(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

=

(10) International Publication Number

WO 2016/081520 A1

26 May 2016 (26.05.2016) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/00 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) International Apolication Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/061191 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
17 November 2015 (17.11.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
62/081,510 18 November 2014 (18.11.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: VECTRA NETWORKS, INC. [US/US]; 550 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
S Winchester Blvd., #200, San Jose, California 95128 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Tnventors: BEAUCHESNE, Nicolas; 135 3rd. St., Miami DK, EE, ES, FL FR, GB, GR, HR, HU, IL, IS, IT, LT, LU,
Beach, Florida 33139 (US). PEGNA, David Lopes; 2388 LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Brittan Ave., San Carlos, California 94070 (US). LYNN. SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
> ’ . . > GW, KM, ML, MR, NE, SN, TD, TG).
Karl; 739 Bainbridge Loop, Winter Garden, Florida 34787 ’ > ’ O
(US). Published:
(74) Agent: MEI, Peter C.; Vista [P Law Group, LLP, 2160 — with international search report (Art. 21(3))

Lundy Ave., Ste. 230, San Jose, California 95131 (US).

2016/081520 A1 1IN 000 OO0 OO0 0

METADATA INSTANCE 402

403a) RQID (16 BYTES)
403b) RSPID (16 BYTES)

403c) DESTINATION PORT
403d) REQUEST SIZE

403¢) RESPONSE SIZE

403f) TIME ELAPSED

403g) NON-ZERO DATA VOLUME

1

(54) Title: METHOD AND SYSTEM FOR DETECTING THREATS USING METADATA VECTORS

500

/

METADATA BIN 504

05a) 220 €-> 224a

05b) 220€-2>224b(1

05¢) 220€->224b(2

N

518

05d) 220<->224c¢(1

CLUST. B

CLUST. A
516

05¢) 220€->224d(2

505f) 220<>224e(3

CLUSTER MODULE 310

CLUST. C

520

LOGIC MODULE 525

ALERT/FLAG
512

TIME
WINDOW
508

CLUST.
COUNT
506

(3+) (6 HRS)

FIG. 5A

O If a cluster exceeds a threshold, an alarm may be generated.

(57) Abstract: An approach for detecting network attacks using metadata vectors may initially involve receiving network communic-
ations or packets, extracting metadata items from the packets. The metadata items describe the communications without requiring
deep content inspection of the data payload or contents. The communications may be clustered into groups using the metadata items.

WO 2016/081520 PCT/US2015/061191

METHOD AND SYSTEM FOR DETECTING THREATS USING METADATA VECTORS

BACKGROUND

[0001] It is often an important goal for network security systems to be able to
passively identify suspicious communications in a way that does not modify or disrupt
the network. Typically, conventional passive network security systems, such as intrusion
detection systems, rely on deep content inspection of packets to identify suspicious
communications. Such approaches require deep knowledge, intricate parsing, and
usually a library of signatures or heuristics for each type of suspicious activity that is to
be identified. Often the library of signatures or heuristics can sprawl to 30,000 or more,
which can make the use of such libraries unwieldy and/or computationally expensive.
Furthermore, in some cases, deep content inspection may not be available due to
restricted network permissions and/or the sensitivity of the data being transmitted.
These requirements create an enormous burden on vendors seeking to create products
that passively detect threats over a range of networking protocols.

[0002] As is evident, there is a need for an approach to passively identify suspicious
communications or network threats without deep content inspection and/or sprawling

signature libraries.

WO 2016/081520 PCT/US2015/061191

SUMMARY
[0003]In some embodiments, a vector engine may be implemented to detect network
threats using metadata vectors. In some embodiments, the vector engine may first
receive network communications, extract metadata from the network communications,
group the metadata into clusters, and if the size of one or more metadata clusters
exceeds a given threshold within a predefined period of time, generate an alarm. The
network comprises a plurality of client computers communicating with an outside
network (i.e. the internet) as well as internally with each other. When a computer is
infected by a malicious payload, such as malicious automated instructions or script, the
computer may act as a bot and may send copies of the same or a different malicious
payload to a number of other computers in the network, to infect them as well. The
malicious automated script may include logic that instructs the first infected computer to
send the same or a different automated script to multiple other computers. The script
may further be addressed to the same destination port on each computer. Further,
when the multiple other computers receive and process (e.g., execute/interpret) the
script, they may respond to the first computer using the same type of response. Thus,
in this case, for example, the characteristics of such an attack would be a first computer
in a network sending substantially the same data (e.g., the malicious payload) of a set
size, addressed to the same destination port on multiple other computers, each of which
may respond to the first computer using substantially the same response message.
Further, the time between each request and its matching response will typically be short

(e.g., less than five seconds).

WO 2016/081520 PCT/US2015/061191

[0004] In some embodiments, the vector engine can collect the above network
communications by tapping a network switch and making a copy of the network
communications for analysis, without disrupting or slowing down the network. Next, the
vector engine may extract metadata from the network communications that can be used
to characterize the network communications without inspecting the contents. The vector
engine may group the metadata into matching clusters that allow the vector engine to
track how many times a given network communication has occurred. If a certain
network communication, such as one corresponding to a malicious attack, occurs too
many times, the cluster may grow in size and exceed a given threshold. If the threshold
is exceeded or surpassed, the vector engine may generate an alarm or may flag the
data for further monitoring.

[0005] As an example, if the threshold for a given cluster’s size is ten, and a first
computer is infected by a malicious payload and tries to spread copies of the same or
different malicious payload to eleven other computers, then eleven instances of
metadata will be generated by the vector engine. Further, because the eleven instances
of metadata were all generated from the same source, the eleven instances of metadata
will all have similar data items and can be grouped into the same cluster. As the
threshold is ten, the size of the cluster containing the eleven instances exceeds the
threshold and the vector engine may generate an alert to signal that the first computer is
potentially attacking other computers on the network.

[0006] Described below are general non-limiting example definitions that may be
used to understand or enhance understanding of how certain embodiments may be

implemented. In some embodiments, a network may be collection of computing entities

WO 2016/081520 PCT/US2015/061191

that communicate with one another. In some embodiments, an internal network is a
network of computers that are isolated from other (e.g., external) networks by
networking components and/or devices as are known in the art, such as a firewall. In
some embodiments, a client computer is a computer or node within a network. In some
embodiments, a computer may act as a client and/or host depending on the type of
connection with another computer. As used here, clients are generally uninfected but
can become infected by malicious payloads, in which case they may act as bots for the
outside or attacking entity.

[0007] In some embodiments, an attacking computer is a computer or entity (e.g.,
malicious user) that initiates a malicious attack on a computer, client computer, or
network. In some instances, an attacking computer may use a malicious payload to
attack other computers in the network, whereby the malicious payload may infect a first
computer inside the network and direct the first computer to distribute copies of the
same or another malicious payload to other computers, who then may further replicate
and distribute the malicious payload. A bot may be a client computer that is under the
effective control of the attacking computer. For example, the attacking computer can
use the bot to achieve further malicious goals, and/or perform tasks. A malicious
payload may be a collection of instructions, which may be in the form of code (e.g.,
JavaScript) that is used to perform malicious tasks. The payload may in some form be
compilable code, scripted code, or other types of instructions as is known to those of
ordinary skill in the art. In some instances, malicious payloads may correspond to large
toolkits that are 500 megabytes or more in size. In other instances, a malicious payload

may be a small automated script, such as a script of 1 megabyte (or less) in size.

