

## [54] SEMIAUTOMATIC BELT LOOP SEWING SYSTEM

[75] Inventors: Joseph W. A. Off; Darrel J. Wilbanks; Waid O. Willcox, all of Irving, Tex.

[73] Assignee: Haggard Company, Dallas, Tex.

[22] Filed: Sept. 7, 1973

[21] Appl. No.: 395,230

[52] U.S. Cl. .... 112/121.27, 112/104

[51] Int. Cl. .... D05b 23/00

[58] Field of Search..... 112/104, 121.27, 121.26

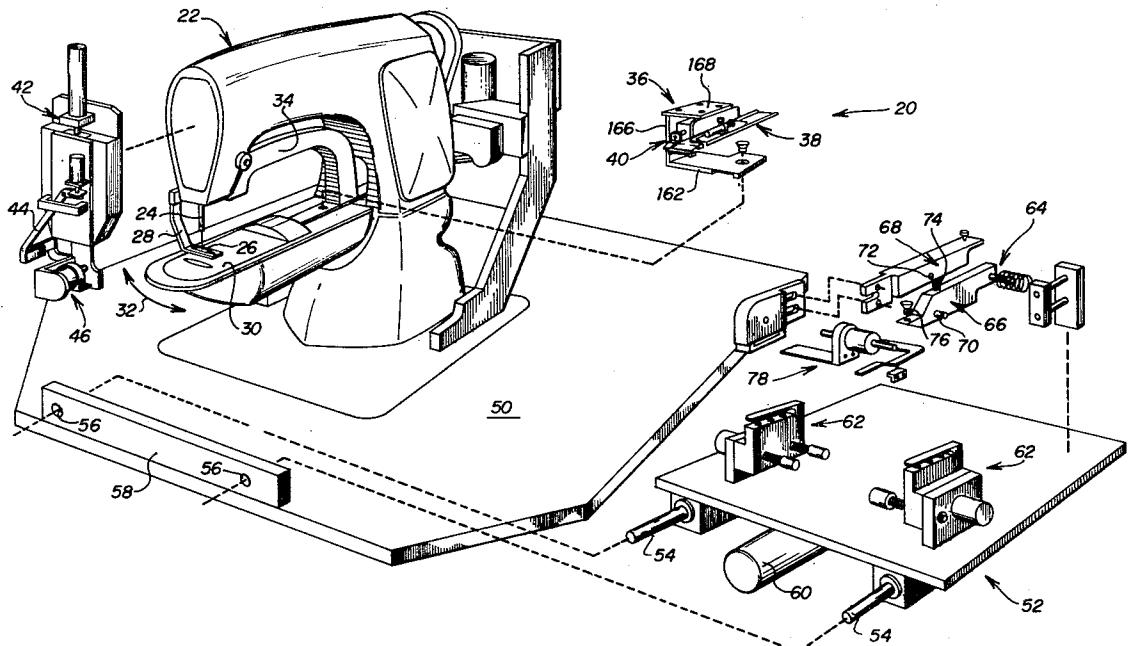
## [56] References Cited

## UNITED STATES PATENTS

|           |         |                       |              |
|-----------|---------|-----------------------|--------------|
| 1,642,386 | 9/1927  | Reis et al. ....      | 112/104      |
| 2,525,916 | 10/1950 | Lahner. ....          | 112/104      |
| 2,821,385 | 1/1958  | Hoffee. ....          | 112/121.27 X |
| 3,611,959 | 10/1971 | Parlatore et al. .... | 112/104      |
| 3,699,907 | 10/1972 | Anderson et al. ....  | 112/104 X    |

Primary Examiner—James R. Boler

Attorney, Agent, or Firm—Richards, Harris & Medlock


## [57] ABSTRACT

In a semiautomatic belt loop sewing system, a sewing

machine includes a sewing needle supported for reciprocation along a fixed, vertically disposed axis and a cloth plate positioned generally beneath the sewing needle for oscillation in a horizontal plane. By this means, the reverse side of the upper end of a belt loop is initially sewn to the upper portion of a garment waistband. The belt loop is then folded forwardly, downwardly, and finally inwardly, after which the lower end of the belt loop is sewn to the lower portion of the waistband.

The belt loop is initially positioned relative to the sewing needle by a loop guide assembly mounted on the cloth plate of the sewing machine. By this means the entire belt loop and the portion of the garment waistband which is to receive the belt loop are oscillated in unison with the cloth plate of the sewing machine, whereby the sewing operation is carried out without twisting the belt loop. The loop chute assembly includes a belt loop guide chute, air jets for advancing the belt loop along the guide chute, a belt loop stop depending from the face plate of the sewing machine for terminating the advance of the belt loop when it is properly positioned relative to the sewing needle, and a loop positioning finger for positioning the belt loop laterally with respect to the sewing needle.

