(73) Hallitja - Innehavare

1. Qualcomm Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714, AMERIKAN YHDYSVALLAT, (US)

(72) Keksiä - Uppfinnare

2. Padovani, Roberto, 13593 Penfield Point, San Diego, CA 92130, AMERIKAN YHDYSVALLAT, (US)
3. Jacobs, Paul E., 16984 Torrance Street, San Diego, CA 92103, AMERIKAN YHDYSVALLAT, (US)
4. Ziv, Noam, 10968 Corte Playa Barcelona, San Diego, CA 92124, AMERIKAN YHDYSVALLAT, (US)
5. Lam, Katherine S., 9858 Caminito Calor, San Diego, CA 92131, AMERIKAN YHDYSVALLAT, (US)
6. Dejaico, Andrew P., 10424 Flanders Cove, San Diego, CA 92126, AMERIKAN YHDYSVALLAT, (US)

(74) Asiakas - Ombud: Oy Jalo Ant-Wuorinen Ab

Isổ Roobertinkatu 4 - 6 A, 00120 Helsinki

(54) Keksinnön nimitys - Uppfinningens benämning

Menetelmä ja laite lähetyssopueuden määrittämiseksi monen käyttäjän tietoliikennejärjestelmässä
Förfarande och anordning för bestämning av sändningshastighet i ett telekommunikationssystem med flera användare

(56) Viletejulkaisut - Anförda publikationer

(57) Tiivistelmä - Sammandrag

Menetelmä ja laite datanopeuden ohjaamiseksi tukiaseman (2) ja etäkäyttöjärjestyksensä (4) välissä kaksisuuntaiseen tietoliikenteeseen. Keksinnön mukaan mitataan tietoliikennejärjestelmien käyttö joko lähtökanavalla tukiasemalta (2) etäkäytäväällä (4) tai paluukanavalla etäkäytäväällä (4) tukiasemalta (2). Mitattua käyttöarvoa verrataan ainakin yhteen ennalla määrättyn kynnysarvoon ja tietoliikennejärjestelmän tai ali- ja järjestelmän resurssin liikennöinnin datanopeus mukautetaan vertailujen perusteella.
Förfarande och anordning för styrande av datahastigheten i en dubbelriktad datakommunikation mellan en basstation (2) och en mängd fjärranvändare (4). Enligt uppförningen mäts datakommunikationsresursernas användning antingen i utgångskanalen från basstationen (2) till fjärranvändaren (4) eller i returkanalen från fjärranvändaren (4) till basstationen (2). Det uppmätta användningsvärden jämförs med åtminstone ett på förhand bestämt tröskelvärde och datakommunikationssystemets eller ett undersystems kommunikationsresurs datahastighet modifieras på grund av jämförelsen.
MENETELMÄ JA LAITE LÄHETYSNOPEUDEN MÄÄRITTÄMISEKSI MONEN KÄYTTÄJÄN TIELOIKENNEJÄRJESTELMÄSSÄ

Esillä oleva keksintö liittyy tietoliikennejärjestelmiin. Erityisesti esillä oleva keksintö liittyy uuteen ja kehitteeseen menetelmään ja laitteeseen keskimääräisen palvelulaadun maksimoimiseksi käyttäjille monen käyttäjän tietoliikennejärjestelmässä ohjaamalla monen käyttäjän tietoliikennejärjestelmän datan lähetyssizepsia käyttäjille ja käyttäjiltä.

liin, jonka taajuus vaihtelee ennalta määrätyn suunnitelman mukaisesti. Suorasekvenssi (DS) modulaatiassa käyttäjän signaali modulooidaan näennäiskohinakoodilla. Eräässä koodijakomonipääsy (CDMA) menetelmässä, joka käyttää suorasekvenssimodulaatiota, joukko suorakulmaisia tai lähes suorakulmaisia hajaspektrikoodeja (kukin käyttää kanavan täyttä kaistanleveyttä) identifioidaan, ja kullekin käyttäjälle allokoidaan yksi tai useampi tietty koodi.

Kaikissa monipääsykaavioissa joukko käyttäjiä jakaa tietoliikenneresurssin synnyttämättä hallitsematonta häiriöitä muille tunnistusprosessissa. Tällaisen häiriön sallittu raja määritetään häiriön maksimimääräksi siten, että saatu lähetyslaatu on edelleen ennalta määrätyn hyväksytyvän tason yläpuolella. Digi-
taalisissa lähetyksissä laatu mitataan usein bittivirhenopeutena (BER) tai kehysvirhenopeutena (FER). Digi-
taalaisissa puhekommunikaatiojärjestelmissä puheen kokonaislaatua rajoittaa kullekin käyttäjälle sallittu datanopeus ja BER tai FER.

Puhesignaalia varten vaadittavan datanopeuden pientämiseen puheenlaadun kärsimättä on kehitetty järjestelmiä. Jos puhetta lähetetään yksinkertaisesti näytteistämällä ja digitoimalla analogista puhesigna-
lia, vaaditaan datanopeus luokkaa 64 kbit/sekunti (Kbps) perinteisen analogisen puhelimen puheen laatua vastaavan puheenlaadun saavuttamiseksi. Kuitenkin puheen analysoinnin käyttöllä, sitä seuraavalla sopivalla koodauksella, lähetyksellä ja uudelleensyntetisoinnilla vastaanottimesaa, voidaan saavuttaa minimaalinen laadun heikkeneminen.

Laitteita, jotka käyttävät menetelmiä puheen kompressiomiseksi muodostamalla parametreja, jotka liittyvät ihmispuheen malliin, kutsutaan tyyppillisesti vokoodereiksi. Niihin kuuluu kooderi, joka analysoi tulevan puheen relevanttien parametrien muodostamiseksi, ja dekooderi, joka uudelleensyntetisoi puheen

Esillä oleva keksintö on uusi ja paranettu menetelmä ja laite käyttäjille suunnatun keskimmääräisen palvelulaadun parantamiseksi monen käyttäjän tietoliikennejärjestelmässä ohjaamalla datan lähetyksen suunnissa käyttäjille ja käyttäjiltä monen käyttäjän tietoliikennejärjestelmässä.

Esillä olevassa keksinnössä seurataan saatavilla olevan tietoliikenneresurssin käyttöä. Kun saatavilla olevan tietoliikenneresurssin käyttö on liian suurta tietyllä tietoliikenneyhteydellä ja laatu heikenee alle ennalta määrityn rajan, datanopeutta käyttäjille tai käyttäjiltä rajoitetaan osan saatavilla
olevan tietoliikennenresurssin vapauttamiseksi. Kun tietoliikennenresurssin käyttö on liian vähäistä, datanopeutta käyttäjille tai käyttäjiltä lisätään aikaisemman rajan yläpuolelle.

Esimerkiksi jos tietoliikenneyhteyts etäkäyttäjältä tietoliikennekeskusukseen, myöhemmin paluukanava, ylikuormittuu, päätietoliikennekeskus lähettää signalointiviестin, joka vaatii käyttäjää tai tiettyjä niistä vähentämään keskimääräistä datanopeutta. Etäkäyttäjäpäässä signalointiviesti vastaanotetaan ja etäkäyttäjän lähetyssoppeutta pienennetään signalointiviestin mukaisesti.

Tietoliikennekanavalla päätietoliikennekeskukseen ja etäkäyttäjien välillä, jäljempänä lähtökanalla, päätietoliikennekeskus seuraa etäkäyttäjien kanssa käytetyn tietoliikennenresurssin osaa kokonaiskapasiteetista. Jos osa on liian suuri, tietoliikennekeskus vähentää sallittua keskimääräistä lähetyssadanopeutta kullakin käyttäjällä tai osalla käyttäjistä. Jos osa on liian pieni, tietoliikennekeskus lisää sallittua keskimääräistä lähetyssadanopeutta kullakin käyttäjällä. Kuten paluukanavalla, datanopeuden ohjaus voi olla luonteeltaan selektiivistä perustuen etäkäyttäjille lähettävän datan (puhetta tai ei-puhetta) luonteeseen.
Esillä olevan keksinnön muodot, tarkoitukset ja edut tulevat selvemmiksi seuraavasta yksityiskohtaisesta kuvauksesta viitaten oheisiin piirustuksiin, joissa on samat viitteenumerot kauttaaltaan ja joissa:

kuvio 1 on lohkokaavio, joka esittää etäkäyttäjä (liikkuvia) pyrkimässä päättoliikennekeskuksyhteysteen (solutukiasema);

kuvio 2 on lohkokaavio, joka esittää monisolou (useita päättoliikennekeskuksia) ympäristöä datan vastaanotossa etäkäyttäjällä;

kuvio 3 on käyrä, joka kuvaavat keskimääräistä palvelulaatua käyttäjien määrään verrattuna tietyllä keskimääräisellä lähetyssnopeudella;

kuvio 4 on käyrä, joka kuvaavat keskimääräistä palvelulaatua käyttäjien määrään verrattuna kolmella eri keskimääräisellä lähetyssnopeudella;

kuvio 5 on vuokaavio järjestelmän monitorointi- ja ohjaustoiminnasta;

kuvio 6 on tietoliikeneresurssia kuvaava kaavio lähtökanavalla;

kuvio 7 on tietoliikeneresurssia kuvaava kaavio paluukanavalla;

kuvio 8 on tietoliikeneresurssia kuvaava kaavio esittäen toimenpiteitä, jotka tehdään suhteessa resurssin eri osuuksien käyttöön.

