(54) Title: SYSTEM FOR DISPLAYING A TELEVISION SIGNAL ON A COMPUTER MONITOR

(57) Abstract

An apparatus and method for displaying a television signal on a computer monitor first receives a selected first field data block of the television signal for display by the monitor. The television signal preferably includes a stream of first field data blocks and second field data blocks that are intended for display by respective first and second sets of lines on the computer monitor. After receipt of the first field data block, an immediately preceding second field data block is faded to produce a faded second block. The faded second block then is displayed on the second set of lines of the monitor, and the first field data block is displayed on the first set of lines of the monitor.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslavia</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Iceland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>NL</td>
<td>Netherlands</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>NO</td>
<td>Norway</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>PL</td>
<td>Poland</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LIE</td>
<td>Liechtenstein</td>
<td>PT</td>
<td>Portugal</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>RO</td>
<td>Romania</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>RU</td>
<td>Russian Federation</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LTH</td>
<td>Liechtenstein</td>
<td>RO</td>
<td>Romania</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
SYSTEM FOR DISPLAYING A
TELEVISION SIGNAL ON A COMPUTER MONITOR

FIELD OF THE INVENTION
The invention generally relates to computer systems and, more particularly, the invention relates to displaying television signals on computer display devices.

BACKGROUND OF THE INVENTION
The National Television Standards Committee sets the standards for television signal transmission (the “NTSC standard”) in the United States. In particular, the NTSC standard requires that a television signal include sixty interlaced half-frames for each second of a motion picture displayed by a television. To that end, a television signal in the United States includes a sequential series of alternating “odd” half-frames and “even” half-frames that are to be displayed on respective odd and even lines of a television display. Upon receipt of a television signal in which the first half frame is odd, for example, a television draws the entire first odd half-frame, followed by the entire first even half-frame, followed by the entire second odd half-frame,

As is known in the art, a television includes a phosphor element on a display face of a cathode ray tube, and an electron gun for energizing the phosphor as specified by a received television signal. The energy emitted by the energized phosphor element produces a visible display of the television signal. The total time that elapses between the time that the phosphor is first energized, and the time that the energy in the phosphor dissipates (known as “phosphor persistence”) is the entire time that a half-frame is
viewable on a television display face. Typically, a half-frame is drawn while an
immediately preceding half-frame is fading, but still visible. Together, the faded preceding
half-frame and the half-frame being drawn produce a motion picture effect upon the
display face of the cathode ray tube.

Unlike televisions, computer monitors draw entire frames instead of a series of
half-frames. Specifically, a computer monitor is configured to consecutively draw each
line on a monitor display face and thus, no lines on a computer monitor are skipped.
Moreover, phosphor elements in a computer monitor typically have a much lower
phosphor persistence than those in a television, thus enabling more frames to be displayed
by a monitor each second. For example, many known types of computer monitors can
draw sixty full frames each second while a television can only draw sixty half-frames each
second. Accordingly, use of a television signal for display by a computer monitor typically
does not produce the quality that a television signal produces on a television since half
frames fade too rapidly on a computer monitor.

SUMMARY OF THE INVENTION

In accordance with one aspect of the invention, an apparatus and method for
displaying a television signal on a computer monitor first receives a selected first field data
block of the television signal for display by the monitor. The television signal preferably
includes a stream of first field data blocks and second field data blocks that are intended
for display by respective first and second sets of lines on the computer monitor. After
receipt of the first field data block, an immediately preceding second field data block is
faded to produce a faded second block. The faded second block then is displayed on the
second set of lines of the monitor, and the first field data block is displayed on the first set
of lines of the monitor.

In accordance with another aspect of the invention, the first field data block has an
immediately following second field data block that is displayed on the second set of lines
after the faded second block is displayed by such lines. The first field data block also may
be faded to produce a faded first data block that is displayed on the first set of lines after
the first field data block is displayed by such lines. The faded first data block preferably is
displayed at the same time as the immediately following second field data block.

In preferred embodiments, the first field data blocks include even field line data
and the second field blocks include odd field line data. The first set of lines thus are even
lines and the second set of lines thus are odd lines. In other embodiments, the first field
data blocks include odd field line data and the second field blocks include even field line
data. The first set of lines thus are odd lines and the second set of lines thus are even lines.