22 Claims, 18 Drawing Figures



PATENTED OCT 15 1974

3,841,247

SHEET 1 OF 5

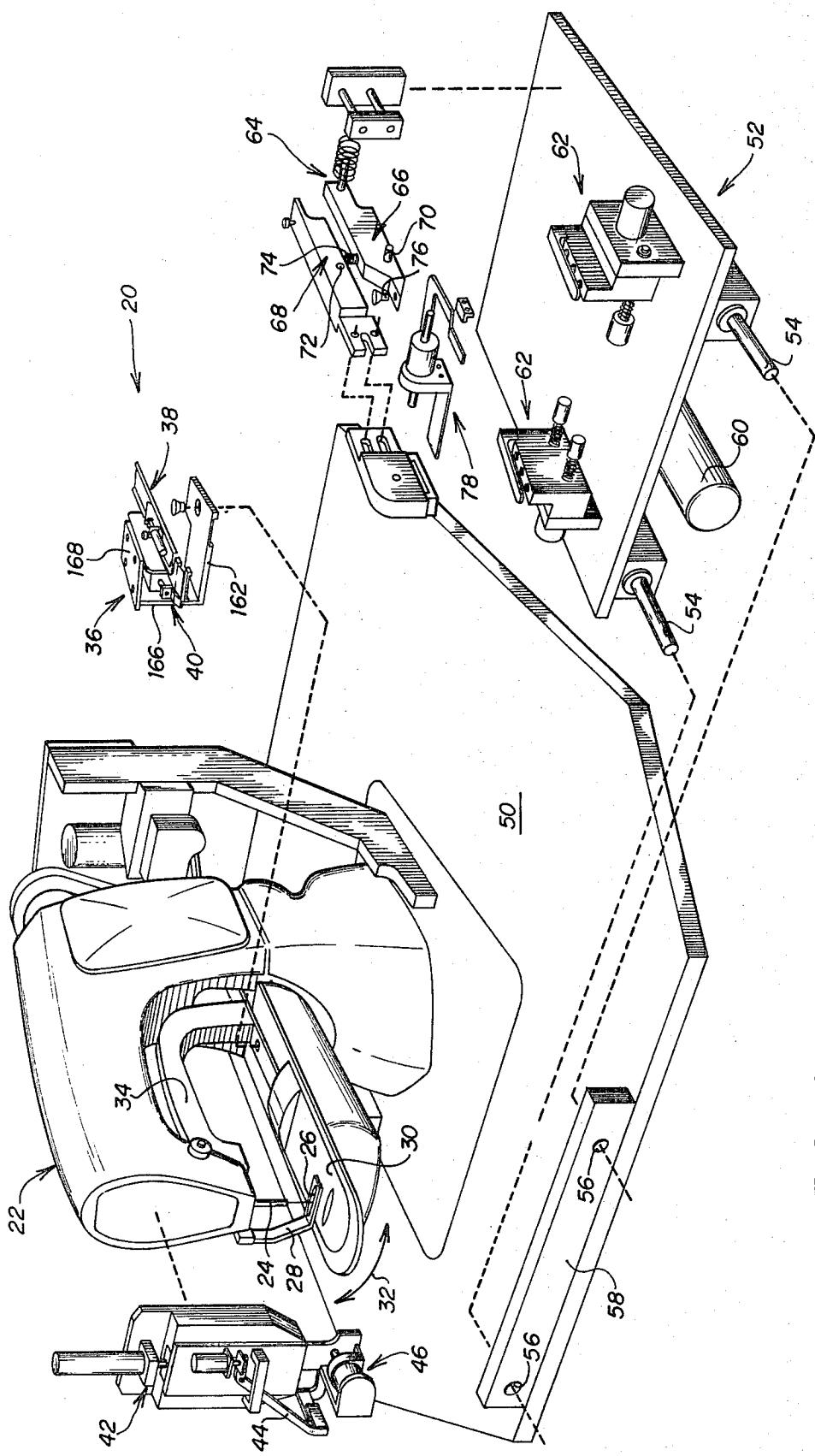



FIG. 1

PATENTED OCT 15 1974

3,841,247

SHEET 2 OF 5

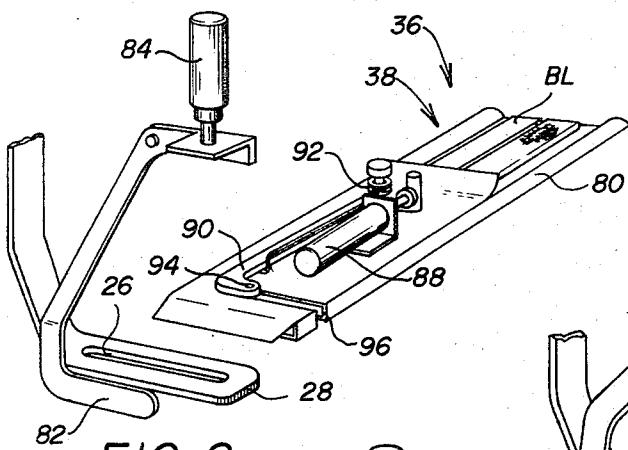



FIG. 2

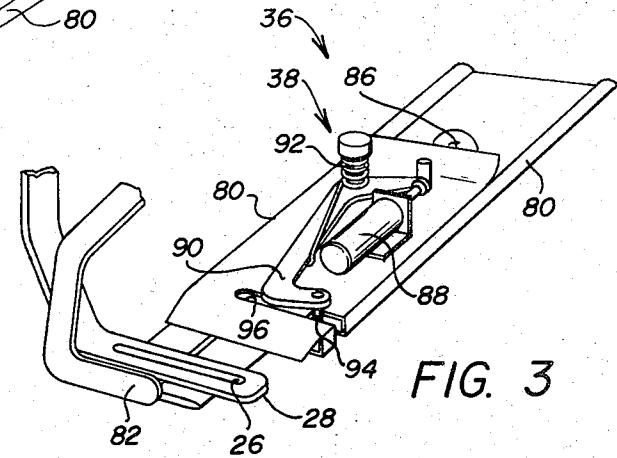



FIG. 3

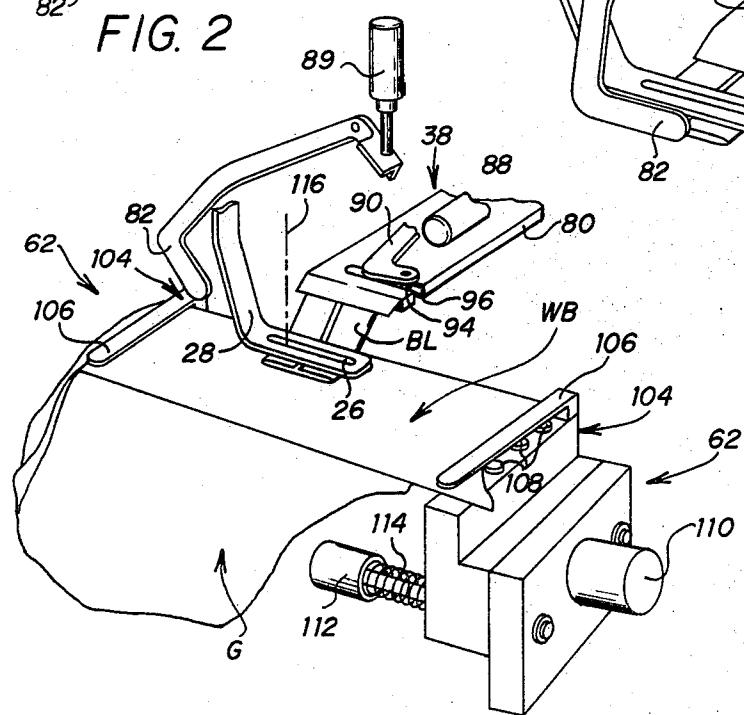



FIG. 4

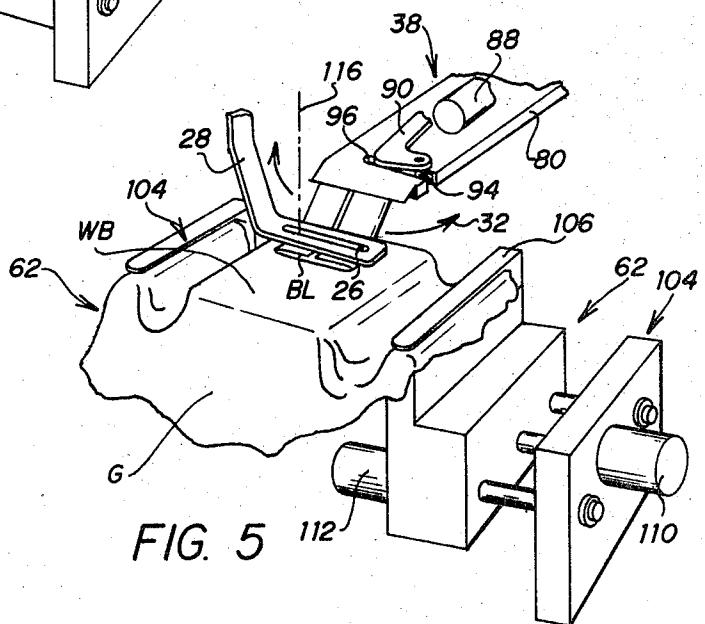



FIG. 5

PATENTED OCT 15 1974

3,841,247

SHEET 3 OF 5

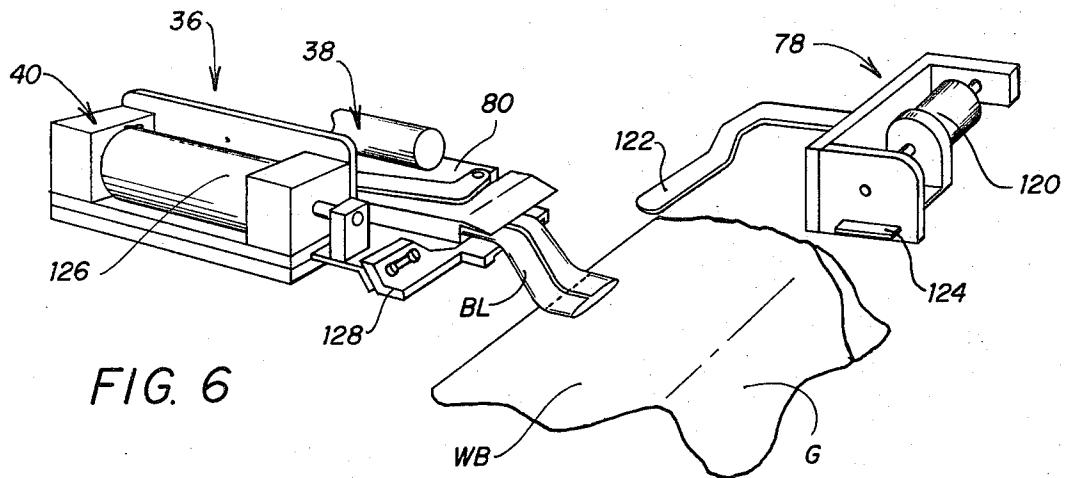



FIG. 6

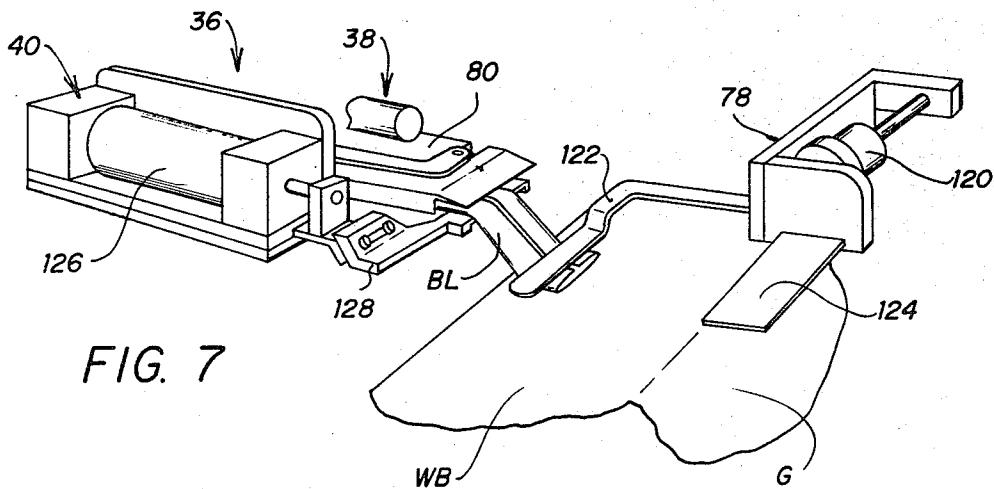



FIG. 7

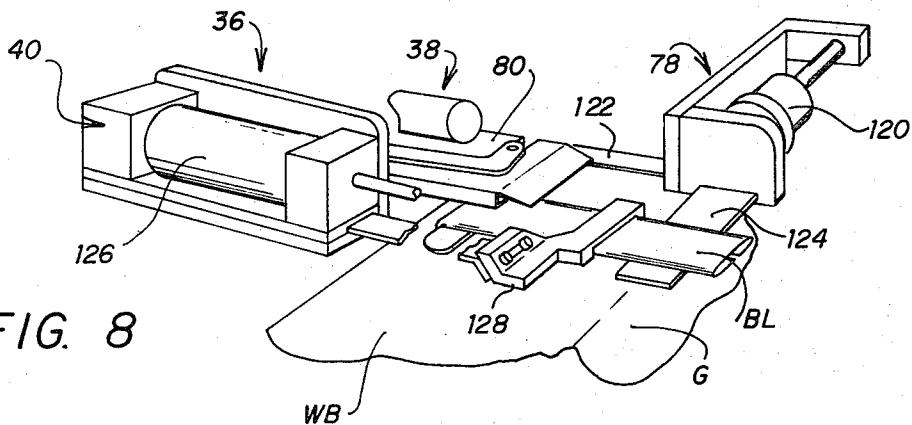



FIG. 8

PATENTED OCT 15 1974

3,841,247

SHEET 4 OF 5

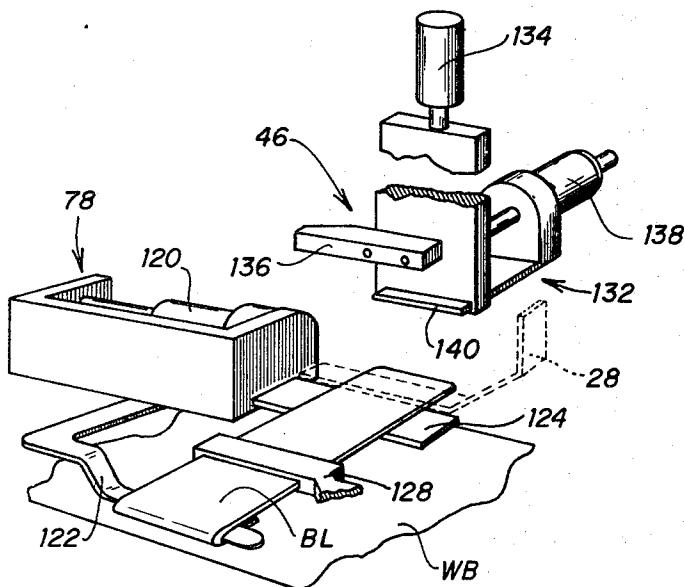



FIG. 9

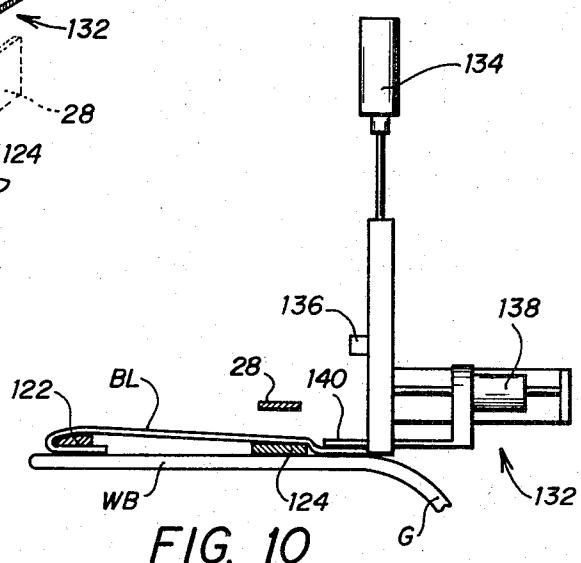



FIG. 10



FIG. 11

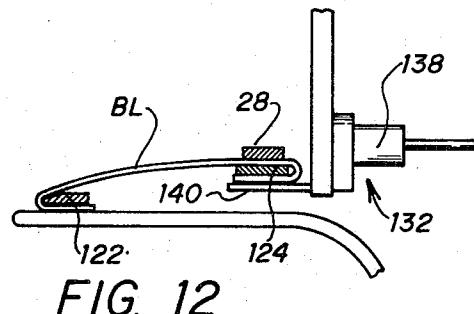



FIG. 12

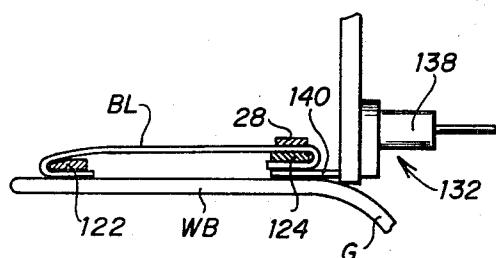



FIG. 13

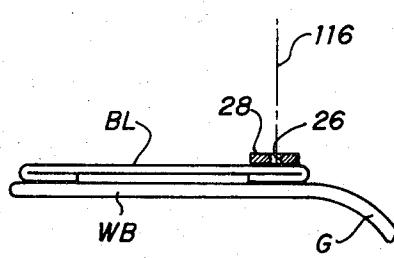



FIG. 14

PATENTED OCT 15 1974

3,841,247

SHEET 5 OF 5

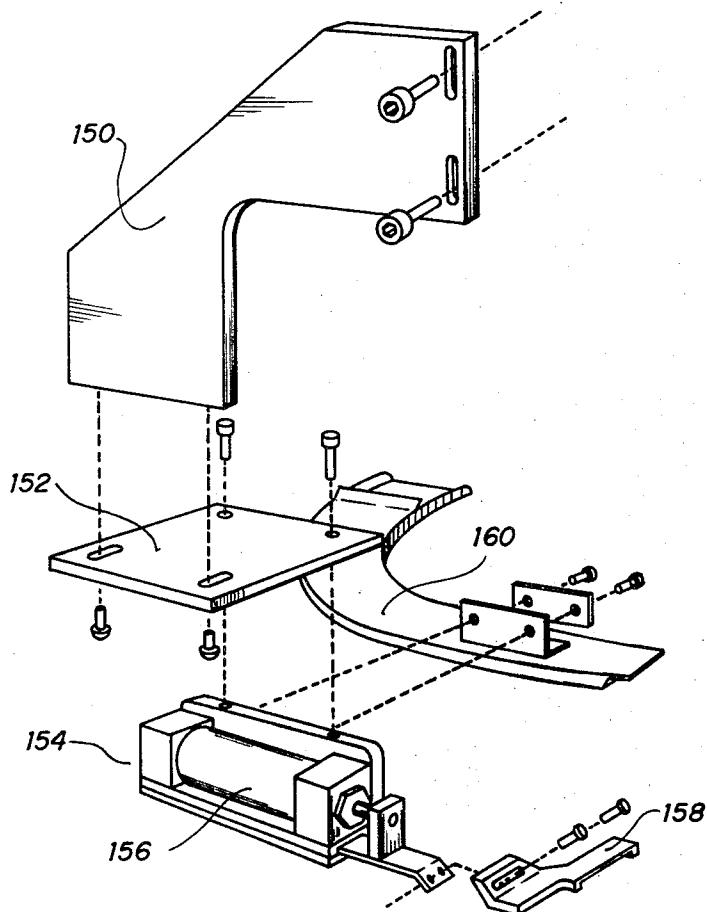



FIG. 15  
PRIOR ART

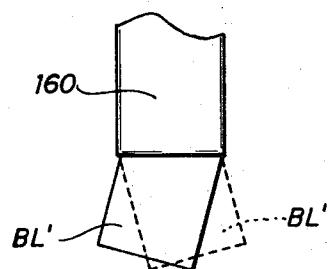



FIG. 17  
PRIOR ART

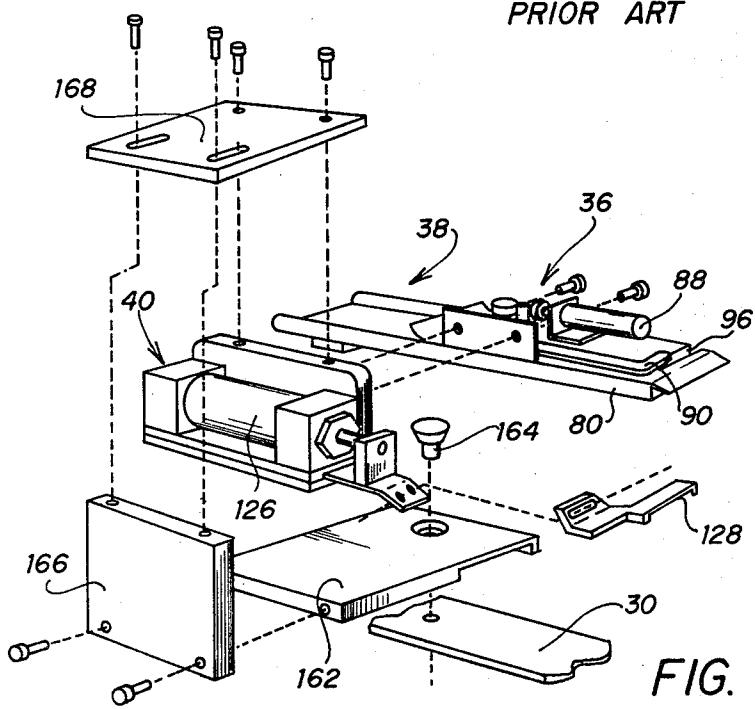



FIG. 16

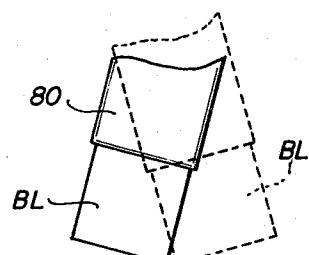



FIG. 18

## SEMIAUTOMATIC BELT LOOP SEWING SYSTEM

## BACKGROUND AND SUMMARY OF THE INVENTION

This invention relates to a semiautomatic belt loop sewing system, and more particularly to such a system in which the belt loop and the guiding apparatus therefor are moved concurrently with the underlying garment during the sewing operation.

In the manufacture of men's trousers and similar garments, belt loops are frequently provided at spaced intervals around the waistband of the garment. Typically each belt loop is sewn to the waistband of the garment by means of a process wherein the upper end of the belt loop is first sewn to the upper portion of the waistband with the reverse side of the belt loop facing outwardly. The belt loop is then folded forwardly, downwardly, and finally inwardly, after which the portion of the belt loop adjacent the lower fold is sewn to the lower portion of the waistband of the garment.

