dynamically reconfiguring a signal
processing device in a process for executing at least one application on said
signal processing device, said signal processing device comprising a plurality
of functional units, capable of executing word- or sub-word level (non-bit level)
operations on data, said functional units being grouped into one or more non-
overlapping processing units, and routing resources for interconnecting said
functional units, said application being arranged as a plurality of threads of
which at least a part thereof are at least partly simultaneously executable, said
method comprising:
configuring said computing signal processing device by providing a first
assignment of one or more threads to said processing units;
after said configuring, simultaneously executing said one or more threads,
wherein each of said executed threads being executed on one or more of said
processing units in accordance with said first assignment;
ending said execution;
configuring said signal processing device by providing a second, different,
assignment of one or more threads to said processing units;
after said configuring, simultaneously executing said one or more threads,
each of said executed threads being executed on one or more of said

processing units in accordance with said second assignment.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

To avoid much overhead, the control modules being used for single
thread processing may be re-using at least a part (or even complete) the
control modules, available for each processing unit.

in an embodiment thereof, this re-use may be realized by synchronizing
the control modules of the patrtitions, meaning using the same inputs by each
of said elements and distributing their respective outputs to their assigned
partition.

It is to be noted that the functional units may be flexibly connected, for
instance by providing multiplexing and/or de-multiplexing circuits in between
them. The dynamical reconfiguring may be realized by providing the
appropriate settings to said multiplexing and/or de-multiplexing circuits. Said
settings can change from cycle-to-cycle.

The invention also relates to a method for compilation of application
source code in order to obtain compiled code being executable on a signal
processing device as described, in particular to instruction(s) to be included at
source code level to partition the code and also to instruction(s) to be included
automatically into the compiled code, for switching being execution modes
(e.g. unified and split mode).

In this aspect, the present invention provides a method for compilation
of application source code in order to obtain compiled code being executable
on a signal processing device as described. The method comprises inputting
application source code and generating compiled code from the application
source code. Generating the compiled code comprises including, in the
compiled code, a first instruction for configuring the signal processing device
for simultaneous execution of multiple process threads and for starting the
simultaneous execution of the process threads, and including a second
instruction to end the simultaneous execution of the multiple process threads
such that when the last of the multiple process threads decodes this
instruction, the signal processing device is configured to continue execution in
unified mode. Hence the configuring may be done by the code itself
(dynamically).

According to a further aspect of the present invention an architectural
description of said signal processing device is provided, including-a description

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

of the grouping of the functional units. Indeed such signal processing device is
typically generated as an instance of a generic template. For the described
invention the generic template should include the possibility to group functional
units so as to form one or more processing units, and to provide control
modules per group.

In embodiments of the present invention, the method may furthermore
comprise providing an architectural description of the signal processing device,
the architectural description including descriptions of pre-determined
interconnect arrangements of functional units forming processing units.
Providing the architectural description may include providing a separate control
module per processing unit.

Still a further aspect of the invention is to provide a compilation method,
comprising inputting application source code and the above-described
architectural description, and generating compiled code, including a first
instruction (e.g. denoted fork), configuring the signal processing device for
execution of multiple threads and starting the execution of the threads, and a
second instruction (e.g. denoted join) to end the execution of the multiple
threads. In particular said second instruction is such that when the last of the
threads decode this instruction, the signal processing device is configured to
continue in unified mode.

In embodiments of the present invention, the first instruction may
contain the start address of instructions of each of the multiple process
threads. In embodiments of the present invention, the second instruction may
contain the start address of instructions to be executed in unified mode after
the execution of the multiple process threads.

In embodiments of the present invention, generating the compiled code
may comprise partitioning the application source code, thus generating code
partitions, labelling in which mode and on which processing unit the code
partitions are to be executed, separately compiling each of the code partitions,
and linking the compiled code partitions into a single executable code file.

Yet another aspect of the present invention is to provide a compilation
method, comprising a step of inputting application source code, and the above-
described architectural description, a step of partitioning the code and labeling

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

how (unified/split mode) and where (which processing element) the code will
be executed, separate compilation of each of the code partitions and linking
the compiled code into a single executable.

The invention further relates to adjustment environments wherein, for
applications, exploration of various partitioning is performed, said adjustment
environment also being capable of changing the instance of an architectural
description of said signal processing device for exploring various
configurations of said signal processing device.

Specific embodiments of the invention are set out in the accompanying
claims. Features from the dependent claims may be combined with features of
the independent claims and with features of other dependent claims as
appropriate and not merely as explicitly set out in the claims.

The above and other characteristics, features and advantages of the
present invention will become apparent from the following detailed description,
taken in conjunction with the accompanying drawings, which illustrate, by way
of example only, the principles of the invention. This description is given for the
sake of example only, without limiting the scope of the invention. The
reference figures quoted below refer to the attached drawings.

Brief description of the drawings

Fig. 1 illustrates an example of an embodiment of a coarse grain array
for use with embodiments of the present invention.

Fig. 2 illustrates a concept for the reusability and scalability of control
modules and instruction fetch units in accordance with embodiments of the
present invention.

Fig. 3 illustrates a detailed datapath of a functiona! unit in accordance
with embodiments of the present invention.

Fig. 4 illustrates scalable partitioning-based threading in accordance
with embodiments of the present invention.

Fig. 5 illustrates a hierarchical multi-threading controller in accordance
with embodiments of the present invention.

Fig. 6 illustrates source code reorganization in accordance with
embodiments of the present invention.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027
10

Fig. 7 illustrates a multi-threading compilation tool chain in accordance
with embodiments of the present invention.

Fig. 8 illustrates, as an example, threading on an MPEG2 decoder.

Fig. 9 illustrates an experimental dual-threading compilation flow.

Fig. 10 illustrates dual-threading memory management in accordance
with embodiments of the present invention.

Fig. 11 illustrates a shadow register file set-up according to
embodiments of the present invention.

Description of illustrative embodiments

The present invention will be described with fespect to particular
embodiments and with reference to certain drawings but the invention is not
limited thereto. The drawings described are only schematic and are non-
limiting. In the drawings, the size of some of the elements may be exaggerated
and not drawn on scale for illustrative purposes. The dimensions and the
relative dimensions do not correspond to actual reductions to practice of the
invention.