In yet other embodiments of the invention, the television signal is in a NTSC (National Television Standards Committee) format or in a PAL (phase alternating line)
format. In some embodiments, the immediately preceding data block is faded by first
retrieving such data block from a front buffer in a double buffer frame buffer, and then
applying alpha blending to such data block to produce the faded second block. Once
produced, the faded block is copied into a back buffer of the frame buffer.

In accordance with another aspect of the invention, and apparatus and method of
processing a television signal for simulating a television image on a computer monitor
selectively fades data blocks. The television signal includes a stream of alternating first
and second data blocks. More particularly, a first data block and second data block are
received at an input. The first data block immediately precedes the second data block in
the television signal. The first data block then is faded to produce a faded first data block.
The faded first data block then is combined with the second data block to produce a frame.
The frame then is forwarded to the computer monitor.

Alternative embodiments of the invention are implemented as a computer program
product having a computer usable medium with computer readable program code thereon.
The computer readable code may be read and utilized by the computer system in
accordance with conventional processes.
BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and advantages of the invention will be
appreciated more fully from the following further description thereof with reference to the
accompanying drawings wherein:

Figure 1 schematically shows a portion of an exemplary computer system on which
preferred embodiments of the invention may be implemented.

Figure 2 shows a preferred graphics accelerator that may be utilized in accord with
preferred embodiments of the invention.

Figure 3 shows a preferred process for displaying a television signal on a computer
display device.

Figure 4 schematically shows the a preferred embodiment of the invention in which
a resolver shown in figure 2 is configured to execute the process shown in figure 3.

DESCRIPTION OF PREFERRED EMBODIMENTS

Figure 1 shows a portion of an exemplary computer system 100 on which a
preferred apparatus and method for displaying a television signal (i.e., a video signal) may
be implemented. More particularly, the computer system 100 includes a video input
device 102 for receiving a video signal, a host processor 104 (i.e., a central processing
unit) for executing application level programs and system functions, a graphics accelerator
106 for processing the video signal in accord with preferred embodiments of the invention
(see figure 3), and a bus coupling all of the other noted elements of the system 100. A
display device 108 is coupled to the graphics accelerator 106 for displaying the video
signal. The graphics accelerator 106 preferably utilizes any well known graphics
processing application program interface such as, for example, the OPENGL™ application
program interface (available from Silicon Graphics, Inc. of Mountain View, California) to
display the video signal and other graphical items.

The video signal may be any known video format such as, for example, those
defined by the National Television Standards Committee ("NTSC format"), or the Phase
Alternating Line format ("PAL format"). Of course, preferred embodiments are not
limited by those formats and may be applied to other interlaced video formats. As known
by those skilled in the art, such video signals typically include a data stream having a sequential series of alternating data blocks. Specifically, every other data block is an identical type of data block. For example, the data blocks in the data stream may include alternating odd line frame data and even line frame data. Accordingly, each even line data block has an immediately preceding and immediately succeeding odd line frame data block. In a similar manner, each odd line data block has an immediately preceding and immediately succeeding even line frame data block. A given data block described herein is considered to be immediately preceding or succeeding another given data block when no other data blocks are between such given data blocks.

Figure 2 shows several elements of the graphics accelerator 106 shown in figure 1. In preferred embodiments, the graphics accelerator 106 includes a double buffered frame buffer 200 (i.e., having a back buffer 200A and a front buffer 200B, figure 4) for displaying the video signal in accord with the OPENGL™ interface. Among other things, the graphics accelerator 106 also preferably includes a geometry accelerator 202 for performing geometry operations that commonly are executed in graphics processing, a rasterizer 204 for rasterizing pixels on the display device 108, and a resolver 206 for storing data in the frame buffer 200 and transmitting data from the frame buffer 200 to the display device 108. The graphics accelerator 106 preferably is adapted to process both two dimensional and three dimensional graphical data.