The apparatus most often utilized in carrying out the foregoing belt loop sewing process includes a sewing machine having a sewing needle which reciprocates along a fixed, vertically extending axis. A cloth plate underlies the sewing needle and is adapted for oscillatory motion with respect thereto in a horizontal plane. By this means there is effected the relative motion between the garment and the sewing needle which is necessary in order to complete the belt loop sewing operation.

Heretofore the apparatus for positioning each belt loop with respect to the sewing needle has been attached directly to the frame of the sewing machine, and more particularly to the face plate thereof. It will be appreciated that during the sewing operation, the waistband of the garment and the portion of the belt loop being secured thereto are effectively secured to and thereby oscillate with the cloth plate. Since the guiding apparatus for the belt loop is secured to the frame of the sewing machine, at least some twisting of the belt loop is therefore necessarily encountered as a part of the sewing operation. While this twisting has not proven to be a problem in the case of traditional narrow belt loops, it has proven to be quite troublesome in the case of the wide belt loops which are presently in style, and has effectively prevented the use of the foregoing type of belt loop sewing apparatus in the case of belt loops having widths in excess of about five-eighths inch.

The present invention relates to a belt loop sewing apparatus which eliminates the foregoing and other problems long since associated with the prior art. In accordance with the broader aspects of the invention, apparatus for positioning each belt loop relative to the sewing needle of a sewing machine is mounted directly on the cloth plate of the sewing machine. By this means the cloth plate, the belt loop guiding apparatus, the belt loop, and the portion of the garment that is to receive the belt loop reciprocate as a unit during the belt loop sewing operation. This eliminates the twisting of the belt loop which is necessarily encountered in the use of the prior art apparatus, whereby the sewing of both traditional narrow belt loops and the wider belt loops which are presently in style is facilitated.

In accordance with more specific aspects of the invention, the apparatus for guiding each belt loop into

position under the sewing needle of the sewing machine comprises a chute mounted on the cloth plate of the sewing machine and provided with air jets for directing the belt loop therealong. The travel of each belt loop under the action of the air jets is arrested by a loop stop member which extends downwardly from the face plate of the sewing machine. The guide chute also mounts a positioning finger which is selectively actuated to position the belt loop laterally within the guide chute.

## 10 DESCRIPTION OF THE DRAWINGS

A more complete understanding of the invention may be had by referring to the following Detailed Description when taken in conjunction with the accompanying

15 Drawings, wherein:

FIG. 1 is an exploded view of a semiautomatic belt loop sewing system incorporating the invention;

FIGS. 2-14 inclusive are illustrations of progressive steps in the operation of the semiautomatic belt loop

20 sewing system illustrated in FIG. 1;

FIGS. 15 and 16 are illustrations of the corresponding portions of a prior art belt loop sewing system and of the semiautomatic belt loop sewing system shown in FIG. 1 respectively; and