Furthermore, the terms first, second, third and the like in the description
and in the claims, are used for distinguishing between similar elements and not
necessarily for describing a sequential or chronological order. It is to be
understood that the terms so used are interchangeable under appropriate
circumstances and that the embodiments of the invention described herein are
capable of operation in other sequences than described or iliustrated herein.

Moreover, the terms top, bottom, over, under and the like in the
description and the claims are used for descriptive purposes and not
necessarily for describing relative positions. It is to be understood that the
terms so used are interchangeable under appropriate circumstances and that
the embodiments of the invention described herein are capable of operation in
other orientations than described or illustrated herein.

It is to be noticed that the term “comprising”, used in the claims, should
not be interpreted as being restricted to the means listed thereafter; it does not
exclude other elements or steps. It is thus to be interpreted as specifying the

presence of the stated features, integers, steps or components as referred to,

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027
11

but does not preclude the presence or addition of one or more other features,
integers, steps or components, or groups thereof. Thus, the scope of the
expression “a device comprising means A and B” should not be limited to
devices consisting only of components A and B.

Similarly, it is to be noticed that the term “coupled”, also used in the
claims, should not be interpreted as being restricted to direct connections only.
Thus, the scope of the expression “a device A coupled to a device B” should
not be limited to devices or systems wherein an output of device A is directly
connected to an input of device B. It means that there exists a path between
an output of A and an input of B which may be a path including other devices
or means.

A particular coarse-grained reconfigurable architecture (CGRA), ADRES
(architecture for dynamically reconfigurable embedded systems), is known and
manufactured by Interuniversitair Microelektronicacentrum vzw, Leuven,
Belgium. ADRES addresses issues of existing CGRAs. The present invention
will be described with reference to the ADRES architecture. This is, however,
not intended to be limiting; the present invention may also be used for other
suitable coarse grain array architectures.

The ADRES archirecture is a datapath-coupled coarse-grained
reconfigurable matrix. The ADRES architecture is a power-efficient flexible
architecture template that combines a very long instruction word (VLIW) digital
signal processor (DSP) with a 2-D coarse-grained heterogeneous
reconfigurable array (CGA), which is extended from the VLIW’s datapath.
VLIW architectures execute multiple instructions per cycle, packed into a single
large “instruction word” or “packet”, and use simple, regular instruction sets.
The VLIW DSP efficiently executes control-flow code by exploiting instruction-
level parallelism (ILP). The array, containing many functional units, accelerates
data-flow loops by exploiting high degrees of loop-level parallelism (LLP). The
architecture template allows designers to specify the interconnection, the type
and the number of functional units. ‘

The ADRES template thus tightly couples a very-long instruction word
(VLIW) processor 11 and a coarse-grained array 12 by providing two functional
modes on the same physical resources. It brings advantages such as high

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

12

performance, low communication overhead and easiness of programming. An
application written in a programming language such as e.g. C can be quickly
mapped onto an ADRES instance. ADRES is a template instead of a concrete
architecture. Architectural exploration becomes possible to discover better
architectures or design domain-specific architectures.

The ADRES array is a flexible template instead of a concrete instance.
An architecture description language is developed to specify different ADRES
instances. A script-based technique allows a designer to easily generate
different instances by specifying different values for the communication
topology, supported operation set, resource allocation and timing of the target
architecture. Together with a retargetable simulator and compiler, this tool-
chain allows for architecture exploration and development of application
domain specific processors. As ADRES instances are defined using a
template, the VLIW width, the array size, the interconnect topology, etc. can
vary depending on the use case.

The ADRES template includes many basic components, including
computational, storage and routing resources. The computational resources
are functional units (FUs) 13 that are capable of executing a set of word-level
operations selected by a control signal. Data storages such as register files
(RFs) 14 and memory blocks 15 can be used to store intermediate data. The
routing resources 16 include wires, multiplexers and busses. An ADRES
instance thus comprises functional units 13, registers 15 and register files 14,
and routing resources 16 such as busses and multiplexers to connect the
functional units 14 and the register files 14.

Basically, computational resources (FUs) 13 and storage resources
(e.g. RFs) are connected in a certain topology by the routing resources 16 to
form an instance of an ADRES array. The whole ADRES array has two
functional modes: the VLIW processor 11 and the reconfigurable array 12, as
indicated by the dashed lines in Fig. 1. These two functional modes 11, 12 can
share physical resources because their executions will never overlap thanks to
a processor/co-processor model. The processor operates either in VLIW mode

or in CGA mode. The global data register files RF’ 15 are used in both modes

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

13

and serve as a data interface between both modes, enabling an integrated
compilation flow.

The VLIW processor 11 includes several FUs 13 and at least one multi-
port register file RF’ 15, as in typical VLIW architectures, but in this case the
VLIW processor 11 is also used as the first row of the reconfigurable array 12.
Some FUs 13 of this first row are connected to the memory hierarchy 10,
depending on the number of available ports. Data accesses to the memory of
the unified architecture are done through load/store operations available on
these FUs.

When compiling, with a compiler, applications for an ADRES
architecture, loops are modulo-scheduled for the CGA 12 and the remaining
code is compiled for the VLIW 11. By seamlessly switching the architecture
between the VLIW mode and the CGA mode at run-time, statically partitioned
and scheduled applications can be run on the ADRES instance with a high
number of instructions-per-clock (IPC).