WO 2016/081520 PCT/US2015/061191

[0008] As according to some embodiments, vector metadata is metadata that is used
to characterize and/or categorize network communications without inspecting the
contents of the network communications (e.g., deep content inspection). For example,
in some embodiments the metadata may comprise data from packet headers, and in
some embodiments the metadata may be information that describes the overall session
between two hosts. A metadata instance is a collection of one or more metadata items
(e.g., packet information, session information) specific to a given network
communication. A metadata item as according to some embodiments, is a parameter or
item, such as a response size, that describes a certain feature of the network
communication. For example, in some embodiments the metadata may comprise data
from packet headers, and in some embodiments the metadata may be information that
describes the overall session between two hosts. In some embodiments, a metadata
item is used to characterize a network communication without inspecting the contents of
the network communication. In some embodiments, the metadata item does not contain
any reference or indicator of what is inside (e.g., the contents) of a network
communication. A metadata cluster may be a grouping of metadata instances that may
generally share similar metadata items. In some embodiments, a metadata cluster can
be used to track how many network communications of a certain type have occurred.
[0009] In some embodiments, a first communication is a communication initiated by
one computer directed to another computer. In some embodiments, a first
communication may take the form of a request or a “upstream” communication
emanating from a client computer. In some embodiments, a first communication may

correspond to a transmission that includes a file in a direction from a first computer to a

WO 2016/081520 PCT/US2015/061191

second computer. A second communication may be a communication initiated by the
second computer directed to the first computer. In some embodiments, a second
communication may take the form of a response or a “downstream” communication
received from the host or responding computer. In some embodiments, a second
communication may correspond to a response message initiated in response to
receiving and/or processing the first communication. A network communication is a
communication or session between two or more computers in a network using various
networking protocols, such as TCP/IP. In some embodiments, a network communication
comprises the first communication and a second communication as a pair, session, or
session portion. In some embodiments, a network communication comprises an
initiating message (e.g., request) in one direction that begins the communication, and a
response message in the opposite direction, which may be a response to the initiating
message. In some embodiments, a network communication may be a unilateral
communication attempt by one computer where no response occurs (e.g., a failed
request).

[0010] In some embodiments, the approaches here may be implemented in an
example networked environment in which an outside computer is attacking an internal
network. The internal network comprises a plurality of client computers. The attacking
computer may coax the client computer to retrieve a malicious payload, such as an
automated script, by sending a malicious email with an embedded web link. When the
client computer processes the malicious payload, it becomes a "bot". Under direction of
the malicious payload, the client computer or bot may then attempt to send copies of the

same malicious payload or a different malicious payload to a plurality of client

WO 2016/081520 PCT/US2015/061191

computers. When the plurality of client computers receive and process the replicated
malicious payloads, they may respond to the bot computer with a response message
(not depicted). The plurality client computers, may also send out more replicas of the
malicious payload to potentially more client computers inside or outside the internal
network. In this way, an outside attacking computer may potentially use a small
automated script to attack and/or establish control over many clients in an internal
network. Though in this example only client five client computers are sent the payload,
in some embodiments the payload may be sent to only two computers, in other
embodiments, the payload may be sent to fifteen clients to be infected, in a network
comprising clients for example.

[0011] The below discloses an example as according to some embodiments for how
a vector engine may be implemented to detect the network threats. The vector engine
receives network communications for a given network. For example, a networking
environment comprises an internal network, which may be isolated by networking
components and devices as are known in the art, such as a firewall (not depicted). A
plurality of client computers may be networked together to communicate through use of
a network switch or other networking components. In some embodiments, the vector
engine may receive network communications for the internal network through the
network switch. The vector engine can also be implemented as software that resides
upon networking equipment, nodes, or entities within a network. Finally, the vector
engine can be implemented in a virtual machine and be deployed on hardware supplied

by the company that owns the network.

WO 2016/081520 PCT/US2015/061191

[0012] An outside computer or entity is illustrated as an attacker. The attacker may
interface with the internal network through the switch to send a malicious payload (e.g.,
a payload linked through or attached to an email) to the client computer. When the client
computer processes the malicious payload, it becomes a "bot". Alternately, the client
computer could become a “bot” under many other circumstances, including, but not
limited to, getting infected when browsing a compromised web site. Under the direction
of the malicious payload (and in some cases under the direction of the attacker), the bot
sends a plurality of requests (represented by dashed lines) to the respective client
computers. The requests in this example are copies of the malicious payload or of an
entirely new malicious payload, and as such all requests may have the same or similar
sizes (e.g., ~1 MB). Further, the requests may also be addressed to the same
destination port on each client machine, respectively (e.g., request is addressed to
example TCP port "135" on client A, while request is addressed to the same example
TCP port "135" but on client B.).

[0013] When the plurality of client machines, receive and process the requests, they
may reply to the bot with a response. Since the requests consisted of replicas of the
same malicious payload, when each client machine processes the request, the client
machines may send similar responses to the bot. Thus, the responses may all be
approximately the same size and share similar characteristics with one another. As
explained, in some cases, the malicious payload consists of an automated script that
when processed causes actions to occur automatically or near instantaneously. And in
some case, the malicious payloads, sent by the bot, is the same as the malicious

payload it received. Given the nature of malicious payloads, the high speed of

WO 2016/081520 PCT/US2015/061191

networks, and the speed of computing devices the time elapsed between the requests
and the responses may be small (e.g., as little as five seconds). Collectively, the
communications (e.g., the requests and responses) comprise the network
communications that the vector engine can receive and analyze. Next the vector engine
may extract vector metadata from the network communications. In one example, vector
metadata may be metadata that can be used to describe the network communications
so that the vector engine can group or cluster the metadata and/or network
communications for further analysis. For example, the metadata may comprise packet
header information, or information about the session (e.g., time between
request/responses) that is tracked as a vector comprising a plurality of features. After
the metadata is extracted, the vector engine may group the metadata into clusters using
a matching process. The metadata clusters may then be used to track how many
instances of a given network communication has occurred. For example, the bot has
sent out five requests, and received five responses thus in one cluster there may be five
instances of metadata that correspond to the five actual network communication
exchanges. The vector engine can set threshold size limits on the clusters to monitor
them. The underlying rationale being that if a given cluster grows too large, the
metadata instances in the cluster correspond to a rapidly growing network attack using
malicious payloads, such as an automated script. For example, if the cluster (not
depicted) that is tracking the five network communications (e.g., the five instances of
requests and responses) has a threshold size limit of three, the vector engine may

generate an alarm, to signal that the internal network and specifically the bot may be

WO 2016/081520 PCT/US2015/061191

infected and attacking other clients when the five instances of metadata are grouped in
one cluster.

[0014] In some embodiments, the engine comprises one or more of the following
components. A passive interface module that is designed to passively receive network
communications, such as from a network switch. The passive interface module may
then send the network communications to an extractor module to extract one or more
instances of metadata that correspond to each network communication.

[0015] Once the metadata instances are extracted from the network
communications, a cluster module may group the metadata instances into clusters. As
explained, each cluster may have a threshold size limit such that if the amount of
metadata instances in the cluster exceeds a threshold an alarm may be generated and
output at.

[0016] The following are examples of a metadata instance for a given network
communication. In the example, a bot has sent a request containing a malicious
payload to a client computer. When the client computer processes the malicious
payload it may send a response back to the bot. Collectively, the request and the
response may comprise a single instance of a network communication. For example,
network communication may correspond to a complete session or portion of a session.
The extractor module may receive the network communication and extract one or more
metadata items that describe the network communication. The one or more metadata
items correspond to a metadata instance that describes the network communication
without the need for inspecting the contents of the request or the response. The

contents of the network communication may comprise the “data” payload for a given

10

WO 2016/081520 PCT/US2015/061191

network packet. The metadata items illustrated serve merely as an example of a
possible set of metadata that may be extracted from a network communication, though
one of ordinary skill in the art appreciates that other metadata items can be
implemented as necessary.

[0017] In some embodiments, a communication identifier such as a request identifier
(RQID) may correspond to the starting bytes of a packet. For example, request identifier
may comprise the first sixteen bytes of a request of communication. Generally, the first
bytes of a request contain header information or other data that is common across all
requests. In this way, the first sixteen bytes can be used to identify similar requests
without inspecting the contents or data payload of the communications and/or packets.
[0018] Similarly, the response identifier (RSPID), may be the first sixteen bytes of a
response, such as communication. Because the response is generally a message
created in response to the malicious payload being processed (e.g., executed),
responses then generally contain the same header information. Just as with RQID,
RSPID can likewise be used to identify similar responses without inspecting the
contents of the response.