25 FIGS. 17 and 18 are diagrammatic illustrations of the operation of the system shown in FIG. 15 and of the operation of the system shown in FIG. 16 respectively.

## DETAILED DESCRIPTION

30 Referring now to the Drawings, and particularly to FIG. 1, there is shown a semiautomatic belt loop sewing system 20 incorporating the present invention. The system 20 includes a sewing machine 22 which is conventional in design, and may be of the type manufactured by the Singer Company of New York, N.Y. and identified by that company as Model Number 269W149. The sewing machine 22 includes a needle 24 supported for reciprocation along a fixed, vertically extending axis. The distal end of the needle 24 extends through a slot

35 26 formed in a presser foot 28.

The sewing machine 22 further includes a cloth plate 30 disposed beneath the needle 24 and the presser foot 28. The cloth plate 30 is mounted for oscillation with respect to the needle 24 in the manner illustrated by the arrow 32. The presser foot 28 is supported on the cloth plate 30 by means of an arch clamp 34 and therefore oscillates with the cloth plate 30 relative to the needle 24.

40 The semiautomatic belt loop sewing system 20 further includes as assembly 36 which is supported on the cloth plate 30 of the sewing machine 22. The assembly 36 includes a loop chute assembly 38 and a first folder assembly 40. A face plate assembly 42 is secured to the face plate of the sewing machine 22. The face plate assembly 42 includes a loop stop assembly 44 and an end turn assembly 46.

45 The sewing machine 22 is mounted on a table 50. The table 50 also supports a slide assembly 52 comprising a pair of guide rods 54 which are received in corresponding apertures 56 formed in a block 58 extending upwardly from the table 50. The slide assembly 52 is adapted for selective reciprocation relative to the sewing machine 22 under the action of an air cylinder 60.