In preferred embodiments, graphics processing is executed by a plurality of processors (e.g., rasterizers, geometry accelerators, etc . . .) that together comprise the graphics accelerator 106. For additional information relating to preferred embodiments of the graphics accelerator 106, see, for example, copending patent application entitled “MULTI-PROCESSOR GRAPHICS ACCELERATOR”, filed on even date herewith and naming Steven J. Heinrich, Stewart G. Carlton, Mark A. Mosley, Matthew E. Buckelew, Clifford A. Whitmore, Dale L. Kirkland, and James L. Deming as inventors, the disclosure of which is incorporated herein, in its entirety, by reference. For additional information relating to preferred embodiments of the graphics accelerator 106, see, for example, “WIDE INSTRUCTION WORD GRAPHICS PROCESSOR,” filed on even date
herewith and naming Vernon Brethour, Dale Kirkland, William Lazenby, and Gary Shelton as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.

Figure 3 shows a preferred process for displaying a television signal on the computer display device 108. The process is described in terms of a video signal having even and odd half-frames. As is known in the art, an even half-frame includes each of the even lines in a frame, while an odd half-frame includes each of the odd lines in a frame. The NTSC format, for example, defines a composite signal with a refresh rate of sixty half-frames per second (i.e., thirty odd half-frames and thirty even half-frames).

The process begins at step 300 in which the system 100 receives an input video signal having alternating odd and even half-frames. In accord with conventional processes, the first half-frame is processed by the graphics accelerator 106, stored in the back buffer 200A, and then swapped to the front buffer 200B for display on the display device 108 (step 302). The process continues to step 304 in which the half-frame in the front buffer 200B (i.e., the data representing such half-frame) is faded by means of conventional alpha fading processes.

To that end, the resolver 206 preferably includes a multiplier (figure 4, discussed below) that fades a given half-frame by applying an alpha fading value, as defined by OPENGL™, to the given half-frame. This fading process produces a faded half-frame. In preferred embodiments, the faded half-frame is faded by a percentage that is comparable to the amount of fading that occurs between half-frames on a conventional television. More particularly, the approximate decay of a phosphor element in a television is modeled to determine the alpha value. To date, no experimental alpha values representing this decay have been determined. It is expected that alpha values of between about 0.2 and 0.8 should suffice. In preferred embodiments, the alpha fade value is configurable by a programmer or user of the graphics accelerator 106. For example, the alpha value may range from zero to one, where a value of zero completely fades the given half frame (i.e., it causes the given half frame to be transparent), and a value of one does not fade the given half frame at all. Preferred implementations divide this alpha value range into 256 different values for additional granularity.
As it is produced, the faded half frame is written to the back buffer 200A (step 306). Once the complete faded half frame is in the back buffer 200A, the process then continues to step 308 in which the next succeeding half-frame in the video signal also is stored in the back buffer 200A (the “unfaded half-frame”). Since the faded half-frame and unfaded half-frame are complimentary frames (i.e., the unfaded half-frame has odd lines only while the faded half-frame has even lines only, or the unfaded half-frame has even lines only while the faded half-frame has odd lines only), each of the lines of the display device 108 can be utilized upon a subsequent buffer swap. In some embodiments, the faded half frame and unfaded half frame are written to the back buffer 200A substantially simultaneously, while in other embodiments, they are serially written to the back buffer 200A.

The data in the back buffer 200A (i.e., the faded and unfaded half frames) then is moved to the front buffer 200B in step 310, thus causing the faded half-frame and unfaded half-frame to be displayed simultaneously on the display device 108. This data transfer may be executed by a conventional buffer swap. It then is determined at step 312 if the end of the video signal has been reached. If the end of the signal has been reached, then the process ends. If the video signal has additional half-frames, however, then the process loops back to step 304 in which the unfaded half-frame in the front buffer 200B is faded. As can be deduced, the process continues by fading the unfaded half-frame to produce a new faded half-frame, and then displaying that new faded half-frame with the next succeeding half-frame in the video signal.

In preferred embodiments, the process shown in figure 3 is implemented substantially entirely in hardware. For example, the resolver 206 may be configured (i.e., “hardwired”) to execute the display process. In other embodiments, the process may be implemented in both hardware and software.