[0019] The destination port metadata data item corresponds to the protocol (e.g.,
TCP or UDP) and port on the receiving machine to which a request is directed. As
explained above, malicious payloads in the form of automated scripts may be restricted
to small payload sizes to remain inconspicuous in the network. As such, malicious
payloads often direct the bot to send the replicated malicious payloads to the same
destination port (as opposed to specifying multiple addresses/ports which may take up

more space). Because the replicated malicious payloads (e.g., the requests) are all sent

11

WO 2016/081520 PCT/US2015/061191

to the same destination port on each respective client machine, the destination port
metadata data item may be used to match similar network communications that are
initiated by the same malicious payload.

[0020] The request size metadata data item describes the size of a request, such as
a request. Because the requests sent to clients are generally the same, they likely share
the same request size. If the requests sent to clients are also copies of the original
malicious payload, the sizes of the requests sent to clients will be approximately the
same as the size of payload. Thus, the request size metadata item can be used to
detect matching requests. Similarly, the response size metadata data item describes the
size of a response, such as response. Because the responses are typically all
generated in response to the same requests, the responses may all have approximately
the same sizes as well. Thus, the response size can be used to detect matching
responses. The time elapsed metadata data item describes the length of time between
when a request was sent out and when a response was sent back. Because the
targeted hosts may be generally quick to process automated scripts and other types of
network attacks, the time between request and response may be very short, e.g., less
than five seconds. Thus, it may be the case that the duration of time between when
each request was sent and when each corresponding response was sent is roughly the
same. Thus, the time elapsed data item can be used to describe and match similar
network communications.

[0021] The non-zero data volume metadata data item is a metadata item that
ensures that all analyzed network communications are not empty. For example, if the

request contains actual malicious payload data, then the non-zero data volume

12

WO 2016/081520 PCT/US2015/061191

metadata data item will reflect that the request is not empty. However, if was sent in
error and is empty, then the non-zero metadata item will reflect that the request is
empty. To save system resources, some embodiments of the invention may use the
non-zero data volume metadata item to filter out all empty network communications.
[0022] Collectively, the metadata items may comprise a single metadata instance
particular to a given network communication, such as network communication. Once the
metadata items are extracted to compose one or more metadata instances, the cluster
module can group the metadata instances into clusters using a cluster module.

[0023] Below is an example of how aspects of the cluster module may be
implemented. There, a metadata instance is received from the extractor module. The
cluster module may buffer one or more metadata instances in a metadata bin. As
illustrated for this example, metadata bin contains six metadata instances. The cluster
module may group the metadata instances into metadata clusters (e.g., Cluster-A,
Cluster-B, Cluster-C) using a matching process, explained in greater detail below.
However, as an example, metadata instances are all grouped into the same cluster,
Cluster-C because some or all of their metadata items have been determined to
approximately match.

[0024] As explained, each cluster may have a threshold size limit such that if the
threshold is exceeded an alarm is generated. In some embodiments, the cluster module
may implement a logic module to keep track of cluster counts and a time window to
expire old metadata instances. The cluster count module can hold a data value that
corresponds to the threshold size limit and further monitor the cluster count for each

module. For example, if the cluster count module sets the threshold to be “2”, then

13

WO 2016/081520 PCT/US2015/061191

Cluster-C, which currently holds three metadata instances would exceed the threshold,
and the cluster count module and/or the logic module may generate an alarm data for
output at.

[0025] In some embodiments, the time window module may operate as a sliding
window of a discrete duration. For example, if the sliding window time duration is 6
hours then metadata instances in the clusters that are older than 6 hours are expired
and removed from the cluster. The expiring and removing of old metadata instances
using a sliding window can protect against false positives caused by potential build-up
of unrelated metadata instances over very long periods of time. Further, though specific
examples are used here for the threshold size limit (e.g., 3) and the time duration (e.g.,
six hours), one of ordinary skill in the art appreciates that such parameters can be
modified or customized per implementation, as required.

[0026] Thus the clusters may be required to satisfy two conditions before an alert
may be triggered. First, the cluster must exceed the threshold size limit (e.g., more than
three metadata instances), and second, the threshold size must be exceeded in the
given time window (e.g., more than three metadata instances within the last six hours).
In some embodiments, the second condition is implicit in the checking of the first
condition. For example, by constantly removing metadata instances older than six
hours, the second condition is automatically enforced. In some embodiments, the alert
data generated by the cluster module may generate an actual alarm automatically. That
is, if the threshold size limit is exceeded within the time duration, an alarm is generated
without intervention. In some embodiments, if the threshold size limit is exceeded within

the time duration, the corresponding network activity is flagged as potentially malicious

14

WO 2016/081520 PCT/US2015/061191

activity and no alarm is directly generated. In this way, the potentially malicious activity
may be combined with other unrelated anomalies to generate an automatic alarm or
network administrators or security administrators can further monitor the network activity
and manually generate an alarm as required.

[0027] Further, in some embodiments, a training window or period may be
implemented, where the metadata instances are grouped into clusters to generate a
baseline state of the network. The training period may be set to a time duration such as
24 hours. For example, the cluster module may group metadata instances into clusters
for the first 24 hours to ascertain the appropriate value to set for each cluster’s threshold
size limit and may decide that special limits are required for some clients in the network.
The training window could be used to identify periodic network communications that
satisfy all the criteria to generate an alert, but that, as they happen relatively regularly in
the network, could be associated to benign communications intentionally initiated from
an uninfected client by a given user or process.

[0028] Below is an example for clustering metadata. First, the cluster module
receives a group of metadata instances for analysis and grouping. Then, the cluster
module analyzes the metadata instances in a strict match stage. In the strict match
stage, in order for one or more metadata instances to be grouped together, certain
metadata items in each metadata instance must exactly match one another, or must
exactly match metadata items of instances already in the cluster. For example, if the
request identifier (RQID) for the request exactly matches the request identifier (RQID)
for a different request, then the corresponding metadata instances may be grouped

together in the same cluster (assuming the other requirements are met). In some

15

WO 2016/081520 PCT/US2015/061191

embodiments, strict match items for Cluster-A, as an example, may include the
following metadata items: RQID, RSPID, and Destination Port, Thus, to be grouped in
Cluster-A at the strict match stage, a metadata instance must have the above metadata
items exactly match the metadata instances already in Cluster-A or exactly matched to
another metadata instance to start/form a cluster. If a metadata instance under
consideration has metadata items that do not strictly match those in Cluster-A, for
example, then the metadata instance is not grouped with Cluster-A at. Though
continuing, if the metadata instance under consideration does in fact have metadata
items that exactly match each other or those in Cluster-A, then the metadata instance
may be analyzed in the approximate match stage.

[0029] In another stage, the approximate match stage, a metadata instance is
analyzed to determine whether certain metadata items in the metadata instance
approximately match each other or those in the cluster. The metadata items in the
approximate match stage may include the request size and the response size (e.g., a
communication size data item). Further, a range or percentage threshold may be
specified to determine whether a given metadata item approximately matches the
metadata items in the cluster. For example, the range is 5%. Thus, if a request size is
within 5% of the average of those request sizes already in the cluster, the
corresponding metadata instance may be grouped in the cluster at (assuming other
conditions are met).

[0030] The following is an example flow for an approach for how the time window
module may be implemented. After a start, two operations may occur approximately

simultaneously. First, using a matching process, such as the one explained above,

16

WO 2016/081520 PCT/US2015/061191

matching metadata instances can be added to a given cluster. Second, as metadata
instances are added to the cluster, the time in which they were added is recorded, and
when a metadata item is more than six hours old it may be removed from the metadata
cluster. In this way, the time window module implements a sliding window that is six
hours wide to incrementally remove old metadata instances, as new metadata instances
are added. In some embodiments, the metadata bin may be allowed to buffer for six
hours at a time. At each six-hour increment, the metadata instances buffered in the
metadata bin are then grouped into clusters. Once the metadata bin is empty, new
metadata instances may be buffered in the bin for another six hours. In this way, the
time window module may also implement a buffered or turn-based grouping process.
[0031] Below is a flow for an approach for determining whether a threshold size limit
has been exceeded. First, a new matching metadata instance is added to a cluster.
Next, after the new metadata instance is added to the cluster, a determination is made
on whether the cluster contains more than the threshold size limit. For example, if the
threshold size limit is 3, then the cluster count module determines whether there are
more than 3 metadata instances in the cluster. If the cluster does not have more than
three metadata instances, the threshold size limit is not exceeded and no alarm data is
generated. On the other hand, if after adding the new matching metadata instance, the
cluster contains more than three metadata instances, the threshold size limit is
exceeded and an alarm may be generated.