50 55 60 65 A pair of opposed material clamp assemblies 62 are mounted on the front portion of the slide assembly 52. A jaw assembly 64 is mounted at the rear of the slide

assembly 52 and includes a lower jaw 66 and an upper jaw 68. The upper jaw 68 is hollow and normally receives the lower jaw 66. The jaws 66 and 68 are pivotally interconnected by means of a pin 70 which is received in aligned apertures 72.

The front portion of the upper jaw 68 is normally pivoted downwardly under the action of a spring 74. An air piston 76 is provided for selective actuation to pivot the jaw 68 upwardly. A side loop fold assembly 78 is supported on the jaw 68 for pivotal movement therewith.

The operation of the semiautomatic belt loop sewing system 20 will be better understood by referring to FIGS. 2-14 which comprise illustrations of sequential steps in the operation of the system. Referring particularly to FIG. 2, the loop chute assembly 38 includes a guide chute 80. A belt loop BL is initially manually positioned in the guide chute 80. At this point in time the presser foot 28 is raised and a loop stop arm 82 comprising part of the loop stop assembly 44 is positioned directly in front of the guide chute 80 under the action of an air cylinder 84.

Referring now to FIG. 3, an operating cycle of the semiautomatic belt loop sewing system 20 is initiated by actuating a pair of air jets 86 (only one of which is shown) that function to move the belt loop BL forwardly. Simultaneously a cylinder 88 is extended, thereby pivoting an arm 90 against the action of the spring 92 to clear a positioning finger 94 out of a slot 96 formed in the guide chute 80. The belt loop BL is advanced under the action of the air jets 86 until it engages the loop stop arm 82. At this point in time the cylinder 88 is released, whereupon the spring 92 pivots the arm 90 to move the positioning finger 94 back into the slot 96. By this means the belt loop BL is located in engagement with the left-hand side (FIG. 3) of the guide chute 80.

In FIG. 4 there is shown a portion of a garment G having a waistband WB. For example, the garment G may comprise a pair of men's trousers, or the like. An operator positions the garment G on the slide assembly 52 with a portion of the waistband WB extending between the material clamp assemblies 62. By this means the now positioned belt loop BL is accurately located with respect to the waistband WB of the garment G.

The material clamp assemblies 62 each comprise a subassembly 104 including a fixed jaw 106 and a plurality of air pistons 108 positioned for cooperation with the fixed jaw 106 to clamp the waistband WB therebetween. Each subassembly 104 is supported for inward reciprocation under the action of an air cylinder 110. Reciprocation of the subassembly 104 is limited by stops 112, and springs 114 are provided for returning the subassembly 104 upon the release of the cylinders 110.

At this point in time the slide assembly is retracted under the action of the air cylinder 60. That is, the slide assembly is in its forwardmost position relative to the sewing machine 22. This causes the material clamp assembly 62 to position the upper portion of the waistband WB in alignment with the sewing needle of the sewing machine.

Referring now to FIG. 5, the next step in the operation of the semiautomatic belt loop sewing system 20 comprises sewing the upper portion of the belt loop BL to the upper portion of the waistband WB. This is accomplished by reciprocating the needle 24 of the sew-

ing machine 22 along a fixed, vertically extending axis 116 while simultaneously reciprocating the cloth plate 30 of the sewing machine 22 in the manner illustrated by the arrow 32. It will be understood that since the presser foot 28 is supported on the arch clamp 34 which is in turn supported on the cloth plate 30, and since the loop chute assembly 38 is also mounted directly on the cloth plate 30, the belt loop BL, the positioning apparatus therefor reciprocate with the cloth plate 30 in the manner of a unitary structure, hereby eliminating any possible twisting of the belt loop BL during the sewing operation. It will be further understood that the purpose of the inward reciprocation of the subassemblies 104 of the material clamp assemblies 62 is to provide sufficient slack in the waistband WB to accommodate the reciprocation of the cloth plate 30.

At the completion of the sewing cycle, the subassemblies 104 of the material clamping assemblies 62 are returned to their original positions, and the presser foot 28 is raised. As is best shown in FIG. 6, the side loop fold assembly 78 includes an air cylinder 120 which functions to selectively extend or retract a loop form bar 122 and a side loop folder 124. Moreover, the vertical positioning of the entire side loop fold assembly 78 is controlled by the selective actuation of the jaw assembly 64.

Following the first sewing cycle, the cylinder 120 is actuated to extend the loop form bar 122 and the side loop folder 124, and the jaw assembly 64 is simultaneously actuated to lower the entire side loop fold assembly 78. At the conclusion of these stops, the loop form bar 122 and the side loop folder 124 are positioned as shown in FIG. 7. The first folder assembly 40 of the assembly 36 includes an air cylinder 126 which functions to selectively extend and retract a first folder 128. Thus, following the positioning of the loop form bar 122 and the side folder 124 as shown in FIG. 7, the cylinder 126 is extended and the slide assembly 52 is simultaneously advanced under the action of the cylinder 60. This combination of movements causes the belt loop BL to be pulled out of the guide chute 80 and to be folded around the loop form bar 122. It will be noted that the belt loop BL also extends under the first folder 128 and over the side loop folder 124.

It will be further understood that upon the advance of the slide assembly 52 under the action of the cylinder 60, the slide assembly is positioned in the rearwardmost position relative to the sewing machine 22. By this means the material clamp assemblies 62 are moved rearwardly, whereby the lower portion of the waistband WB of the garment G is positioned in alignment with the sewing needle of the sewing machine.

Referring now to FIG. 9, the end turn assembly 46 includes a subassembly 132 which is normally retained in a raised position by means of an air cylinder 134. The subassembly 132 includes a stabilizer bar 136 and an air cylinder 138 which functions to selectively extend and retract an end turn finger 140.

to the sequence of operation of the semiautomatic belt loop sewing system 20, the first folder 128 is next retracted and the cylinder 134 is simultaneously actuated to lower the subassembly 132. This positions the tip of the end turn finger 140 in engagement with the end of the belt loop BL in the manner illustrated in FIG. 10. The cylinder 134 is then released but is not retracted, leaving the subassembly 132 in a floating con-

dition. Simultaneously, the jaw assembly 64 is actuated to raise the side loop fold assembly 78. The stabilizer bar 136 is engaged by the side loop fold assembly 78, thereby raising the end turn assembly 46 to the position illustrated in FIG. 11. This action also clamps the belt loop BL between the side loop folder 124 and the raised presser foot 28.

At the completion of the foregoing steps, the cylinder 138 is actuated to advance the end turn finger 140. By this action the end of the belt loop BL is folded under the side loop folder 124 in the manner illustrated in FIG. 12. The jaw assembly 64 is then actuated to lower the side loop fold assembly 78 and the subassembly 132. The presser foot 28 is simultaneously lowered to trap the loop at the lower end of the belt loop BL in the manner illustrated in FIG. 13.