kuvio 9 on tietoliikeneresurssia kuvaava kaavio esittäen olosuhteita, joissa datanopeutta olisi vähennettävä esillä olevan keksinnön mukaisella ohjausmekanismissa;

kuvio 10 on tietoliikeneresurssia kuvaava kaavio esittäen edellisen tietoliikeneresurssin datanopeuden pienentämisen vaikutuksia;

kuvio 11 on lohkokaavio, joka esittää monitoimintaa ja ohjausjärjestelmää, joka sijaitsee päättoliikennekeskuksen yhteydessä paluukanavayhteyksien ohjaamiseksi;
kuvio 12 on lohkkovaavio, joka esittää monitoimit- ja ohjausjärjestelmää, joka sijaitsee etäkäytäjän yhteydessä paluukanavayhteyksien ohjaamiseksi; ja

kuvio 13 on lohkkovaavio, joka esittää lähtökanavan monitoimij- ja ohjauslaitetta.

Kuvio 1 esittää monen käyttäjän tietoliikennepäätöksissä käytössä olevan meteormerta (CDMA), joka kuvataan yksityiskohtaisemmin patenttiluonnossa US 4,901,307 "Hajaspektri-monipäätöksitietoliikennepäätöksissä"; Aloituksena käytetään satelliittien ja maastoistimia (CDMA) ja US 5,103,459 "Järjestelmä ja menetelmä signaalilaiton alueella".

Etäkäytäjät käyttävät lähetyksessä kutsutaan paluukanavayhteyksikköä. Tietoliikennehelytettä, joka mahdollistaa yhteyden etäkäytäjälta 4 tukiasemaan 2 kutsutaan paluukanavaksi. CDMA-järjestelmässä järjestelmän käyttäjäkapasiteetti on häiriötaason funktio järjestelmässä.

Kuvio 2 esittää kaksi päätapana, jotka johtavat datanopeuden ohjaustarpeeseen häiriön pienentämiseksi ja kapasiteetin kasvattamiseksi. CDMA-monisoluisten soluoksiintäjärjestelmän esimerkiksi on CDMA-monisoluisen soluoksiintäjärjestelmän esimerkiksi on CDMA-monisoluisen soluoksiintäjärjestelmän esimerkiksi.
tai sen tapaisen, joka kykenee heijastamaan sähkömagneettisia aaltoja, aiheuttama heijastuminen.

Esimerkkisovellutuksessa etäkäyttäjä 10 vastaanottaa häiriön tukiasemilta 12, joilla ei ole yhteystä etäkäyttäjään, ja häiriö vastaanotetaan monireittisissä signaalineina haitasta 16. Esimerkkisovellutuksessa solujoukon toimintaa valvotaan järjestelmäänjaimella 14, joka antaa ja vastaanottaa dataa yleiseen puhelinverkkoon (ei esitetty). Näitä yhteyksiä pide- tään lähtökanavayhteyksinä.

Aika- ja taajuusjakomonipääsymenetelmä (TDMA, FDMA) käytännössä järjestelmissä on olemassa "kovov" kapasiteetin aikaansaama rajoite, mikä johtuu aikavälien tai taajuuden alikaistorajallisesta määristä, vastaavasti. Kun kaikki aikavälit tai alkaistot on allokoitu käyttäjälle, "kovov"-kapasiteetin raja saavutetaan ja uusien käyttäjien palveleminen on mahdotonta. Vaikkakaan ennen kapasiteetin loppumista käyttöoikeuden saaneita käyttäjä on häiritö poistamalla heitää järjestelmästä, keskimääräinen palvelulait- tu kaikkien käyttäjien osalta laskee alle kapasiteetin rajan, koska palvelulaitu niiden käyttäjien osalta, joilta evätiin käyttöoikeus, on nolla.

Monipääsyjärjestelmissä, kuten koordijakomonipääsymenetelmässä ja satunnaispääsyjärjestelmissä, kuten ALOHA ja jaettu ALOHA, on olemassa "pehmeä" kapasiteetin raja. Tämän tyyppisissä järjestelmissä järjestelmän käyttäjien lisääminen kapasiteetin rajan yli aiheuttaa laatutason putoamista kaikkien käyttäjien osalta. CDMA-järjestelmissä käyttäjät näkevät muiden käyttäjien lähetysken häiriönä tai kohinana. Pehmeän kapasiteettirajan yläpuolella, kohina on riittävän voimakasta aiheuttaakseen ennalta määrätyn sallitun BERin tai FERin ylittymisen. Satunnaispääsyjärjestel- missä kukin lisäkäyttäjä lisää viestien törmäämisensä todennäköisyyttä. Kapasiteettirajan ylittytyä törmäyk- sien lukumäärä kasvaa niin suureksi, että uudelleenlä-
hettämisen tarve tai menetetty data heikentää jokaisen käyttäjän yhteyden laatua.

Kuvio 3 on kuvatunlaisen monipäätisyjärjestel-
män käyttäjien saaman palvelun keskimääräistä laatua
kuvaava käyrä järjestelmän käyttäjien lukumäärän funk-
tionta tietyllä keskimääräisellä datanopeudella kaikil-
la käyttäjillä. Palvelun keskimääräinen laatu \(Q_{ave} \)
määritetään seuraavasti:

\[
Q_{ave} = \frac{1}{N} \sum_{i=1}^{N} Q_i \tag{1}
\]

missä \(Q_i \) on käyttäjän i saaman palvelun laatu ja \(N \) on
järjestelmän käyttäjien lukumäärä.

Lisäksi kuvio 3 esittää laaturajaa, jonka
yläpuolella keskimääräinen palvelun laatu on hyväksyt-
tävä ja jonka alapuolella palvelun laatu ei ole hyväk-
syttävä. Laaturajan ja käyttäjien lukumää-
rän funktiona esitetyn laadun kuvaajan leikkauskohta
määrittää järjestelmän kapasiteettirajan järjestelmän
datanopeudella. CDMA-järjestelmän esimerkkisovellutuk-
sessa viestejä lähetetään 20 ms kehyksissä ja kohta-
lainen 1 %:n kehysvirhenopeus määrää laaturajan paikan
esimerkkisovellutuksessa. On ymmärrettävä, että eri
kehyskoot ja virhenopeudet ovat yhtälaitilla mahdollisia
esillä olevassa kaksinnössä.

Kuviol 3 esittää palvelun keskimääräisen laa-
dun käyttäjien lukumäärän funktiona kolmea kuvaajaa
20, 22 ja 24 kolmella asteittain vähentyvällä datano-
peudella. Kuvaaja 20 vastaa laatukäyrää suurella kes-
kimääräisellä datanopeudella, kuvaaja 22 vastaa laatu-
käyrää keskinkertaisella keskimääräisellä datanopeu-
della ja kuvaaja 22 vastaa laatukäyrää hitaalla keski-
määräisellä datanopeudella.

Ensimmäinen tärkeä ominaisuus kuvaajilla on,
etta kuvaajien leikkaus pystyakselin kanssa on asteittain
alempana alemmilla datanopeuksilla. Kapasiteettirajo-
jen alapuolella suuremmat sallitut datanopeudet vas-
taavat suurempaa laatua, koska suuri datanopeus mah-
dollistaa parametrien tarkemman kvantisoinnin muuttuvanopeuksisessa puhekooderissa johteen puhtaammin kuluvaan puheeseen.

Lohkossa 42 järjestelmän datanopeutta verrataan ennaltata määrättyyn minimiin. Jos järjestelmän datanopeus on suurempi kuin ennaltata määrätty minimi, edetään lohkoon 44, missä yhteyden datanopeutta pienennetään.

Satunnaispäätösjärjestelmää viestien törmäystodennäköisyys on suhteessa kunkin käyttäjän tarvitsemän lähettettävän information määrään. Siksi datanopeutta voidaan säätää suoraan lähettämällä vaihtelevankokoisista datapaketteista tai lähettämällä paketteja vaihtelevin aikavälein.