To remove the control flow inside loops, the FUs 13 support predicated
operations. The results of the FUs 13 can be written to data storages such as
the distributed RFs 14, i.e. RFs 14 dedicated to a particular functional unit 13,
which RFs 14 are small and have fewer ports than the shared data storage
such as register files RF’ 15, which is at least one global data storage shared
between a plurality of functional units 13, or the results of the FUs 13 can be
routed to other FUs 13. To guarantee timing, the outputs of FUs 13 may be
buffered by an output register. Multiplexers 32 are part of the routing resources
16 for interconnecting FUs 13 into at least two non-overlapping processing
units. They are used to route data from different sources. The configuration
RAM 31 (see Fig. 1 and Fig. 3) stores a few configurations locally, which can
be loaded on a cycle-by-cycle basis. The configurations can also be loaded
from the memory hierarchy 10 at the cost of extra delay if the local
configuration RAM 31 is not big enough. Like instructions in microprocessors,
the configurations control the behaviour of the basic components by selecting
operations and controlling muitiplexers. An example of a detailed datapath as
described above is illustrated in Fig. 3

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

14

An embodiment of the invention extends a highly parallel data
processing architecture, e.g. the ADRES, or a coarse-grain reconfigurable
array, to a multi-threading/processing device. As set out above, an ADRES
instance comprises functional units 13, data storages such as registers and
register files 14, and connecting resources 16 such as busses and muitiplexers
to connect the functional units 13 and the register files 14. ADRES supports an
MIMD (Multiple Instruction Multiple Data) programming model by, every cycle if
needed, independently configuring every element of the array. In addition,
functional units 13 may support SIMD (Single Instruction Multiple Data)
processing to utilize the width of the data path. A special programming
approach is used to extract very high instruction level parallelism (ILP) from
suitable portions of the code. ADRES also implements a traditional VLIW (Very
Long Instruction Word) mode in which less functional units are executing. This
may be used for code where less instruction-level parallelism (ILP) is
obtainable, and where a traditional programming model is sufficient.

For the embodiment of the invention the ADRES array is being sub-
divided into partitions, to enable thread-level parallelism. Every partition or
combination of partitions can execute in VLIW mode and in array mode. This
multi-threading could also be achieved by instantiating multiple ADRES
instances, but the novel partitioning approach allows to also run a thread on
two or more joined partitions. This is essentially providing another dimension of
reconfigurability. |

The topology, the connectivity, and the features of the functional units
13 and register files 14 of an ADRES instance are defined at design time with
an architecture template. For the multi-threaded ADRES the template is
extended to include information about the partitioning and also to guarantee
that each partition or combination of partitions is itself a valid ADRES instance.
The architecture template defines all aspects of a specific ADRES instance for
the compiler. ‘

Figure 1 shows an example for a possible ADRES template with three
partitions 17, 18, 19. Thereby, for example one, two or three threads may be
executed in parallel, using various combinations of partitions to execute a

thread. For example, a single thread could execute on the whole 8x8 array

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

15

(indicated as first partition 17), or on the 1x2 sub-partition (indicated as third
partition 19), or on the 4x4 sub-partition (indicated as second partition 18), with
the rest (non-used part) of the array in a low-power mode. In the following, the
partitions of this example are indicated first partition 17, second partition 18
and third partition 19 respectively. The partitions 17, 18, 19 have been chosen
to be of different size, to better adapt the architecture to the degree of
parallelism available in a thread. This can be combined with using
heterogeneous functional units, and even with heterogeneous data path
widths, to optimize a partition for some specific functionality.

The embodiment of the invention leverages and extends the
programming model of ADRES. The compiler generates code for the VLIW
mode and for the array mode e.g. based on the data in a parameter file and
based on some constructs in the code, like a function name prefix and
intrinsics, that is, special instructions. Similarly, the split mode operation, i.e.
the mode of operation when a plurality of threads are run in parallel on a
plurality of non-overlapping processing units, each processing unit being under
the control of a control module assigned to said processing unit, may be
indicated e.g. by settings in a parameter file and by using special instructions
for splitting and joining partitions. The entries in the parameter file describe to
which partition the first and subsequent functions of a thread shall be mapped,
so that the compiler knows which architecture template to use.

An enhanced compiler may automatically identify parallel threads in the
code and explore the available partitions for a mapping which is improved, or
even optimized, for performance and power consumption.

Alternatively, it may be the task of a programmer to define threads in the
code by inserting instructions for splitting the array, or a partition, into sub-
partitions. The arguments of the instruction will at least contain a reference,
e.g. pointers, to the first function in each parallel thread. The mechanism of the
split instruction thus is to change the state of the array or partition, and to
trigger the threads through something that resembles a subroutine call.
Besides saving the return address, the instruction also sets up the partitions’
registers 15 for split operation, that is, it is initializing the stack pointers for all
new threads. The data register file of the array should be implemented as a

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

16

clustered register file so that clusters are not shared between any potential
partitions of the array.

Every partition 17, 18, 19 has its own set of control signals: program
counters 21, 22, 23 for VLIW and array mode, and mode and other status flags
24, 25. Also, every partition 17, 18, 19 has its own control module 26, 27, 28 to
drive these signals. When running in unified mode, i.e. in an interconnect
arrangement with a single processing unit, one control module 26 drives the
control signals of all partitions within that interconnect arrangement by having
the other control modules 27, 28 follow it, as shown in Figure 2. The control
modules 26, 27, 28 may be multiple instantiations of the same module. For
synchronized execution the program counter 21, 22, 23 may be pushed from
one control module to the next. Other implementations for synchronizing the
control modules 26, 27, 28 are possible. An aspect is that control modules can
be reused from existing implementations and only need very few
enhancements. When the split is executed, the individual control modules 26,
27, 28 start executing the first instruction in each thread, as provided by the
function pointers in the split instruction. Each control module 26, 27, 28 in the
split mode drives its respective signals. From a programmer’s viewpoint, the
partitions now operate like individual ADRES instances and can independently
switch between VLIW mode and CGA mode.

However, the programmer may work with a data memory that is shared
between all threads. Again, an enhanced compiler can support the
programmer, in this case with the task of memory allocation for multiple
threads. For synchronization of and sharing data between threads the
enhanced architecture provides special instructions for efficiently implementing
semaphores and other multi-processing primitives.

A shared architectural element is the instruction memory. This is not
directly affecting the programming model, it only requires that, when linking the
code partitions, the linker or linking module is aware of the partitions for
packing the code of parallel threads. Every partition has an independent
instruction fetch unit 29a, 29b, 29¢, connected directly to its respective control
module 26, 27, 28. When in unified mode, the control modules 26, 27, 28 are
synchronized via the program counter 21, 22, 23. In this case, the instruction

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027
17

units 29a, 29b, 29¢ fetch portions of the set of instructions for the unified
partition, and therefore the execution follows the same flow. When in split
mode, each controller 26, 27, 28 follows its own thread’s flow of execution, and
each instruction unit 29a, 29b, 29c¢ fetches the set of instructions for the
respective sub-partition. The linkage between control modules 26, 27, 28 and
instruction fetch units 29a, 29b, 29¢ is shown in Figure 2.