Following these steps, the cylinder 138 is actuated to retract the end turn finger 140. The cylinder 134 is next actuated to retract the subassembly 132. Next the cylinder 120 is actuated to retract the side loop folder 124 and the loop form bar 122, after which the jaw assembly 64 is actuated to raise the side loop fold assembly 78. The subassemblies 104 of the material clamping assemblies 62 are then reciprocated inwardly to provide slack in the waistband WB. Thereafter, a sewing cycle of the sewing machine 22 is initiated. This sewing cycle is substantially identical to the sewing cycle described hereinbefore in connection with the connection of the upper end of the belt loop BL to the upper portion of the waistband 102, and functions to sew the lower end of the belt loop BL to the lower portion of the waistband WB of the garment G.

At this point in time the operating cycle of the semiautomatic belt loop sewing system 20 is substantially complete. The air pistons 108 are relaxed to permit removal or repositioning of the garment 100 and slide assembly 52 is retracted under the action of the cylinder 60. Simultaneously the loop stop arm 82 is returned to the position illustrated in FIG. 2, and the cylinder 88 is actuated to clear the finger 94 out of the slot 96. The system is now ready to receive another belt loop BL, whereupon the foregoing cycle of operation is repeated.

The full significance of the present invention will be best understood by referring to FIGS. 15-18. Referring specifically to FIG. 15, prior art semiautomatic belt loop sewing systems typically include a bracket 150 which is mounted on the face plate of a sewing machine, such as the sewing machine 22 illustrated in FIG. 1. A bracket 152 is secured to the bracket 150 and a first folder assembly 154 is secured to the bracket 152. The first folder assembly 154 includes a cylinder 156 which functions to selectively extend and retract a first folder 158.

The prior art semiautomatic belt loop sewing system further includes a curved belt loop guide chute 160 which is secured to the first folder assembly 154. It will thus be understood that the guide chute 160 is secured to the face plate of the sewing machine by means of the bracket 152 and the bracket 150. Since the face plate of the sewing machine is fixedly positioned with respect to the cloth plate thereof, the belt loop guide chute 160 is also fixedly positioned with respect to the cloth plate.

The difficulty that is encountered in the use of prior art semiautomatic belt loop sewing systems of the type illustrated in FIG. 15 will be best understood by refer-

ence to FIG. 17. From the foregoing discussion of the present invention, it will be understood that the garment which is to receive the belt loop and the presser foot of the sewing machine do not remain stationary during the sewing operation, but instead oscillate with the cloth plate in order to effect the relative motion which is necessary to complete the sewing of the belt loop to the garment. This means that the projecting portion of the belt loop BL' that is positioned in the guide chute 160 is necessarily forced to oscillate with the garment and the presser foot, while the remainder of the belt loop is held stationary by the guide chute. This results in substantial twisting of the belt loop during the sewing operation in the manner illustrated diagrammatically in FIG. 17.

Referring now to FIG. 16, the present invention contemplates the use of a bracket 162 secured to the cloth plate 30 of the sewing machine 22 by means of a fastener 164. A bracket 166 is secured to the bracket 162 and a bracket 168 is in turn secured to the bracket 166. The first folder assembly 40 of the assembly 36 is secured to the bracket 168, and the loop chute assembly 38 is secured to the first folder assembly 40. This means that both the first folder assembly 40 and the loop chute assembly 38 oscillate with the cloth plate 30 of the sewing machine 22 during each sewing cycle.

As is illustrated in FIG. 18, the fact that the loop guide assembly 36 is mounted for oscillation with the cloth plate 30 of the sewing machine 22 comprises a critical feature of the present invention. By means of this arrangement, the entire belt loop BL, together with the guide structure therefor, and the garment which will receive the belt loop oscillate with the cloth plate 30 in the manner of the unitary structure. This completely eliminates the twisting which is characteristic of the prior art structure illustrated in FIGS. 15 and 17, and thereby facilitates the use of the semiautomatic belt loop sewing system in the sewing not only of the relatively narrow belt loops which have been used heretofore, but also in the wide belt loops which are presently in style.

From the foregoing, it will be understood that the present invention comprises a semiautomatic belt loop sewing system incorporating numerous advantages over the prior art. Thus, in accordance with the invention, structure for guiding a belt loop into position to be sewn to the waistband of a garment is mounted for oscillation together with the garment and the cloth plate of a sewing machine. By this means belt loops of any desired width may be automatically sewn without difficulty. The invention further contemplates the use of belt loop guide structure including air jets for advancing each belt loop and structure for automatically positioning the advancing belt loop in the sewing position.

Although particular embodiments of the invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions of parts and elements without departing from the spirit of the invention.

65 What is claimed is:

1. A semiautomatic belt loop sewing system comprising:

a sewing machine including a sewing needle supported for reciprocation along a fixed substantially vertically extending axis and a cloth plate positioned generally beneath the sewing needle for oscillation in a substantially horizontally disposed plane;

a belt loop guide chute mounted on the cloth plate for oscillation therewith;  
means for advancing a belt loop along the belt loop guide chute and into a sewing position wherein the axis of reciprocation of the needle passes through the belt loop;

means for receiving the waistband of a garment and for positioning the waistband on the cloth plate of the sewing machine and in a sewing position wherein the axis of reciprocation of the needle passes through the waistband;

whereby both the belt loop and the waistband oscillate with the cloth plate as the belt loop is sewn to the waistband under the action of the sewing needle.

2. The semiautomatic belt loop sewing system according to claim 1 wherein the belt loop advancing means further comprises:

air jet means for advancing a belt loop along the belt loop guide; and

belt loop stop means for terminating movement of the belt loop along the belt loop guide under the action of the air jet means when the belt loop is in the sewing position.

3. The semiautomatic belt loop sewing system according to claim 2 wherein the belt loop stop is pivotally supported on the frame of the sewing machine.

4. The semiautomatic belt loop sewing system according to claim 3 wherein the waistband positioning means comprises:

gripping apparatus for receiving the waistband of the garment in a substantially taut condition; and means for displacing the gripping mechanisms inwardly to provide sufficient slack in the waistband to accommodate oscillation thereof under the action of the cloth plate of the sewing machine.

5. The semiautomatic belt loop sewing system according to claim 2 further characterized by:

a locating surface disposed along one edge of the belt loop chute;

slot means formed in the belt loop chute and extending substantially transversely with respect thereto;

a belt loop positioning finger mounted for reciprocation in the slot means;

means for withdrawing the belt loop positioning finger from the slot means during movement of a belt loop in the belt loop chute under the action of the air jet means; and

means for thereafter reciprocating the belt loop positioning finger into the slot means and thereby engaging the belt loop with the locating surface.