CDMA-järjestelmää käyttävää esimerkkiisovelutuksessa puheen lähettämiseen tarvittavan datan määrää säädetään vaihtuvanopeuksisen vokooderin käytöllä,
kuten esitetään patenttijulkaisussa US 08/004,484, joka mainittiin aiemmin. Esimerkkisovellutuksen muuttuvanopeuksinen vokoode ri antaa dataa täydellä nopeudella, puolella nopeudella, neljännesnopeudella ja kahdeksasosanopeudella vastaten nopeuksia 8 kbps, 4 kbps, 2 kbps ja 1 kbps, mutta olennaisesti mikä tahansa keskimääräinen maksiminopeus voidaan saavuttaa yhdistämällä datanopeuksia. Esimerkiksi maksimi keskimääräinen datanopeus 7 kbps voidaan aikaansaada pakottamalla

vokoode rin puolinopeuteen joka neljännellä täyden nopeuden kehyksellä. Esimerkkisovellutuksessa muuttuvakokoinen pulheatapaketti segmentoidaan ja segmentit annetaan satunnaisesti, kuten kuvataan yksityiskohtaisesti patenttijulkaisussa US 07/846,312 "Datapurskeen satunnaistaja", jossa hakijana on sama kuin tässä hakemuksessa ja joka liitetään tähän viittauksella.

Käyttöekspoinen tapa esittää tietoliikennekapasiteetti on esittää käytössä oleva tietoliikennesurssi ympyräkaaviona, jossa koko ympyrä esittää tietoliikennesurssin täyttää käyttöä. Tässä esitystavassa ympyräkaavion sektorit edustavat käyttäjille alakoitujaa osuuksia, järjestelmäosuutta ja käyttämätöntä resurssia.

TDMA- tai FDMA-järjestelmässä koko ympyräkaavio saattaa edustaa saatavilla olevien aikavalien määrää tai taajuusalikaistoja tietyssä allokointistrategialassa. Satunnaispääsyjärjestelmässä koko ympyräkaavio voi edustaa viestinopeutta, joka sallitaan ilman, että viestien törmäyksien määrä kasvaa yli sallitun saadenn yhteyden kelvottomaksi käyttäen. CDMA-järjestelmän esimerkkisovelluksessa koko ympyräkaavio edustaa sruunta siedettävää kohinan kantaa, jossa ilma ja signaalimuita käyttäjiltä esiintyvät kohinan viestidatan vastaanotossa etäkäyttäjille ja etäkäyttäjiltä. Missä tahansa laitekokoopanpanossa, viitaten uudelleen kuvaan 3, koko resurssiystymyvä edustaa laatulinjan leikkaus-
kohtaa käyttäjien funktiona esitetävän keskimääräisen laatukuvan ja kanssa.

Kuva 7 on resurssi ympyräkaavio paluukenavayhteyksille. Tämä ympyräkaavio edustaa lähetyskeskuksessa tai tukiasemassa vastaanotettua informaatiota. Ainoa merkittävää ero tämän ympyräkaavion ja aikaisemman ympyräkaavion välillä on, että paluukenavalla ei ole kiinteää OVERHEAD resurssia. Lisäksi on huomattava, että edullisessa sovellutuksessa kukin käyttäjä käyttää samaa tietoliikenneresurssin osaa kaikkien käyttäjien palvelulaadun maksimoiniseksi. Menetelmä ja laite saman tietoliikenneresurssin ylläpitämiseksi

Kuviot 9 ja 10 esittävät lähetyssopeuden pienentämisen vaikutuksia resurssiallokkointiin. Kuvassa 9
käyttäjän 20 lisäys on saanut resurssiallokoinnin kul-
kemaan yli pisteen, jossa lähetyssnopeutta pitäisi vä-
hentää. Tässä pistessä lähetyssnopeus pienenee ja re-
surssiympyrä samaille käyttäjälle näyttää samalta kuin
kuviossa 10. Huomaa resurssiympyrän B käyttämättömän
osan olevan riittävän suuri lisäkäyttäjien pääsyn sal-
limiseksi järjestelmään. Näin ollen lisäkäyttäjä voi-
daan päästä järjestelmään kunnes järjestelmä vaatii
lähetyssnopeuden pienentämistä jälleen. Tämä prosessi
jatkuu kunnes nopeus on minimissään. Jos näin käy,
järjestelmä sallii ympyrän täyttymisen kokonaan ja yh-
tään uutta käyttäjää ei päästetä järjestelmään.

Sitävastoin käyttäjien poistuessa ja vapaut-
taessa tietoliikenneresurssia, tietoliikenneresurssin
osa, jota käytetään menee alle pisteen INCREASE RATE
ja järjestelmä kasvattaa lähetyssnopeuttaa. Tämä voi
jatkaa kunnes lähetyssnopeutta lisätään maksiminopeu-
teen tai kunnes käyttäjä ei enää tule lisää järjes-
telmään.

Kuvio 11 esittää lohkokaaviota paluukanavan
resurssin käytön monitorointia ja ohjaamista varten
tietoliikennekeskuksessa, joka saattaa sisältää solu-
tukiaseman ja järjestelmäohjaimen. Signaalit etäkäyt-
täjiltä vastaanotetaan antennilla 60. Vastaanotetut
signaalit annetaan vastaanottimeen 62, joka antaa da-
tan analogisessa tai digitaalisessa muodossa tehon
laskentayksikköön 66 ja demodulaattoreille 64. Lasket-
tu tehoaarvo tehon laskentayksikköstä annetaan nopeuden
ohjausyksikköön 68, joka vertaa vastaanotetun signaa-
lin tehoa kynnysjoukkoon. Vertailun perusteella nopeu-
den ohjauslogiikka 68 antaa nopeuden ohjaussignaalin
mikroprosessoriin 70, kun signaaliteho on ylemmän kyn-
nysen yläpuolella tai on alemman kynnyksen alapuolel-
la. Muissa sovellutuksissa nopeuden ohjauslogiikka 68
voi myös toimia ulkoisten tekijöiden perusteella, jot-
ka saatavat vaikuttaa tietoliikennekanavan suoritus-
kykyyn, kuten sääolosuhteet jne.
Vastaanotettu signaali vastaanottimelta 62 annetaan demodulaattoreille 64, missä se demoduloidaan ja tietyn käyttäjän data muodostetaan ja annetaan vastaavalle mikroprosessorille 70. Esimerkki sovellutuksessa, kuten yksityiskohtaisesti kuvataan patenttijuhlakaisussa US 07/433,031, "Menetelmä ja järjestelmä joustavan kanavanvaihdon aikaansaamiseksi CDMA-matkaviestinjärjestelmässä", jossa hakijana on sama kuin tässä hakemuksessa ja joka liitetään tähän viitauksella, vastaanotettu data annetaan mikroprosessorille 70 valitsinkortteille (ei esitetty) järjestelmäohjaimes sa 14, joka valitsee parhaan vastaanotetun datan vastaanotetusta dataasta joukosta tietoliikennekeskkkoa (soluja), joihin kuhunkin kuuluu vastaanotin 62 ja demodulaattori 64, ja dekoodaa parhaan vastaanotetun datan käyttäen vkokooderia (ei esitetty). Uudelleen muodostettu puhe annetaan yleiseen kytkentäiseen puheelinverkkoon (ei esitetty).

Lisäksi mikroprosessori 70 vastaanottavat datan lähtökanavan lähetystä varten vkokoodereilta (ei esitetty) dataliitymnän kautta. Mikroprosessorit yhdistävät paluukanavan nopeuden ohjaussia, tarvittaessa, lähtevään lähtökanavan dataan yhdistettynä datapakettien antamiseksi demodulaattoreille 72. Edullisessa sovellutuksessa jotkin mikroprosessoristoa 70 yhdistävät valinnaisesti paluukanavan nopeuden ohjauksen lähtevään lähtökanavan dataan. Edullisessa sovellutuksessa jotkin mikroprosessoristoa 70 vastaavat signaaliin, joka osoittaa ohitustilanteen, jolloin käänteistä nopeuden ohjaussia tai ei yhdistetä lähtevään lähtökanavan dataan. Vaihtoehtoisessa sovellutuksessa tietyt mikroprosessorit 70 eivät ota huomioon paluukanavan nopeuden ohjaussia tai. Demulaattorit 72 moduloivat datapakettit ja antavat moduloidut signaalit summaimeen 74. Summain 74 summaa moduloidun datan ja antaa sen edelleen lähettimeen 76, jossa se
vahvistetaan ja annetaan antenniin 78 lähetystä var-
ten.

Kuvio 12 esittää lohkokaaviota esillä olevan
keksinnön mukaisesta etäkäyttäjän laitteesta esimerk-
kiisovelluksessa lähetyshetkessä kuviossa 1 esitet-
tyyyn nopeuden ohjaussignaalin vastaamiseksi. Paluu-
reitillä, signaali, joka käsittää koodattua puhedataa
ja/tai signalointidataa, vastaanotetaan antennissa 90,
joka myös palvelee lähetyss antennina duplekserin 92
avulla. Vastaanotettu signaali annetaan edelleen dup-
lekserin 92 läpi demodulaattoriin 96. Seuraavaksi sig-
naali demoduloidaan ja annetaan mikroprosessoriin 98.
Mikroprosessori 98 dekoodaa signaalin ja antaa puheda-
tan ja kaiken mahdollisen ohjausdatan, joka lähetetään
tukiasemalla, muuttuvanopeuksiseen vokooderiin 100.
Muuttuvanopeuksinen vokooderi 100 dekoodaa koodatut
puhedatapaketit, jotka on saatu mikroprosessorilta 98,
ja antaa dekoodatun puhedatan koodekkiin 102. Koodekki
102 muuntaa digitaalisen puhesignaalin analogiseen
muotoon ja antaa analogisen signaalin kaiuttimeen 106
 toistettavaksi.