To join threads, special join instructions are inserted in the code which
will end the current thread. The respective partition can automatically be put
into low-power mode. When the last thread initiated from a split instruction
ends, the execution will continue on the now combined partitions, with the next
instruction following the split. For recovery routines special mechanisms are
provided to permit a thread to monitor and, when necessary, abort another
thread.

In summary, this embodiment of the invention extends an already highly
parallel, reconfigurable architecture with another dimension of parallelism and
reconfigurability. It leverages the existing architecture and tools, especially the
compiler, while retaining a simple programming model. The multi-threading
extension allows users of the coarse-grain array to exploit function-level
parallelism, as well as complex data-level parallelism, which allows efficiently
implementing the variability in applied algorithms found in emerging
applications. The programmability and simplicity of the invention is the key
differentiating factor.

As an example, an MPEG2 decoder is used for a demonstration of a
multithreaded architecture in accordance with embodiments of the present
invention. Most MPEG2 decoder kernels can be scheduled on a CGA with the
number of instructions per clock (IPC) ranging from 8 to 43. It has been
observed, however, that some modulo-scheduled kernels’ IPC do not scale
very well when the size of the CGA increases. Some of the most aggressive
architectures have the potential to execute 64 instructions per clock cycle, but
few applications can utilize this level of paralielism, resulting in a much lower
average IPC. This is caused by two reasons: (1) The inherent ILP of the
kernels is low and cannot be increased efficiently even with foop unrolling, or
the code is too complex to be scheduled efficiently on so many units due to

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

18

resource constraints, for example the number of memory ports. (2) The CGAis
idle when executing sequential code in VLIW mode. The more sequential code
is executed, the lower the achieved application’s average IPC, and in turn, the
lower the CGA utilization. In qonclusion, even though the ADRES architecture
is highly scalable, the challenge is faced of getting more parallelism out of
many applications, which fits better to be executed on smaller ADRES arrays.
This is commonly known as Amdahl’'s law, as described by G.M. Amdahl in
“Validity of the single processor approach to achieve large-scale comput ing
capabilities”, Proc. AFIPS Spring Joint Computer Conf. 30, 1967 Page(s):483-
485. | |

If properly reorganized and transformed at programming time, multiple
kernels in a same application can be efficiently parallelized by an application
designer. Low-LLP kemels can be statically identified through profiling, the
optimal choice of ADRES array size for each kernel can be estimated, and a
large ADRES array can be partitioned into several small-scaled ADRES sub-
arrays that fit each kernel, which is parallelized into threads if possible. When
an application is executed, a large ADRES array can be split into several
smaller sub-arrays for executing several low-LLP kernels in parallel. Similarly,
when a high-LLP kernel is executed, sub-arrays can be unified into a large
ADRES array. Such a multi-threaded ADRES (MT-ADRES) is highly flexible,
and can increase the over utilization of large-scaled ADRES arrays when the
LLP of application is hard to explore.

Hereinafter, a demonstrative dual-threading experiment is presented on
an MPEG2 decoder implemented on top of a single-threaded architecture, as
well as its matching compilation tools. Through this experiment, it has been
proven that multithreading is feasible for the ADRES architecture.

A scalable partitioning-based threading approach is proposed for a
coarse-grained reconfigurable architecture such as ADRES. The rich resource
on the ADRES architecture allows partitioning a large coarse-grained
reconfigurable array into two or more sub-arrays, each of which can be viewed
as a down-scaled coarse-grained reconfigurable architecture and can be
partitioned further down hierarchically, as shown in Fig. 4. With the partitioning

technique in accordance with embodiments of the present invention it is

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

19

possible to dynamically share HW resources between threads without the cost
of the control logic of dynamic out-of-order execution, as used in general-
purpose processors.

Each thread has its own resource requirement. A thread that has high
ILP requires more computation resources, thus executing it on a larger
partition results in a more efficient use of the ADRES array and vice versa. A
globally optimal application design demands that the programmer knows the
IPC of each part of the application, so that he can find an efficient array
partition for each thread.

The easiest way to find out how many resources are required by each
part of a certain application is to profile the code. A programmer starts from a
single-threaded application and profiles it on a | large single-threaded
reconfigurable coarse-grain array. From the profiling results, kernels with low
IPC and which are less dependent to the other kernels are identified as the
high-priority candidates for threading. Depending on the resource demand and
dependency of the threads, the programmer statically plans on how and when
the reconfigurable coarse-grain array should split into partitions during
application execution. When the threads are well-organized, the full array can
be efficiently utilized. |

Architecture Design Aspects

The FU array on the ADRES is heterogeneous, meaning that a plurality
of different FUs 13 are present in the array. There exist dedicated memory
units, special arithmetic units and control/branch units on the array that
constrain the partitioning. When partitioning the array, it has to be guaranteed
that the program being executed on certain partitions can be scheduled. This
requires that any instruction invoked in a thread is to be supported by at least
one of the functional units in the array partition. The well-formed partitions
usually have at least one VLIW FU that can perform branch operations, one
FU that can perform memory operations, several arithmetic units if needed,
and several FUs that can handle general operations.

On the ADRES architecture, the VLIW register file (RF’) 15 is a resource
that cannot be partitioned easily. The ADRES architecture may employ a
clustered register file. If the RF bank is prohibited to be shared among several

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

20

threads, the RF cluster can be partitioned with the VLIW/CGA, and the thread
compilation can be greatly simplified. In case a single register file is used, the
register allocation scheme must be revised to support the constrained register
allocation.

The ADRES architecture may have ultra-wide memory bandwidth. Multi-
bank memory adapted to the architecture to reduce bank conflicts has proven
to cope nicely with a static data-allocation scheme. On ADRES, the memory
and the algorithm core may be interfaced with a crossbar with queues. Such a
memory interface offers a scratchpad style of memory presentation to all the
load/store units, thus the multi-bank memory can be used as a shared
synchronization memory.

Besides the shared memory, other dedicated synchronization primitives
like register-based semaphores or pipes can also be adapted to the ADRES
template. These primitives can be connected between pairs of functional units
that belong to different thread partitions. Synchronization instruction can be
added to certain functional units as intrinsics.

