
USOO6671196 B2

(12) United States Patent (10) Patent No.: US 6,671,196 B2
Civlin (45) Date of Patent: Dec. 30, 2003

(54) REGISTER STACK IN CACHE MEMORY 5.835,744 A 11/1998 Tran et al. 712/208
5,930,820 A * 7/1999 Lynch 711/132

(75) Inventor: Jan Civlin, Sunnyvale, CA (US) 6,230,230 B1 * 5/2001 Joy et al. 710/200

(73) ASSignee: St Mystems Inc., Santa Clara, * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner Son T. Dinh
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm William L. Paradice, III; M
U.S.C. 154(b) by 119 days. & P, LLP

(21) Appl. No.: 10/086,911 (57) ABSTRACT

(22) Filed: Feb. 28, 2002 A CPU includes register file including a plurality of
architectural registers for Storing data loaded from a primary

(65) Prior Publication Data memory for execution by the CPU. A stack cache memory
coupled to the register file includes a plurality of cache lines,

US 2003/0161172 A1 Aug. 28, 2003 each of which corresponds to one of the architectural
(51) Int. Cl. G11C 7700; G06F 13/00 registers and implements a first-in, last-out queue for data
(52) U.S. Cl. 365/49; 365/189.12; 711/132 Spilled from the corresponding architectural register. Data
(58) Field of Search 365/49, 189.12, Spilled from the register file into the stack cache memory is

365/189.01; 711/132, 126 maintained in the Stack cache until Subsequently restored to
the register ille Without acceSSIng primarW memorW. C he regi file with ing primary y. Th

(56) References Cited Stack cache memory does not participate in cache writeback
operations to primary memory.

U.S. PATENT DOCUMENTS

4,875,160 A * 10/1989 Brown, III 712/228 25 Claims, 6 Drawing Sheets

300 302 O4

Execution Units CPU

105 308
1.

Register File Stack
107 Cache

306
- 112 | Primary

Merno Memory ry
Controller

O6
304

Primary
Cache

U.S. Patent Dec. 30, 2003 Sheet 1 of 6 US 6,671,196 B2

100
102 04

Primary
Memory

t Memory
Register File Controller

(Prior Art)

OO
Ya 102 104

Execution Units

Register File
106

U.S. Patent Dec. 30, 2003 Sheet 2 of 6 US 6,671,196 B2

Register File
O7

r O

r

106

U.S. Patent Dec. 30, 2003 Sheet 3 of 6 US 6,671,196 B2

400
Ya

404(O)

is a a ... al
404(1)

402(1) ros so so ste ... so
404(2) r 402(2) is a ... It

O

8-404(31) 402(31)
/ | | |...I on

FIG. 4

U.S. Patent Dec. 30, 2003 Sheet 4 of 6

Load requested data -
into register file

No -1

503
issue push-to-cache -1

instruction

Save register contents 504
onto top of stack of -
corresponding stack

cache line

505
increment TOS -1

pointer

Yes

507 Save Contents of stack -1
cache line to primary

memory

FIG. 5

US 6,671,196 B2

U.S. Patent Dec. 30, 2003 Sheet 5 of 6

Monitor instruction 601
execution for fill

Condition

6O2
-1

Yes

603
issue pop-fronn-Stack -1

instruction

Restore data from top of 604
Stack of Corresponding -
stack cache line to

register file

605
Decrement TOS pointer

NO Return 1.5O6
Data

YeS

Retrieve flushed data 607
from primary memory and -
save to corresponding

Stack Cache line

F.G. 6

US 6,671,196 B2

U.S. Patent Dec. 30, 2003 Sheet 6 of 6 US 6,671,196 B2

FIG. 7A
TOS
w

402 FIG. 7B
OS

FIG. 7C
402

TOS

402
FIG. 7D

US 6,671,196 B2
1

REGISTER STACK IN CACHE MEMORY

BACKGROUND

1. Field of Invention
This invention relates generally to microprocessors and

Specifically to register Stack Spill and fill operations.
2. Description of Related Art
FIG. 1 shows a typical computer system 100 including a

central processing unit (CPU) 102 coupled to a primary
memory 104 by a bus 112. CPU 102 is shown to include
execution units 105, a register file 106, and a memory
controller 110. Execution units 105, which include well
known components Such as arithmetic logic units (ALU),
proceSS data during execution of a computer program resid
ing in primary memory 104. Memory controller 110 is
well-known and controls access to primary memory 104 via
bus 112. Primary memory 104 is typically a volatile memory
Such as DRAM.