Figure 4 schematically shows the a preferred embodiment of the invention in which the resolver 206 is configured to execute the process shown in figure 3. Specifically, the resolver 206 includes an input 400 for receiving data from the rasterizer 204, and alpha multiplier 402 for executing the fade operations of step 304 (above), and an output 404 to the back buffer 200A of the frame buffer 200. The alpha multiplier 402 has an input 406...
coupled with the front buffer 200B of the frame buffer 200 for receiving frame data from
the front buffer 200B, and an output 408 coupled to the resolver output 404. The resolver
output 404 correspondingly is coupled with the back buffer 200A to forward the faded half
frame to the back buffer 200A.

Accordingly, in conformance with figure 3, new frame data is written directly to
the back buffer 200A, while frame data in the front buffer 200B is faded by the alpha
multiplier 402 prior to being written to the back buffer 200A. As noted above, the
graphics accelerator 106 preferably includes a plurality of parallel geometry accelerators
202, rasterizers 204, and resolvers 206 that process data on a pixel by pixel basis. Details
of this parallel configuration are disclosed in the above noted patent applications.

Alternative embodiments of the invention may be implemented as a computer
program product for use with a computer system. Such implementation may include a
series of computer instructions fixed either on a tangible medium, such as a computer
readable media (e.g., a diskette, CD-ROM, ROM, or fixed disk), or transmittable to a
computer system via a modem or other interface device, such as a communications adapter
connected to a network over a medium. The medium may be either a tangible medium
(e.g., optical or analog communications lines) or a medium implemented with wireless
techniques (e.g., microwave, infrared or other transmission techniques). The series of
computer instructions embodies all or part of the functionality previously described herein
with respect to the system. Those skilled in the art should appreciate that such computer
instructions can be written in a number of programming languages for use with many
computer architectures or operating systems. Furthermore, such instructions may be stored
in any memory device, such as semiconductor, magnetic, optical or other memory devices,
and may be transmitted using any communications technology, such as optical, infrared,
microwave, or other transmission technologies. It is expected that such a computer
program product may be distributed as a removable media with accompanying printed or
electronic documentation (e.g., shrink wrapped software), preloaded with a computer
system (e.g., on system ROM or fixed disk), or distributed from a server or electronic
bulletin board over the network (e.g., the Internet or World Wide Web).

Although various exemplary embodiments of the invention have been disclosed, it

SUBSTITUTE SHEET (RULE 26)
should be apparent to those skilled in the art that various changes and modifications can be made which will achieve some of the advantages of the invention without departing from the true scope of the invention. These and other obvious modifications are intended to be covered by the appended claims.
We claim:

1. A method of processing a television signal for simulating a television image on a computer monitor, the television signal being a stream of alternating first and second data blocks, the method comprising:
 receiving a first data block and a second data block of the television signal, the first data block immediately preceding the second data block in the television signal;
 fading the first data block to produce a faded first data block;
 combining the first faded data block with the second data block to produce a frame;
 and
 forwarding the frame to the computer monitor.

2. The method as defined by claim 1 wherein the first data block comprises even field line data and the second data block comprises odd field line data.

3. The method as defined by claim 1 wherein the first data block is faded by receiving a fade value, and applying the fade value to the first data block to produce the faded first data block.

4. The method as defined by claim 1 wherein the first data block is received in a back buffer from a front buffer, the back buffer and front buffer being within a double buffered frame buffer.

5. The method as defined by claim 4 wherein the frame is within the back buffer, the method further comprising:
 executing a buffer swap after the frame is within the back buffer.

6. An apparatus for processing a television signal for simulating a television image on
a computer monitor, the television signal being a stream of alternating first and second data blocks, the method comprising:

an input that receives a first data block and a second data block of the television signal, the first data block immediately preceding the second data block in the television signal;

a fading device operatively coupled with the input, the fading device fading the first data block to produce a faded first data block;

a block combiner operatively coupled with the fading device, the block combiner combining the first faded data block with the second data block to produce a frame; and

an output operatively coupled with the block combiner, the output forwarding the frame to the computer monitor.

7. The apparatus as defined by claim 1 wherein the first data block comprises even field line data and the second data block comprises odd field line data.

8. The apparatus as defined by claim 1 wherein the fading device includes an input for receiving a fade value, and a fade module that applies the fade value to the first data block to produce the faded first data block.

9. The apparatus as defined by claim 1 wherein the input comprises a back buffer that receives the first data block from a front buffer, the back buffer and front buffer being within a double buffered frame buffer.