In the single-threading ADRES architecture, the program counter and
the dynamic reconfiguration counter may be controlled by a finite-state-
machine (FSM) type control unit. When implementing the multithreading
ADRES, an extendable control mechanism may be used to match the
hierarchically partitioned array.

As shown in Fig. 5, the FSM type controller may be duplicated ahd the
controllers may be organized in a hierarchical manner. In this multi-threading
controller, each partition is still controlled by an FSM controller 50, but the
control path may be extended with two units called merger 51 and bypasser
52. The merger 51 and bypasser 52 form a hierarchical master-slave control
that is easy to manage during program execution. The merger path is used to
communicate change-of-flow information to the master controller of a partition,
while the bypasser propagates the current PC or configuration memory
address from the master to all slaves within a partition.

The principle of having such a control mechanism is as follows.
Suppose an ADRES architecture that can be split into two halves for dual

threading, while each half has its own controller. In order to reuse the

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

21

controllers as much as possible, each controller controls a partition of the
ADRES when the program is running in dual threaded mode, but it is also
preferred that one of the controllers takes full control of the whole ADRES
when the program is running in the single-threaded mode. By assigning one of
the controllers to control the whole ADRES, a master is created. When the
ADRES is running in the single-thread mode, the master controller also
receives a signal from the slave partition and merges it with the master
partition’s signal for creating global control signal. At the same time, the slave
partition should bypass any signal generated frorh the local controller and
follow the global control signal generated from the master partition. When the
ADRES is running in the dual-threaded mode, the master and slave controllers
completely ignore the control signals coming from the other partition and only
respond to the local signals. This strategy can be easily extended to cope with
further partitioning.

Multithreading Methodology

Before a threaded application can be compiled, the application should
be reorganized. As shown in Fig. 6, the application may be split into several
thread files 61, 62, 63, 64, each of which describes a thread that is to be
executed on a specific partition, e.g. C-files, assuming the application is
programmed in C. The data shared among threads are defined in a global file
that is included in all the thread-files, and protected with a synchronization
mechanism. Such reorganization takes modest effort, but makes it easier for a
programmer to experiment on different thread/partition combinations to find an
efficient, e.g. optimal, resource budget. In the embodiment illustrated in Fig. 6,
task 1 is first executed in unified mode. After execution of task 1, the ADRES
architecture is split into three parallel processing units for executing task 2,
task 3 and task 4 in parallel. After having executed tasks 2, 3 and 5, the
ADRES architecture is again brought in unified mode, for executing task 4.

The multithreading architecture description, e.g. the ADRES
architecture description, is extended with the partition descriptions, as shown
in Fig. 7. Similar to the area-constrained placement and routing on a
commercial FPGA, when a thread is scheduled on an ADRES partition, the

instruction placement and routing is constrained by the pattition description.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

22

The generated assembly code of each thread goes though the assembling
process separately, and gets linked in the final compilation step.

The simulator 70 reads the architecture description 71 and generates
an architecture simulation model before the application simulation starts. As
shown in Fig. 5, each partition has its own controller 50, thus the generation of
the controller's simulation model depends on the partition description as well.
Furthermore, the control signal distribution is also partition-dependent, thus
requires the partition description to be consulted during simulation model
generation.

Some other minor practical issues need to be addressed in the
multithreading methodology according to embodiments of the present
invention. The most costly problem is that different partitions of the ADRES are
conceptually different ADRES instances, thus a function compiled for a specific
partition cannot be executed on any other partitions. When a function is called
by more than one thread, multiple partition-specific binaries of this function
have to be stored in the instruction memory for different callers. Secondly,
multiple stacks need to be allocated in the data memory.

Each time the ADRES splits into smaller partitions due to the threading,
a new stack should be created to store the temporary data. Currently, the best
solution to decide where the new stack should be created is based on the
profiling, and the thread stacks are allocated at compile time. And finally, each
time the new thread is created, a new set of special purpose registers needs to
be initialized. Several clock cycles are needed to properly initial the stack
points, the return register, etc. immediately after the thread starts running.

Experiment

In order to understand which features are desirable for supporting the
multi-threaded methodology according to embodiments of the present
invention and to prove its feasibility, an experiment has been carried out based
on an MPEG2 decoder, a well-understood benchmark. An objective is to go
through the whole process of generating the threaded application executable,
partitioning the instruction/data memory for threads, upgrading the cycle-true
architecture simulation model and successfully simulating the execution of
MPEG2 decoder with a simulator according to embodiments of the present

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

23

invention. By going through the whole process, ample knowledge can be
acquired on how to automate the compilation for threads and simulation/RTL
model generation of MT-ADRES.

The proof-of-concept experiment achieves dual-threading on the
MPEG2 decoder. The MPEG2 decoder can be parallelized on several
granularities, as described by E. |lwata et al. “Exploiting‘ Coarse-Grain
Parallelism in the MPEG-2 Algorithm”, Stanford University Computer Systems
Lab Technical Report CSL-TR-98-771, September 1998, thus it is a suitable
application to experiment on. The Inverse Discrete Cosine Transform (IDCT)
and Motion Compensation (MC) have been chosen as two parallel threads,
and reorganized the MPEG2 decoder as shown in Fig. 8. The decoder starts
its execution on an 8x4 array 80, executes the Variable Length Decoding
(VLD) and Inverse Quantization (IQ), and switches to the threading mode (split
mode). When the thread execution starts, the 8x4 array 80 splits into two 4x4
ADRES arrays 81, 82 and continues on executing the threads. When both
threads are finished, the two 4x4 arrays 81, 82 unify and continue on executing
the add block function in unified mode on the 8x4 array 80. The MPEG2
program has been reorganised as described in Fig. 8, and added “split’
instructions 83 (fork instruction) and “unify” instructions 84 (join instructions) as
intrinsics. These instructions 83, 84 currently do nothing by themselves, and
are only used to mark where the thread mode should change in the MPEG2’s
binary code. These marks are used by the split-control unit at run time for
enabling/disabling the thread-mode program execution.