Register file 106 includes a plurality of architectural
registers that have been designated for holding data associ
ated with the execution of the programs instructions.
Specifically, when data residing in primary memory 104 is
needed for processing in execution units 105, a load instruc
tion is issued and causes the data to be loaded from primary
memory 104 into register file 106. When loaded into register
file 106, the requested data is available to execution units
105 for processing. Data processed by execution units 105
may be updated and held in register file 106 for subsequent
Sc.

The number of architectural registers in register file 106
is limited in order to minimize cost and CPU size. As a
result, the Storage capacity of register file 106 may be
exceeded during program execution. When this condition
occurs, and it is desired to retain the register data for later
use, the register data held in register file 106 are Saved to
primary memory 104 during a well-known register Spill
operation, thereby freeing register file resources for new
data. When the data spilled from register file 106 is later
needed by execution units 105, the data is restored from
primary memory 104 to register file 106 during a well
known register fill operation.

Each Spill operation that Stores register data to primary
memory 104 requires access to primary memory 104, and
therefore incurs delays associated with arbitrating access to
bus 112 and with writing data to primary memory 104.
Similarly, each fill operation that retrieves previously spilled
data from primary memory 104 into register file 106 incurs
delays associated with arbitrating access to buS 112 and with
reading data from primary memory 104. The primary
memory latencies associated with register Spill and fill
operations undesirably degrade System performance.
Modern computer Systems typically include a cache

memory implemented between the CPU and primary
memory in order to increase performance. FIG. 2 shows
CPU 102 including a cache memory 108 coupled to register
file 106 and memory controller 110. Cache memory 108 is
a Small, fast memory device (Such as, for example, an SPAM
device) that stores data most recently used by CPU 102
during execution of the computer program. If data requested
by an instruction resides in cache memory 108 (a cache hit),
the data is provided to register file 106 from cache memory
108 rather than from the much slower primary memory 104.
Conversely, if the requested data is not in cache memory 108
(a cache miss), the data is loaded into register file 106 and
to cache memory 108 from primary memory 104.

15

25

35

40

45

50

55

60

65

2
In order to minimize primary memory latencies, data

stored in a line of cache memory 108 is usually not written
back to primary memory 104 until the cache line is selected
for replacement with new data. If data in the cache line
Selected for replacement has been modified (e.g., dirty data),
the data is written back to primary memory 104 in a
well-known writeback operation. Otherwise, if the data is
unmodified (e.g., clean data), the cache line is replaced
without writeback to primary memory 104.

Data spilled from register file 106 is typically routed to
primary memory 104 through cache memory 108. If the
Spilled data has not yet been written back to primary
memory 104, but rather still resides in cache memory 108 (a
cache hit), a Subsequent fill operation may restore the spilled
data from cache memory 108 to register file 106 without
accessing primary memory 104. However, because data
spilled from register file 106 is randomly mapped into cache
memory 108 and is Subject to the same cache replacement
Strategies as other data residing in cache memory 108,
Spilled register data residing in cache memory 108 may be
Selected for replacement and written back to primary
memory 104 at any time. When the spilled data no longer
resides in cache memory 108, a cache miss occurs, and the
spilled data must be retrieved from primary memory 104,
which undesirably incurs primary memory latencies.

SUMMARY

A method and apparatus are disclosed that reduces pri
mary memory latencies for register Spill and fill operations.
In accordance with the present invention, a central proceSS
ing unit includes a primary cache memory and a Stack cache
memory coupled to a register file having a plurality of
architectural registers. The primary cache is a conventional
cache memory that Stores data most recently used by the
CPU so that register load operations may be serviced by the
primary cache rather than by the primary memory. The Stack
cache includes a plurality of cache lines, each of which
implements a last-in, first out (LIFO) queue for Stacking data
Spilled from the register file. In one embodiment, each
architectural register is mapped to a unique Stack (e.g., cache
line) of the Stack cache. In other embodiments, each archi
tectural register may be mapped to multiple unique Stacks of
the Stack cache.