Etäkäyttäjän lähetyssreitillä puhesignaalin
annetaan mikrofonin 104 läpi koodekkiin 102. Koodekki
102 antaa puheen digitaalisen esityksen muuttuvanope-
uksiseen vokooderiin 100, joka koodaa puhesignaalin
nopeudella, joka määritetään esimerkkiisovelluksessa
puheaktiviteetin ja vastaanotetun nopeussignaalin pe-
rusteella. Koodattu puhedata annetaan edelleen mikro-
prosessoriin 98.

Esimerkkiisovelluksessa nopeuden ohjaussignaali on binäärisignaali, joka osoittaa etäkäyttäjälle
maksimidatanopeuden lisäämiseksi tai vähentämiseksi. Tämä
datanopeuden säätö tehdään diskreetitasoin. Esimerk-
kiisovelluksessa etäkäyttäjä lisää tai vähentää mak-
similähetysnopeuttaan 1000 bps vastaanotettuaan nopeu-
den ohjaussignaalin tukiasemalta. Käytännössä tämä vähentää keskimääräistä datanopeutta 400 - 500 bps, kos-
ka vokooderi koodaa puhetta nopeudella, joka on 40 – 50 % ajasta normaalisissa kaksisuuntaisissa keskusteluissa. Esimerkkisovellutuksessa sanojen välinen hiljaisuus koodataan alemmillä datanopeuksilla.

Esimerkiksi jos etäkäyttäjä toimii maksimidanopeudella tai nopeudella 1 (8 kbps) ja vastaanote- taan signaali alentaa maksimidanopeutta, maksimidanopeutta lasketaan 7/8 (7 kbps) pakottamalla joka neljäs täyden nopeuden kehys koodattavaksi puolinopeudella (4 kbps). Jos toisaalta etäkäyttäjä toimii solutukiaseman ohjauksessa maksimidanopeudella 3/4 (6 kbps) ja solutukiasema signaloi etäkäyttäjälle nopeuden lisäyksestä, niin etäkäyttäjä käyttää nopeutta 7/8 (7 kbps) maksimidanopeutena. Yksinkertalistetussa sovelluksessa nopeuksia voidaan yksinkertaisesti rajoittaa johonkin diskreettiin vokoodeerin 100 antamaan nopeuteen (eli nopeudet 1, 1/2, 1/4 ja 1/8).

Mikroprosessori 98 lisäksi vastaanottaa eipuhedatan, joka voi sisältää signalointidatan tai toisiodatan, kuten telekopi-, modeemi- tai muuta vastaanotaan, joka tarvitsee yhteyttä tukiasemaan. Jos etäkäyttäjän lähetettävä digitaalinen data on muodossa, joka ei sovellu muuttuvanopeuksiseen lähetykseen (eli telekopi- tai modeemidataan), niin mikroprosessori 98 voi päätä etäkäyttäjän palveluvalinnasta muutetaanko lähetysnopeutta nopeuden ohjaussignaalin perusteella.

Modulaattori 108 moduloiden datasaajan ja antaa moduloidun signaalin lähettimeen 110, missä se vahvistetaan ja annetaan duplekserin 92 läpi antenniin 90 ja lähetetään ilmateitse tukiasemaan. Lisäksi on todettu esillä olevassa keksinnössä, että etäkäyttäjä voi monitoroida paluukanavan tietoliikenneresurssia ja säätää avoimen silmukan ohjausperiaatteella lähetysnopeutta.

Kuvio 13 esittää esimerkinomaisen lähtökanaan nopeuden ohjauslaitteen lohkokaaviota. Puhedatan annetaan vokoodeereille 120, missä puhedatan vokoodeatan
muuttuvalla nopeudella. Esillä olevassa keksinnössä
puhedatan koodausnopeus määritetään puheaktiviteetin ja
mahdollisesti saatavan nopeuden ohjaussignaalin perusteella. Koodattu puhe annetaan edelleen mikropro-
 sessoreihin 122, jotka myös voivat vastaanottaa eipuheedata ulkoisesta lähteestä (ei esitetty). Tämä ei-
puheedata voi sisältää signalointi- tai toisiodataa (telekopi-, modeemi- tai digitaalidataa lähetystä
varten). Mikroprosessorit 122 antavat datapaketit mo-
dulaattoreille 124, missä datapaketit moduloidaan ja
annetaan summaimeen 126. Summain 126 summaa moduloidut
signaalit ja antaa summasignaalin lähettimeen 128,
missä signaali sekoitetaan kantosignaaliin, vahviste-
taan ja annetaan antenniin 130 lähetystä varten.

Summattu moduloitu signaali summaimelta 126
anettaan myös tehon laskentayksikköön 132. Tehon lask-
kentayksikkö 132 laskee summaimelta 126 tulevan sig-
aalinn tehon kiinteällä aikajaksolla ja antaa tämän
thehostimaatin nopeuden ohjauslogiikalle 134. Nopeuden
ohjauslogiikka 134 vertaa thehostimaattia kynnysjouk-
koon ja antaa nopeuden ohjaussignaalin vertailujen pe-
rusteella. Nopeuden ohjaussignaali annetaan mikropro-
sessoreille 122. Mikroprosessorit 122 antavat nopeuden
ohjaussignaalin vokoodereille 120 puhedatan maksimida-
tanopeuden ohjaamiseksi. Valinnaisesti mikroprosesso-
rit 122 voivat myös käyttää nopeuden ohjaussignaalia
ei-puhedatalähteen datanopeuden ohjaamiseen (ei esi-
etty). Nopeuden ohjaussignaali voidaan antaa valin-
naisesti joillekin mikroprosessoreista 122 tai vaihtoehtoisesi valitut mikroprosessorit 122 voivat vastata globaalisti annettuun nopeuden ohjaussignaaliin.

Yllä kuvattu avoimen silmukan ohjaus voi toimia myös suljetussa silmukassa, joka voi vastata signaaleihin etäasemilta osoittaen saavutetun kapasiteetin

vaihtoehtoisesti valitut mikroprosessorit 122 voivat vastata globaalisti annettuun nopeuden ohjaussignaaliin.

Yllä kuvattu avoimen silmukan ohjaus voi toimia myös suljetussa silmukassa, joka voi vastata signaaleihin etäasemilta osoittaen saavutetun kapasiteetin

tirajan, kuten korkeakehysvirhenopeuden tai muun mitattavan suureen. Nopeuden ohjauslogiikka 134 voi vas-
tata erityyppisiin ulkoisiin häiriöihin, mikä myös voi vaikuttaa tietoliikennekanavan suorituskykyyn.

Edellä oleva edullisten sovellusten kuvaus annetaan, jotta ammattimies voisi käyttää tai valmistaa esillä olevan keksinnön mukaista laitetta. Näiden sovellusten eri modifikaatiot ovat ammattimiehillä ilmeisiä ja tässä kuvatut yleiset periaatteet ovat sovellettavissa muihin sovelluksiin keksimättä mitään uutta. Näin ollen esillä olevaa keksintöä ei rajata tässä esitetyihin sovelluksiin vaan tässä esitetyjen periaatteiden ja uusien hahmojen käsitämään suojapiirin.
PATENTTIVAATIMUKSET

1. Alijärjestelmä tietoliikennelaadun optimoimiseksi vaihtelemalla paluulinkkilähetytysdatanopeuksia järjestelmän käytön ja kapasiteetin mukaisesti ja
estämällä ylimääräisiä etäkäyttäjiä jos järjestelmän käyttö on yhtä suuri kuin ennalta määretty maksimi tietoliikenneverkkojärjestelmässä, jossa on useita käyttäjiä (4), joista jokaisella on lähetin (110), ja jotka välittävät viestisignaaleja paluulinkkilähetytysdatanopeudella tietoliikennekeskuksen (2) jolla on vastaanotin (62), tunnettu siitä, että alijärjestelmä käsittää:

monitorointivälineet järjestelmän käytön määrittämiseksi ja ehdollisesti perustuen järjestelmän käyttöön paluulinkkinopeusohjaussignaalin tuottamiseksi järjestelmän käytön mukaisesti; ja
joukko vastausvälineitä, joista jokainen sijoitettuna vastaavan etäkäyttäjän (4) kanssa
paluulinkkinopeusohjaussignaalin vastaanottamiseksi ja vastaavan etäkäyttäjän (4) aktiivisen viestin ohjaussignaalin paluulinkkilähetytysnopeuden säätämiseksi paluulinkkinopeusohjaussignaalin mukaisesti ja
aktiivisen viestin koodamiseksi joukkona lähetyskehyksial, joissa vaihtuvadatalähdeväline on altis nopeusohjaussignaalille lähetyskehysjoukon alijoukon koodamiseksi alennetulla koodausnopeudella samalla kun huolehditaan toisista kehyksistä sanottuassa lähetyskehyksijoukossa suuremmalla koodausnopeudella.