[0032] Further details of aspects, objects, and advantages of some embodiments are

described below in the detailed description, drawings, and claims. Both the foregoing

17

WO 2016/081520 PCT/US2015/061191

general description and the following detailed description are exemplary and

explanatory, and are not intended to be limiting as to the scope of the embodiments.

18

WO 2016/081520 PCT/US2015/061191

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The drawings illustrate the design and utility of embodiments of the present
invention, in which similar elements are referred to by common reference numerals. In
order to better appreciate the advantages and objects of embodiments of the invention,
reference should be made to the accompanying drawings. However, the drawings
depict only certain embodiments of the invention, and should not be taken as limiting
the scope of the invention.

[0034] FIG. 1 illustrates an example network in which a vector engine may be
implemented.

[0035] FIG. 2A shows an approach for detecting network threats using metadata
vectors.

[0036] FIG. 2B illustrates an example network in which a vector engine has been
implemented, as according to some embodiments.

[0037] FIG. 2C illustrates an example internal network in which a vector engine has
been implemented, as according to some embodiments.

[0038] FIG. 3 illustrates an example block diagram showing internal features of a
vector engine.

[0039] FIG. 4 shows example details of how metadata may be extracted from
network communications.

[0040] FIG. 5A shows an examples of clustering metadata.

[0041] FIG. 5B shows an example flowchart for an approach for clustering metadata

instances into similar clusters.

19

WO 2016/081520 PCT/US2015/061191

[0042] FIG. 5C shows an example flowchart on how to implement a sliding window in
the vector engine.

[0043] FIG. 5D shows an example flowchart on how to detect whether the number of
metadata instances in a cluster exceeds a threshold.

[0044] FIG. 6 illustrates example system architecture.

20

WO 2016/081520 PCT/US2015/061191

DETAILED DESCRIPTION

[0045] Various embodiments of the invention are directed to a method, system, and
computer program product for detecting threats using replicative metadata vectors.
Other objects, features, and advantages of the invention are described in the detailed
description, figures, and claims.

[0046] Various embodiments of the methods, systems, and articles of manufacture
will now be described in detail with reference to the drawings, which are provided as
illustrative examples of the invention so as to enable those skilled in the art to practice
the invention. Notably, the figures and the examples below are not meant to limit the
scope of the present invention. Where certain elements of the present invention can be
partially or fully implemented using known components (or methods or processes), only
those portions of such known components (or methods or processes) that are
necessary for an understanding of the present invention will be described, and the
detailed descriptions of other portions of such known components (or methods or
processes) will be omitted so as not to obscure the invention. Further, the present
invention encompasses present and future known equivalents to the components
referred to herein by way of illustration.

[0047] Before describing the examples illustratively depicted in the several figures, a
general introduction is provided for further understanding.

[0048] In some embodiments, a vector engine is implemented to detect network
threats using metadata vectors. In some embodiments, the vector engine may first
receive network communications, extract metadata from the network communications,

group the metadata into clusters, and if the size of one or more metadata clusters

21

WO 2016/081520 PCT/US2015/061191

exceeds a given threshold within a predefined period of time, generate an alarm. The
network comprises a plurality of client computers communicating with an outside
network (i.e. the internet) as well as internally with each other. When a computer is
infected by a malicious payload, such as malicious automated instructions or script, the
computer may act as a bot and may send copies of the same or a different malicious
payload to a number of other computers in the network, to infect them as well. The
malicious automated script may include logic that instructs the first infected computer to
send the same or a different automated script to multiple other computers. The script
may further be addressed to the same destination port on each computer. Further,
when the multiple other computers receive and process (e.g., execute/interpret) the
script, they may respond to the first computer using the same type of response.

[0049] Thus, in this case, for example, the characteristics of such an attack would be
a first computer in a network sending substantially the same data (e.g., the malicious
payload) of a set size, addressed to the same destination port on multiple other
computers, each of which may respond to the first computer using substantially the
same response message. Further, the time between each request and its matching
response will typically be short (e.g., less than five seconds).

[0050] In some embodiments, the vector engine can collect the above network
communications by tapping a network switch and making a copy of the network
communications for analysis, without disrupting or slowing down the network. Next, the
vector engine may extract metadata from the network communications that can be used
to characterize the network communications without inspecting the contents. The vector

engine may group the metadata into matching clusters that allow the vector engine to

22

WO 2016/081520 PCT/US2015/061191

track how many times a given network communication has occurred. If a certain
network communication, such as one corresponding to a malicious attack, occurs too
many times, the cluster may grow in size and exceed a given threshold. If the threshold
is exceeded or surpassed, the vector engine may generate an alarm or may flag the
data for further monitoring.

[0051] As an example, if the threshold for a given cluster’s size is ten, and a first
computer is infected by a malicious payload and tries to spread copies of the same or
different malicious payload to eleven other computers, then eleven instances of
metadata will be generated by the vector engine. Further, because the eleven instances
of metadata were all generated from the same source, the eleven instances of metadata
will all have similar data items and can be grouped into the same cluster. As the
threshold is ten, the size of the cluster containing the eleven instances exceeds the
threshold and the vector engine may generate an alert to signal that the first computer is
potentially attacking other computers on the network.

[0052] Described below are general non-limiting example definitions that may be
used to understand or enhance understanding of how certain embodiments may be
implemented.

[0053] A network is collection of computing entities that communicate with one
another. In some embodiments, an internal network is a network of computers that are
isolated from other (e.g., external) networks by networking components and/or devices
as are known in the art, such as a firewall.

[0054] A client computer is a computer or node within a network. In some

embodiments, a computer may act as a client and/or host depending on the type of

23

WO 2016/081520 PCT/US2015/061191

connection with another computer. As used here, clients are generally uninfected but
can become infected by malicious payloads, in which case they may act as bots for the
outside or attacking entity.

[0055] An attacking computer is a computer or entity (e.g., malicious user) that
initiates a malicious attack on a computer, client computer, or network. In some
instances, an attacking computer may use a malicious payload to attack other
computers in the network, whereby the malicious payload may infect a first computer
inside the network and direct the first computer to distribute copies of the same or
another malicious payload to other computers, who then may further replicate and
distribute the malicious payload.

[0056] A botis a client computer that is under the effective control of the attacking
computer. For example, the attacking computer can use the bot to achieve further
malicious goals, and/or perform tasks.

[0057] A malicious payload is a collection of instructions, which may be in the form of
code (e.g., JavaScript) that is used to perform malicious tasks. The payload may in
some form be compilable code, scripted code, or other types of instructions as is known
to those of ordinary skill in the art. In some instances, malicious payloads may
correspond to large toolkits that are 500 megabytes or more in size. In other instances,
a malicious payload may be a small automated script, such as a script of 1 megabyte
(or less) in size.

[0058] Vector metadata is metadata that is used to characterize and/or categorize
network communications without inspecting the contents of the network

communications (e.g., deep content inspection). For example, in some embodiments

24

WO 2016/081520 PCT/US2015/061191

the metadata may comprise data from packet headers, and in some embodiments the
metadata may be information that describes the overall session between two hosts. A
metadata instance is a collection of one or more metadata items (e.g., packet
information, session information) specific to a given network communication.

[0059] A metadata item is a parameter or item, such as a response size, that
describes a certain feature of the network communication. For example, in some
embodiments the metadata may comprise data from packet headers, and in some
embodiments the metadata may be information that describes the overall session
between two hosts. In some embodiments, a metadata item is used to characterize a
network communication without inspecting the contents of the network communication.
In some embodiments, the metadata item does not contain any reference or indicator of
what is inside (e.g., the contents) of a network communication.

[0060] A metadata cluster is a grouping of metadata instances that may generally
share similar metadata items. In some embodiments, a metadata cluster can be used to
track how many network communications of a certain type have occurred.