During a register Spill operation, data is Spilled from an
architectural register and Stored on top of its dedicated Stack
implemented in the Stack cache. In one embodiment, the top
of each Stack is indicated using a top-of-Stack pointer. The
register data Stored in the Stack cache is maintained in the
Stack cache. Specifically, the Stack cache operates indepen
dently of the primary cache, and thus register data Stored in
the Stack cache is not written to the primary memory during
writeback operations associated with the primary cache.

During a register fill operation, register data previously
Spilled from the register Stack is popped from the top of the
Stack and restored into its corresponding architectural reg
ister. In this manner, data Spilled from the register file may
be stacked in the Stack cache and later restored to the register
file without incurring primary memory latencies.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention are
illustrated by way of example and are by no means intended
to limit the Scope of the present invention to the particular
embodiments shown, and in which:

FIG. 1 is a block diagram of a conventional computer
System;

US 6,671,196 B2
3

FIG. 2 is a block diagram of a conventional computer
System including a cache memory;

FIG. 3 is a block diagram of a computer System including
a central processing unit having a Stack cache implemented
in accordance with one embodiment of the present inven
tion;

FIG. 4 is a block diagram of one embodiment of the stack
cache of FIG. 3;

FIG. 5 is a flow chart illustrating one embodiment of a
register Spill operation for the Stack cache of FIG. 4;

FIG. 6 is a flow chart illustrating one embodiment of a
register fill operation for the stack cache of FIG. 4; and

FIGS. 7A-7D illustrate implementation of push-to-cache
and pop-from-cache instructions in one embodiment of the
stack cache of FIG. 4.

Like reference numerals refer to corresponding parts
throughout the drawing figures.

DETAILED DESCRIPTION

Present embodiments are discussed below in the context
of computer system 300 for simplicity only. It is to be
understood that present embodiments are equally applicable
to other computer Systems. For example, embodiments of
the present invention are applicable in pipelined and non
pipelined CPU architectures, and may be implemented in
CPUs capable of out-of-order instruction. Further, although
system 300 is shown as a having a single CPU, the present
invention may be implemented in multi-processor computer
architectures. Also, although described below in the context
of a computer System employing addressable memory,
present embodiments may be implemented in computer
Systems that utilize Stack memory Systems. In addition,
Single signal lines in the accompanying drawings may be
replaced by multi-signal buses, and multi-signal buses may
be replaced by Single signal lines. Accordingly, the present
invention is not to be construed as limited to specific
examples described herein but rather includes within its
Scope all embodiments defined by the appended claims.

FIG. 3 shows a computer system 300 in accordance with
one embodiment of the present invention. System 300
includes a CPU 302 coupled to primary memory 104 via bus
112. Primary memory 104 may be any suitable memory such
as, for example, DRAM. CPU 302 includes execution units
105, register file 106, a primary cache memory 304, a
memory controller 306, and a stack cache memory 308.
Memory controller 306 includes well-known circuitry for
controlling primary memory 104. In Some embodiments,
memory controller 306 may also include circuitry for con
trolling primary cache 304 and, in one embodiment, may
include circuitry for controlling stack cache 308. In other
embodiments, stack cache 308 may be controlled by a
dedicated memory controller (not shown for simplicity).
Execution units 105 may include a plurality of individual
execution units Such as, for example, floating point execu
tion units (FPUs), integer execution units (IEUs), arithmetic
logic units (ALUs), and So on, to process data provided by
register file 106. Other well-known elements of CPU 302 are
omitted for Simplicity. For example, although not shown in
FIG. 3, CPU 302 may include well-known instruction fetch
and decode units, reorder buffers, a program counter, a
System clock, and So on. Thus, the architecture shown in
FIG. 3 is an exemplary high-level representation of CPU 302
in one embodiment; the Specific architectural configuration
of embodiments of FIG. 3 may vary.

Register file 106 is a conventional register file that
includes a plurality of architectural registers 107 for storing

15

25

35

40

45

50

55

60

65

4
data used by execution units 105 during the execution of the
instructions of a computer program residing in primary
memory 104. Register file 106 is shown in FIG. 3 as
including 32 registers ro-r31, although in other embodi
ments register file 106 may include any suitable number of
registers 107. In one embodiment, each register 107 is 16
bits, although registers of other lengths may be used.