10. The apparatus as defined by claim 4 wherein the frame is within the back buffer, the apparatus further comprising:

means for executing a buffer swap after the frame is within the back buffer.

11. A computer program product for use on a computer system for processing a television signal for simulating a television image on a computer monitor, the
television signal being a stream of alternating first and second data blocks, the
computer program product comprising a computer usable medium having computer
readable program code thereon, the computer readable program code comprising:
program code for receiving a first data block and a second data block of the
television signal, the first data block immediately preceding the second data block in the
television signal;
program code for fading the first data block to produce a faded first data block;
program code for combining the first faded data block with the second data block
to produce a frame; and
program code for forwarding the frame to the computer monitor.

12. The computer program product as defined by claim 1 wherein the first data block
comprises even field line data and the second data block comprises odd field line
data.

13. The computer program product as defined by claim 1 wherein the program code for
fading comprises program code for receiving a fade value, and program code for
applying the fade value to the first data block to produce the faded first data block.

14. The computer program product as defined by claim 1 wherein the first data block is
received in a back buffer from a front buffer, the back buffer and front buffer being
within a double buffered frame buffer.

15. The computer program product as defined by claim 4 wherein the frame is within
the back buffer, the computer program product further comprising:
program code for executing a buffer swap after the frame is within the back buffer.

16. A method of displaying a television signal on a computer monitor, the computer
monitor having a first set of lines and a second set of lines, the television signal
being a stream of first field data blocks and second field data blocks, the method
comprising:
A. receiving a selected first field data block of the television signal, the first
field data block having an immediately preceding second field data block;
B. fading the immediately preceding second field data block to produce a
faded second block;
C. displaying the faded second block on the second set of lines on the monitor;
and
D. displaying the selected first field data block on the first set of lines on the
monitor.

17. The method as defined by claim 16 wherein the first field data block has an
immediately following second field data block, the method further comprising:
E. fading the first field data block to produce a faded first data block;
F. after completing step D, displaying the faded first data block on the first set
of lines on the monitor; and
G. after completing step C, displaying the immediately following second field
data block on the second set of lines on the monitor.

18. The method as defined by claim 17 wherein steps F and G are performed at
substantially the same time.

19. The method as defined by claim 16 wherein the first field data blocks are even field
line data and the second field data blocks are odd field line data.

20. The method as defined by claim 19 wherein the first set of lines are even lines and
the second set of lines are odd lines.

21. The method as defined by claim 16 wherein the first field data blocks are odd field
line data and the second field data blocks are even field line data.
22. The method as defined by claim 21 wherein the first set of lines are odd lines and the second set of lines are even lines.

23. The method as defined by claim 16 wherein the television signal is in the NTSC format.

24. The method as defined by claim 16 wherein the television signal is in the PAL format.

25. The method as defined by claim 16 wherein step B comprises the step of:
 B1. retrieving the immediately preceding second field data block from a front buffer in a double buffer frame buffer;
 B2. applying alpha blending to the immediately preceding second field data block to produce the faded second block; and
 B3. copying the faded second block into a back buffer of the frame buffer.

26. An apparatus for displaying a television signal on a computer monitor, the computer monitor having a first set of lines and a second set of lines, the television signal being a stream of first field data blocks and second field data blocks, the apparatus comprising:
 a receiver for receiving a selected first field data block in the television signal, the first field data block having an immediately preceding second field data block;
 a fading device that fades the immediately preceding second field data block to produce a faded second block;
 an output that forwards both the faded second block and selected first field data block to the monitor, the faded second block being displayed on the second set of lines on the monitor,
 the selected first field data block being displayed on the first set of lines on the monitor.
27. The apparatus as defined by claim 26 wherein the first field data blocks are even field line data and the second field data blocks are odd field line data.

28. The apparatus as defined by claim 27 wherein the first set of lines are even lines and the second set of lines are odd lines.

29. The apparatus as defined by claim 26 wherein the first field data blocks are odd field line data and the second field data blocks are even field line data.

30. The apparatus as defined by claim 29 wherein the first set of lines are odd lines and the second set of lines are even lines.