[0061] A first communication is a communication initiated by one computer directed
to another computer. In some embodiments, a first communication may take the form of
a request or a “upstream” communication emanating from a client computer. In some
embodiments, a first communication may correspond to a transmission that includes a
file in a direction from a first computer to a second computer.

[0062] A second communication is a communication initiated by the second
computer directed to the first computer. In some embodiments, a second

communication may take the form of a response or a “downstream” communication

25

WO 2016/081520 PCT/US2015/061191

received from the host or responding computer. In some embodiments, a second
communication may correspond to a response message initiated in response to
receiving and/or processing the first communication.

[0063] A network communication is a communication or session between two or
more computers in a network using various networking protocols, such as TCP/IP. In
some embodiments, a network communication comprises the first communication and a
second communication as a pair, session, or session portion. In some embodiments, a
network communication comprises an initiating message (e.g., request) in one direction
that begins the communication, and a response message in the opposite direction,
which may be a response to the initiating message. In some embodiments, a network
communication may be a unilateral communication attempt by one computer where no
response occurs (e.g., a failed request).

[0064] FIG. 1 illustrates an example networked environment 100 in which an outside
computer 104 is attacking an internal network 102. The internal network 102 comprises
a plurality of client computers 106 and 108a-e. As illustrated, the attacking computer
may coax the client computer 106 to retrieve a malicious payload 105, such as an
automated script, by sending a malicious email with an embedded web link. When the
client computer 106 processes the malicious payload 105, it becomes a "bot". Under
direction of the malicious payload, the client computer or bot 106 may then attempt to
send copies of the same malicious payload or a different malicious payload to a plurality
of client computers 108a-e. When the plurality of client computers 108a-e receive and
process the replicated malicious payloads, they may respond to the bot computer 106

with a response message (not depicted). The plurality client computers 108a-e, may

26

WO 2016/081520 PCT/US2015/061191

also send out more replicas of the malicious payload to potentially more client
computers inside or outside the internal network 102. In this way, an outside attacking
computer 104 may potentially use a small automated script to attack and/or establish
control over many clients in an internal network 102. Though in this example only client
five client computers are sent the payload, in some embodiments the payload may be
sent to only two computers, in other embodiments, the payload may be sent to fifteen
clients to be infected, in a network comprising 1000 clients for example.

[0065] FIG. 2A shows an example flowchart 200 of an approach for how a vector
engine may be implemented to detect the network threats, such as the example attack
described with reference to FIG. 1. Also, FIG. 2A is explained in conjunction with FIG.
2B and FIG. 2C, which show examples of how a vector engine may be implemented in
a network setting.

[0066] At 202 (FIG. 2A), the vector engine receives network communications for a
given network. FIG. 2B illustrates an example network in which step 202 may occur.
There, an example of networking environment 210 comprises an internal network 212,
which may be isolated by networking components and devices as are known in the art,
such as a firewall (not depicted). A plurality of client computers 220 and 224a-e may be
networked together to communicate through use of a network switch 216 or other
networking components. In some embodiments, the vector engine 222 may receive
network communications for the internal network 212 through the network switch 216.
The vector engine 222 can also be implemented as software that resides upon

networking equipment, nodes, or entities within a network (e.g., internal network 212).

27

WO 2016/081520 PCT/US2015/061191

Finally, the vector engine 222 can be implemented in a virtual machine and be deployed
on hardware supplied by the company that owns the network.

[0067] In FIG. 2B, an outside computer or entity is illustrated as an attacker 214. The
attacker 214 may interface with the internal network 212 through the switch 216 to send
a malicious payload 227 (e.g., a payload linked through or attached to an email) to the
client computer 220. When the client computer 220 processes the malicious payload
227, it becomes a "bot". Alternately, the client computer could become a “bot” under
many other circumstances, including, but not limited to, getting infected when browsing
a compromised web site.

[0068] Under the direction of the malicious payload (and in some cases under the
direction of the attacker 214), the bot 220 sends a plurality of requests 225a-e
(represented by dashed lines) to the respective client computers 224a-e. The requests
225a-¢ in this example are copies of the malicious payload 227 or of an entirely new
malicious payload, and as such all requests 225a-e may have the same or similar sizes
(e.g., ~1 MB). Further, the requests 225a-e may also be addressed to the same
destination port on each client machine 224a-e, respectively (e.g., request 225a is
addressed to example TCP port "135" on client 224a, while request 225b is addressed
to the same example TCP port "135" but on client 224b.).

[0069] When the plurality of client machines 224a-e, receive and process the
requests 225a-e, they may reply to the bot 220 with a response 229a-¢, as illustrated by
dotted lines in FIG. 2C. Since the requests 225a-e consisted of replicas of the same

malicious payload, when each client machine 224a-e processes the request, the client

28

WO 2016/081520 PCT/US2015/061191

machines may send similar responses to the bot 220. Thus, the responses 229a-e may
all be approximately the same size and share similar characteristics with one another.
[0070] As explained, in some cases, the malicious payload 227 consists of an
automated script that when processed causes actions to occur automatically or near
instantaneously. And in some case, the malicious payloads 225a-e, sent by the bot 220,
is the same as the malicious payload 227 it received. Given the nature of malicious
payloads, the high speed of networks, and the speed of computing devices, such as
those shown in FIG. 2B and FIG. 2C, the time elapsed between the requests 225a-e
(FIG. 2B) and the responses 229a-e (FIG. 2C) may be small (e.g., as little as five
seconds).

[0071] Collectively, the communications (e.g., the requests and responses) comprise
the network communications that the vector engine can receive and analyze at 202
(FIG. 2A). Next, at 204, the vector engine may extract vector metadata from the network
communications. Though explained in greater detail below with reference to FIG. 4,
vector metadata is briefly explained here as metadata that can be used to describe the
network communications so that the vector engine can group or cluster the metadata
and/or network communications for further analysis. For example, the metadata may
comprise packet header information, or information about the session (e.g., time
between request/responses).

[0072] At 206, after the metadata is extracted, the vector engine may group the
metadata into clusters using a matching process. The metadata clusters may then be
used to track how many instances of a given network communication has occurred. For

example, with reference to FIG. 2B and FIG. 2C, the bot 220 has sent out five requests

29

WO 2016/081520 PCT/US2015/061191

(e.g., 225a-¢e), and received five responses (e.g., 229a-¢), thus in one cluster there may
be five instances of metadata that correspond to the five actual network communication
exchanges.

[0073] The vector engine can set threshold size limits on the clusters to monitor
them. The underlying rationale being that if a given cluster grows too large, the
metadata instances in the cluster correspond to a rapidly growing network attack using
malicious payloads, such as an automated script. For example, with reference to FIG.
2B and FIG. 2C, if the cluster (not depicted) that is tracking the five network
communications (e.g., the five instances of requests and responses) has a threshold
size limit of three, the vector engine may generate an alarm at 208 (FIG. 2A), to signal
that the internal network 212 and specifically the bot 220 may be infected and attacking
other clients when the five instances of metadata are grouped in one cluster.

[0074] FIG. 3 illustrates an example block diagram showing internal features of a
vector engine 222. There, vector engine 222 contains a passive interface module 306
that is designed to passively receive network communications, such as from a network
switch 304. The passive interface module may then send the network communications
to an extractor module 308 to extract one or more instances of metadata that
correspond to each network communication.

[0075] Once the metadata instances are extracted from the network
communications, a cluster module may group the metadata instances into clusters. As
explained, each cluster may have a threshold size limit such that if the amount of
metadata instances in the cluster exceeds a threshold an alarm may be generated and

output at 314.

30

WO 2016/081520 PCT/US2015/061191

[0076] FIG. 4 shows example details of a metadata instance for a given network
communication. There, bot 220 has sent a request 225a containing a malicious payload
to a client computer 224a. When the client computer 224a processes the malicious
payload it may send a response 229a back to the bot 220. Collectively, the request
225a and the response 229a may comprise a single instance of a network
communication 404. For example, network communication may correspond to a
complete session or portion of a session. The extractor module 308 may receive the
network communication 404 and extract one or more metadata items 403a-g that
describe the network communication 404. The one or more metadata items correspond
to a metadata instance 402 that describes the network communication 404 without the
need for inspecting the contents of the request or the response. The contents of the
network communication may comprise the “data” payload for a given network packet.
[0077] The metadata items illustrated serve merely as an example of a possible set
of metadata that may be extracted from a network communication, though one of
ordinary skill in the art appreciates that other metadata items can be implemented as
necessary.