2. Patenttivaatimuksen 1 mukainen alijärjestelmä, tunnettu siitä, että monitorointivälineet on sijoitettu lähetyskeskuksen kanssa; ja että alijärjestelmään kuuluu edelleen:

tietoliikennekeskuksen lähetinvälineet (76) viestien lähettamiseksi etäkäyttäjiille (4) ja nopeuden ohjaussignaalin lähettamiseksi etäkäyttäjille (4); ja
joukko etäkäyttäjien vastaanottimia (94), jotka
kukin on sijoitettu vastaavan etäkäyttäjän (4) kanssa
nopeuden ohjaussignaalin vastaanottamiseksi ja nopeu-
den ohjaussignaalin antamiseksi vastaaville vastausvä-
lineille.

3. Patenttivaatimuksen 1 mukainen alijärjes-
telmä, tunnettu siitä, että monitorointivälineet mää-
rättävät järjestelmän käytön mittaamalla viestisignaal-
lien tehon ennalta määrättyllä aikajaksolla.

4. Patenttivaatimuksen 1 mukainen alijärjes-
telmä, tunnettu siitä, että vastausvälineisiin kuuluu:
prosessorivälineet (98) nopeuden ohjaussignaalin
vastaanottamiseksi ja nopeuden komentosignaalien
antamiseksi vastaaksena nopeuden ohjaussignaaliin; ja
muuttuvanopeuksinen vokooderiväline (100) puhedas-
tan ja nopeuden komentosignaalien vastaanottamiseksi
ja puhedatan kooodamiseksi komentosignaalien mukaises-
ti.

5. Patenttivaatimuksen 4 mukainen alijärjes-
telmä, tunnettu siitä, että muuttuvanopeuksinen vokoo-
deri (100) kooodaa puhedatan sen tehon mukaisesti.

6. Patenttivaatimuksen 4 mukainen alijärjes-
telmä, tunnettu siitä, että prosessorivälineillä (98)
vastaanotetaan ei-puhedatäätä varten ja annen-
taan ei-puhedatää nopeusohjaussignaalin määrittämän
nopeuden mukaisesti.

7. Muuttuvanopeuksinen lähetin-vastaanotin
tietoliikennejärjestelmää varten jossa tukiasema lä-
hettää paluulinkinopeusohjauskäskyä liittyen järjes-
telmän käyttöön ja kapasiteettiin, vaihtuvanopeuksisen
lähetin-vastaanottimen ollessa etäsijoitettu sanotusta
tukiasemasta, tunnettu siitä, että lähetin-
vaastaanottimeen kuuluu:
vastaanotin (94) signaalin vastaanottamiseksi tu-
kiasemalta ja käsittäen viestidataa ja nopeuden ohja-
uskomennon;
muuttuvanopeuksinen vokooderi (100) aktiivisen pu-
hedatan vastaanottamiseksi ja koodamiseksi lähetske-
hysjoukoki, jossa vokooderi on altis nopeusohjaussig-
naalille lähetskehysjoukon alijoukon koodamiseksi
alennetulla koodausnopeudella samalla huolehditaan
muista lähetskehysjoukon kehyksistä suuremmalla koo-
dausnopeudella; ja
lähetin (110) aktiivisen puhedatan koodattujen ke-
hysten lähettämiseksi.

8. Patenttivaatimuksen 7 mukainen muuttuvanop-
peuksinen lähetin-vastaanotin, tunnettu siitä, että
lähetin-vastaanottimeen kuuluu:
demodulaattori (96), joka on järjestetty vastaan-
ottimen (94) ja muuttuvanopeuksisen vokooderin (100)
väliin vastaanotetun signaalin demoduloimiseksi; ja
prosessori (98), joka on järjestetty demodulaatto-
rin (96) ja muuttuvanopeuksisen vokooderin (100) vä-
liin demoduloidun signaalin vastaanottamiseksi ja
erikseen huolehditaan viestidatasta ja nopeuden ohja-
uskomennosta.

9. Patenttivaatimuksen 8 mukainen muuttuvanop-
peuksinen lähetin-vastaanotin, tunnettu siitä, että
prosessori (98) on järjestetty vastaanottamaan ei-
puhedataa lähetystä varten.

10. Patenttivaatimuksen 7 mukainen muuttuvanop-
peuksinen lähetin-vastaanotin, tunnettu siitä, että
lähetin-vastaanottimeen kuuluu modulaattori (108), jo-
ka on sijoitettu muuttuvanopeuksisen vokooderin (100)
ja lähettimen (110) välillä koodatun puhedatan moduloinmiseksi.

11. Patenttivaatimuksen 8 mukainen muuttuvanopeuksinen lähetin-vastaanotin, tunnettu siitä, että lähetin-vastaanottimeen edelleen kuuluu modulaattorin (108), joka on sijoitettu muuttuvanopeuksisen vokooderin (100) ja lähettimen (110) välillä koodatun puhedatan moduloinmiseksi.

12. Laite viestitietoliikenteen datanopeuden ohjaamiseksi kaksisuuntaisessa tietoliikennejärjestelmässä jossa tukiasema kommunikoi viestejä lähtölinkilä useiden käyttäjien (4) kanssa, tunnettu siitä, että laitteeseen kuuluu:

- käytön määrittymäelineet (132) lähtölinkin käyttöarvon määrittämiseksi;
- nopeuden ohjauslogiikkavälineet (134) mitatun käyttöarvon vastaanottamiseksi, käyttöarvon vertaamiseksi ainakin yhteen ennalta määrittyyn kynnysarvoon ja ehdollisesti tuottaen lähtölinkkinopeusohjaus-signaalin vertailun mukaisesti; ja
- vaihtelevanopeusdataalähdevälineet aktiivisen viestin vastaanottamiseksi ja aktiivisen viestin koodaamiseksi lähetyshyvitysjuokoksissa, jossa vaihtelevadatalähdevälineet on altis lähtölinkkinopeusohjaus-signaalille lähetyshyvitysjuokon alijoukon koodaamiseksi alennetulla koodausnopeudella samalla huolehtien toisista kehyksistä lähetyshyvitysjuokosssa suuremmalla koodausnopeudella.

13. Patenttivaatimuksen 12 mukainen laite, tunnettu siitä, että muuttuvanopeuksiseen datalähetteeseen kuuluu ainakin yksi muuttuvanopeuksinen vokooderi (120) puhedatan koodaamiseksi muuttuvilla nopeuksilla.
14. Patenttivaatimuksen 12 mukainen laite, tunnettu siitä, että käytön määritysväljöillä (132) mitataan signaalien teho joka signaali on lähettettäväksi etäkäyttöjille (4).

15. Menetelmä monipääyisen tietoliikenne-resurssin käytön optimoimiseksi, tunnettu siitä, että käsitellään seuraavat vaiheet:

mitataan tietoliikenne-resurssin käyttö;
verrataan mitattua käyttöä ainaikin yhteen ennalta määrätyn yhteen ennalta määrätyn kynnykseen;
generoidaan nopeusohjaussignaalin vertailun mukaisesti; ja
kooodataan aktiivinen viesti lähetystehokoukko, jossa kooodauksessa kooodataan lähetystehokoukon alojoukko alennetulla nopeudella samalla kun kooodataan lähetystehokoukon toiset kehykset suuremmalla kooodausnopeudella vastaten nopeusohjaussignaalia.

16. Patenttivaatimuksen 15 mukainen menetelmä, tunnettu siitä, että vaihe jossa verrataan mitattua käyttöä ainaikin yhteen ennalta määrätyn kynnyksen käsitellään vertauksen jossa verrataan käyttöä ennalta määrätyn korkean käytön kynnykseen; ja jossa viestin kooodausvaiheeessa tietoliikenteen kooodausnopeuden alennetaan kun käyttö ylittää korkean käyttökynnyksen.

17. Patenttivaatimuksen 15 mukainen menetelmä, tunnettu siitä, että vaihe jossa verrataan mitattua käyttöä ainaikin yhteen ennalta määrätyn kynnyksen käsitellään vertauksen käyttöä ennalta määrätyn alhaisen käytön kynnykseen; ja jossa viestin kooodausvaiheeessa tietoliikenteen kooodausnopeutta nostetaan kun käyttö alittaa alhaisen käyttökynnyksen.
18. Alijärjestelmä tietoliikennelaadun optimioimiseksi järjestelmän käytön ja kapasiteetin mukaisesti hajaspektritietoliikenneverkossa jossa on useita etäkäyttäjiä (4) joista jokaisella on lähetin (110) kommunikointiin viestisignaalille tietoliikennekeskuksen (2) kanssa jolla on vastaanotin (62), tunnettu siitä, että alijärjestelmä käsittää:

tehonlaskentaelementti (66) joka määrittää perustuen vastaanotettujen signaalien tehoon järjestelmän käytön;

nopeusohjauslogiikka joka ehdollisesti tuotaa nopeusohjaussignaalin järjestelmän käyttöasteen mukaisesti, joka aiheuttaa alhaisempia datanopeuksia käytettäväksi jos järjestelmän käyttö määrittyy ennallta määrätyn tason yläpuolelle;

koodausvälinejoukko sijoitettuna etäkäyttäjien kanssa viestisignaalien koodamiseksi nopeusohjaussignaalin mukaisesti; ja

hajaspektrilähetinjoukko (110) joka lähettää viestisignaalit hajaspektrimodulaatioformaatin mukaisesti.