Primary cache 304 is coupled to register file 106 and
memory controller 306. Primary cache 304 is a well-known
device such as SRAM that stores data requested from
primary memory 104 during load operations to register file
106. Primary cache 304 includes a number of cache lines,
and may be divided into an instruction cache for Storing
instructions fetched from primary memory 104 and a data
cache for Storing recently requested data from primary
memory 104. In addition, primary cache 304 may be a
multi-level cache memory device (e.g., having L1, L2, and
L3 cache components). Primary cache 304 may employ any
Suitable cache replacement Strategy Such as, for example, the
commonly known least-recently used (LRU) replacement
technique. In one embodiment, data Stored in lines of
primary cache 304 is written back to primary memory 104
when those lines are Selected for replacement, although in
other embodiments data may be written from primary cache
304 to primary memory 104 at any suitable time.

Stack cache 308 is coupled to register file 106 and
memory controller 306, and stacks data spilled from register
file 106 when additional registers 107 are needed. The
spilled data is retained in stack cache 308 so that the spilled
register data may later be restored to register file 106 from
stack cache 308 without accessing primary memory 104.
Specifically, unlike data Stored in primary cache 304, reg
ister data stored in stack cache 308 is not written back to
primary memory 104 during conventional writeback opera
tions.

FIG. 4 shows one embodiment 400 of stack cache 300 of
FIG. 3 as having 32 cache lines 402(0)-402(31) of any
Suitable length. In one embodiment, Stack cache lines 402
include 64 bits. Each line 402 of stack cache 400 implements
a last-in, first out (LIFO) queue for storing data spilled from
a corresponding register 107 of register file 106. In one
embodiment, each architectural register 107 is mapped to a
unique Stack cache line 402. Thus, as illustrated in the
example of FIG. 4, the register Stack implemented in line
402(0) of stack cache 400 may stack up to n data values
S(0)-S(n) spilled from corresponding register roof register
file 106. Each register stack 402 also includes a pointer 404
to indicate the top of stack (TOS). Pointers 404 may be
implemented using any Suitable pointer mechanism. The
number of register stacks 402 in stack cache 400 may vary
depending upon, for example, the number of registers 107 in
register file 106. Further, in some embodiments, stack cache
400 may include sufficient numbers of register stacks 402 to
allow more than one Stack cache line 402 to correspond to
each register 107 of register file 106.

During execution of the computer program, data pertain
ing to the instructions are loaded from primary memory 104
into the register file 106 (and also into primary cache 304).
If an additional register 107 is needed, the contents of the
register are spilled to and Stacked in the corresponding line
402 of stack cache 400. Thus, for example, if register roof
register file 106 contains data that is needed for Subsequent
execution and register r() is needed for new data, the contents
of register r() are spilled into an available portion of register
stack 402(0) as indicated by TOS pointer 404(0). Additional
data spilled from register r() may later be pushed onto the
stack 402(0) by incrementing TOS pointer 404(a) accord

US 6,671,196 B2
S

ingly. The spilled data stored in register stack 402(0) of stack
cache 400 is not written back to primary memory 104 during
conventional writeback operations associated, for example,
with primary cache 304, but is rather maintained in stack
cache 400 for subsequent restoring to register file 106.
When data previously spilled from register ro is later

needed for processing in execution units 105, the data may
be popped from the top of the register stack 402(0) using
TOS pointer 404(0) and restored to register ro without
accessing primary memory 104. In this manner, register Spill
and fill operations may be performed without incurring
primary memory latencies. Further, because stack cache 400
operates independently of primary cache 304 Storing register
data spilled from register file 106 into stack cache 400 does
not interfere with data caching operations of primary cache
304 and, as mentioned above, conventional writeback opera
tions of primary cache 304 do not cause the register Stacks
in stack cache 400 to be written back to primary memory
104. Thus, in accordance with the present invention, Stack
cache 400 is dedicated for performing register spill and fill
operations without accessing primary memory 104.