31. The apparatus as defined by claim 26 wherein the television signal is in the NTSC format.

32. The apparatus as defined by claim 26 wherein the television signal is in the PAL format.

33. The apparatus as defined by claim 26 wherein the fading device comprises:

 means for retrieving the immediately preceding second field data block from a front buffer in a double buffer frame buffer;

 means for applying alpha blending to the immediately preceding second field data block to produce the faded second block; and

 means for copying the faded second block into a back buffer of the frame buffer.

34. A computer program product for use on a computer system for displaying a television signal on a computer monitor, the computer monitor having a first set of lines and a second set of lines, the television signal being a stream of first field data blocks and second field data blocks, the computer program product comprising a computer usable medium having computer readable program code thereon, the
computer readable program code comprising:

program code for receiving a selected first field data block in the television signal,

the first field data block having an immediately preceding second field data block;

program code for fading the immediately preceding second field data block to

produce a faded second block;

program code for displaying the faded second block on the second set of lines on

the monitor; and

program code for displaying the selected first field data block on the first set of

lines on the monitor.

35. The computer program product as defined by claim 34 wherein the television signal

includes a final field data block that does not have an immediately following data

block, the computer program product further comprising:

program code for determining if the selected data block is the final field data block;

and

program code for executing the program code for receiving, fading, displaying the

faded second block, and displaying the selected first field data block for each successive

data block in the television signal that is determined not to be the final field data block.

36. The computer program product as defined by claim 34 wherein the first field data

blocks are even field line data and the second field data blocks are odd field line

data.

37. The computer program product as defined by claim 36 wherein the first set of lines

are even lines and the second set of lines are odd lines.

38. The computer program product as defined by claim 34 wherein the first field data

blocks are odd field line data and the second field data blocks are even field line

data.
39. The computer program product as defined by claim 38 wherein the first set of lines are odd lines and the second set of lines are even lines.

40. The computer program product as defined by claim 34 wherein the television signal is in the NTSC format.

41. The computer program product as defined by claim 34 wherein the television signal is in the PAL format.

42. The computer program product as defined by claim 34 wherein the program code for fading comprises:
 program code for retrieving the immediately preceding second field data block from a front buffer in a double buffer frame buffer;
 program code for applying alpha blending to the immediately preceding second field data block to produce the faded second block; and
 program code for copying the faded second block into a back buffer of the frame buffer.
BEGIN

RECEIVE INPUT VIDEO SIGNAL

DISPLAY FIRST HALF FRAME

FADE HALF FRAME

RETURN FADED HALF FRAME TO THE BACK BUFFER

STORE NEXT HALF FRAME IN BACK BUFFER

SWAP BUFFERS

END OF SIGNAL?

YES

END

NO

FIG. 3

SUBSTITUTE SHEET (RULE 26)
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No

PCT/US 99/16147

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G09G1/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G09G H04N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,A</td>
<td>US 5 914 711 A (FARWELL RANDALL S ET AL) 22 June 1999 (1999-06-22) abstract column 2, line 55 -column 3, line 60 column 4, line 46 -column 9, line 14 figures 1-5</td>
<td>1-42</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation box C.

X Patent family members are listed in annex.

<table>
<thead>
<tr>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>"E" earlier document but published on or after the international filing date</td>
</tr>
<tr>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>"C" document referring to an oral disclosure, use, exhibition or other means</td>
</tr>
<tr>
<td>"P" document published prior to the international filing date but later than the priority date claimed</td>
</tr>
</tbody>
</table>

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle of the invention underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

Date of the actual completion of the international search

19 October 1999

Date of mailing of the international search report

26/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Cochonneau, O

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EP 0 840 279 A (COMPAQ COMPUTER CORP)</td>
<td>1-42</td>
</tr>
<tr>
<td></td>
<td>6 May 1998 (1998-05-06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 13 -column 3, line 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 43 -column 6, line 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1,3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0 566 229 A (NVIEW CORP)</td>
<td>1-42</td>
</tr>
<tr>
<td></td>
<td>20 October 1993 (1993-10-20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 23 -column 4, line 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 49 -column 9, line 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 9,10</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5914711 A</td>
<td>22-06-1999</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6113236 A</td>
</tr>
</tbody>
</table>