19. Patenttivaatimuksen 18 mukainen alijärjestelmä, jossa tehonlaskentaelementti on sijoitettu lähetyshetkessä (2) kanssa, tunnettu siitä, että alijärjestelmä edelleen käsittää:

tietoliikennekeskuslähetin (76) joka lähettää viestejä sanotuille etäkäyttäjille (4) hajaspektrimo-

dulaatioformaatin mukaisesti ja lähettää nopeusohjaussignaalin etäkäyttäjille (4);

joukko etävastaanottimia (94), joista jokainen etävastaanotin (94) on sijoitettu vastaan avain yhden etäkäyttäjän (4) kanssa nopeusohjaussignaalin vastaanottamiseksi hajaspektridemodulaatioformaatin mukaisesti.
20. Patenttivaatimuksen 18 mukainen alijärjestelmä, tunnettua siitä, että vastaanotin (94) käsittää:

prosessorin (98), joka vastaanottaa nopeusohjausignaalin ja tuottaa nopeuskäskysignaaleja vasteen nopeusohjausignaaliin; ja

vaihtelevanopeusvokooderi (100), joka vastaanottaa puhedatua ja nopeuskäskysignaaleja ja koodaa puhedatua käskysignaalien mukaisella nopeudella.

21. Patenttivaatimuksen 20 mukainen alijärjestelmä, tunnettua siitä, että vaihtelevanopeusvokooderi (100) edelleen koodaa puhedatua sen tehon mukaisesti.

22. Patenttivaatimuksen 20 mukainen alijärjestelmä, tunnettua siitä, että prosessori (98) myös vastaanottaa ei-puhedataa lähettämistä varten ja tuotetaakseen ei-puhedataa nopeusohjausignaalin mukaisella nopeudella.

23. Patenttivaatimuksen 7 mukainen vaihtelevanopeuslähetin-vastaanotin, tunnettua siitä, että lähetin-vastaanotin on hajaspektrilähetin-vastaanotin.

24. Patenttivaatimuksen 23 mukainen vaihtelevanopeuslähetin-vastaanotin, tunnettua siitä, että edelleen käsittää:

hajaspektridemodulaattori (96) sijoitettuna vastaanottimen (94) ja vaihtelevanopeusvokooderin (100) väliin vastaanotetun signaalin demoduloimiseksi hajaspektridemodulaatioformaatin mukaisesti; ja

prosessori (98) sijoitettuna hajaspektridemodulaattorin (96) ja vaihtelevanopeusvokooderin (100) väliin demoduloidun signaalin vastaanottamiseksi ja erikseen tuottamaan viestidatat ja nopeusohjauskäskyn.
25. Patenttivaatimuksen 24 mukainen vaihtelevanopeushajaspektrilähetin-vastaanotin, tunnettu siitä, että prosessori (98) on edelleen ei-puhedatan vastaanottamiseksi lähetystä varten.

26. Patenttivaatimuksen 23 mukainen vaihtelevanopeushajaspektrilähetin-vastaanotin, tunnettu siitä, että edelleen käsitteää modulaattorin (108) sijoitettuna vaihtelevanopeusvokooderin (100) ja lähettimen (110) välin koodatun puhedatan moduloimiseksi.

27. Patenttivaatimuksen 24 mukainen vaihtelevanopeuslähetin-vastaanotin, tunnettu siitä, että edelleen käsitteää modulaattorin (108) sijoitettuna vaihtelevanopeusvokooderin (100) ja lähettimen (110) välin koodatun puhedatan moduloimiseksi.

28. Laite hajaspektritietoliikennetukiaseeman käyttäjäkapasiteetin ohjaamiseksi, tunnettu siitä, että laite käsitteää:

tehonlaskentavälineet (66) joka määrittää tukiaseeman käytön perustuen vastaanotettujen signaalien tehon;

vertailija (68) joka vertaa mitattua käyttöä ennalta määrittyyn arvoon ja valikoiden tuottaa nopeusohjaussignaalin vertailun mukaisesti, nopeusohjaussignaali käskee datanopeuden alenemisen kun mitattu käyttö on suurempi kuin ennalta määritty arvo; ja
lähetin (76) joka lähettää nopeusohjaussignaalia hajaspektrimodulaatioformaatin mukaisesti.

29. Patenttivaatimuksen 28 mukainen laite, tunnettu siitä, että edelleen käsitteää prosessorin (122) joka vastaanottaa viestidatua etäkäyttäjille (4) lähetystä varten ja nopeusohjaussignaalin ja yhdistää
viestidatan nopeusohjaussignaalin kanssa tuottaa yhdistetyn datapaketin.

30. Patenttivaatimuksen 29 mukainen laite, tunnettu siitä, että edelleen käsittää hajaspektrimoduulactorin (124) sijoitettuna prosessorin (122) ja lähettimen (128) välilin, joka modulaattori moduloi yhdistetyn datapaketin hajaspektrimoduulatioformaatin mukaisesti.

31. Tukiasema hajaspektritietoliikennejärjestelmässä, jossa tukiasema kommunikoi viestejä lähtölinkilla etäkäyttäjäjoukon (4) kanssa, laite viesti-kommunikaation datanopeuden ohjaamiseksi, tunnettu siitä, että käsittää:

- tehonlaskentaelementti (132), joka määrittää lähtölinkin käyttäjäarvon perustuen lähetysignaalin tehoon;
- nopeusohjauslogiikka (134), joka vastaanottaa käyttöarvon, vertaa käyttöarvoa ainakin yhteen ennalta määrittynyn kynynsärvoon ja ehdollisesti tuottaa nopeusohjaussignaalin vertailujen mukaisesti; ja
- ainakin yksi muuttuvanopeusdatalähde datan lähetämiseksi nopeusohjaussignaalin mukaisesti hajaspektrimoduulatioformaatin mukaisesti.

32. Patenttivaatimuksen 31 mukainen laite, tunnettu siitä, että ainakin yksi vaihtelevanopeusdatalähde käsittää ainakin yhden vaihtelevanopeusvokoo-derin (120) joka koodaa puhtaan vaihtelevilla nopeuksilla.

33. Menetelmä monipäisyhajaspektritietoliikenneresurssin käytön optimoiniseksi, tunnettu siitä, että käsittää vaiheet:
mitataan vastaanotettu teho tietoliikenne-
resurssin käytön määrittämiseksi;
verrataan määritytä käyttöä ainakin yhteen
ennalta määrittyn kynnykkeen;
säädetään tietoliikenteen datanopeudet sano-
tussa tietoliikenneresurssissa vertailun mukaisesti;
ja
lähetetään säädetyn nopeuden tietoliikenne
hajaspektrimodulaatioformaatin mukaisesti.

34. Patenttivaatimuksen 33 mukainen menetel-
mä, tunnettu siitä, että vaihe jossa vertaillaan mää-
ritettyä käyttöä ainakin yhteen ennalta määrittyn
kynnykkeen käyttää käytön vertailun ennalta määrittyn
korkean käytön kynnyksen kanssa, ja jossa vaihe jossa
säädetään tietoliikenteen datanopeutta tietoliikenne-
resurssissa käsitteää tietoliikenteen datanopeuden
alentamisen kun käyttö ylittää korkean käytön kynnys-
ken.

35. Patenttivaatimuksen 33 mukainen menetel-
mä, tunnettu siitä, että vaihe jossa verrataan määri-
teltymä käyttöä ainakin yhteen ennalta määrittyn
kynnyksen käyttää vertailun käytön ja ennalta määrittyn
alhaisen käytön kynnyksen välillä, ja jossa vaihe jossa
säädetään tietoliikenteen datanopeutta tietoliikenne-
resurssissa käsitteää tietoliikenteen datanopeuden
nostamisen kun käyttö putoaa alle alhaisen käytökynn-
nyksen.