Although data stacked in stack cache 400 is not normally
written back to primary memory, stack cache 400 includes
circuitry to flush register data Stored therein to primary
memory 104 when stack cache 400 becomes full. In one
embodiment, stack cache 400 includes well-known logic for
generating a full flag to indicate when one or more of its
register stacks 402 are full. When the stack cache full flag
indicates that a register stack 402 is full, stack cache 400
causes data Stored in the register Stack to be flushed (e.g.,
saved) to primary memory 104. AS register data is popped
from the register stack 402, data may be returned from
primary memory 104 to the register stack 402. Although
saving data from stack cache 400 to primary memory 104
and its later retrieval from primary memory 104 into stack
cache 400 involve primary memory latencies, these opera
tions may be performed concurrently with spill and fill
operations between register file 106 and stack cache 400,
thereby allowing associated primary memory latencies to be
substantially hidden.
An exemplary operation of one embodiment of the

present invention in performing a register Spill operation is
described below with respect to the flow chart of FIG. 5 and
the various states of a register stack 402 of stack cache 400
illustrated in FIG. 7. Initially, stack cache 400 does not
contain any data, as indicated by the empty Stack cache line
402 in FIG. 7A. Thus, the TOS pointers 404 corresponding
to register StackS 402 are initialized to Zero States. During
execution of the computer program, data pertaining to the
instructions are loaded from primary memory 104 into the
register file 106 using well-known load operations (Step
501). If a register 107 contains data that needs to be saved,
as tested in step 502, CPU 302 issues a push-to-cache
instruction (step 503). The contents of the register 107 are
spilled to the corresponding stack 402 in stack cache 400 and
stored into the first available position of the stack 402 (step
504). Specifically, the spilled contents are pushed onto the
top of the stack 402, as indicated by data0 in FIG. 7B. Then,
the TOS pointer 404 for the stack 402 is incremented to
indicate the new top of stack (step 505).

If stack 402 is not full, as tested in step 506, processing
returns to step 501, and additional data may be subsequently
spilled from the same register 107 onto the corresponding
register stack 402 as described in steps 502-505. FIG. 7C
illustrates the effect of two additional push-to-cache instruc
tions resulting in a total of three datum (data0, data1, data2)
being stacked into stack 402 of stack cache 400. If, on the

15

25

35

40

45

50

55

60

65

6
other hand, the stack 402 is full as indicated, for example, by
an asserted full flag for stack cache 400, the contents of stack
402 are flushed to primary memory 104 (step 507). Where
more than one of stacks 402 are full, multiple flush opera
tions may be performed in a Sequential manner.
An exemplary operation of one embodiment of the

present invention in performing a register fill operation is
described below with respect to the flow chart of FIG. 6 and
the various states of the stack 402 illustrated in FIG. 7. CPU
302 monitors instruction flow to determine when previously
spilled data is needed in the register 107 for processing by
execution units 105 (step 601). If fill condition exists, as
tested in step 602, CPU 302 issues a pop-from-cache instruc
tion (step 603). The pop-from-cache instruction pops data
from the top of the stack 402 (indicated by the TOS pointer)
of stack cache 400 and restores the data into the correspond
ing register 107 (step 604). The TOS pointer 404 is then
decremented to indicate the new top of Stack for the corre
sponding register stack 402 (step 605). FIG. 7D illustrates
the effect of the pop-from-cache instruction and Subsequent
decrementing of TOS pointer 404, where data2 has been
restored to register file 106 and the TOS pointer now
indicates that data1 is at the top of the register stack 402.

If data has been previously flushed from the correspond
ing register Stack 402 in Stack cache 400, as tested in Step
606, the data is retrieved from primary memory 104 and
saved into an available position of register Stack 402 (Step
607). Otherwise, processing proceeds to step 601. For some
embodiments, data that was previously flushed from a
register stack 402 of stack cache 400 to primary memory 104
is returned when the register Stack 402 is empty in order to
minimize access to primary memory 102.
While particular embodiments of the present invention

have been shown and described, it will be obvious to those
skilled in the art that changes and modifications may be
made without departing from this invention in its broader
aspects and, therefore, the appended claims are to encom
pass within their Scope all Such changes and modifications as
fall within the true spirit and scope of this invention.
What is claimed is:
1. A central processing unit (CPU) of a computer includ

ing a primary memory, comprising:
a register file including a plurality of architectural regis

ters,
a primary cache memory coupled to the register file, the

primary cache memory for caching data loaded into the
register file from primary memory; and

a Stack cache memory coupled to the register file in
parallel with the primary cache memory, the Stack
cache memory including a plurality of cache lines
dedicated for Stacking data Spilled from the register file.