[0078] In some embodiments, a communication identifier such as a request identifier
(RQID) 403a may correspond to the starting bytes of a packet. For example, request
identifier 403a may comprise the first sixteen bytes of a request of communication 225a.
Generally, the first bytes of a request contain header information or other data that is
common across all requests 225a-e (FIG. 2B). In this way, the first sixteen bytes can be
used to identify similar requests without inspecting the contents or data payload of the

communications and/or packets.

31

WO 2016/081520 PCT/US2015/061191

[0079] Similarly, the response identifier (RSPID) 403, may be the first sixteen bytes
of a response, such as communication 229a. Because the response is generally a
message created in response to the malicious payload being processed (e.g.,
executed), responses then generally contain the same header information. Just as with
RQID 403a, RSPID 403b can likewise be used to identify similar responses without
inspecting the contents of the response.

[0080] The destination port metadata data item 403c corresponds to the protocol
(e.g., TCP or UDP) and port on the receiving machine (e.g., 224a-e) to which a request
is directed. As explained above, malicious payloads in the form of automated scripts
may be restricted to small payload sizes to remain inconspicuous in the network. As
such, malicious payloads often direct the bot 220 to send the replicated malicious
payloads to the same destination port (as opposed to specifying multiple
addresses/ports which may take up more space). Because the replicated malicious
payloads (e.g., the requests) are all sent to the same destination port on each
respective client machine 224a-e, the destination port metadata data item 403c may be
used to match similar network communications that are initiated by the same malicious
payload.

[0081] The request size metadata data item 403d describes the size of a request,
such as a request 225a. Because the requests sent to clients 224a-e are generally the
same, they likely share the same request size. If the requests sent to clients 224a-e are
also copies of the original malicious payload 227, the sizes of the requests sent to
clients 224a-e will be approximately the same as the size of payload 227. Thus, the

request size metadata item 403d can be used to detect matching requests. Similarly,

32

WO 2016/081520 PCT/US2015/061191

the response size metadata data item 403e describes the size of a response, such as
response 229a. Because the responses 229a-e (FIG. 2C) are typically all generated in
response to the same requests 225a-¢e, the responses may all have approximately the
same sizes as well. Thus, the response size 403e can be used to detect matching
responses.

[0082] The time elapsed metadata data item 403f describes the length of time
between when a request was sent out and when a response was sent back. Because
the targeted hosts may be generally quick to process automated scripts and other types
of network attacks, the time between request and response may be very short, e.g., less
than five seconds. Thus, it may be the case that the duration of time between when
each request 225a-e was sent and when each corresponding response was sent is
roughly the same. Thus, the time elapsed data item 403f can be used to describe and
match similar network communications.

[0083] The non-zero data volume metadata data item 403g is a metadata item that
ensures that all analyzed network communications are not empty. For example,
referring to FIG. 2B, if the request 225a contains actual malicious payload data, then the
non-zero data volume metadata data item 403g will reflect that the request is not empty.
However, if 225b was sent in error and is empty, then the non-zero metadata item 403g
will reflect that the request 225b is empty. To save system resources, some
embodiments of the invention may use the non-zero data volume metadata item 403g to
filter out all empty network communications.

[0084] Collectively, the metadata items 403a-g may comprise a single metadata

instance particular to a given network communication, such as network communication

33

WO 2016/081520 PCT/US2015/061191

404. Once the metadata items are extracted to compose one or more metadata
instances, the cluster module can group the metadata instances into clusters using a
cluster module.

[0085] FIG. 5A shows an example block diagram 500 of how aspects of the cluster
module 310 may be implemented. There, a metadata instance 402 is received from the
extractor module 308. The cluster module 310 may buffer one or more metadata
instances in a metadata bin 504. As illustrated for this example, metadata bin 504
contains six metadata instances 505a-f. The cluster module 310 may group the
metadata instances into metadata clusters (e.g., Cluster-A 516, Cluster-B 518, Cluster-
C 520) using a matching process, explained in greater detail below. However, as an
example, metadata instances 505d, 505¢, 505f are all grouped into the same cluster,
Cluster-C 520 because some or all of their metadata items have been determined to
approximately match.

[0086] As explained, each cluster may have a threshold size limit such that if the
threshold is exceeded an alarm is generated. In some embodiments, the cluster module
310 may implement a logic module 525 to keep track of cluster counts and a time
window to expire old metadata instances. The cluster count module 506 can hold a data
value that corresponds to the threshold size limit and further monitor the cluster count
for each module. For example, if the cluster count module 506 sets the threshold to be
“2”, then Cluster-C 520, which currently holds three metadata instances (505d, 505e,
and 505f), would exceed the threshold, and the cluster count module and/or the logic

module 525 may generate an alarm data for output at 512.

34

WO 2016/081520 PCT/US2015/061191

[0087] In some embodiments, the time window module 508 may operate as a sliding
window of a discrete duration. For example, if the sliding window time duration is 6
hours, as illustrated in FIG. 5A (see element 508), then metadata instances in the
clusters that are older than 6 hours are expired and removed from the cluster. The
expiring and removing of old metadata instances using a sliding window can protect
against false positives caused by potential build-up of unrelated metadata instances
over very long periods of time. Further, though specific examples are used here for the
threshold size limit (e.g., 3) and the time duration (e.g., six hours), one of ordinary skill
in the art appreciates that such parameters can be modified or customized per
implementation, as required.

[0088] Thus, as FIG. 5A illustrates, the clusters may be required to satisfy two
conditions before an alert may be triggered. First, the cluster must exceed the threshold
size limit (e.g., more than three metadata instances), and second, the threshold size
must be exceeded in the given time window (e.g., more than three metadata instances
within the last six hours). In some embodiments, the second condition is implicit in the
checking of the first condition. For example, by constantly removing metadata instances
older than six hours, the second condition is automatically enforced.

[0089] In some embodiments, the alert data 512 generated by the cluster module
310 may generate an actual alarm automatically. That is, if the threshold size limit is
exceeded within the time duration, an alarm is generated without intervention. In some
embodiments, if the threshold size limit is exceeded within the time duration, the
corresponding network activity is flagged as potentially malicious activity and no alarm

is directly generated. In this way, the potentially malicious activity may be combined with

35

WO 2016/081520 PCT/US2015/061191

other unrelated anomalies to generate an automatic alarm or network administrators or
security administrators can further monitor the network activity and manually generate
an alarm as required.

[0090] Further, in some embodiments, a training window or period may be
implemented, where the metadata instances are grouped into clusters to generate a
baseline state of the network. The training period may be set to a time duration such as
24 hours. For example, the cluster module may group metadata instances into clusters
for the first 24 hours to ascertain the appropriate value to set for each cluster’s threshold
size limit and may decide that special limits are required for some clients in the network.
The training window could be used to identify periodic network communications that
satisfy all the criteria to generate an alert, but that, as they happen relatively regularly in
the network, could be associated to benign communications intentionally initiated from
an uninfected client by a given user or process.

[0091] FIG. 5B shows a flowchart on an approach for how metadata instances may
be grouped into clusters. At 526, the cluster module receives a group of metadata
instances for analysis and grouping. At 528, the cluster module analyzes the metadata
instances in a strict match stage. In the strict match stage 528, in order for one or more
metadata instances to be grouped together, certain metadata items in each metadata
instance must exactly match one another, or must exactly match metadata items of
instances already in the cluster. For example, referring to FIG. 2B, if the request
identifier (RQID) 403a for the request 225a exactly matches the request identifier

(RQID) 403a for a different request 225b, then the corresponding metadata instances

36

WO 2016/081520 PCT/US2015/061191

may be grouped together in the same cluster (assuming the other requirements are
met).