The dual-threading compilation flow in accordance with embodiments of
the present invention is shown in Fig. 9. The lack of partition-based scheduling
forces us to use two architectures as the input to the scheduling. The 8x4
architecture 90 is carefully designed so that the left and the right halves are
exactly the same. This architecture is the execution platform of the whole
MPEG2 binary. A 4x4 architecture 91 is also needed, which is a helping
architecture that is compatible to either half of the 8x4 array. This architecture
is used as a half-array partition description of the 8x4 architecture 90. With
these two architectures 90, 91 in place, the single-threaded file 92 , e.g. Cfile,

is compiled, as well as the threads on the 8x4 architecture and the 4x4

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

24

architecture, respectively. The later linking by linker 95 stitches the binaries
from different parts of the program seamlessly.

The memory partitioning of the threaded MPEG2 is shown in Fig. 10.
The instruction fetching (IF), data fetching (DF) and the configuration-word
fetching (CW) has been duplicated for dual-threading. The fetching unit pairs
are step-locked during single-threaded program execution. When the
architecture goes into the dual-threading mode, the fetching unit pairs split up
into two sets, each of which is controlled by the controller in a thread partition.

During the linking, the instruction memory 101 and data memory 102
are divided into partitions. Both the instruction memory 101 and configuration
memory 103 are divided into three partitions. These three partition pairs store
the instructions and configurations of single-threaded binaries, IDCT binaries
and MC binaries, as shown on Fig. 10. The data memory 102 is divided into
four partitions. The largest data memory partition is the shared global static
data memory 105. Both single-threaded and dual-threaded programs store
their data into the same memory partition 105. The rest of the data memory
102 is divided into three stacks. The IDCT thread’s stack 106 grows directly
above the single-threaded program’s stack 107, since they use the same
physical controiler and stack pointer. The base stack address of the MC thread
is offset to a free memory location at linking time. When the program execution
goes into dual-threading mode, the MC stack pointer is properly initialized at
the cost of several clock cycles.

In an alternative embodiment, the clustered register file can be clustered
among the array partitions so that each thread has its own register file(s).
However, due to the lack of a partitioning-based register allocation algorithm at
the current stage, the partitioning approach is not very feasible. We experiment
on the ADRES architecture with a single global register file and go for the
duplication based approach to temporary accommodate the register file issue.
As shown in Fig. 11, a shadow register file 110 may be added into the
architecture. When a single-threaded program is being executed, the shadow
register file 110 is step-locked with the primary register file 15. When the
program initiates the dual-thread execution, the MC thread gets access to the
shadow register file 110 and continues the execution on the array partition 112

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027
25

and shadow register file 15. When the program resumes io the single threaded
execution, the shadow register file 110 becomes hidden again. The MPEG2
program is slightly modified so that all the data being shared between threads
and all the live-in and live-out variables are passed through the global data
memory.

The scalable control concept in Fig. 5 has been verified in the simulation
model in accordance with embodiments of the present invention. It has been
shown that this scheme can be extended to a certain scale, and the control
unit simulation model generation can be automated.

During the program linking, it is identified where the “split” and “unify”
instructions are stored in the instruction memory. These instructions’ physical
addresses mark the beginning and the ending point of the dual-threading
mode. During the simulation model generation, these instructions’ addresses
are stored in a set of special-purpose registers in a split-control unit. After the
program starts executing, the program counter's (PC) values are checked by
the split-control unit in each clock cycle. When the program counter reaches
the split point, he split-control unit sends control signals to the merger and
bypasser to enable the threading mode. After the program goes into the
threaded mode, the split-controller waits for both threads to join in by reaching
the PC value where the “unify” instructions are stored. The first thread that
joins in will be halted till the other thread finishes. When the second thread
eventually joins in, the split-control switches the ADRES array back to single-
threaded mode, and the architecture resumes to the 8x4 array mode. The
overhead of performing split and unify operations mainly comes from executing
several bookkeeping instructions on some special-purpose registers, and such
overhead is negligible.

When an application gets more complicated and has multiple
splitting/unifying point, the current approach will become more difficult to
manage, thus architectures according to embodiments of the present invention
may only rely on the instruction decoding to detect the “split” and “unify”
instructions. The split-control unit may be removed, and part of its function may
be moved into each partition’s local controller.

10

15

20

25

WO 2007/106959 PCT/BE2007/000027
26

The simulation result shows that the threaded MPEG2 produces the
correct image frame at a slightly faster rate. Table 1 shows the clock count of

the first 5 image frames decoded on the same 8x4 ADRES instance with and
without threading.

Irate |50 ;rvle-tm*ﬁ.’ém:i chngl-thread] singla-thread | dual-thread |(speed-up

nnmher] © of © Ffl:?_mt decoding vimeldecoding 1ime

— 1 Emtsm AUTEED 1517
3 O BRI 5] Lo Lo
4 3t i £ LI Lav, Lo
h Hg"%ng TR 4BTRET 15 B

Table 1. Clock cycle count of smgle and dual threaded MPEG2 on the same
architecture

The cc count column shows the clock count of the overall execution
time when an image frame is decoded, while the decoding time column shows
the clock count between two frames are decoded. The dual-threaded MPEG2
is about 12-15% faster than the single-thread MPEG2 for the following
reasons.

Both IDCT and MC algorithm have high loop-level parallelism, thus can
optimally utilize the single-threaded 8X4 architecture. When scheduled on the
x4 architecture as threads, the IPCs of both algorithms are reduced by half due
to the halved array size, thus the overall IPCs of the non-threaded and the
threaded MPEG2 are nearly the same. As mentioned earlier, when the
ADRES’ size is increased to certain extent, the scheduling algorithm has
difficulty exploring parallelism in the applications and using the ADRES array
optimally. It is clear that doubling/quadrupling the size of the ADRES array or
choosing low-parallelism algorithm for threading will result in more speed-up.

As observed, the marginal performance gain is mostly achieved from he
ease of modulo-scheduling on the smaller architecture. When an application is
scheduled on a larger CGA, many redundant instructions are added into the
kernel for routing purpose. Now the IDCT and MC kernels are scheduled on a
half-CGA partition instead of the whole ADRES, even if the overall IPC of the
application is not improved much, the amount of redundant instructions added

during scheduling for placement and routing purpose has been greatly
reduced.