2. The CPU of claim 1, wherein each architectural register
is mapped to a unique line in the Stack cache memory.

3. The CPU of claim 2, wherein each line of the stack
cache comprises a register Stack that Stores data Spilled from
a corresponding architectural register in a first-in, last-out

C.

4. The CPU of claim 3, wherein each register stack stores
multiple data Spilled from the corresponding architectural
register.

5. The CPU of claim 1, wherein data spilled to the stack
cache remains in the Stack cache until Subsequently restored
to the register file.

6. The CPU of claim 5 wherein each register stack further
comprises a pointer to indicate a top of the Stack.

7. The CPU of claim 1, wherein writeback operations
from the primary cache to the primary memory do not affect
data Stored in the Stack cache.

US 6,671,196 B2
7

8. A central processing unit (CPU) of a computer includ
ing a primary memory, comprising:

a register file including a plurality of architectural
registers, each for Storing data to be processed by the
CPU; and

a Stack cache memory coupled to the register file, the
Stack cache memory including a plurality of cache
lines, each mapped to a corresponding architectural
register and dedicated for Storing data Spilled from the
corresponding the architectural register.

9. The CPU of claim 8, wherein each line of the stack
cache comprises a register Stack implemented as a first-in,
last-out queue.

10. The CPU of claim 9, wherein each register stack of the
Stack cache Stores multiple data Spilled from the correspond
ing architectural register.

11. The CPU of claim 8, wherein data spilled to the stack
cache remains in the Stack cache until Subsequently restored
to the register file.

12. The CPU of claim 8, wherein each register stack
further comprises a pointer to indicate a top of the Stack.

13. The CPU of claim 8, wherein each architectural
register is mapped to more than one Stack cache line.

14. The CPU of claim 8, further comprising a primary
cache memory coupled to the register file, the primary cache
memory for caching data loaded into the architectural reg
isters from the primary memory.

15. A central processing unit (CPU) of a computer includ
ing a primary memory, comprising:

a register file including a plurality of architectural regis
ters,

means for caching data loaded into the register file from
primary memory, wherein each architectural register is
randomly mapped to locations in the means for cach
ing, and

means for Stacking data Spilled from the register file into
a plurality of Stacks, wherein each architectural register
is directly mapped to a unique Stack.

16. The CPU of claim 15, further comprising:
means for performing a writeback operation to the pri
mary memory from the means for caching without
affecting data Stored in the Stack cache.

17. The CPU of claim 15, wherein the means for caching
and the means for Stacking comprise a primary cache

15

25

35

40

8
memory and a Stack cache memory, respectively, coupled in
parallel to the register file.

18. The CPU of claim 15, wherein each stack comprises
a first-in, last-out queue.

19. A method of operating a central processing unit (CPU)
of a computer coupled to a primary memory and having a
plurality of architectural registers, the method comprising:

providing a Stack cache memory dedicated for Storing
data Spilled from the architectural registers,

mapping each architectural register to a unique line of the
Stack cache memory; and

implementing a first-in, last-out Stack in each line of the
Stack cache memory.

20. The method of claim 19, further comprising:
detecting a spill condition for a first architecture register;
Spilling data Stored in the first architectural register into

the corresponding Stack of the Stack cache; and
maintaining the Spilled data in the Stack cache memory

until Subsequently restored to the first architectural
register.

21. The method of claim 20, wherein spilling the data
comprises:

issuing a push-to-cache instruction; and
Saving the data to a top of the corresponding Stack in the

Stack cache.
22. The method of claim 21, wherein spilling the data

further comprises:
incrementing a top of Stack pointer for the corresponding

Stack.
23. The method of claim 22, further comprising:
detecting a register fill condition; and
restoring the data from the corresponding Stack in the

Stack cache to the first architectural register without
accessing the primary memory.

24. The method of claim 23, wherein restoring the data
comprises:

issuing a pop-from-cache instruction; and
filling the first architectural register with the data from the

corresponding Stack in the Stack cache.
25. The method of claim 24, wherein restoring the data

further comprises:
decrementing the top of Stack pointer.

k k k k k