[0092] As illustrated in FIG. 5B, the strict match items for Cluster-A, as an example,
may include the following metadata items: RQID 403a, RSPID 403b, and Destination
Port 403c, Thus, to be grouped in Cluster-A at the strict match stage 528, a metadata
instance must have the above metadata items exactly match the metadata instances
already in Cluster-A or exactly matched to another metadata instance to start/form a
cluster.

[0093] If a metadata instance under consideration has metadata items that do not
strictly match those in Cluster-A, for example, then the metadata instance is not
grouped with Cluster-A at 530. Though continuing, if the metadata instance under
consideration does in fact have metadata items that exactly match each other or those
in Cluster-A, then the metadata instance may be analyzed in the approximate match
stage 532.

[0094] In the approximate match stage 532, a metadata instance is analyzed to
determine whether certain metadata items in the metadata instance approximately
match each other or those in the cluster. As illustrated in FIG. 5B, the metadata items in
the approximate match stage 532 may include the request size 403d and the response
size 403e (e.g., a communication size data item). Further, a range or percentage
threshold may be specified to determine whether a given metadata item approximately
matches the metadata items in the cluster. For example, in FIG. 5B the range is 5%.

Thus, if a request size 403d is within 5% of the average of those request sizes already

37

WO 2016/081520 PCT/US2015/061191

in the cluster, the corresponding metadata instance may be grouped in the cluster at
534 (assuming other conditions illustrated in FIG. 5B are met).

[0095] FIG. 5C shows an example flowchart for an approach 575 for how the time
window module 508 (FIG. 5A) may be implemented. After a start block at 576, two
operations may occur approximately simultaneously. First, using a matching process,
such as the one explained above, matching metadata instances can be added to a
given cluster, at 578a. Second, as metadata instances are added to the cluster, the time
in which they were added is recorded, and when a metadata item is more than six hours
old it may be removed from the metadata cluster, at 578b. In this way, the time window
module implements a sliding window that is six hours wide to incrementally remove old
metadata instances, as new metadata instances are added. In some embodiments, the
metadata bin 504 (FIG. 5A) may be allowed to buffer for six hours at a time. At each six-
hour increment, the metadata instances buffered in the metadata bin 504 are then
grouped into clusters. Once the metadata bin 504 is empty, new metadata instances
may be buffered in the bin for another six hours. In this way, the time window module
508 may also implement a buffered or turn-based grouping process.

[0096] FIG. 5D illustrates a flowchart for one approach 582 for determining whether
a threshold size limit has been exceeded. At 583, a new matching metadata instance is
added to a cluster. At 584, after the new metadata instance is added to the cluster, a
determination is made on whether the cluster contains more than the threshold size
limit. For example, if the threshold size limit is 3, then at 584 the cluster count module
506 determines whether there are more than 3 metadata instances in the cluster. If the

cluster does not have more than three metadata instances, the threshold size limit is not

38

WO 2016/081520 PCT/US2015/061191

exceeded and no alarm data is generated, at 585. On the other hand, if after adding the
new matching metadata instance, the cluster contains more than three metadata
instances, the threshold size limit is exceeded and an alarm may be generated, at 586.
SYSTEM ARCHITECTURE OVERVIEW

[0097] FIG. 6 is a block diagram of an illustrative computing system 1400 suitable for
implementing an embodiment of the present invention for performing intrusion detection.
Computer system 1400 includes a bus 1406 or other communication mechanism for
communicating information, which interconnects subsystems and devices, such as
processor 1407, system memory 1408 (e.g., RAM), static storage device 1409 (e.g.,
ROM), disk drive 1410 (e.g., magnetic or optical), communication interface 1414 (e.g.,
modem or Ethernet card), display 1411 (e.g., CRT or LCD), input device 1412 (e.g.,
keyboard), and cursor control.

[0098] According to one embodiment of the invention, computer system 1400
performs specific operations by processor 1407 executing one or more sequences of
one or more instructions contained in system memory 1408. Such instructions may be
read into system memory 1408 from another computer readable/usable medium, such
as static storage device 1409 or disk drive 1410. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination with software instructions to
implement the invention. Thus, embodiments of the invention are not limited to any
specific combination of hardware circuitry and/or software. In one embodiment, the
term “logic” shall mean any combination of software or hardware that is used to

implement all or part of the invention.

39

WO 2016/081520 PCT/US2015/061191

[0099] The term “computer readable medium” or “computer usable medium” as used
herein refers to any medium that participates in providing instructions to processor 1407
for execution. Such a medium may take many forms, including but not limited to, non-
volatile media and volatile media. Non-volatile media includes, for example, optical or
magnetic disks, such as disk drive 1410. Volatile media includes dynamic memory,

such as system memory 1408.

[00100] Common forms of computer readable media include, for example, floppy
disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other physical medium with
patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or

cartridge, or any other medium from which a computer can read.

[00101] In an embodiment of the invention, execution of the sequences of
instructions to practice the invention is performed by a single computer system 1400.
According to other embodiments of the invention, two or more computer systems 1400
coupled by communication link 1415 (e.g., LAN, PTSN, or wireless network) may
perform the sequence of instructions required to practice the invention in coordination

with one another.

[00102] Computer system 1400 may transmit and receive messages, data, and
instructions, including program, i.e., application code, through communication link 1415
and communication interface 1414. Received program code may be executed by
processor 1407 as it is received, and/or stored in disk drive 1410, or other non-volatile

storage for later execution.

40

WO 2016/081520 PCT/US2015/061191

[00103] In the foregoing specification, the invention has been described with
reference to specific embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereto without departing from the broader
spirit and scope of the invention. For example, the above-described process flows are
described with reference to a particular ordering of process actions. However, the
ordering of many of the described process actions may be changed without affecting the
scope or operation of the invention. The specification and drawings are, accordingly, to

be regarded in an illustrative rather than restrictive sense.

41

WO 2016/081520 PCT/US2015/061191

CLAIMS
What is claimed:

1. A method for detecting threats in networks using metadata, comprising:

receiving one or more network communications, wherein a network
communication includes at least a first communication in a first direction from a first host
to a second host and a second communication in a second direction from a second host
to a first host, the second direction being opposite of the first direction;

extracting one or more metadata instances from the network communications
that describe the network communications without inspecting contents of the network
communications,

grouping the metadata instances into one or more clusters based on whether the
metadata instances match; and

generating alert data for a cluster when an amount of metadata instances in the
cluster exceeds a threshold.
2. The method of claim 1, wherein the clusters correspond to a sliding window in
which metadata instances older than a time duration are removed.
3. The method of claim 1, wherein network communications are grouped into
clusters by matching a plurality of metadata items in a first metadata instance to a
plurality of metadata items in a second metadata instance.
4. The method of claim 3, wherein the metadata items includes one or more of the
following group: a first communication identifier, a second communication identifier, a
destination port data item, a first communication size data item, a second
communication size data item, a time elapsed data item, and/or a non-zero data volume

data item.

42

WO 2016/081520 PCT/US2015/061191

5. The method of claim 4, wherein two metadata instances are grouped into a same
cluster if one or more metadata items belonging to each of the two metadata instances
strictly match.

6. The method of claim 4, wherein two metadata instances are grouped into a same
cluster if one or more metadata items belonging to each of the two metadata instances
approximately match.

7. The method of claim 1, further comprising a training window in which network
communications are grouped into clusters.

8. The method of claim 4, wherein the first communication identifier corresponds to
a number of starting bytes of the first communication, and the second communication
identifier corresponds to a number of starting bytes of the second communication.

9. A system for detecting threats in networks using metadata, comprising:

a computer processor to execute a set of program code instructions;

a memory to hold the set of program code instructions, in which the set of
program code instructions comprises program code to perform any of the methods of
claims 1-8.

10. A computer program product embodied on a non-transitory computer readable
medium, the non-transitory computer readable medium having stored thereon a
sequence of instructions which, when executed by a processor causes the processor to

execute any of the methods of claims 1-9.