36. Menetelmä paluuukanavan tietoliikenteen
datanopeuden hallitsemiksi monen käyttäjän tietoliiku-
kennejärjestelmässä, tunnettu siitä, että menetelmä
käsittää:
vastaanotetaan tietoliikennekeskuksessa signaali jokaiselta monen käyttäjän tietoliikennejärjestelmää käyttävän joukon etäkäyttäjältä;
maäritetään tietoliikeneresurssin käyttö tietoliikennekeskuksen ja joukon etäkäyttäjää välillä ja tietoliikenteen datanopeus etäkäyttäjien lukumäärän mukaan tietoliikennekeskuksen ja jokaisen etäkäyttäjän välillä;
luodaan nopeudenhjaussignaali tietoliikenne-
resurssin käytön mukaan; ja
järjestetään nopeudenhjaussignaali vähintään yhdelle etäkäyttäjälle; jossa
nopeudenhjaussignaali ohjaa tietoliikenteen datanopeuden hallintaa vähintään yhdeltä etäkäyttäjältä
tietoliikennekeskuksen.

37. Menetelmä paluukanavan tietoliikenteen datanopeuden hallitsemiksi monen käyttäjän tietoliik-
kennejärjestelmässä, tunnettu siitä, että menetelmä
käsittää:
vastaanotetaan tietoliikennekeskuksesta tietoliik-
kennekeskuksen ja monen käyttäjän tietoliikennekeskus-
ta käyttävän etäkäyttäjäjoukon tietoliikeneresurssien
käytön mukainen nopeudenhjaussignaali; ja
ohjataan tietoliikenteen datanopeutta vähintään
yhdeltä etäkäyttäjältä tietoliikennekeskukselle nopeu-
denhjaussignaalin mukaisesti,
jossa tietoliikeneresurssin käyttö määritetään
etäkäyttäjien lukumäärän ja tietoliikenteen datanopeu-
den mukaan tietoliikennekeskuksen ja jokaisen etäkäyt-
täjän välillä.
PATENTKRAV

1. Undersystem för optimering av telekommunikationskvaliteten genom att variera returlinksändningsdatahastigheter enligt systemets användning och kapacitet och genom att hindra överloppsfjärranvändare om systemets användning är lika stor som ett förutbestämt maximum i telekommunikationssystemet som har multipla användare (4) av vilka var och en har en sändare (110), och vilka kommunikerar meddelandesignaler på en returlinksändningsdatahastighet till en telekommunikationscentral (2), vilken innefattar en mottagare, kännetecknat därav, att undersystemet innefattar:

monitoreringsmedel för bestämmande av systemets användning och för givande av returlinkshastighetens styrsignal villkorligt enligt användningsnivån; och en mängd svarsmedel, vilka vart och ett är anordnat i anknytning till motsvarande fjärranvändare för mottagande av returlinkshastighetens styrsignal och för styrande av motsvarande fjärranvändares aktiva meddelandeinformations returlinkssändningshastighetsjustering enligt returlinkshastighetsstyrsignalen och för kodning av ett aktivt meddelande som en grupp sändningsramar, där variabeldatakällsmedlen är känsliga för hastighetsstyrningssignalen för kodning av en undergrupp av gruppen sändningsramar på en lägre kodningshastighet samtidigt som andra ramar förses ur nämnda sändningsramgrupp på en högre hastighet.

2. Undersystem enligt patentkrav 1, kännetecknat därav, att monitoreringsmedlen är sammanplacerade i anknytning till en sändningscentral; och att undersystemet ytterligare innefattar:

telekommunikationscentralens sändningsmedel för sändande av meddelanden till fjärranvändarna och för sändande av hastighetens styrsignal till fjärranvändarna; och
en mängd fjärranvändarnas mottagare, vilka var och en är sammanplacerad i anknytning till motsvarande fjärranvändare för mottagande av hastighetens styrsignal och för givande av hastighetens styrsignal till motsvarande svarsmedel.

3. Undersystem enligt patentkrav 1, kan n e t e c k n a t därav, att monitoreringsmedlen bestämmer systemets användning genom att mäta effekten av meddelandesignalerna för en i förväg bestämd tidsperiode.

4. Undersystem enligt patentkrav 1, kan n e t e c k n a t därav, att svarsmedlen innefattar: processormedel för mottagande av hastighetens styrsignal och för givande av hastighetens kommandosignal som svar till hastighetens styrsignal: och en vokoder med variabel hastighet för mottagande av röstdata och hastighetens kommandosignaler och för kodande av röstdata enligt kommandosignalerna.

5. Undersystem enligt patentkrav 4, kan n e t e c k n a t därav, att vokodern med variabel hastighet kodar röstdata enligt effekten.

6. Undersystem enligt patentkrav 4, kan n e t e c k n a t därav, att med processormedlen mottas icke-röstdata för sändning och icke-röstdata gives enligt den hastighet som styrsignalen bestämmer.

7. En sändar-mottagare med variabel hastighet för ett telekommunikationssystem där basstationen sänder ett returlinkhastighetskommando gällande systemets användning och kapacitet, då sändar-mottagaren med variabel hastighet är placerad på avstånd från nämnda basstation, kan n e t e c k n a t därav, att sändar-mottagaren innefattar:
en mottagare (94) för mottagande av en signal som innehåller meddelandedata och hastighetens styrkommando;
en vokoder (100) med variabel hastighet för mottagande och kodning av aktivt röstdata till en grupp sändningsramar, där vokoder känslig för hastighetsstyrningssignalen för kodning av en undergrupp av gruppen sändningsramar på en lägre kodningshastighet samtidigt som andra ramar förses ur nämnda sändningsramgrupp på en högre hastighet; och en sändare (110) för sändande av kodade ramar aktivt röstdata.

8. En sändar-mottagare med variabel hastighet enligt patentkrav 7, kännetecknad därav, att sändar-mottagaren innefattar:
 en demodulator (96), vilken är anordnad mellan mottagaren och vokodern (100) med variabel hastighet för demodulerande av den mottagna signalen; och
 en processor (98), vilken är anordnad mellan demodulatorn och vokodern (100) med variabel hastighet för mottagande av den demodulerade signalen och för skiljande av meddelandedata och hastighetens styrkommando.

9. En sändar-mottagare med variabel hastighet enligt patentkrav 8, kännetecknad därav, att processorn (98) är anordnad för att motta icke-röstdata för sändning.

10. En sändar-mottagare med variabel hastighet enligt patentkrav 7, kännetecknad därav, att sändar-mottagaren innefattar en modulator, vilken är placerad mellan vokodern (100) med variabel hastighet och sändaren (110) för modulerande av kodad röstdata.

11. En sändar-mottagare med variabel hastighet enligt patentkrav 8, kännetecknad därav, att sändar-mottagaren innefattar en modulator (108), vilken är placerad mellan vokodern (100) med variabel hastighet och sändaren (110) för modulerande av kodad röstdata.
12. Anordning för styrande av meddelandekommunikationens datahastighet i ett dubbelriktat telekommunikationssystem, vari basstationen kommunikerar meddelanden på en utgångskanal med en mängd användare (4), kännetecknad därav, att anordningen innefattar:

användningsbestämningsmedel (132) för bestämmande av utgångskanalens användningsvärde;

hastighetens styrlogikmedel (134) för mottagande av det mätta användningsvärden, för jämförande av användningsvärdet med åtminstone ett på förväg bestämt tröskelvärde och för givande av hastighetens styrsignal villkorligt på basen av jämförelsen; och

datakällsmedel med variabel hastighet för mottagning av ett aktivt meddelande och kodning av det aktiva meddelandet till en grupp sändningsramar, där de variabla datakällsmenedlen är känsliga för utgångslinkhastighetsstyrningssignalen för kodning av en undergrupp av gruppen sändningsramar på en lägre kodningshastighet samtidigt som andra ramar produceras ur nämnda sändningsramgrupp på en högre hastighet.

13. Anordning enligt patentkrav 12, kännetecknad därav, att datakällan med variabel hastighet innefattar åtminstone en vokoder med variabel hastighet för kodande av data med varierande hastigheter.

14. Anordning enligt patentkrav 12, kännetecknad därav, att med användningsbestämningsmedlen mäts signalens effekt för sändning till fjärranvändaren.

15. Förfarande för optimerande av användning av en multiåtkoms telekommunikationsresurs, kännetecknad därav, att användning av telekommunikationsresursen mäts; den mätta användningen jämförs med åtminstone en på förväg bestämd tröskel;
en hastighetsstyrsignal genereras enligt jämförelsen;

ett aktivt meddelande kodas till en grupp sändningsramar, där vid kodningen kodas sändningsramgruppens undergrupp på en lägre hastighet samtidigt som sändningsramgruppens andra ramar kodas med en högre kodningshastighet som motsvarar hastighetsstyrningssignalen.

16. Förfarande enligt patentkrav 15, kännetecknat därav, att fasen där den mätta användningen jämförs med åtminstone en i förväg bestämd tröskel omfattar användande av en förutbestämd hög användningströskel; och där vid meddelandets kodningsfas telekommunikationens datahastighet minskas då användningen överskrider den höga användningströskeln.

17. Förfarande enligt patentkrav 15, kännetecknad därav, att fasen där den mätta användningen jämförs med åtminstone en i förväg bestämd tröskel omfattar användande av en förutbestämd låg användningströskel; och där vid meddelandets kodningsfas telekommunikationens datahastighet höjs då användningen överskrider den låga användningströskeln.