6. The semiautomatic belt loop sewing system according to claim 1 further including means mounted on the cloth plate of the sewing machine for reciprocation with the belt loop guide chute for activation following the sewing of the belt loop to the waistband of the garment to pull the belt loop out of the belt loop guide chute.

7. A semiautomatic belt loop sewing system comprising:

a sewing machine including a sewing needle supported for reciprocation along a fixed, substantially vertically extending axis and a cloth plate positioned generally beneath the sewing needle for oscillation in a substantially horizontally disposed plane;

means for receiving a portion of a garment waistband which is to receive a belt loop and for locating the portion of the waistband on the cloth plate of the sewing machine and in the path of reciprocation of the sewing needle;

a belt loop guide chute mounted on the cloth plate of the sewing machine for oscillation therewith;

means for advancing a belt loop along the belt loop guide chute and for terminating the movement of the belt loop at a position wherein the belt loop overlies the cloth plate of the sewing machine and is in the path of reciprocation of the sewing needle;

whereby the portion of the waistband and the entire belt loop are oscillated in unison with the cloth plate of the sewing machine relative to the sewing needle thereof to effect the motion necessary to complete sewing of the belt loop to the waistband without twisting of the belt loop as it is sewn to the waistband.

8. The semiautomatic belt loop sewing system according to claim 7 further including means mounted on the cloth plate for oscillation therewith for pulling the belt loop out of the belt loop guide chute following the sewing cycle.

9. The semiautomatic sewing system according to claim 7 further characterized by:

a belt loop locating surface extending along one edge of the belt loop guide chute;  
a slot formed in the belt loop guide chute and extending substantially transversely with respect thereto;

a belt loop positioning finger mounted for reciprocation in the slot;

means for reciprocating the belt loop positioning finger out of the slot during advancement of the belt loop therealong; and;

means for thereafter moving the belt loop positioning finger into the slot and into engagement with the belt loop and thereby positioning the belt loop in engagement with the belt loop locating surface.

10. The semiautomatic belt loop sewing system according to claim 7 further characterized by a member depending from the face plate of the sewing machine for terminating the advance of the belt loop through the belt loop chute when the belt loop is positioned in the path of reciprocation of the sewing needle.

11. The semiautomatic belt loop sewing system according to claim 7 wherein the means for advancing the belt loop through the belt loop guide chute comprises air jet means disposed in the belt loop guide chute and adapted to advance the belt loop into engagement with the belt loop stop.

12. The semiautomatic belt loop sewing system according to claim 7 wherein the means for receiving and positioning the waistband of the garment is further characterized by means for receiving the waistband in a substantially taut condition, and means for thereafter providing sufficient slack in the waistband to accommodate the oscillatory movement of the cloth plate of the sewing machine.

13. In a semiautomatic belt loop sewing system of the type including a sewing machine having a sewing needle mounted for reciprocation along a fixed, substantially vertically extending axis and a cloth plate disposed generally beneath the sewing needle for oscillatory movement to effect the relative motion necessary to sew a belt loop to the waistband of a garment and apparatus for positioning a portion of a garment waistband in a sewing position wherein the axis of reciprocation of the sewing needle of the sewing machine extends through the point on the waistband which is to receive the belt loop, the improvement comprising:

belt loop guide means mounted on the cloth plate of the sewing machine for receiving a belt loop and for advancing a belt loop to a sewing position 15 wherein the axis of reciprocation of the sewing needle of the sewing machine extends through the point on the belt loop which is to be attached to the waistband of the garment;

whereby during operation of the sewing needle to 20 sew the belt loop onto the waistband, both the belt loop and the portion of the waistband oscillate in unison with the cloth plate of the sewing machine.

14. The improvement according to claim 13 wherein the belt loop guide means comprises a belt loop guide chute secured to the cloth plate of the sewing machine and air jet means disposed in the belt loop guide chute for advancing the belt loop therealong to the sewing position.

15. The improvement according to claim 14 further characterized by belt loop stop means depending from the face plate of the sewing machine for terminating movement of the belt loop along the belt loop chute under the action of the air jet means when the belt loop 35 is in the sewing position.

16. The improvement according to claim 13 further characterized by:

a locating surface extending along one edge of the belt loop guide chute; and

means for urging the belt loop into engagement with the locating surface and thereby positioning the belt loop laterally with respect to the sewing needle of the sewing machine.

17. The improvement according to claim 16 wherein the means for urging the belt loop into engagement with the locating surface comprises a slot formed in the belt loop guide chute and extending generally transversely with respect thereto, a belt loop positioning finger for reciprocation in the slot, means for withdrawing 45

the belt loop positioning finger from the slot during the advance of the belt loop therethrough under the action of the air jet means, and means for thereafter moving the belt loop positioning finger into the slot and into engagement with the belt loop disposed therein.

18. A process for sewing a belt loop to a garment waistband which comprises:

reciprocating a sewing needle along a fixed, substantially horizontally disposed axis;

simultaneously oscillating a portion of a garment waistband in a generally horizontally disposed plane intersecting the axis of reciprocation of the sewing needle and with the portion of the waistband that is to receive the belt loop positioned in the path of the sewing needle and thereby effecting the relative motion necessary to complete the sewing operation; and

simultaneously oscillating an entire belt loop in unison with the portion of the waistband and with the portion of the belt loop that is to be sewn to the waistband positioned in the path of the sewing needle and thereby sewing the belt loop to the waistband without twisting the belt loop.

19. The belt loop sewing process according to claim 18 further characterized by positioning the portion of the waistband on a cloth plate supported for oscillation relative to the sewing needle and supporting the belt loop in a belt loop guide chute mounted on the cloth plate.

20. The belt loop sewing process according to claim 19 further characterized by the preliminary stop of advancing the belt loop along the belt loop chute and terminating the advance of the belt loop in the belt loop chute when the portion of the belt loop which is to be sewn to the waistband is positioned in the path of the sewing needle.

21. The belt loop sewing process according to claim 20 further characterized by the step of positioning the belt loop laterally with respect to the sewing needle prior to the oscillating step.

22. The belt loop sewing process according to claim 21 wherein the belt loop advancing and positioning steps are further characterized by first advancing the belt loop along the belt loop chute and into engagement with a belt loop stop under the action of air jets disposed in the belt loop chute and then engaging the belt loop with a locating surface depending along one edge of the belt loop chute.

\* \* \* \* \*