43

PCT/US2015/061191

WO 2016/081520

1/11

¢0l XH4OMLAN TVYNHILNI

P8Ol a0l
IN3I10 LN3M1D
= o

I

|
|
|
|
|
|
|
|
|
|
|
|
2801 s eg0l [
IN3ITD IN3ITO IN3ITO |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

=20
[] [] []

l Old

A\oor

Y0l 43IMOVLLY

C— O

GOl

901 LO4/LN3ITO

PCT/US2015/061191

WO 2016/081520

2/11

V¢ 9Old

802
ploysaly) pesoxa

SI0]109A BlEepEjoW
aAneoldal I wieje a)elausn)

A

90¢
SI0J08A

ejepelow aAneoldal
Buisn syeauy; 19919

A

¥0¢
elepejaw
“WILLIOD YJOM]}BU J0BIIXT

A

¢0¢
SUOIEOIUNWWOD

YJoM1aU BAI908Y

00¢

PCT/US2015/061191

WO 2016/081520

3/11

212 YHOMLIAN TYNYILNI .
! dac¢ 9l
_ I
— I
ovZZ — I
t_w_w_m_mo IN3AID O I
— o = o 22e I
p—— @ auIbug 1
B JOJ08A l
f ! 0Le
\ , avze i I
\ , IN3ITO I
_ = |
\ S |
\ Ao
N>
oz | i% , ;
sz:o }m ! /
N I ’ “
' 4 / evze
A I
@ \ ! AL namo :
»
\ \ Y G o I 12 YIMOVLLY
\ . \ 1 v D I
) I
AN — .- : C— O
\ |[E= OL - "2 I _ _
I I |
‘ll \—
27 OO0 =o
91Z HOLIMS

0¢¢ 1049/1N3IO

PCT/US2015/061191

WO 2016/081520

4/11

¢ 9Ol

L\orw

14ZR<E N0} ANAY

c—— O

I

I I

—_— I

%22 - I

t_w_w_m_mo IN3AID O I

— o =2 0 22e I

— @ auIbug 1
D JOJOBA l

: |

3 avee) I

3 i IN3ITO I

o =T |

o | : [

SN H

S . |
ovee I %% “
INTITO % |
i : Y BYZ2 |

@ : S8 INTMD :
% TS !
Q%nle. v vy D I
. .- —
I
|
I

T R0 =0

9L¢ HOLIMS

PCT/US2015/061191

WO 2016/081520

5/11

€

Old

¢¢Z ANIONT HOL03AN

A

145"
1Nd1Nno
OV 1d/INIVTV

80¢
ITINAON |e
HO1ovd1X3
90¢
37NAON
< JOV4HALNI |
JAISSVd |
oLE
37NAON
¥31SN10

v0€
HOL1IMS NOH4
‘NWOD "13N

PCT/US2015/061191

WO 2016/081520

6/11

v Old

80€ ITNAOIN JO1LOVd1LX3

JINNTOA V.Lva OY3Z-NON (bgoy
a3sdv13 ANIL (goy

37IS ASNOJSIY (8¢0t

37IS 1S3INO03AY (PEoy

140d NOILYNILS3A (og0¥
(S31A9 91) AIdSY (acov

(S3LA9 91) A0y (egoy

¢0v AONVLSNI V1vav.Li3an

eyzg LINJITO pmmmmm e 1 02z L0d
1 0¥ 'NINOD MHOMLIN m
! I
] o] m o
I I i I I I
1
! B62C m
1
| i
M= — e — - - ---—--—-
eGZde

PCT/US2015/061191

WO 2016/081520

7/11

-

VG Ol

¢LS
ov1d/1d3v

(SYHH 9) (+€)
805 90S
MOANIM | | LNNOD

INIL 1SN0

G¢s TNAON OO0

0cs
O°1SN10

01€ ITNAON J31SN10

[(€)evec€>02¢ (1509]

¢IPrec<—>0c¢ (9509

8lg
g '1SN1o

916
vV 'LSN1O

alll

¥

N (1)oygz<->0ze (PSOG|

| (?)avece<->0ze (9505|

N (1)avzz<->0z¢ (9509

[Bvecc €> Oce (8509]

¥0S NI9 V1vav.L13In

009

JINNTOA V.Lva OY3Z-NON (bgoy
a3sdv13 AniL (goy

37IS ASNOJSIY (8€0t

37IS 1S3INO03AY (PEoY

140d NOILYNILS3A (o£0¥
(S31A9 91) AIdSY (acov

(S3LA9 91) A0y (egoy

¢0v AONVLSNI V1vav.Li3an

PCT/US2015/061191

WO 2016/081520

8/11

€S
V 1318N|D UM
aouejsy|
ejepe)sp\ dnoio

A

S3A

&V J81SN[D Ul 8S0y) 1O %G Ul Yum 8zZIs asuodsay

ks
$V J81SN[D Ul 8S0Yl JO %G UIyum 8zIs 1sanbay

Z<S Udje\ srewixolddy

d¢g oOld

4

S3A

3

Vv Jaisn|p se o

wes uod 1seq

K

&V J81sn|D se swes J|dSY
K

¢V J81sn|D se swes oy

8¢S U9\ IS

A 4

ON

A 4

4

z

9¢S
20UR)ISU| BIEPRIS|N SAIS08Y

ON

0€g
Y 818N
yum dnoub jou oq

PCT/US2015/061191

WO 2016/081520

9/11

Q¢ 9Old

08¢
uiney

A

ag8.g
SHH 9 < J1J318NPd
WIOJ) B]EPEISW SAOWSY

A

egQ/9
Ja)snio 0} ejepejow ppy

3

916
Hels

GlG

PCT/US2015/061191

WO 2016/081520

10/11

as old

98¢
Bej/ua|e a1elausn)

788G
2I9IsN[o +¢

Gcs
1s[e ON

€89
Jaisnpp 0}
9dUB]SUI BlepElaW PpY

¢8S

PCT/US2015/061191

WO 2016/081520

11/11

(434!
qd

ut
SUOT)ROTUNUIWIO
SIv
vivi eevl
00BJIU] LOVT 00BJIIU]
SUONBITUNWIWIO)) (5)10889001g BlR(
A y y
A 4 A 4 A 4
901 Sng
A A A
y A A
0PI 6071 8071
201A0(J INOY KIOWON
o8e101§ UreN

9 9.nBi14

Levl

484!
201A0(J
mduy

484!
Kepds1iq

00vl

INTFRNATIONAL SEARCH REPORT

Tutzinational application Ni,

PCT/US 15/61191

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 11/00 (2015.01)
CPC - H04L63/1416

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched

éc]assiﬁcation system followed
USPC: 726/22; CPC: H04L63/1416;

IPC(8): GO6F 11/00 (2015.0

1b}/ classification symbols)

(keyword limited, terms below)

Documentation searched other than inisimum documentation to the extent that such documents are included in the ficlds scarched
USPC: 726/1, 726/22-26; CPC: H04L63/1416, H04L63/1408, H04L63/145, H04L63/1441, H04L.63/1458; |PC(8): GO6F 11/00 (2015.01)

sigma; outliers; filtering; time window; log, monitor, inspect; statistics,
address, I protocol, IP TTL

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, Google Patents, |[EEE; Search Terms: DDOS, distributed denial of service; attack; histogram; bucket, bin; standard deviation,

statistical analysis; suspicious; packet, request; identitier, 1P

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2003/0145232 A1 (Poletto et al.) 31 July 2003 (31.07.2003), entire document especially 1-9
paras [0006], [0035], [0037], [0038], [0051], [0057], [0064], [0065], [0096]
A US 2011/0138463 A1 {Kim et al.) 09 June 2011 (09.06.2011), entire ducument 1-9
A US 2012/0124666 A1 (Kim et al.) 17 May 2012 (17.05.2012), entire document 1-9
A US 2013/0219502 A1 (Danford et al.) 22 August 2013 (22.08.2013), entire document 1-9
A US 2013/0219502 A1 (Danford et al.) 01 April 2013 (01.04.2013), entire document 1-9

D Further documents are listed in the continuation ot Box €.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication datc of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international iling date or priority
date and not in contlict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11 January 2016 (11.01.2016)

Date of mailing of the international search report

04 FEB 2076

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT Tnternational applicativn N,
PCT/US 15/61191

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. l__l Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the interational application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out. specifically:

3. X Claims Nos.: 10
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as {ollows:

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - wo-search-report
	Page 57 - wo-search-report