18. Undersystem för optimering av telekommunikationskvaliteten enligt systemets användning och kapacitet i ett spridningsspektrums-telekommunikationsnätverk med flera fjärranvändare (4) där var och en av dem har en sändare (100) för kommunikation med meddelandesignaler med en telekommunikationscentral (2) som har en mottagare (62), kännetecknad därav, att undersystemet omfattar:

ett effektkalkyleringselement (66) som på basen av den mottagna signalens effekt definierar användningen av undersystemet;

en hastighetsstyrningslogik som villkorligt producerar en hastighetsstyrningssignal enligt systemets användningsgrad, som medför lägre datahastigheter för
användning om systemets användning definieras att vara över en förutbestämd nivå; och

en grupp kodningsmedel placerade med fjärranvändarna för kodning av meddelandesignalerna enligt hastighetsstyrningssignalen;

en grupp spridningsspektrum (110) som sänder meddelandesignalerna enligt spridningsspektrumsmodulationsformatet.

19. Undersystemet enligt patentkrav 18, där effektkalkyleringselementet är placerat med sändningscentralen (2), kännetecknat därav, att undersystemet vidare omfattar:
en informationscentralssändare (76) som sänder meddelanden till de nämnda fjärranvändarna (4) enligt spridningsspektrumsmodulationsinformationen och sänder en hastighetsstyrningssignal till fjärranvändarna (4);
en grupp fjärrmottagare (94), av vilka varje fjärrmottagare (94) är placerad med motsvarande fjärranvändare (4) för mottagning av hastighetsstyrningssignalen enligt spridningsspektrumsmodulationsformatet.

20. Undersystemet enligt patentkrav 18, kännetecknat därav, att mottagaren (94) omfattar:
en processor (98), som mottar hastighetsstyrningssignalen och producera hastighetskommandosignaler som respons till hastighetsstyrningssignalen; och
e en vokoder med varierande hastighet (100), som mottar röstdata och hastighetskommandosignaler och kodar röstdata med en hastighet enligt kommandosignalerna.

21. Undersystemet enligt patentkrav 20, kännetecknat därav, att vokodern med varierande hastighet (100) vidare kodar röstdatat enligt röstdatats effekt.

22. Undersystemet enligt patentkrav 20, kännetecknat därav, att processorn (98) även
mottar icke-röstdata för sändning för producerande av icke-röstdata med en hastighet enligt hastighetsstyrningssignalen.

23. En sändar-mottagare med variabel hastighet enligt patentkrav 7, kännetecknad därav, att sändar-mottagaren är en spridningsspektrumssändar-mottagare.

24. En sändar-mottagare med variabel hastighet enligt patentkrav 23, kännetecknad därav, att det vidare omfattar:

- en spridningsspektrumsdemodulator (96) placerad mellan mottagaren (94) och vokodern med variabel hastighet (100) för demodulering av den mottagna signalen enligt spridningsspektrumsdemodulationsinformationen; och
- en processor (98) placerad mellan spridningsspektrumsdemodulatorn (96) och vokodern med variabel hastighet (100) för mottagning av den demolerade signalen och för att separat producera meddelandedata och ett hastighetsstyrningskommando.

26. Spridningsspektrumssändar-mottagaren med variabel hastighet enligt patentkrav 23, kännetecknad därav, att den vidare omfattar en modulator (108) placerad mellan vokodern med variabel hastighet (100) och sändaren (110) för modulering av kodat taldatala.

27. Sändar-mottagaren med variabel hastighet enligt patentkrav 24, kännetecknad därav, att den vidare omfattar en modulator (108) placerad mellan vokodern med variabel hastighet (100) och sändaren (110) för modulering av kodat taldatala.

28. Anordning för styrning av en spridningsspektrumstelekommunikationsbasstations användarkapaci-
tet, kännetecknad därav, att anordningen omfattar:

 effektkalkyleringsmedel (66) som definierar basstationen användning på basen av de mottagna signa-
5
lernas effekt;

 en komparator (68) som jämför den mätta användningen med ett förutbestämt värde och selektivt producerar en hastighetsstyrningssignal enligt jämförelsen, hastighetsstyrningssignalen kommenderar om en sänkning av datahastigheten då den mätta användningen är större än det förutbestämda värdet; och

 en sändare (76) som sänder hastighetsstyrningssignalen enligt spridningsspektrumsmodulationsformatet.
10

29. Anordning enligt patentkrav 28, kännetecknad därav, att den vidare omfattar en pro-
cessor (122) som mottar meddelandedata för sändning till fjärranvändarna (4) och en hastighetsstyrnings-
signal och kombinerar meddelandedatat med hastighets-
styrningssignalen för att producera ett sammansatt data-
apaket.
20

30. Anordning enligt patentkrav 29, kännetecknad därav, att den vidare omfattar en spridningsspektrumsmodulator (124) placerad mellan processorn (122) och sändaren (128), då modulatorn modularer ett sammansatt datapaket enligt spridnings-
spektrumsmodulationsformatet.

31. Basstation i ett spridningsspektrumtele-
35 kommunikationssystem, där basstationen kommunicerar meddelanden på utgångslinken med en fjärranvändargrupp (4), en anordning för styrning av medelandekommunikationens datahastighet, kännetecknad därav, att den omfattar:

 ett effektkalkyleringselement (132), som på basen av sändningssignalens effekt definierar utgångs-
linkens användarvärde;
en hastighetsstyrningslogik (134), som mottar ett användarvärde, jämför användarvärdet med åtminstone ett förutbestämt tröskelvärde och villkorligt producerar en hastighetsstyrningssignal enligt jämförelsen; och

åtminstone en datakälla med variabel hastighet för sändning av data enligt spridningsspektrumsmodulationsformatet.

32. Anordning enligt patentkrav 31, kan

netcatch därav, att åtminstone en datakälla med variabel hastighet omfattar åtminstone en vokoder med variabel hastighet (120) som kodar röstdata med vari- able hastighet.

33. Förfarande för optimering av användning av en multiåtkomst spridningsspektrums-

telekommunikationsresurs enligt patentkrav 29, kan

netcatch därav, att det omfattar följande faser:

mätning av den mottagna effekten för definie-

ring av telekommunikationsresursens användning;

jämförelse av den definierade användningen med åtminstone ett förutbestämt tröskelvärde;

justering av telekommunikationstabellerna i nämnda telekommunikationsresurs enligt jämförelsen; och

sändning av den justerade hastigheten enligt telekommunikationsspridningsspektrumsmodulationsformatet.

34. Förfarande enligt patentkrav 33, kan

netcatch därav, att fasen där den definierade användningen jämförs med åtminstone ett förutbestämt tröskelvärde omfattar jämförelse med ett förutbestämt tröskelvärde för hög användning, och där fasen där telekommunikationens datahastighet justeras i telekommunikationsresursen omfattar en sänkning av telekommuni-
kationens datahastighet då användningen överskrider tröskelvärdet för hög användning.

35. Förfarande enligt patentkrav 33, känt nätecknat därav, att fasen där den definierade användningen jämförs med åtminstone ett förutbestämt tröskelvärde omfattar jämförelse med ett förutbestämt tröskelvärde för låg användning, och där fasen där telekommunikationens datahastighet justeras i telekommunikationsresursen omfattar en höjning av telekommunikationens datahastighet då användningen underskrider tröskelvärdet för låg användning.

36. Förfarande för kontrollerande av returkanalens telekommunikations datahastighet i ett telekommunikationssystem med många användare, känt nätecknat därav, att förfarandet innefattar:

mottagande i en telekommunikationscentral en signal från var och en fjärranvändare i en mängd som använder ett telekommunikationssystem med många användare;

bestämmande av telekommunikationsresursens användning mellan telekommunikationscentralen och en mängd fjärranvändare och telekommunikationens datahastighet enligt antalet fjärranvändare mellan telekommunikationscentralen och varje fjärranvändare;

skapande av en hastighetsstyrsignal enligt telekommunikationsresursens användning; och

anordnande av hastighetsstyrsignalen till åtminstone en fjärranvändare; vari

hastighetsstyrsignalen styr kontrollerande av telekommunikationens datahastighet från åtminstone en fjärranvändare till telekommunikationscentralen.

37. Förfarande för kontrollerande av returkanalens telekommunikations datahastighet i ett telekommunikationssystem med många användare, känt nätecknat därav, att förfarandet innefattar:

mottagande från en telekommunikationscentral av en hastighetsstyrsignal enligt användningen av telekommu-
nikationsresursen mellan kommunikationscentralen och fjärranvändarmängden som använder telekommunikationscentralen med många användare; och
styrande av telekommunikationens datahastighet från åtminstone en fjärranvändare till telekommunikationscentralen enligt hastighetsstyrsignalen,
vari användningen av telekommunikationsresursen bestäms enligt antalet fjärranvändare och telekommunikationens datahastighet mellan telekommunikationscentralen och varje fjärranvändare.