10

WO 2007/106959 PCT/BE2007/000027

27

By carrying out the dual-threading experiment on MPEG2 decoding
algorithm, ample knowledge on the MT-ADRES architecture has been gained.
The simulation results show that the MPEG2 has gain 12-15% of speed up.
The results so far demonstrate that the threading approach is adequate for the
ADRES architecture, is practically feasible, and can be scaled to a certain ex-
tend. So far, the only extra hardware cost added onto ADRES is a second
control unit, the size of which can be neglected for an ADRES larger than
3X3.

It is to be understood that although preferred embodiments, specific
constructions and configurations have been discussed herein for devices
according to the present invention, various changes or modifications in form

and detail may be made without departing from the scope and spirit of this
invention.

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

28

CLAaIMS

1.-

Signal processing device adapted for simultaneous processing of at least
two process threads in a multi-processing manner, comprising

a plurality of functional units capable of executing word- or subword- level
operations on data,

routing resources for interconnecting said plurality of functional units, said
routing resources supporting a plurality of interconnect arrangements that
can be dynamically switched, at least one of said interconnect
arrangements interconnecting said plurality of functional units into at least
two non-overlapping processing units each with a pre-determined
topology, each of said processing units being configured to process a
respective one of said process threads,

the signal processing device furthermore comprising at least two control
modules, each control module being assigned to one of said processing
units for control thereof.

Signal processing device according to claim 1, furthermore comprising a
plurality of data storages, wherein the routing resources interconnect the
plurality of functional units and the plurality of data storages.

Signal processing device according to any of the previous claims,
including a data storage in which an application code is stored, said
application code defining a process comprising the at least two process
threads and being executable by said processing units, and wherein the
routing resources are adapted for dynamically switching between

interconnect arrangements at pre-determined points in the application
code.

Signal processing device according to any of the previous claims,
wherein the routing resources are adapted for dynamically switching

interconnect arrangements depending on data content of a running
application.

10

15

20

25

30

WO 2007/106959

10.-

11.-

12.-

PCT/BE2007/000027

29

Signal processing device according to claim 4, wherein the routing

resources comprise multiplexing and/or demultiplexing circuits.

Signal processing device according to claim 5, the signal processing
device having a clock, wherein the multiplexing and/or demultiplexing
circuits are adapted to be configured with settings for dynamically
switching interconnect arrangements, wherein the settings may change
every clock cycle.

Signal processing device according to any of the previous claims,
furthermore comprising at least one global storage shared between a

plurality of functional units.

Signal processing device according to any of the previous claims,

including at least two different types of functional units.

Signal processing device according to any of the previous claims,
wherein at least another of said interconnect arrangement interconnects
said plurality of functional units into a single processing unit under control
of a single control module.

Signal processing device according to claim 9, wherein at least one of the
at least two control modules is part of a global control unit for use in an

interconnect arrangement with a single processing unit.

Signal processing device according to claim 10, wherein in at least one
interconnect arrangement with a single processing unit, at least one of
the control modules drives control signals of all the functional units by

having at least one other control module to follow it.

Signal processing device according to any of the previous claims,

adapted for re-using at least part of the control modules assigned to the

10

15

20

25

30

WO 2007/106959

13.-

14.-

15.-

16.-

17 .-

PCT/BE2007/000027
30

processing units in an interconnect arrangement with a plurality of non-
overlapping processing units in the control module used in an

interconnect arrangement with a single processing unit.

Method for executing an application on a signal processing device as in
any of the previous claims, the method comprising:

executing the application on the signal processing device as a single
process thread under control of a primary control module, and
dynamically switching the signal processing device into a device with at
least two non-overlapping processing units, and splitting a portion of the
application in at least two process threads, each process thread being
executed simultaneously as a separate process thread on one of the
processing units, each processing unit being controlled by a separate

control module.

Method according to claim 13, wherein switching the signal processing
device into a device with at least two processing units is determined by a

first instruction in application code determining the application.

Method according to claim 14, wherein the first instruction contains a
starting address of the instructions of each of the separate process
threads.

Method according to any of claims 13 to 15, furthermore comprising
dynamically switching back the signal processing device into a device
with a single processing unit, synchronising the separate control modules
and joining the at least two threads of the application into a single
process thread, the single process thread being executed as a process

thread on the single processing unit under control of the synchronised
control modules.

Method according to claim 16, wherein switching back the signal

processing device into a device with a single processing unit is

10

15

20

25

30

WO 2007/106959 PCT/BE2007/000027

18.-

19.-

20.-

21.-

22.-

31

determined by a second instruction in application code determining the
application.

Method according to claim 17, wherein the second instruction contains a
starting address of the instructions to be executed as the single process
thread.

Method according to any of claims 13 to 18, wherein the single control
module re-uses at least one of the separate control modules when

executing the application as a single process thread.

Method according to any of claims 13 to 19, wherein, in an interconnect
arrangement with a single processing unit, one of the separate control
modules drives control signals of all the functional units by having the
other control modules to follow it.

Method for compilation of application source code in order to obtain
compiled code being executable on a signal processing device as in any
of claims 1 to 12, comprising

inputting application source code and

generating compiled code from the application source code,

wherein generating the compiled code comprises including, in the
compiled code, a first instruction for configuring the signal processing
device for simultaneous execution of multiple process threads and for
starting the simultaneous execution of the process threads, and including
a second instruction to end the simultaneous execution of the multiple
process threads such that when the last of the multiple process threads
decodes this instruction, the signal processing device is configured to
continue execution in unified mode.

Method according to claim 21, furthermore comprising providing an

architectural description of the signal processing device, the architectural

10

15

20

25

30

WO 2007/106959

23.-

24.-

25.-

26.-

27 .-

28.-

PCT/BE2007/000027
32

description including descriptions of pre-determined interconnect

arrangements of functional units forming processing units.

Method according to claim 22, wherein providing the architectural
description includes providing a separate control module per processing
unit.

Method according to any of claims 21 to 23, wherein the first instruction
contains the start address of instructions of each of the multiple process
threads.

Method according to any of claims 21 to 24, wherein the second
instruction contains the start address of instructions to be executed in

unified mode after the execution of the multiple process threads.

Method according to any of claims 21 to 25, wherein generating the
compiled code comprises

partitioning the application source code, thus generating code partitions,
labelling in which mode and on which processing unit the code partitions
are to be executed,

separately compiling each of the code partitions, and

linking the compiled code partitions into a single executable code file.

A method for adjusting an application to be executed on a signal
processing device, comprising performing exploration of various
partitionings of the application,

wherein performing the exploration comprises changing an instance of an
architectural description of said signal processing device for exploring

various interconnect arrangements of said signal processing device.

A method according to claim 27, wherein exploring interconnect
arrangements of said signal processing device includes exploring

dynamically switching between an interconnect arrangement having a

10

WO 2007/106959 PCT/BE2007/000027

29.-

30.-

31.-

33

single processing unit under control of a single control module and an
interconnect arrangement having at least two processing units each

under control of a separate control module.

A computer program product for executing any of the methods as claimed
in claims 13 to 20 when run on a signal processing device as claimed in
any of claims 1 to 12.

A machine readable data storage device storing the computer program
product of claim 29.

Transmission of the computer program product of claim 29 over a local or

wide area telecommunications network.

PCT/BE2007/000027

WO 2007/106959

17

[

DMEM

v

T

’
bWesgdossesscoegfdevnconsvngqocsssscsnpese

13
14
16

G
il
[RE]

I3

FUL—L[FU]
R
: !

IRF]

3
L[FUl—,
T
3
T
FU
[Ful.
[RE]
=3

RF
33
+— —0—Fm4-——) FU
[RF |
++ L
Fu] b
i 1
<—++#‘Jl

29a ~

A\

h.«

[FUL_LIFU

:

RF
o
L[FU
[RF]
il

29b ~

b FU

[RF]
1
v
[FU
L

29c \

" T i _m
: { i
o] TS Ts T o
ieE-EE B
H 1 3 S

[
EECEERREERE
n T T T T
u

Third partition
19

partition 18
First partition

L€ Alowaw uoneinbyuo)

17

RF][RF| IR

Ay

WO 2007/106959 PCT/BE2007/000027

217
Mode, Flow
Change!™ ™ Controller 26
24 |
: Program
l i Counter
! 21
Mode, FIW! Controller 27 f«--
25
'; Program
r ! Counter
\ 22
Controller 28 |<--
Program
Counter
23 L
instruction Fetch Instruction Fetch Instruction Fetch
29c¢ 29b 29a
Third partition Second partition First partition
19 18 17
Fig. 2
16
\ From different sources src
_—‘ l

Jeung

g

FU

red-dst1 Pred-dst2 pstq

31 T
Jea req reg-
Configuration / * 14 v 14

counter 14

To different destinations dst

Fig. 3

WO 2007/106959 PCT/BE2007/000027

37

split3 split2 split1

| 8x4 |
\ﬂoliﬂ

N O ¢) T 4x4 4x4

i \ split2

2x4+2x2 2x2

split3
2x3+1x1 1x1

51
PC 1/cfg 1 PC 2/cfg 2 PC 3/cfg 3 PC nfcfgn
ADRES ADRES ADRES ADRES
partition 1 partition 2 partition 3 partition n
51
51 51
\ A X / A 4 // A
Merger 1 |« Merger2 i« Merger 3 |« «—| Mergern
PC/mode PC/mode PC/mode 150 | PC/mode
control 1 control 2 control 3 507 | controin
\
7 | | |
» Bypasser 2 » Bypasser 3 > —>{ Bypassern
/ / /
/ Y A N g I
52 50 > 52

Fig. 5

PCT/BE2007/000027

WO 2007/106959

417

62

Thread C.c

—t .

 B.c
S et i et i s et s

} hread

——————— R,

Thread A.c J

WO 2007/106959

v

Power/area
analyzer

PCT/BE2007/000027
517
' T - 71
Architecture description (XML)
<—a— —
Partition 1 Partition 2 | « . « | Partition n |
|
I
*—-------—— ————---1———- —————-r——---—-—--—ﬂ‘
thre:\?:ir; do Thread_A.c Thread_B.c Thread_n.c I{
LA LA vYY LA :
Impact + Impact + Impact + Impact + {
modulo modulo modulo modulo I
scheduler scheduler scheduler scheduler 1
i
v Y \ 4 Y Y I
RTL VHDL |
generator Assembler Assembler Assembler Assembler I
|
v v v v !
I
Linker }
|
I I
- l
» Simulator | — 70 1
I
l
|
(
i
(

J
1
|
[
|
[
|
{
|
1
1
|
(
|
(
I
{
i
d—

Fig. 7

WO 2007/106959 PCT/BE2007/000027

6/7

80 | _8X4 array

VLD+IQ /\A 82

4X4 4X4
81—~
IDCTs M array | |array

Unity V
Add_blocé
84

N

fime

8X4 array
. 80
Fig. 8
90\ 92 \ 92
\ \ \
8x4 arch Unified.c IDCT.c 4x4 Arch MC.c
| Impact + Impact + Impact +
modulo modulo modulo
scheduler scheduler scheduler
ASM ASM ASM
A A \ 4
Linker \
v 95
» Simulator

Fig. 9

WO 2007/106959 PCT/BE2007/000027
717
103 101
. . 102
Configuration Instruction 105
memory memory \TData memory
0x00 0x0U00 0x000K
‘ RS
Single-thread Single-thread Shared
mode mode 4::) Q:{) <h data
configuration : instruction Q - memory
[
MC
IDCT IDCT IFICWA DF 1 E__—{>:> stack
oxts configuration <:n,(po% instruction —g_—r>® <::rﬂ' i> IDCT
stack
MC MC
configuration | instruction IFICW2 <:t><'rr—‘:_—> Single-thread
020 :’_—_ FFFFFF azre s mode stack
. 107 ’
Fig. 10
/1 S 110 /1 "
15 e
e / - Shatlow: Register:
Ez/{:i:::2:Sha‘dbw2Remster:Fﬂe::::::::1:5 sriniiiiiFifeiiinini
| / Register File | 7 Register File

1 Lol

L]

HiNnNE

N

=

HiEEn

I

L]

.

HEEN .

ZI
Split ‘
{ Unify

]
[]
[]
L]

ooogasnn

................

HinnniNn.

Fig. 11

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings

