

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

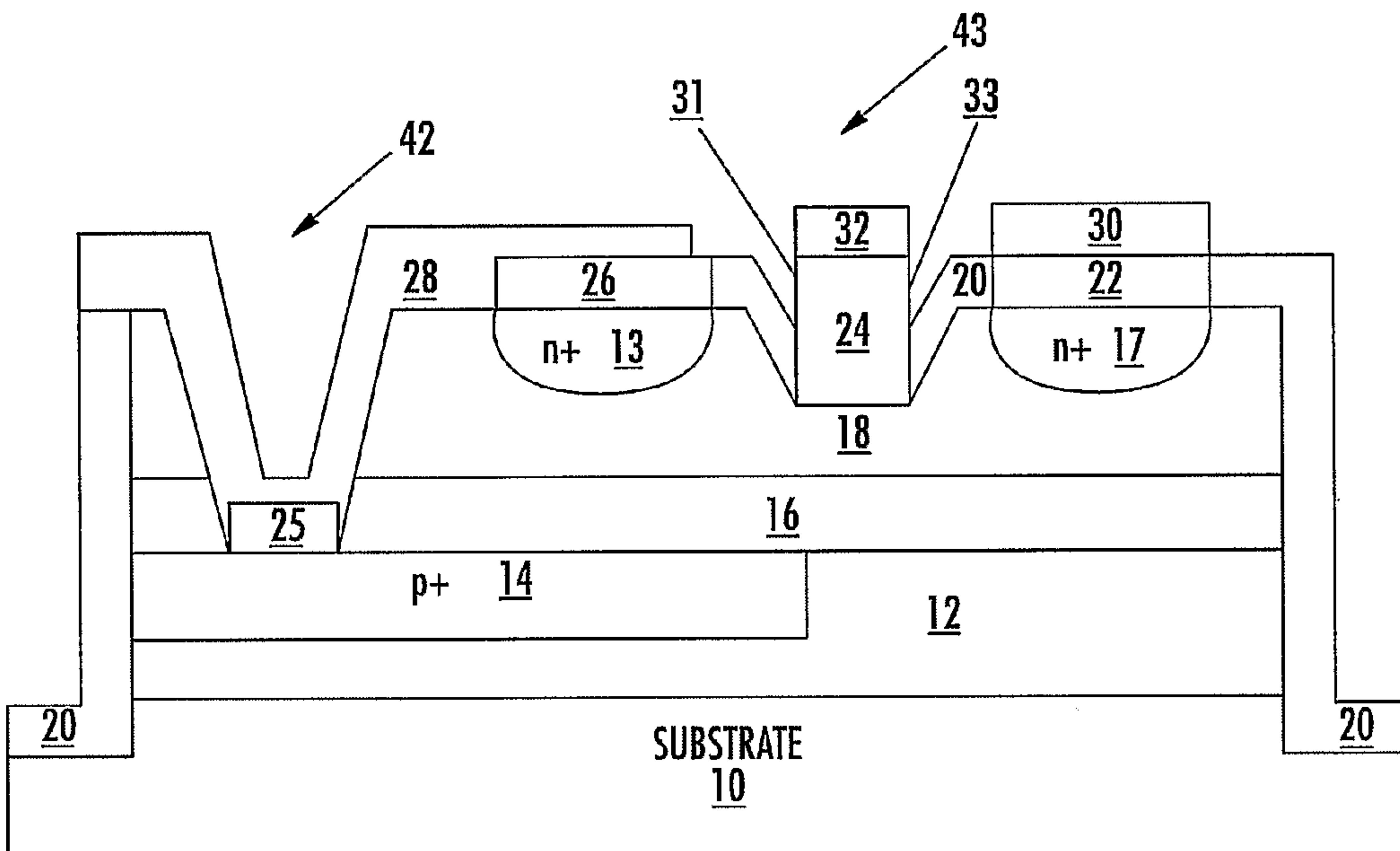
CA 2502485 A1 2004/06/10

(21) 2 502 485

(12) DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

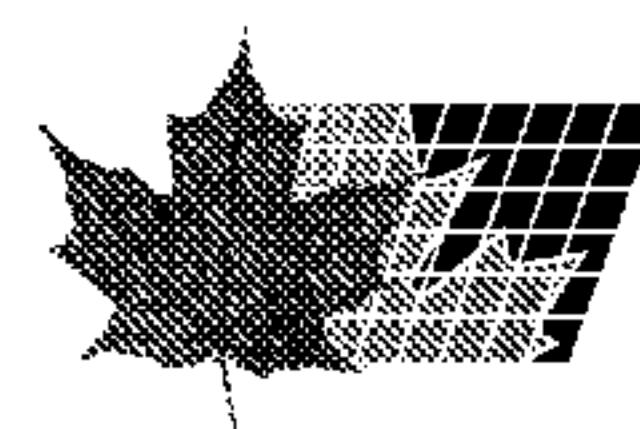
(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2003/10/02
(87) Date publication PCT/PCT Publication Date: 2004/06/10
(85) Entrée phase nationale/National Entry: 2005/04/14
(86) N° demande PCT/PCT Application No.: US 2003/031334
(87) N° publication PCT/PCT Publication No.: 2004/049454
(30) Priorité/Priority: 2002/11/26 (10/304,272) US


(51) Cl.Int.⁷/Int.Cl.⁷ H01L 29/812

(71) Demandeur/Applicant:
CREE, INC., US

(72) Inventeur/Inventor:
SRIRAM, SAPTHARISHI, US


(74) Agent: SIM & MCBURNEY

(54) Titre : TRANSISTORS A COUCHES DE TYPE P ENFOUIES SOUS LA REGION SOURCE ET LEURS PROCEDES
DE FABRICATION
(54) Title: TRANSISTORS HAVING BURIED P-TYPE LAYERS BENEATH THE SOURCE REGION AND METHODS OF
FABRICATING THE SAME

(57) Abrégé/Abstract:

The present invention provides a unit cell of a metal-semiconductor field-effect transistor (MESFET). The unit cell of the MESFET includes a source (13), a drain (17) and a gate (24). The gate (24) is disposed between the source (13) and the drain (17) and on an n-type conductivity channel layer (18). A p-type conductivity region (14) is provided beneath the source and has an end that extends towards the drain (17). The p-type conductivity region (14) is spaced apart from the n-type conductivity channel region (18) and is electrically coupled to the source (13).

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
10 June 2004 (10.06.2004)

PCT

(10) International Publication Number
WO 2004/049454 A1

(51) International Patent Classification⁷: **H01L 29/812**

(21) International Application Number: PCT/US2003/031334

(22) International Filing Date: 2 October 2003 (02.10.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 10/304,272 26 November 2002 (26.11.2002) US

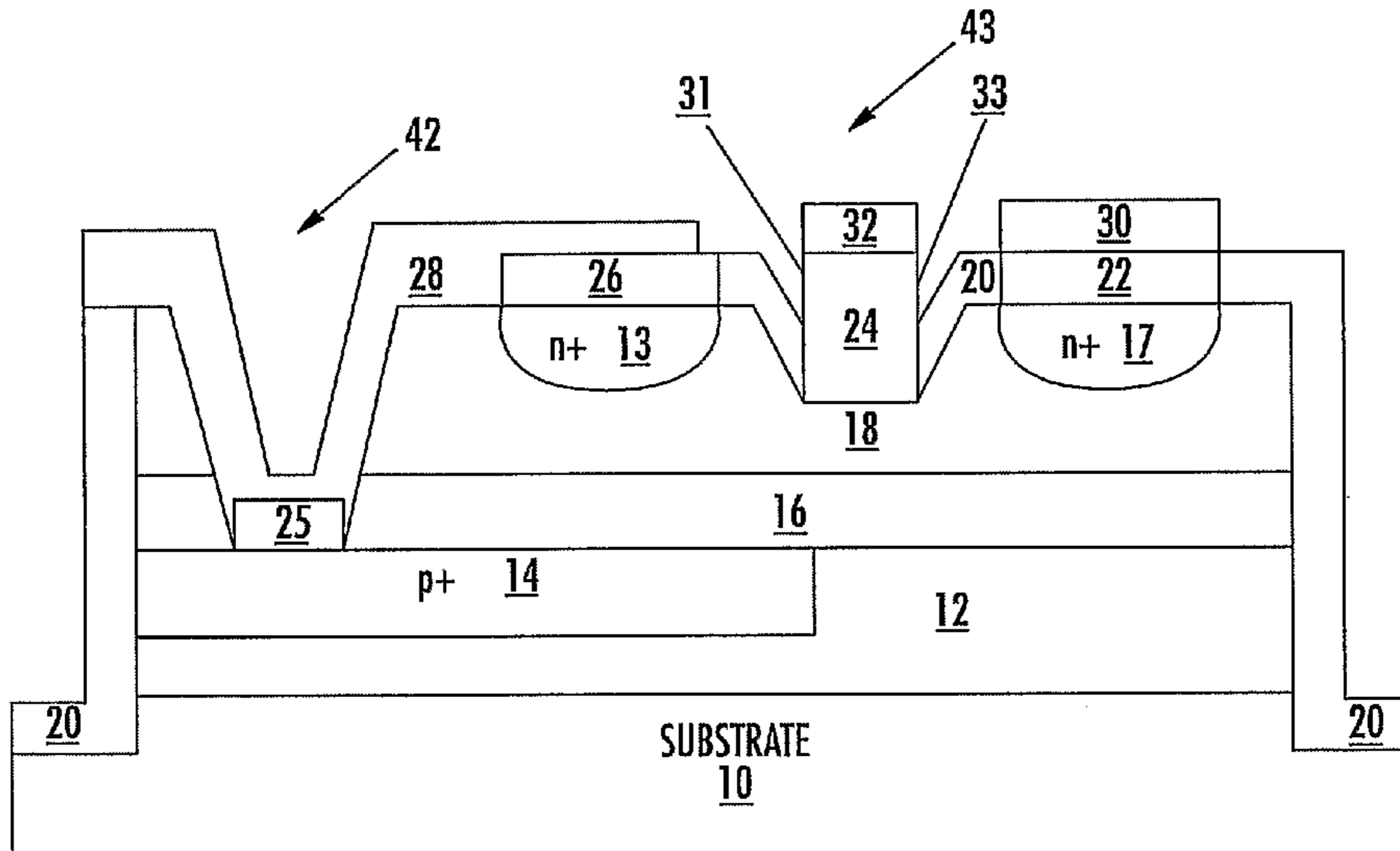
(71) Applicant (for all designated States except US): **CREE, INC.** [US/US]; 4600 Silicon Drive, Durham, NC 27703 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **SRIRAM, Sapharishi** [US/US]; 107 Timber Hitch Road, Cary, NC 27513 (US).

(74) Agent: **MYERS BIGEL SIBLEY & SAJOVEC, P.A.**; P.O. Box 37428, Raleigh, NC 27627 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TRANSISTORS HAVING BURIED P-TYPE LAYERS BENEATH THE SOURCE REGION AND METHODS OF FABRICATING THE SAME

WO 2004/049454 A1

(57) Abstract: The present invention provides a unit cell of a metal-semiconductor field-effect transistor (MESFET). The unit cell of the MESFET includes a source (13), a drain (17) and a gate (24). The gate (24) is disposed between the source (13) and the drain (17) and on an n-type conductivity channel layer (16). A p-type conductivity region (14) is provided beneath the source and has an end that extends towards the drain (17). The p-type conductivity region (14) is spaced apart from the n-type conductivity channel region (16) and is electrically coupled to the source (13).

TRANSISTORS HAVING BURIED P-TYPE LAYERS BENEATH THE SOURCE REGION AND METHODS OF FABRICATING THE SAME

Statement of Government Interest

The present invention was made, at least in part, with support from the Department of the Navy, contract number N39997-99-C-3761. The Government may have certain rights in this invention.

Field of the Invention

The present invention relates to microelectronic devices and more particularly to transistors, for example, metal-semiconductor field-effect transistors (MESFETs).

5

Background of the Invention

Electrical circuits requiring high power handling capability (>20 watts) while operating at high frequencies such as radio frequencies (500 MHz), S-band (3 GHz) and X-band (10 GHz) have in recent years become more prevalent. Because of the increase in high power, high frequency circuits there has been a corresponding 10 increase in demand for transistors that are capable of reliably operating at radio frequencies and above while still being capable of handling higher power loads. Previously, bipolar transistors and power metal-oxide semiconductor field effect transistors (MOSFETs) have been used for high power applications but the power handling capability of such devices may be limited at higher operating frequencies. 15 Junction field-effect transistors (JFETs) were commonly used for high frequency applications but the power handling capability of previously known JFETs may also be limited.

Recently, metal-semiconductor field effect transistors (MESFETs) have been developed for high frequency applications. The MESFET construction may be 20 preferable for high frequency applications because only majority carriers carry current. The MESFET design may be preferred over current MOSFET designs because the reduced gate capacitance permits faster switching times of the gate input. Therefore, although all field-effect transistors utilize only majority carriers to carry

current, the Schottky gate structure of the MESFET may make the MESFET more desirable for high frequency applications.

In addition to the type of structure, and perhaps more fundamentally, the characteristics of the semiconductor material from which a transistor is formed also affects the operating parameters. Of the characteristics that affect a transistor's operating parameters, the electron mobility, saturated electron drift velocity, electric breakdown field and thermal conductivity may have the greatest effect on a transistor's high frequency and high power characteristics.

Electron mobility is the measurement of how rapidly an electron is accelerated to its saturated velocity in the presence of an electric field. In the past, semiconductor materials which have a high electron mobility were preferred because more current could be developed with a lesser field, resulting in faster response times when a field is applied. Saturated electron drift velocity is the maximum velocity that an electron can obtain in the semiconductor material. Materials with higher saturated electron drift velocities are preferred for high frequency applications because the higher velocity translates to shorter times from source to drain.

Electric breakdown field is the field strength at which breakdown of the Schottky junction and the current through the gate of the device suddenly increases. A high electric breakdown field material is preferred for high power, high frequency transistors because larger electric fields generally can be supported by a given dimension of material. Larger electric fields allow for faster transients as the electrons can be accelerated more quickly by larger electric fields than by smaller.

Thermal conductivity is the ability of the semiconductor material to dissipate heat. In typical operations, all transistors generate heat. In turn, high power and high frequency transistors usually generate larger amounts of heat than small signal transistors. As the temperature of the semiconductor material increases, the junction leakage currents generally increase and the current through the field effect transistor generally decreases due to a decrease in carrier mobility with an increase in temperature. Therefore, if the heat is dissipated from the semiconductor, the material will remain at a lower temperature and be capable of carrying larger currents with lower leakage currents.

In the past, high frequency MESFETs have been manufactured of n-type III-V compounds, such as gallium arsenide (GaAs) because of their high electron mobilities. Although these devices provided increased operating frequencies and

moderately increased power handling capability, the relatively low breakdown voltage and the lower thermal conductivity of these materials have limited their usefulness in high power applications.

Silicon carbide (SiC) has been known for many years to have excellent physical and electronic properties which should theoretically allow production of electronic devices that can operate at higher temperatures, higher power and higher frequency than devices produced from silicon (Si) or GaAs. The high electric breakdown field of about 4×10^6 V/cm, high saturated electron drift velocity of about 2.0×10^7 cm/sec and high thermal conductivity of about 4.9 W/cm-°K indicate that SiC would be suitable for high frequency, high power applications. Unfortunately, difficulty in manufacturing has limited the usefulness of SiC for high power and high frequency applications.

MESFETs have been produced having channel layers of silicon carbide have been produced on silicon substrates (See, e.g., United States Patent Nos. 4,762,806 to Suzuki *et al.* and 4,757,028 to Kondoh *et al.*). Because the semiconductor layers of a MESFET are epitaxial, the layer upon which each epitaxial layer is grown affects the characteristics of the device. Thus, a SiC epitaxial layer grown on a Si substrate generally has different electrical and thermal characteristics than a SiC epitaxial layer grown on a different substrate. Although the SiC on Si substrate devices described in U.S. Pat. Nos. 4,762,806 and 4,757,028 may have exhibited improved thermal characteristics, the use of a Si substrate generally limits the ability of such devices to dissipate heat. Furthermore, the growth of SiC on Si generally results in defects in the epitaxial layers that result in high leakage current when the device is in operation.

Other MESFETs have been developed using SiC substrates. U.S. patent application Ser. No. 07/540,488 filed Jun. 19, 1990 and now abandoned, the disclosure of which is incorporated entirely herein by reference, describes a SiC MESFET having epitaxial layers of SiC grown on a SiC substrate. These devices exhibited improved thermal characteristics over previous devices because of the improved crystal quality of the epitaxial layers grown on SiC substrates. However, to obtain high power and high frequency it may be necessary to overcome the limitations of SiC's lower electron mobility.

Similarly, commonly assigned United States Patent No. 5,270,554 to Palmour describes a SiC MESFET having source and drain contacts formed on n^+ regions of SiC and an optional lightly doped epitaxial layer between the substrate and

the n-type layer in which the channel is formed. United States Patent No. 5,925,895 to Sriram *et al.* also describes a SiC MESFET and a structure that is described as overcoming "surface effects" which may reduce the performance of the MESFET for high frequency operation. Sriram *et al.* also describes SiC MESFETs which use n⁺ source and drain contact regions as well as a p-type buffer layer.

Furthermore, conventional SiC FET structures may provide the constant characteristics during the entire operating range of the FET, *i.e.* from fully open channel to near pinch-off voltage, by using a very thin, highly doped channel (a delta doped channel) offset from the gate by a lightly doped region of similar conductivity type. Delta doped channels are discussed in detail in an article by Yokogawa *et al.* entitled *Electronic Properties of Nitrogen Delta-Doped Silicon Carbide Layers*, MRS Fall Symposium, 2000 and an article by Konstantinov *et al.* entitled *Investigation of Lo-Hi-Lo and Delta Doped Silicon Carbide Structure*, MRS Fall Symposium, 2000. However, further improvements may be made in SiC MESFETs.

For example, it may be important that SiC MESFETs have high breakdown voltages and relatively low leakage currents if they are used in high efficiency, high power, high linearity radio frequency (RF) applications. In an attempt to provide high breakdown voltages, devices have been provided having highly compensated substrates, such as Vanadium doped semi-insulating SiC. These devices typically provide adequate breakdown voltages as well as low leakage currents, but may sacrifice device performance due to unwanted trapping effects in the substrate. Furthermore, devices having highly doped p-type layers under the channel of the FET have been provided and have been successful in providing good electron confinement and low leakage currents. However, these devices generally contain excessive parasitics that may degrade the RF performance of the device. Accordingly, further improvements may be made with respect to existing SiC FET devices such that they may provide improved breakdown voltages without sacrificing other performance characteristics of the device.

30

Summary of the Invention

Embodiments of the present invention provide a unit cell of a metal-semiconductor field-effect transistor (MESFET). The unit cell of the MESFET includes a MESFET having a source, a drain and a gate. The gate is disposed between the source and the drain and on an n-type conductivity channel layer. A p-

type conductivity region is provided beneath the source and has an end that extends towards the drain. The p-type conductivity region is spaced apart from the n-type conductivity channel layer and is electrically coupled to the source.

In some embodiments of the present invention, the gate may extend into the n-type conductivity channel layer. The gate may have a first sidewall and a second sidewall. The first sidewall of the gate may be associated with the source side of the gate and the second sidewall may be associated with the drain side of the gate. The p-type conductivity region may extend from beneath the source to the first sidewall of the gate without extending past the first sidewall of the gate, from beneath the source to the second sidewall of the gate without extending past the second sidewall of the gate or from beneath the source to between the first and second sidewalls of the gate. In some embodiments, the p-type conductivity region extends from beneath the source to within about 0.1 to about 0.3 μm of the first sidewall on the source side of the first sidewall. In certain embodiments, the p-type conductivity region extends from beneath a source contact and/or a source implant region without extending to beneath a drain contact. The p-type conductivity region may also extend from beneath a source contact and/or a source implant region without extending to beneath a drain implant region.

In further embodiments of the present invention, the MESFET is a silicon carbide (SiC) MESFET having a SiC substrate. The p-type conductivity region may be disposed on the SiC substrate. In some embodiments, the p-type conductivity region is in the SiC substrate. The n-type conductivity channel layer may include n-type conductivity SiC and the p-type conductivity region may include p-type conductivity SiC.

In still further embodiments of the present invention, the p-type conductivity region may have a carrier concentration of from about $1.0 \times 10^{18} \text{ cm}^{-3}$ to about $1.0 \times 10^{20} \text{ cm}^{-3}$. The n-type conductivity channel layer may include a first n-type conductivity channel layer and a second n-type conductivity channel layer. The first n-type conductivity channel layer may have a carrier concentration of about $3 \times 10^{17} \text{ cm}^{-3}$ and the second n-type conductivity channel layer may have a carrier concentration of about $1 \times 10^{16} \text{ cm}^{-3}$. The first n-type conductivity channel layer may have a thickness of about $0.28 \mu\text{m}$ and the second n-type conductivity channel layer may have a thickness of about 900 \AA . In certain embodiments of the present invention, the n-type conductivity channel layer includes first, second and third n-type

conductivity channel layers. The first, second and third n-type conductivity channel layers may have respective first, second and third carrier concentrations.

In some embodiments of the present invention, the MESFET may further include a buffer layer on a SiC substrate. The p-type conductivity region may be formed in the buffer layer. The p-type layer may also be formed in the SiC substrate. The p-type layer may extend about 0.4 μm into the buffer layer or the SiC substrate.

In further embodiments of the present invention, the buffer layer may have a thickness of about 2 μm . The buffer layer may include p-type conductivity SiC and may have a carrier concentration of from about $0.5 \times 10^{15} \text{ cm}^{-3}$ to about $3 \times 10^{15} \text{ cm}^{-3}$.

10 The buffer layer may also include n-type conductivity SiC and have a carrier concentration of less than about $5 \times 10^{14} \text{ cm}^{-3}$. Finally, the buffer layer may include undoped SiC.

15 In still further embodiments of the present invention, the MESFET may be a gallium arsenide (GaAs) MESFET or a Gallium Nitride (GaN) MESFET. The MESFET may have a substrate that may be a GaAs or a GaN substrate. The p-type conductivity region may be disposed on the GaAs or GaN substrate. The n-type conductivity channel layer may include n-type conductivity gallium arsenide (GaAs) or GaN and the p-type conductivity region may include p-type conductivity GaAs or GaN.

20 In some embodiments of the present invention, the MESFET may further include first and second ohmic contacts on the n-type channel layer that respectively define the source and the drain. A first recess may be provided between the source and the drain that exposes the n-type channel layer. The gate may be disposed in the first recess and extend into the n-type channel layer. A contact via hole may be provided adjacent the source that exposes the p-type conductivity region and a third ohmic contact may be provided on the exposed p-type conductivity region.

25 In further embodiments of the present invention, a first overlayer may be provided on the second ohmic contact of the drain and a second overlayer may be provided on the first and third ohmic contacts of the source and the exposed portion of the p-type conductivity region, respectively. The second overlayer may electrically couple the first ohmic contact of the source and the third ohmic contact of the exposed portion of the p-type conductivity region.

30 In still further embodiments of the present invention, the MESFET may

further include implanted n-type conductivity regions of SiC in the n-type conductivity channel layer beneath the source and the drain. The implanted n-type conductivity regions of SiC may have carrier concentrations greater than a carrier concentration of the n-type conductivity channel layer. The first and second ohmic contacts are disposed on the n-type conductivity regions of SiC. The implanted n-type conductivity regions of SiC may have carrier concentrations of about $1 \times 10^{19} \text{ cm}^{-3}$. The first, second and third ohmic contacts may include nickel contacts.

In certain embodiments of the present invention, a double recessed structure is provided for the gate. A first recess may be provided between the source and the drain that exposes the n-type channel layer. The first recess may have first and second sidewalls. A second recess may be disposed between the first and second sidewalls of the first recess. The gate may be disposed in the second recess and extend into the n-type conductivity channel layer.

In some embodiments of the present invention, a second buffer layer may be provided between the p-type conductivity region and the n-type conductivity channel layer. The second buffer layer may include p-type SiC and may have a carrier concentration of from about $1 \times 10^{16} \text{ cm}^{-3}$ to about $5 \times 10^{16} \text{ cm}^{-3}$, but is typically about $1.5 \times 10^{16} \text{ cm}^{-3}$. The buffer layer may have a thickness of from about 0.5 μm to about 1.0 μm .

In further embodiments of the present invention, the n-type conductivity channel layer and the second buffer layer may form a mesa having sidewalls that define the periphery of the transistor and that extend through the n-type channel layer and the second buffer layer. The sidewalls of the mesa may further extend through the p-type conductivity region into the substrate. An oxide layer may be formed on the n-type conductivity channel layer.

In still further embodiments of the present invention, the gate includes a first gate layer of chromium on the n-type conductivity channel layer. The gate may further include an overlayer on the first gate layer. The overlayer may include platinum and gold. Alternatively, the gate may include a first gate layer of nickel on the n-type conductivity channel layer. The gate may further include an overlayer on the first gate layer. The overlayer may include gold. The gate may also be disposed in a double recessed structure having a floor that extends about 600 \AA into the n-type conductivity channel layer. The gate may be from about 0.4 μm to about 0.7 μm long. A distance from the source to the gate may be from about 0.5 μm to about 0.7 μm . A

distance from the drain to the gate may be from about 1.5 μm to about 2 μm . In a MESFET including a plurality of unit cells, a distance from a first gate to a second gate may be from about 20 μm to about 50 μm .

In some embodiments a unit cell of a transistor is provided. The unit cell of 5 the transistor has a source, a drain and a gate. The gate of the transistor is between the source and the drain and on a first layer of semiconductor material. A p-type conductivity region is provided beneath the source and has an end that extends towards the drain. The p-type conductivity region is spaced apart from the first layer of semiconductor material and is electrically coupled to the source.

10 In further embodiments of the present invention, the gate extends into the first layer of semiconductor material. The transistor may include silicon carbide (SiC) transistors, gallium arsenide (GaAs) based transistors, aluminum gallium arsenide (AlGaAs) based transistors, gallium nitride (GaN) based transistors and/or aluminum gallium nitride (AlGaN) based transistors. As used herein, the terms GaN based, 15 AlGaN based, GaAs based or AlGaAs based refer to binary, ternary and quaternary compounds such as GaN, AlGaN and AlInGaN of the respective compounds. For example, a GaN based transistor may include GaN regions, AlGaN regions, InAlGaN regions or the like.

20 While the present invention is described above primarily with reference to MESFETs, other types of transistors as well as methods of fabricating transistors and, in particular, MESFETs are also provided.

Brief Description of the Drawings

25 **Figure 1** is a cross-sectional view of a transistor according to embodiments of the present invention;

Figures 2A through **2G** illustrate processing steps in the fabrication of transistors according to embodiments of the present invention;

Figure 3 is a cross-sectional view of a transistor according to further embodiments of the present invention;

30 **Figure 4** is a cross-sectional view of a transistor according to further embodiments of the present invention;

Figure 5 is a cross-sectional view of a transistor according to further embodiments of the present invention;

Figure 6 is a plan view of a transistor according to embodiments of the present invention;

5 **Figures 7A and 7B** are graphs illustrating the drain current-voltage characteristics of conventional MESFETS; and

Figures 8A and 8B are graphs illustrating the drain current-voltage characteristics of MESFETS according to embodiments of the present invention.

10

Detailed Description of the Invention

The present invention will now be described with reference to the **Figures 1** through **8B**, which illustrate various embodiments of the present invention. As illustrated in the Figures, the sizes of layers or regions are exaggerated for illustrative purposes and, thus, are provided to illustrate the general structures of the present 15 invention. Furthermore, various aspects of the present invention are described with reference to a layer being formed on a substrate or other layer. As will be appreciated by those of skill in the art, references to a layer being formed "on" another layer or substrate contemplates that additional layers may intervene. References to a layer being formed on another layer or substrate without an intervening layer are described 20 herein as being formed "directly on" the layer or substrate. Furthermore, relative terms such as beneath may be used herein to describe one layer or regions relationship to another layer or region as illustrated in the Figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned 25 over, layers or regions described as "beneath" other layers or regions would now be oriented "above" these other layers or regions. The term "beneath" is intended to encompass both above and beneath in this situation. Like numbers refer to like elements throughout.

It will be understood that although the terms first and second are used herein 30 to describe various regions, layers and/or sections, these regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one region, layer or section from another region, layer or section. Thus, a first region, layer or section discussed below could be termed a second region, layer

or section, and similarly, a second region, layer or section may be termed a first region, layer or section without departing from the teachings of the present invention.

Embodiments of the present invention will now be described in detail below with reference to **Figures 1** through **8B** that illustrate various embodiments of the present invention and various processes of fabricating embodiments of the present invention. A transistor, for example, a metal-semiconductor field effect transistor (MESFET), is provided having p-type conductivity regions beneath the sources of the MESFET having ends that extend towards the drains of the MESFET. As described in detail below, the presence of this p-type conductivity region, for example, p-type conductivity silicon carbide (SiC), may provide, for example, devices having improved breakdown voltages without compromising other performance characteristics of the device. Improved breakdown voltages may be provided because the presence of the p-type conductivity region may inhibit electron injection from the source, which in turn may increase breakdown voltage. Transistors according to embodiments of the present invention may be useful in, for example, high efficiency linear power amplifiers, such as power amplifiers for base stations using complex modulation schemes such as code division multiple access (CDMA) and/or Wideband CDMA (WCDMA).

Referring to **Figure 1**, transistors, for example, metal-semiconductor field effect transistors (MESFETs), according to embodiments of the present invention will now be described in detail. As seen in **Figure 1**, a substrate **10** is provided. The substrate **10** may be a single crystal bulk silicon carbide (SiC) substrate of either p-type or n-type conductivity or semi-insulating. The substrate **10** of either p-type or n-type may be very lightly doped. The substrate may be formed of silicon carbide selected from the group of 6H, 4H, 15R or 3C silicon carbide. Although the present invention is described herein with reference to a SiC substrate, the present invention should not be limited to SiC. For example, in some embodiments, the substrate **10** may also include, for example, gallium arsenide (GaAs) and/or Gallium Nitride (GaN).

An optional buffer layer **12** of, for example, p-type silicon carbide may be provided on the substrate **10**. The buffer layer **12** may be formed of p-type conductivity silicon carbide of 6H, 4H, 15R or 3C polytype. The buffer layer **12** may, for example, have a carrier concentration of from about $0.5 \times 10^{15} \text{ cm}^{-3}$ to about $3.0 \times 10^{15} \text{ cm}^{-3}$. Suitable dopants include aluminum, boron and/or gallium. The buffer

layer **12** may have a thickness of about 2.0 μm . Although the buffer layer **12** is described above as p-type silicon carbide, the invention should not be limited to this configuration. Alternatively, the buffer layer **12** may be undoped silicon carbide (*i.e.* not intentionally doped) or very low-doped n-type conductivity silicon carbide. If a 5 very low doped n-type silicon carbide is utilized for the buffer layer **12**, the carrier concentration of the buffer layer **12** is preferably less than about $5.0 \times 10^{14} \text{ cm}^{-3}$.

As further illustrated in **Figure 1**, a p^+ region **14** is provided beneath a source of the device that has an end that extends towards the drain of the device. As used herein, " p^+ " or " n^+ " refer to regions that are defined by higher carrier concentrations than are present in adjacent or other regions of the same or another layer or substrate. 10 In some embodiments of the present invention, the p^+ conductivity region **14** may extend from beneath a source contact **26** and/or from beneath an n^+ source implant region **13** without extending to beneath an n^+ drain implant region **17**. In further embodiments of the present invention, the p^+ conductivity region **14** may extend from 15 beneath the source contact **26** and/or from beneath the n^+ source implant region **13** without extending to beneath a drain contact **22**. In still further embodiments, the p^+ conductivity region **14** may further extend from beneath the source contact **26** and/or from beneath the n^+ source implant region **13** to the first sidewall of the gate **31** without extending past the first sidewall of the gate **31**, from beneath the source 20 contact **26** and/or from beneath the n^+ source implant region **13** to the second sidewall of the gate **33** without extending past the second sidewall of the gate **33** or from beneath the source contact **26** and/or from beneath the n^+ source implant region **13** to a point between the first sidewall **31** and the second sidewall **33** of the gate **24**. In 25 certain embodiments of the present invention, the p^+ conductivity region **14** may extend to a point within about 0.1 to about 0.3 μm of the first sidewall **31** of the gate **24** on the source side.

The p^+ region **14** is a region of p-type conductivity, for example, p-type conductivity silicon carbide. For the p^+ region **14**, carrier concentrations of from about $1.0 \times 10^{18} \text{ cm}^{-3}$ to about $1.0 \times 10^{20} \text{ cm}^{-3}$ may be suitable, but carrier 30 concentrations as high as possible are preferred. The carrier concentration may not be constant throughout the p^+ region **14**, but it is preferable that the carrier concentration be as high as possible at the surface of the p^+ region **14** to facilitate the formation of ohmic contacts thereon. In some embodiments of the present invention, the p^+

conductivity region **14** may be provided in the substrate **10** as illustrated in **Figure 3**. The p⁺ conductivity region **14** may, for example, extend about 0.4 μm into the buffer layer **12** or the substrate **10**. The presence of the p⁺ conductivity region **14** beneath the source region may inhibit electron injection from the source, thus, possibly 5 providing an improved breakdown voltage. Furthermore, the fact that the p⁺ conductivity region **14** does not extend to beneath the drain region may hinder the introduction of parasitics into the device and, thus, device performance may not be influenced.

The buffer layer **12** may be disposed between the substrate **10** and a second 10 buffer layer **16**. The second buffer layer **16** may be, for example, p-type silicon carbide having a carrier concentration of from about 1×10^{16} cm⁻³ to about 5×10^{16} cm⁻³, but typically about 1.5×10^{16} cm⁻³. The p-type silicon carbide buffer layer **16** may also have a thickness of from about 0.5 μm to about 1.0 μm. Although the second buffer layer **16** is described above as being of p-type conductivity silicon carbide, it will be understood that the present invention is not limited to this 15 configuration. Alternatively, for example, the second buffer layer **16** may be of n-type conductivity, for example, very lightly doped n-type conductivity SiC or undoped SiC as discussed above with respect to buffer layer **12**. In some embodiments of the present invention, the second buffer layer **16** may be provided 20 directly on the substrate **10** as illustrated in **Figure 3**.

An n-type conductivity channel layer **18** is provided on the second buffer layer **16**, as illustrated in **Figure 1**. The n-type conductivity channel layer **18** may be formed of n-type conductivity silicon carbide of 6H, 4H, 15R or 3C polytype. The n-type conductivity channel layer may include one or more layers of, for example, n-type conductivity silicon carbide having different carrier concentrations. For 25 example, the n-type conductivity channel layer **18** may include a first n-type conductivity channel layer **15** and a second n-type conductivity channel layer **19** as illustrated in **Figure 4**. Alternatively, the n-type conductivity channel layer **18** may include first, second and third layers of n-type conductivity SiC as discussed in detail 30 in commonly assigned United States Patent Application Serial No. 10/136,456 to Sriram, the disclosure of which is incorporated herein by reference as if set forth in its entirety.

As further illustrated in **Figure 1**, n^+ regions **13** and **17** are provided in the source and drain regions of the device, respectively. Regions **13** and **17** are typically of n-type conductivity silicon carbide and have carrier concentrations that are greater than the carrier concentration of the n-type conductivity channel layer **18**. For the n^+ regions **13** and **17**, carrier concentrations of about $1 \times 10^{19} \text{ cm}^{-3}$ may be suitable, but carrier concentrations as high as possible are preferred.

Ohmic contacts **26** and **22** are provided on the implanted regions **13** and **17**, respectively, and are spaced apart so as to provide the source contact **26** and the drain contact **22**. Ohmic contact **25** is provided on the p^+ conductivity region **14** to provide a p^+ contact **25**. The ohmic contacts **25**, **26** and **22** are preferably formed of nickel or other suitable metals. The p^+ conductivity region **14** is maintained at the same potential as the source by, for example, electrically coupling the p^+ ohmic contact **25** to the source contact **26**. An insulator layer **20**, such as an oxide, may be further provided on the exposed surface of the device.

Transistors according to certain embodiments of the present invention include a first recess **43** and a contact via hole **42**. The first recess **43** is provided between first and second n^+ regions **13** and **17**, *i.e.* between the source region and the drain region. The first recess **43** extends into the n-type conductivity channel layer **18** and exposes the n-type conductivity channel layer **18**. The contact via hole **42** is provided adjacent the source region **13** and exposes at least a portion of the p^+ region **14**.

Transistors according to embodiments of the present invention may include a double recessed structure containing first and second recesses as illustrated in **Figure 4**. In particular, a first recess **53** has a floor **60** that extends through the first n-type conductivity channel layer **19** to the second n-type channel layer **15**. A second recess **54** is provided between the sidewalls **61**, **62** of the first recess. A first sidewall **61** of the first recess **53** is between the source **26** and the gate **24** and a second sidewall **62** of the first recess **53** is between the drain **22** and the gate **24**. The floor of the second recess **54** extends into the second n-type conductivity channel layer **15**, for example, a distance of about 600 Å. The double recessed structure is discussed further in commonly assigned United States Patent Application Serial No. 10/136,456 to Sriram.

Referring again to **Figure 1**, the gate contact **24** may be provided in the first recess **43** between the source region **13** and the drain region **17**. In embodiments of the present invention having a double recessed structure as discussed above, the gate

24 may be disposed in the second recess **54** as illustrated in **Figure 4**. Furthermore, in certain embodiments of the present invention, the gate contact **24** may be disposed on the n-type conductivity channel layer **18** as illustrated in **Figure 5** and may not be provided in, for example, the first recess **43** or the second recess **54**.

5 The gate contact **24** may be formed of chromium, platinum, platinum silicide, nickel, and/or TiWN, however, other metals such as gold, known to one skilled in the art to achieve the Schottky effect, may be used. The Schottky gate contact **24** typically has a three layer structure. Such a structure may have advantages because of the high adhesion of chromium (Cr). For example, the gate contact **24** can optionally 10 include a first gate layer of chromium (Cr) contacting the n-type conductivity channel layer **18**. The gate contact **24** may further include an overlayer of platinum (Pt) and gold **32** or other highly conductive metal. Alternatively, the gate contact **24** may include a first layer of nickel in the first recess **43** on the n-type conductivity channel 15 layer **18**. The gate contact **24** may further include an overlayer on the first layer of nickel that includes a layer of gold.

As further illustrated in **Figure 1**, metal overlayers **28**, **30** and **32** may be provided on the source and p⁺ contacts **26** and **25**, the drain contact **22** and the gate contact **24**, respectively. The overlayers **28**, **30** and **32** may be gold, silver, aluminum, platinum and/or copper. Other suitable highly conductive metals may also be used for 20 the overlayer. Furthermore, the metal overlayer **28** may electrically couple the p⁺ contact **25** of the p⁺ region **14** to the source contact **26**.

In selecting the dimensions of the MESFET, the width of the gate is defined as the dimension of the gate perpendicular to the flow of current. As shown in the cross-section of **Figure 1**, the gate width runs into and out of the page. The length of the 25 gate is the dimension of the gate parallel to the flow of current. As seen in the cross-sectional views of **Figure 1**, the gate length is the dimension of the gate **24** that is in contact with the n-type conductivity channel layer **18**. For example, the gate length of the MESFET according to certain embodiments of the present invention may be from about 0.4 μm to about 0.7 μm. Another important dimension is the source to gate 30 distance, which is shown in the cross-section of **Figure 1**, as the distance from the source contact **26** or n⁺ region **13**, to the gate contact **24**. The source to gate distance according to certain embodiments of the present invention may be from about 0.5 μm to about 0.7 μm. Furthermore, the distance from the drain **22** to the gate **24** may be from about 1.5 μm to about 2 μm. Embodiments of the present invention may further

include a plurality of unit cells of MESFETs, and the distance from a first gate of the unit cells to a second gate may be, for example, from about 20 μm to about 50 μm .

Figures 2A through **2H** illustrate the fabrication of FETs according to embodiments of the present invention. As seen in **Figure 2A**, an optional buffer layer 5 **12** may be grown or deposited on a substrate **10**. The substrate **10** may be a semi-insulating SiC substrate, a p-type substrate or an n-type substrate. The substrate **10** may be very lightly doped. The buffer layer **12** may be of p-type conductivity silicon carbide having a carrier concentration of about $3.0 \times 10^{15} \text{ cm}^{-3}$ or less, but typically $1.0 \times 10^{15} \text{ cm}^{-3}$ or less. Alternatively, the buffer layer **12** may be n-type silicon carbide or undoped silicon carbide. 10

If the substrate **10** is semi-insulating it may be fabricated as described in commonly assigned United States Patent No. 6,218,680 to Carter *et al.* entitled "Semi-insulating Silicon Carbide Without Vanadium Domination", the disclosure of which is hereby incorporated by reference herein as if set forth in its entirety. Such a 15 semi-insulating substrate may be produced by providing silicon carbide substrates with sufficiently high levels of point defects and sufficiently matched levels of p-type and n-type dopants such that the resistivity of the silicon carbide substrate is dominated by the point defects. Such a domination may be accomplished by fabricating the silicon carbide substrate at elevated temperatures with source powders 20 that have concentrations of heavy metals, transition elements or other deep level trapping elements of less than about $1 \times 10^{16} \text{ cm}^{-3}$ and preferably less than about $1.0 \times 10^{14} \text{ cm}^{-3}$. For example, temperatures between about 2360 $^{\circ}\text{C}$ and 2380 $^{\circ}\text{C}$ with the seed being about 300 $^{\circ}\text{C}$ to about 500 $^{\circ}\text{C}$ lower may be utilized. Thus, it is preferred 25 that the semi-insulating substrate be substantially free of heavy metal, transition element dopants or other deep level trapping elements, such as vanadium, such that the resistivity of the substrate is not dominated by such heavy metals or transition elements. While it is preferred that the semi-insulating substrate be free of such heavy metal, transition element dopants or deep level trapping elements, such elements may be present in measurable amounts while still benefiting from the 30 teachings of the present invention if the presence of such materials does not substantially affect the electrical properties of the MESFETs described herein.

As further illustrated in **Figure 2A**, a mask **45** may be formed for implanting the p⁺ region **14**. The p⁺ region **14** is typically formed by ion implantation of, for example, aluminum, boron and/or gallium, followed by a high temperature anneal.

Suitable anneal temperatures may be from about 1300 to about 1600 ° C, typically about 1500 ° C. The ion implantation may be performed on the regions that are not covered by the mask **45** to form p⁺ region **14** as illustrated in **Figure 2B**. Thus, the ions are implanted in portions of the buffer layer **12**, if present, or the substrate **10**, to 5 provide a highly doped region of p-type conductivity, for example, p-type conductivity silicon carbide. Once implanted, the dopants are annealed to activate the implant. The highly doped region of p-type conductivity may extend about 0.4 μm into the buffer layer **12** or the substrate **10**.

As seen in **Figure 2B**, a second buffer layer **16** and an n-type conductivity 10 channel layer **18** are grown or deposited on the buffer layer **12**. It will be understood that if the buffer layer **12** is not included, the second buffer layer **16** and the n-type conductivity channel layer **18** may be grown or deposited on the substrate **10**. The second buffer layer **16** is formed on the buffer layer **12** and the n-type conductivity channel layer **18** is formed on the second buffer layer **16** as illustrated in **Figure 2B**.

15 As illustrated in **Figure 2C**, a mask **50** may be formed for implanting n⁺ regions **13** and **17**. Regions **13** and **17** are typically formed by ion implantation of, for example, nitrogen (N) or phosphorus (P), followed by a high temperature anneal. Suitable anneal temperatures may be from about 1100 to about 1600 ° C. The ion implantation may be performed on the regions which are not covered by the mask **50** 20 to form n⁺ regions **13** and **17** as illustrated in **Figure 2D**. Thus, the ions are implanted in portions of the n-type conductivity channel layer **18** to provide highly doped regions of n-type conductivity, for example, n-type conductivity SiC, having higher carrier concentrations than the n-type conductivity channel layer **18**. Once implanted, the dopants are annealed to activate the implant.

25 As seen in **Figure 2D**, the substrate **10**, the buffer layer **12**, the p⁺ region **14**, the second buffer layer **16** and the n-type conductivity channel layer **18** may be etched to form an isolation mesa. The mesa has sidewalls **55**, **57** defined by the substrate **10**, the buffer layer **12**, the p⁺ region **14**, the second buffer layer **16** and the n-type conductivity channel layer **18** that define the periphery of the transistor. The 30 sidewalls of the mesa extend downward past the p⁺ conductivity region **14**. The mesa may be formed to extend into the substrate **10** of the device as shown in **Figure 2D**. The mesa may extend past the depletion region of the device to confine current flow in the device to the mesa and reduce the capacitance of the device. The mesa is preferably formed by reactive ion etching the above described device, however, other

methods known to one skilled in the art may be used to form the mesa. Furthermore, if a mesa is not utilized the device may be isolated using other methods such as proton bombardment, counterdoping with compensating atoms or other methods known to those skilled in the art.

5 In certain embodiments, only the second buffer layer **16** and the n-type conductivity channel layer **18** may be etched to form an isolation mesa as shown in **Figure 4**. In these embodiments, the sidewalls **55**, **57** are defined by the second buffer layer **16** and the n-type conductivity channel layer **18**, which define the periphery of the transistor.

10 **Figure 2D** further illustrates the formation of a first recess **43** of the MESFET. The first recess **43** may be formed by forming a mask **47** and then etching through the n-type conductivity channel layer **18** to form the first recess **43** according to the mask **47**. The first recess **43** may be formed by an etching process, such as a dry or wet etch process. For example, the first recess **43** may be formed by dry etching, for 15 example, Electron Cyclotron Resonance (ECR) or Inductively Coupled Plasma (ICP) etching. The mask **47** may be removed.

As discussed above, embodiments of the present invention may include a double recessed structure instead of the single recess **43**. As illustrated in **Figure 4**, a first recess **53** of the double recessed structure may be formed by forming a mask for 20 the first recess **53** and etching through the first n-type conductivity channel layer **19** to form the first recess **53** according to the mask. An insulation layer may be formed after the first recess **53** has been formed. After forming the ohmic contacts as illustrated in **FIG. 2G**, a second recess **54** of the double recessed structure may be formed by forming a second mask for the second recess and etching the recess 25 according to the mask. The second n-type conductivity channel layer **15** may be etched into a distance of, for example, about 600 Å to form the second recess **54**. Methods of fabricating the double recessed structure are discussed further in commonly assigned United States Patent Application Serial No. 10/136,456 to Sriram.

30 **Figure 2E** illustrates the formation of an insulator layer **20**, for example, an oxide layer, after the first recess **43** has been formed as discussed above. The insulator layer **20** may be grown or deposited over the exposed surface of the existing structure, *i.e.* on the isolation mesa, n^+ regions **13** and **17**, the n-type conductivity channel layer **18** and in the first recess **43**. The oxidation process may remove, for

example, SiC that may have been damaged by the etch process and may also smooth out roughness that may have been created on the surface by the etch.

As illustrated in **Figure 2F**, contact windows may be etched through the insulator layer **20** to the n⁺ regions **13** and **17**. A third contact window **41** may be etched in the insulator layer **20** above the highly doped p⁺ region **14**. Nickel may then be evaporated to deposit the source and drain contacts **26** and **22**, respectively. The nickel may be annealed to form the ohmic contacts **26** and **22** as illustrated in **Figure 2F**. Such a deposition and annealing process may be carried out utilizing conventional techniques known to those of skill in the art. For example, the ohmic contacts **26** and **22** may be annealed at a temperature of from about 950 ° C to about 1100 ° C for about 2 minutes. However, other times and temperatures may also be utilized. Times from about 30 seconds to about 10 minutes may be, for example, acceptable.

As illustrated in **Figure 2G**, a contact via hole **42** of the MESFET may be formed. The contact via hole **42** may be etched in the portion of the MESFET defined by window **41** in the insulator layer **20**. The n-type conductivity channel layer **18** and the second buffer layer **16** may be etched through to expose the p⁺ conductivity region **14** to form the contact via hole **42**. The etching process may be, for example, a dry or wet etch process. As further illustrated in **Figure 2G**, nickel may be evaporated to deposit the p⁺ contact **25**. The nickel may be annealed to form the ohmic contact **25**. Such a deposition and annealing process may be carried out utilizing conventional techniques known to those of skill in the art. For example, the ohmic contact **25** may be annealed at a temperature of from about 600 ° C to about 1050 ° C.

Figure 2H illustrates the formation of the gate contact **24** and the overlayers **28**, **30** and **32**. For example, a window may be opened in the insulator **20** and a layer of chromium may be deposited in the first recess **43**. Typically, the chromium layer is formed by evaporative deposition. The gate structure may then be completed by deposition of platinum and gold. As will also be appreciated by those of skill in the art, the overlayers **28** and **30** may be formed either before or after formation of the gate structure. In fact, if the titanium/platinum/gold structure is utilized, the platinum and gold portions of the overlayer may be formed in the same processing steps as the platinum and gold portions **32** of the gate structure. Accordingly, the overlayers **28** and **30** may be formed prior to the formation of a gate contact or after the formation of a gate contact. As further illustrated, the source contact **26** and the p⁺ contact share

a single overlayer **28**, which electrically couples the source to the highly doped p-type conductivity region **14**. Alternatively, as discussed above the first recess **43** may be a double recess structure and the gate may be disposed within the double recessed structure.

5 Referring now to **Figure 3**, a cross-sectional view of a transistor according to further embodiments of the present invention will be discussed. Like numbers refer to like elements in previously described figures, thus, detailed descriptions of these elements will be omitted. As seen in **Figure 3**, a substrate **10** is provided. The substrate **10** may be, for example, SiC, GaAs or GaN. A p⁺ region **14** is provided
10 beneath a source of the device and has an end that extends towards the drain of the device. In some embodiments of the present invention, the p⁺ conductivity region **14** may extend from beneath the source contact **26** and/or from beneath the n⁺ source implant region **13** extending to beneath the n⁺ drain implant region **17**. In further
15 embodiments of the present invention, the p⁺ conductivity region **14** may extend from beneath the source contact **26** and/or from beneath the n⁺ source implant region **13** without extending to beneath the drain contact **22**. In embodiments of the present invention illustrated in **Figure 3**, the p⁺ conductivity region **14** is provided in the substrate **10**.

20 A second buffer layer **16** is provided on the substrate **10** and the p⁺ conductivity region **14**. An n-type conductivity channel layer **18** is provided on the second buffer layer **16**. The n⁺ regions **13** and **17** are provided in the source and drain regions of the device, respectively. Ohmic contacts **26** and **22** are provided on the implanted regions **13** and **17**, respectively, and are spaced apart so as to provide the source contact **26** and the drain contact **22**. Ohmic contact **25** is provided on the
25 p⁺ conductivity region **14** to provide a p⁺ contact **25**. The p⁺ conductivity region **14** is maintained at the same potential as the source by, for example, electrically coupling the p⁺ ohmic contact **25** to the source contact **26**. An insulator layer **20**, such as an oxide, is further provided on the exposed surface of the device.

30 A first recess **43** is provided between first and second n⁺ regions **13** and **17**, *i.e.* between the source region and the drain region. The first recess **43** extends into the n-type conductivity channel layer **18** and exposes the n-type conductivity channel layer **18**. A contact via hole **42** is provided adjacent the source region **13** and exposes at least a portion of the p⁺ region. The gate contact **24** is provided in the first recess **43** between the source region **13** and the drain region **17**. As further illustrated in **Figure**

3, metal overlayers 28, 30 and 32 may be provided on the source and p⁺ contacts 26 and 25, the drain contact 22 and the gate contact 24, respectively. Furthermore, metal overlayer 28 may electrically couple the p⁺ contact 25 of the p⁺ region 14 to the source contact 26.

5 Referring now to **Figure 4**, a cross-sectional view of a transistor according to further embodiments of the present invention will be discussed. Like numbers refer to like elements in previously described figures, thus, detailed descriptions of these elements will be omitted. As seen in **Figure 4**, a substrate 10 is provided. The substrate 10 may be, for example, SiC, GaAs or GaN. A p⁺ region 14 is provided
10 beneath a source of the device and has an end that extends toward the drain of the device. In some embodiments of the present invention, the p⁺ conductivity region 14 may extend from beneath the source contact 26 and/or from beneath the n⁺ source implant region 13 without extending to beneath the n⁺ drain implant region 17. In further embodiments of the present invention, the p⁺ conductivity region 14 may
15 extend from beneath the source contact 26 and/or from beneath the n⁺ source implant region 13 without extending to beneath the drain contact 22. The p⁺ conductivity region 14 is provided in the substrate 10. A buffer layer 16 is provided on the substrate 10 and the p⁺ conductivity region 14. The buffer layer 16 may be, for example, p-type conductivity silicon carbide having a carrier concentration of about
20 1.5 x 10¹⁶ cm⁻³ and a thickness of about 0.5 μm.

A first n-type conductivity channel layer 15 is provided on the buffer layer
16. The first n-type conductivity channel layer 15 may have, for example, a carrier concentration of about 3 x 10¹⁷ cm⁻³ and a thickness of about 0.28 μm. The second n-type conductivity channel layer 19 may be on the first n-type channel layer 15 and
25 may have, for example, a carrier concentration of about 1 x 10¹⁶ cm⁻³ and a thickness of about 900 Å.

The n⁺ regions 13 and 17 are provided in the source and drain regions of the device, respectively. Ohmic contacts 26 and 22 are provided on the implanted regions 13 and 17, respectively, and are spaced apart so as to provide the source contact 26 and the drain contact 22. Ohmic contact 25 is provided on the p⁺ conductivity region 14 to provide a p⁺ contact 25. The p⁺ conductivity region 14 is maintained at the same potential as the source by, for example, electrically coupling the p⁺ ohmic contact 25 to the source contact 26. An insulator layer 20, such as an oxide, is further provided on the exposed surface of the device. The second buffer layer 16, the first n-type

conductivity channel layer **15** and the second n-type conductivity layer **19** may be etched to form an isolation mesa. As illustrated, the mesa includes sidewalls **55**, **57** that define the periphery of the transistor.

As illustrated in **Figure 4**, a double recess is provided in the transistor of **Figure 4**. The double recessed structure is provided between first and second n⁺ regions **13** and **17**, *i.e.* between the source region and the drain region. The first recess **53** has a floor **60** that extends through the second n-type conductivity channel layer **19** to the first n-type conductivity channel layer **15** and exposes the first n-type conductivity channel layer **15**. In certain embodiments, the first recess **53** may extend into the first n-type conductivity channel layer **15**. The second recess **54** is provided between the sidewalls **61**, **62** of the first recess. A first sidewall **61** of the first recess **53** is between the source **26** and the gate **24** and a second sidewall **62** of the first recess **53** is between the drain **22** and the gate **24**. The floor of the second recess **54** extends into the second n-type conductivity channel layer **15**, for example, a distance of about 600 Å.

A contact via hole **42** is provided adjacent the source region **13** and exposes at least a portion of the p⁺ region. The gate contact **24** is provided in the second recess **54** between the source region **13** and the drain region **17**. As further illustrated in **Figure 4**, metal overlayers **28**, **30** and **32** may be provided on the source and p⁺ contacts **26** and **25**, the drain contact **22** and the gate contact **24**, respectively. Furthermore, metal overlayer **28** may electrically couple the p⁺ contact **25** of the p⁺ region **14** to the source contact **26**.

Now referring to **Figure 5**, a cross-sectional view of a MESFET according to further embodiments of the present invention will be discussed. Like numbers refer to like elements in previously described figures, thus, descriptions of these elements will be omitted. As illustrated in **Figure 5**, the gate **24** is disposed on the n-type conductivity channel layer **18** and is not disposed in a single or double recess.

Referring now to **Figure 6**, a plan view (top view) of MESFETs according to certain embodiments of the present invention will be described. As illustrated in **Figure 6**, a plurality of unit cells are provided on a substrate **10**. A gate **24** is situated between a source region **26** and a drain region **22**. As illustrated in **Figure 6**, the source contacts **26** and drain contacts **22** are interdigitated. An overlayer **28** electrically couples the source region **26** to a p⁺ region (not shown) via a p⁺ contact (not shown) that is disposed in the contact via hole **43**.

Figures 7A and 7B are graphs illustrating the drain current-voltage characteristics of conventional MESFETs at low voltages and high voltages, respectively. Figures 8A and 8B are graphs illustrating the drain current-voltage characteristics of MESFETs according to embodiments of the present invention at low voltages and high voltages, respectively. The data illustrated in Figures 7A, 7B, 8A and 8B was obtained from a conventional MESFET device and a MESFET device according to embodiments of the present invention that were fabricated on the same wafer. Fabrication of these devices on the same wafer may reduce the number of uncertainties due to variations in wafer properties.

Referring now to Figures 7A and 8A, the conventional MESFET and the MESFET according to embodiments of the present invention may have similar characteristics at low drain voltages. However, as illustrated in Figures 7B and 8B, at high drain voltages, e.g. drain voltages exceeding 70 volts, the conventional MESFET experiences excessive leakage current and low transconductance (Figure 7B). These device characteristics may degrade the power output and RF gain of such devices. In contrast, as illustrated in Figure 8B, MESFETs according to embodiments of the present invention that include the p-type conductivity layer may provide a low leakage current and increased transconductance at high drain voltages.

Although the present invention is described above with respect to particular MESFETs having particular layers, regions and recesses, it will be understood that embodiments of the present invention are not limited to the above described MESFETs. A p-type conductivity region beneath the source region of according to embodiments of the present invention may be incorporated in to other types of transistors. For example, the p-type conductivity region according to embodiments of the present invention may be incorporated into MESFETs described in commonly assigned United States Patent Application Serial No. 09/567,717 entitled *Silicon Carbide Metal Semiconductor Field Effect Transistors* to Allen *et al.*, the disclosure of which is hereby incorporated herein by reference as if set forth in its entirety.

As is briefly described above, transistors according to embodiments of the present invention provide a p-type conductivity region beneath the source region of the transistor having an end that extends towards the drain region of the transistor. The presence of this p-type conductivity region may provide, for example, devices having improved breakdown voltages without compromising other performance characteristics of the device because the p-type conductivity region may inhibit

electron injection from the source. This may provide an advantage over conventional field effect transistors that may sacrifice device performance characteristics to obtain a high breakdown voltage.

Although the present invention is described above with reference to SiC
5 MESFETs, the present invention is not limited to SiC MESFETs. For example, MESFETs according to embodiments of the present invention may be, for example, gallium arsenide (GaAs) MESFETs or Gallium Nitride (GaN) MESFETs. In particular, if the present invention were described with respect to GaAs MESFETs, the p-type conductivity regions might be p-type conductivity GaAs regions, the n-type 10 conductivity channel layers might be n-type conductivity GaAs layers and the like.

In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

THAT WHICH IS CLAIMED IS:

1. A unit cell of a metal-semiconductor field-effect transistor (MESFET), comprising:

a MESFET having a source, a drain and a gate, the gate being between the source and the drain and on an n-type conductivity channel layer; and

5 a p-type conductivity region beneath the source and having an end that extends towards the drain, the p-type conductivity region being spaced apart from the n-type conductivity channel layer and being electrically coupled to the source.

10 2. The MESFET of Claim 1, wherein the gate extends into the n-type conductivity channel layer.

15 3. The MESFET of Claim 1, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate and wherein the p-type conductivity region extends from beneath the source to the first sidewall of the gate without extending past the first sidewall of the gate.

20 4. The MESFET of Claim 1, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate and wherein the p-type conductivity region extends from beneath the source to within about 0.1 to about 0.3 μm of the first sidewall on the source side of the first sidewall.

25 5. The MESFET of Claim 1, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate and wherein the p-type conductivity region extends from beneath the source to the second sidewall of the gate without extending past the second sidewall of the gate.

30 6. The MESFET of Claim 1, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate and wherein the p-type

conductivity region extends from beneath the source to between the first and second sidewalls of the gate.

7. The MESFET of Claim 1, wherein the p-type conductivity region
5 extends from beneath a source contact and/or a source implant region without
extending to beneath a drain contact.

8. The MESFET of Claim 1, wherein the p-type conductivity region
extends from beneath a source contact and/or a source implant region without
10 extending to beneath a drain implant region.

9. The MESFET of Claim 1, further comprising a silicon carbide (SiC)
substrate, the p-type conductivity region being disposed on the SiC substrate, wherein
the n-type conductivity channel layer comprises n-type conductivity silicon carbide
15 (SiC) and wherein the p-type conductivity region comprises p-type conductivity SiC.

10. The MESFET of Claim 1, further comprising a silicon carbide (SiC)
substrate, at least a portion of the p-type conductivity region being disposed in the SiC
substrate.

20

11. The MESFET of Claim 9, wherein the p-type conductivity region is
disposed in the SiC Substrate and extends about 0.4 μm into the SiC substrate.

12. The MESFET of Claim 9, wherein the p-type conductivity region has a
25 carrier concentration of from about $1.0 \times 10^{18} \text{ cm}^{-3}$ to about $1.0 \times 10^{20} \text{ cm}^{-3}$.

13. The MESFET of Claim 9, wherein the n-type conductivity channel
layer comprises a first n-type conductivity channel layer on the p-type conductivity
region and a second n-type conductivity channel layer on the first n-type conductivity
30 channel layer.

14. The MESFET of Claim 13, wherein the first n-type conductivity
channel layer has a carrier concentration of about $3 \times 10^{17} \text{ cm}^{-3}$ and wherein the

second n-type conductivity channel layer has a carrier concentration of about 1×10^{16} cm⁻³.

15. The MESFET of Claim 14, wherein the first n-type conductivity
5 channel layer has a thickness of about 0.28 μ m and the second n-type conductivity
channel layer has a thickness of about 900 \AA .

16. The MESFET of Claim 15, wherein the p-type conductivity SiC region
is in the SiC substrate and extends about 0.4 μ m into the SiC substrate.

10

17. The MESFET of Claim 9, wherein the n-type conductivity channel
layer comprises first, second and third n-type conductivity SiC channel layers and
wherein the first, second and third n-type conductivity channel layers have respective
first, second and third carrier concentrations.

15

18. The MESFET of Claim 9, further comprising a buffer layer on the SiC
substrate, wherein the p-type conductivity region is formed in the buffer layer.

20

19. The MESFET of Claim 18, wherein the buffer layer has a thickness of
about 2 μ m.

20. The MESFET of Claim 19, wherein the p-type conductivity region
extends about 0.4 μ m into the buffer layer.

25

21. The MESFET of Claim 18, wherein the buffer layer comprises at least
one of p-type conductivity SiC having a carrier concentration of from about 0.5×10^{15}
cm⁻³ to about 3×10^{15} cm⁻³, n-type conductivity SiC having a carrier concentration of
less than about 5×10^{14} cm⁻³ and undoped SiC.

30

22. The MESFET of Claim 1, further comprising a substrate, the p-type
conductivity region being disposed on the substrate, wherein the substrate comprises
at least one of n-type conductivity gallium arsenide (GaAs) and n-type conductivity
gallium Nitride (GaN), wherein the n-type conductivity channel layer comprises at
least one of n-type conductivity GaAs and n-type conductivity GaN and wherein the

p-type conductivity region comprises at least one of p-type conductivity GaAs and p-type conductivity GaN.

23. The MESFET of Claim 1, further comprising:

5 first and second ohmic contacts on the n-type channel layer that respectively define the source and the drain;
a first recess between the source and the drain that exposes the n-type channel layer, the gate being disposed in the first recess and extending into the channel layer;
a contact via hole adjacent the source that exposes the p-type conductivity
10 region; and
a third ohmic contact on the exposed p-type conductivity region.

24. The MESFET of Claim 23, further comprising a first overlayer on the second ohmic contact of the drain and a second overlayer on the first and third ohmic
15 contacts of the source and the exposed portion of the p-type conductivity region, respectively, wherein the second overlayer electrically couples the first ohmic contact of the source and the third ohmic contact of the exposed portion of the p-type conductivity region.

20 25. The MESFET of Claim 23, further comprising implanted n-type conductivity regions of SiC in the n-type conductivity channel layer beneath the source and the drain having carrier concentrations greater than a carrier concentration of the n-type conductivity channel layer, wherein the first and second ohmic contacts are disposed on the n-type conductivity regions of SiC.

25 26. The MESFET of Claim 25, wherein the implanted n-type conductivity regions of SiC have carrier concentrations of about $1 \times 10^{19} \text{ cm}^{-3}$.

27. The MESFET of to Claim 23, wherein the first, second and third
30 ohmic contacts comprise nickel contacts.

28. The MESFET of Claim 1, further comprising:
first and second ohmic contacts on the n-type channel layer that respectively define the source and the drain;

a first recess between the source and the drain that exposes the n-type channel layer, the first recess having first and second sidewalls;

a second recess disposed between the first and second sidewalls of the first recess, the gate being disposed in the second recess and extending into the n-type conductivity channel layer;

a contact via hole adjacent the source that exposes the p-type conductivity region; and

a third ohmic contact on the exposed p-type conductivity region.

10 29. The MESFET of Claim 28, wherein the n-type conductivity channel layer comprises first and second conductivity layers, wherein the first recess extends through the first n-type conductivity channel layer to the second n-type conductivity channel layer and exposes the second n-type conductivity channel layer and wherein the second recess extends into the second n-type conductivity region.

15

30. The MESFET of Claim 29, wherein the second recess extends about 600 Å into the second n-type conductivity region.

20 31. The MESFET of Claim 1, further comprising a second buffer layer between the p-type conductivity region and the n-type conductivity channel layer.

32. The MESFET of Claim 31, wherein the second buffer layer comprises at least one of p-type SiC, n-type SiC and undoped SiC.

25 33. The MESFET of Claim 31, wherein the second buffer layer comprises p-type SiC and has a carrier concentration of from about $1.0 \times 10^{16} \text{ cm}^{-3}$ to about $5.0 \times 10^{16} \text{ cm}^{-3}$.

30 34. The MESFET of Claim 33, wherein the second buffer layer has a carrier concentration of about $1.5 \times 10^{16} \text{ cm}^{-3}$.

35. The MESFET of Claim 31, wherein the second buffer layer has a thickness of from about 0.5 μm to about 1.0 μm.

36. The MESFET of Claim 31, wherein the n-type conductivity channel layer and the second buffer layer form a mesa having sidewalls that define the periphery of the transistor and which extend through the n-type channel layer and the second buffer layer.

5

37. The MESFET of Claim 36, wherein the sidewalls of the mesa extend through the p-type conductivity region and into the substrate.

38. The MESFET of Claim 1, wherein the gate comprises a first gate layer 10 of chromium on the n-type conductivity channel layer.

39. The MESFET of Claim 38, wherein the gate further comprises an overlayer on the first gate layer, wherein the overlayer comprises platinum and gold.

15 40. The MESFET of Claim 1, wherein the gate comprises a first gate layer of nickel on the n-type conductivity channel layer.

41. The MESFET of Claim 40, wherein the gate further comprises an overlayer on the first gate layer, wherein the overlayer comprises gold.

20

42. The MESFET of Claim 1, wherein the gate has a length from about 0.4 μ m to about 0.7 μ m.

25 43. The MESFET of Claim 1, wherein a distance from the source to the gate is from about 0.5 μ m to about 0.7 μ m.

44. The MESFET of Claim 1, wherein a distance from the drain to the gate is from about 1.5 μ m to about 2 μ m.

30 45. The MESFET comprising a plurality of unit cells according to Claim 1, wherein a distance from a first gate to a second gate is from about 20 μ m to about 50 μ m.

46. A unit cell of a metal-semiconductor field-effect transistor (MESFET), comprising:

a silicon carbide (SiC) MESFET having a source, a drain and a gate, the gate being between the source and the drain and on a channel layer of n-type conductivity

5 SiC; and

a p-type conductivity SiC region beneath the source and having an end that extends towards the drain, the p-type conductivity SiC region being spaced apart from the n-type conductivity SiC channel layer and being electrically coupled to the source.

10 47. The MESFET according to Claim 46, wherein the gate extends into the n-type conductivity SiC channel layer.

48. A method of forming a metal-semiconductor field-effect transistor (MESFET), comprising:

15 forming a MESFET having a source, a drain and a gate, the gate being between the source and the drain and on an n-type conductivity channel layer; and

forming a p-type conductivity region beneath the source and having an end that extends towards the drain, the p-type conductivity region being spaced apart from the n-type conductivity channel layer and being electrically coupled to the source.

20

49. The method according to Claim 48, wherein forming the gate comprises forming the gate extending into the n-type conductivity channel region.

50. The method of Claim 48, wherein the gate has a first sidewall and a 25 second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate; and

wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath the source to the first sidewall of the gate without extending past the first sidewall of the gate.

30

51. The method of Claim 48, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate; and

wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath the source to within about 0.1 to about 0.3 μm of the first sidewall of the gate on the source side of the first sidewall.

5 52. The method of Claim 48, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate; and

10 wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath the source to the second sidewall of the gate without extending past the second sidewall of the gate.

53. The method of Claim 48, wherein the gate has a first sidewall and a second sidewall, the first sidewall being on the source side of the gate and the second sidewall being on the drain side of the gate; and

15 wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath the source to between the first and second sidewalls of the gate.

54. The method of Claim 48, wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath a source contact and/or a source implant region without extending to beneath a drain contact.

55. The method of Claim 48, wherein forming the p-type conductivity region comprises forming the p-type conductivity region extending from beneath a source contact and/or a source implant region without extending to beneath a drain implant region.

56. The method of Claim 48, further comprising forming a silicon carbide (SiC) substrate, wherein forming the p-type conductivity region comprises forming the p-type conductivity region on the SiC substrate, wherein the n-type conductivity channel layer comprises n-type conductivity SiC and wherein the p-type conductivity region comprises p-type conductivity SiC.

57. The method of Claim 56, further comprising forming a buffer layer on the SiC substrate, the buffer layer disposed between the SiC substrate and the n-type conductivity channel layer.

5 58. The method of Claim 57, wherein forming the p-type conductivity region comprises:

implanting p-type dopants in the buffer layer; and
annealing the p-type dopants to activate the p-type dopants.

10 59. The method of Claim 57, wherein forming the buffer layer comprises at least one of forming a p-type conductivity SiC layer, forming an n-type conductivity SiC layer and forming an undoped SiC layer.

15 60. The method of Claim 57, wherein forming the buffer layer comprises at least one of growing the buffer layer and depositing the buffer layer.

61. The method of Claim 56, wherein forming the n-type conductivity channel layer comprises:

20 forming a first n-type conductivity channel layer on the SiC substrate, the first n-type conductivity channel layer having a first carrier concentration; and
forming a second n-type conductivity channel layer on the first n-type conductivity channel layer, wherein the second n-type conductivity channel layer has a second carrier concentration that is less than the first carrier concentration of the first n-type conductivity channel layer.

25

62. The method of Claim 61, wherein the first carrier concentration is about $3 \times 10^{17} \text{ cm}^{-3}$ and wherein the second carrier concentration is about $1 \times 10^{16} \text{ cm}^{-3}$.

30 63. The method of Claim 61, wherein forming the region of p-type conductivity SiC comprises implanting p-type dopants in the SiC substrate.

64. The method of Claim 63, wherein implanting p-type dopants further comprises annealing the p-type dopants to activate the p-type dopants.

65. The method of Claim 56, wherein forming the n-type conductivity layer comprises:

- forming a first n-type conductivity channel layer having a first carrier concentration on a SiC substrate;
- 5 forming a second n-type conductivity channel layer having a second carrier concentration on the first n-type conductivity channel layer; and
- forming a third n-type conductivity channel layer having a third carrier concentration on the second n-type conductivity channel layer.

10

66. The method of Claim 48, further comprising forming a gallium nitride (GaN) substrate, wherein forming the p-type conductivity region comprises forming the p-type conductivity region on the GaN substrate, wherein forming the n-type conductivity channel layer comprises forming an n-type conductivity GaN channel layer and wherein forming the p-type conductivity region comprises forming a p-type conductivity GaN region.

67. The method of Claim 48, further comprising forming a gallium arsenide (GaAs) substrate, wherein forming the p-type conductivity region comprises forming the p-type conductivity region on the GaAs substrate, wherein forming the n-type conductivity channel layer comprises forming an n-type conductivity GaAs channel layer and wherein forming the p-type conductivity region comprises forming a p-type conductivity GaAs region.

25

68. The method of Claim 48, further comprising:

forming a first recess between the source and the drain that exposes the n-type conductivity channel layer, the gate being disposed in the first recess and extending into the n-type conductivity channel layer;

30 forming an oxide layer on the n-type conductivity channel layer and in the first recess;

forming first and second ohmic contacts on the n-type channel layer that respectively define the source and the drain;

forming a contact via hole adjacent the source that exposes the p-type conductivity region; and

forming a third ohmic contact on the exposed p-type conductivity region.

69. The method of Claim 68, wherein forming the first recess comprises: forming a mask for the first recess on the n-type conductivity channel layer;

5 and

etching into the n-type conductivity channel layer according to the mask.

70. The method of Claim 68, wherein forming the contact via hole comprises:

10 etching a contact window for the contact via hole in the oxide layer adjacent the p-type conductivity layer; and

etching into the n-type conductivity channel layer and a second buffer layer through the contact window to expose the p-type conductivity layer.

15 71. The method of Claim 68, wherein forming the oxide layer comprises growing an oxide layer on the MESFET.

72. The method of Claim 68, wherein forming the oxide layer comprises depositing the oxide layer on the MESFET.

20

73. The method of Claim 68, wherein forming first, second and third ohmic contacts comprises:

etching contact windows through the oxide layer adjacent the source, the drain and the p-type conductivity region; and

25 forming the first and second ohmic contacts in the in the contact windows adjacent the source and the drain;

etching into the n-type conductivity channel layer and a second buffer layer through the contact window to expose the p-type conductivity layer; and

forming the third ohmic contact on the exposed p-type conductivity layer.

30

74. The method of Claim 73, wherein the first, second and third ohmic contacts comprise nickel.

75. The method of Claim 68, further comprising:
forming a first overlayer on the second ohmic contact of the drain; and
forming a second overlayer on the first and third ohmic contacts of the source
and the exposed portion of the p-type conductivity region, respectively, wherein the
5 second overlayer electrically couples the first ohmic contact on the source to the third
ohmic contact of the exposed portion of the p-type conductivity region.

76. The method of Claim 68, further comprising:
implanting n-type dopants in regions of SiC in the n-type conductivity
10 channel layer beneath the source and the drain so as to provide highly doped regions
of n-type conductivity SiC having higher carrier concentrations than the n-type
conductivity channel layer;
wherein forming the first and second ohmic contacts comprises forming the
first and second ohmic contacts on the highly doped regions.

15 77. The method of Claim 76, wherein implanting n-type dopants further
comprises annealing the n-type dopants to activate the n-type dopants.

78. The method of Claim 48, further comprising:
20 forming first and second ohmic contacts on the n-type channel layer that
respectively define the source and the drain;
forming a first recess between the source and the drain that exposes the n-type
channel layer, the first recess having first and second sidewalls;
forming a second recess between the first and second sidewalls of the first
25 recess, the gate being disposed in the second recess and extending into the n-type
conductivity channel layer;
forming a contact via hole adjacent the source that exposes the p-type
conductivity region; and
forming a third ohmic contact on the exposed p-type conductivity region.

30 79. The method of Claim 78, wherein forming the n-type conductivity
channel layer comprises forming first and second n-type conductivity channel layers,
wherein forming the first recess comprises forming the first recess extending through
the first n-type conductivity channel layer to the second n-type conductivity channel

layer so that the second n-type conductivity channel layer is exposed and wherein forming the second recess comprises forming the second recess extending into the second n-type conductivity region.

5 80. The method of Claim 79, wherein forming the second recess further comprises forming the second recess extending about 600 Å into the n-type conductivity region.

10 81. The method of Claim 48 further comprising forming a second buffer layer between the p-type conductivity region and the n-type conductivity channel layer.

15 82. The method of Claim 81, wherein forming the second buffer layer comprises growing the second buffer layer on the p-type conductivity region.

20 83. The method of Claim 81, wherein forming the second buffer layer comprises depositing the second buffer layer on the p-type conductivity region.

25 84. The method of Claim 81, further comprising etching the n-type conductivity channel layer and the second buffer layer to form a mesa having sidewalls that define the periphery of the transistor.

30 85. A method of forming a MESFET, comprising:
25 forming a mask for a p-type conductivity implant on the SiC substrate;
implanting the p-type conductivity implant and activating the p-type conductivity implant with an anneal to provide a p-type conductivity SiC region such that the p-type conductivity SiC region is beneath a source and has an end that extends towards a drain, the p-type conductivity SiC region being spaced apart from an n-type conductivity SiC channel layer and electrically coupled to the source,
wherein the n-type conductivity SiC channel layer comprises a first n-type conductivity SiC channel layer and a second n-type conductivity SiC channel layer;
35 forming a buffer layer on the SiC substrate and the p-type conductivity SiC region;
forming the first n-type conductivity SiC channel layer on the buffer layer;

forming the second n-type conductivity SiC channel layer on the first n-type conductivity SiC channel layer;

forming a mask for an n-type conductivity SiC implant;

implanting the n-type conductivity SiC and activating the n-type conductivity SiC with an anneal to define respective source and drain regions in the second n-type conductivity SiC channel layer;

etching the first and second n-type conductivity SiC channel layers and the buffer layer to form a mesa;

10 forming a mask for a first recess and etching the first recess between the source region and the drain region, the first recess exposing the first n-type conductivity SiC channel layer and the first recess having first and second sidewalls;

forming an oxide layer on the first and second n-type conductivity SiC channel layers, on the source and drain regions and in the first recess;

15 opening windows for the source, the drain and a p-type conductivity SiC contact in the oxide layer;

forming first and second ohmic contacts in the windows opened for the source and drain;

20 forming a mask for a second recess and etching the second recess between the first and second sidewalls of the first recess into the second n-type conductivity SiC channel layer;

etching through the first and second n-type conductivity channel layers and a second buffer layer through the contact window for the p-type conductivity SiC contact to expose the p-type conductivity SiC region;

25 forming a third ohmic contact on the exposed p-type conductivity SiC region;

forming a gate in the second recess; and

forming overlayers on the ohmic contacts and the gate, wherein the source and the exposed portion of the p-type conductivity SiC region share a single overlayer that electrically connects the source and the p-type conductivity SiC region.

86. A unit cell of a transistor, comprising:

a transistor having a source, a drain and a gate, the gate being between the source and the drain and on a first layer of semiconductor material; and

a p-type conductivity region beneath the source and having an end that extends towards the drain, the p-type conductivity region being spaced apart from the first layer of semiconductor material and being electrically coupled to the source.

87. A transistor according to Claim 86, wherein the gate extends into the first layer of semiconductor material.

88. A transistor according to Claim 86, wherein the transistor comprises a silicon carbide (SiC) transistor.

89. A transistor according to Claim 86, wherein the transistor comprises a gallium arsenide (GaAs) based transistor.

90. A transistor according to Claim 86, wherein the transistor further comprises an aluminum gallium arsenide (AlGaAs) based transistor.

91. A transistor according to Claim 86, wherein the transistor comprises a gallium nitride (GaN) based transistor.

92. A transistor according to Claim 86, wherein the transistor further comprises an aluminum gallium nitride (AlGaN) based transistor.

1/11

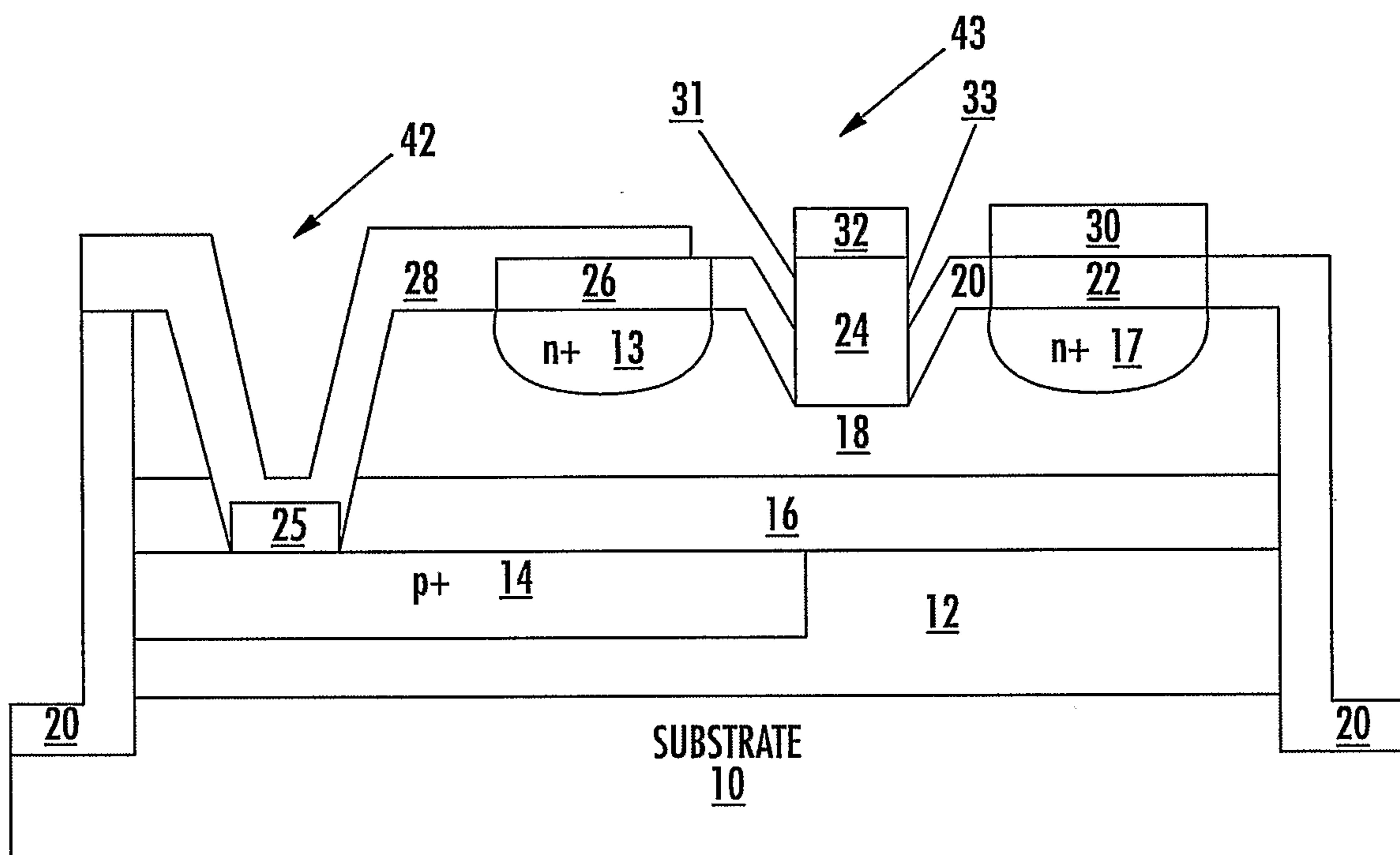


FIG. 1.

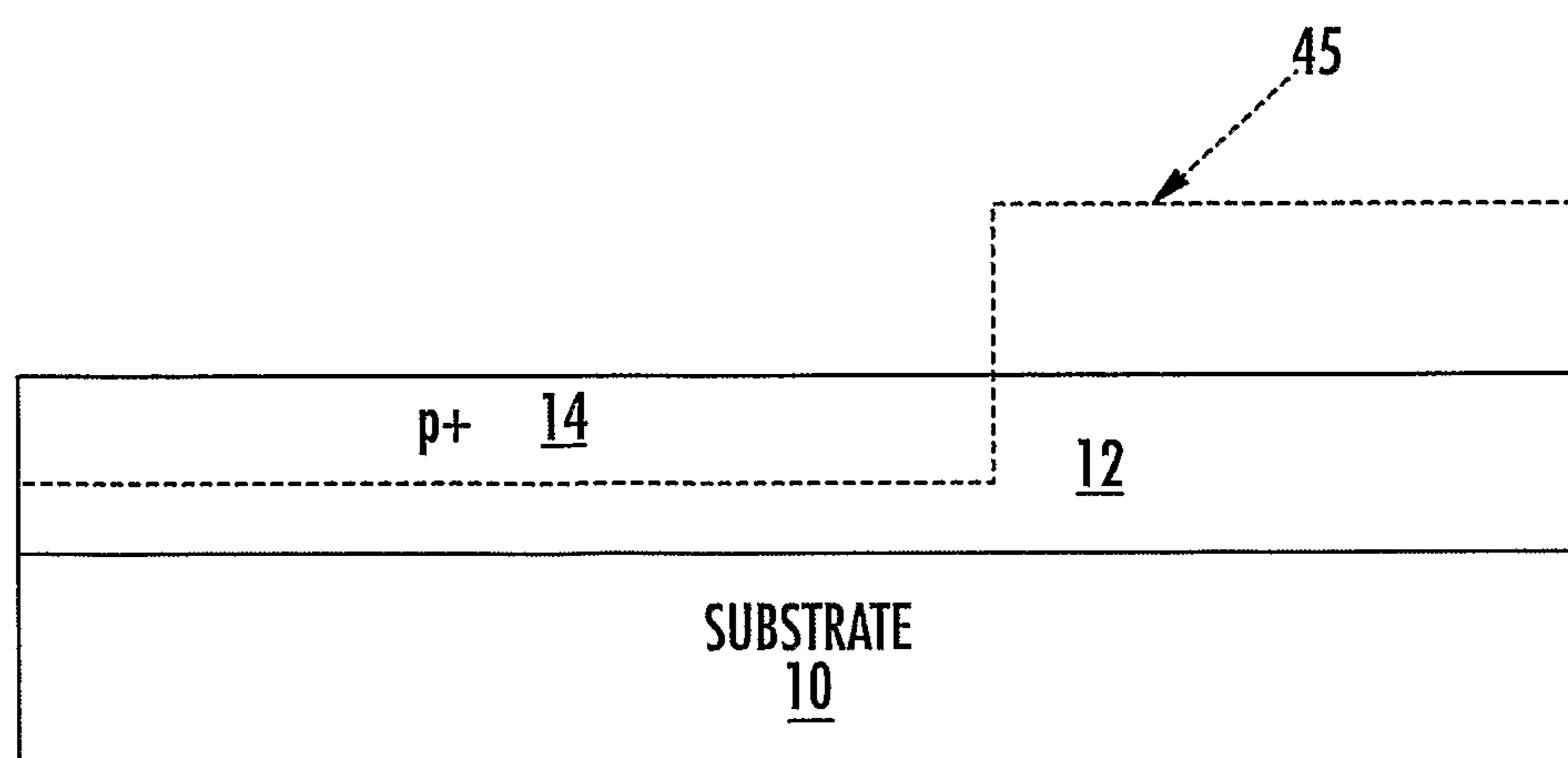


FIG. 2A.

2/11

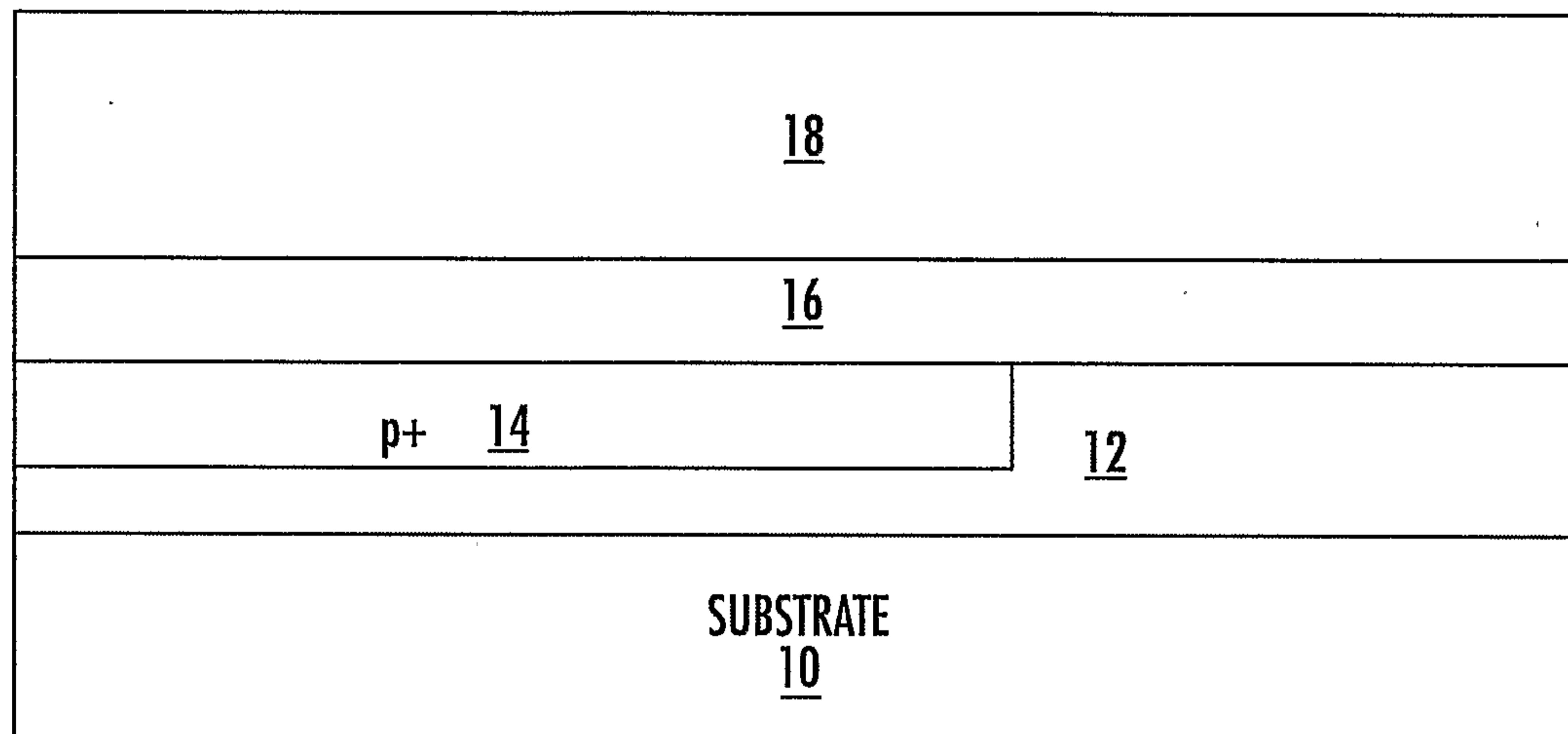


FIG. 2B.

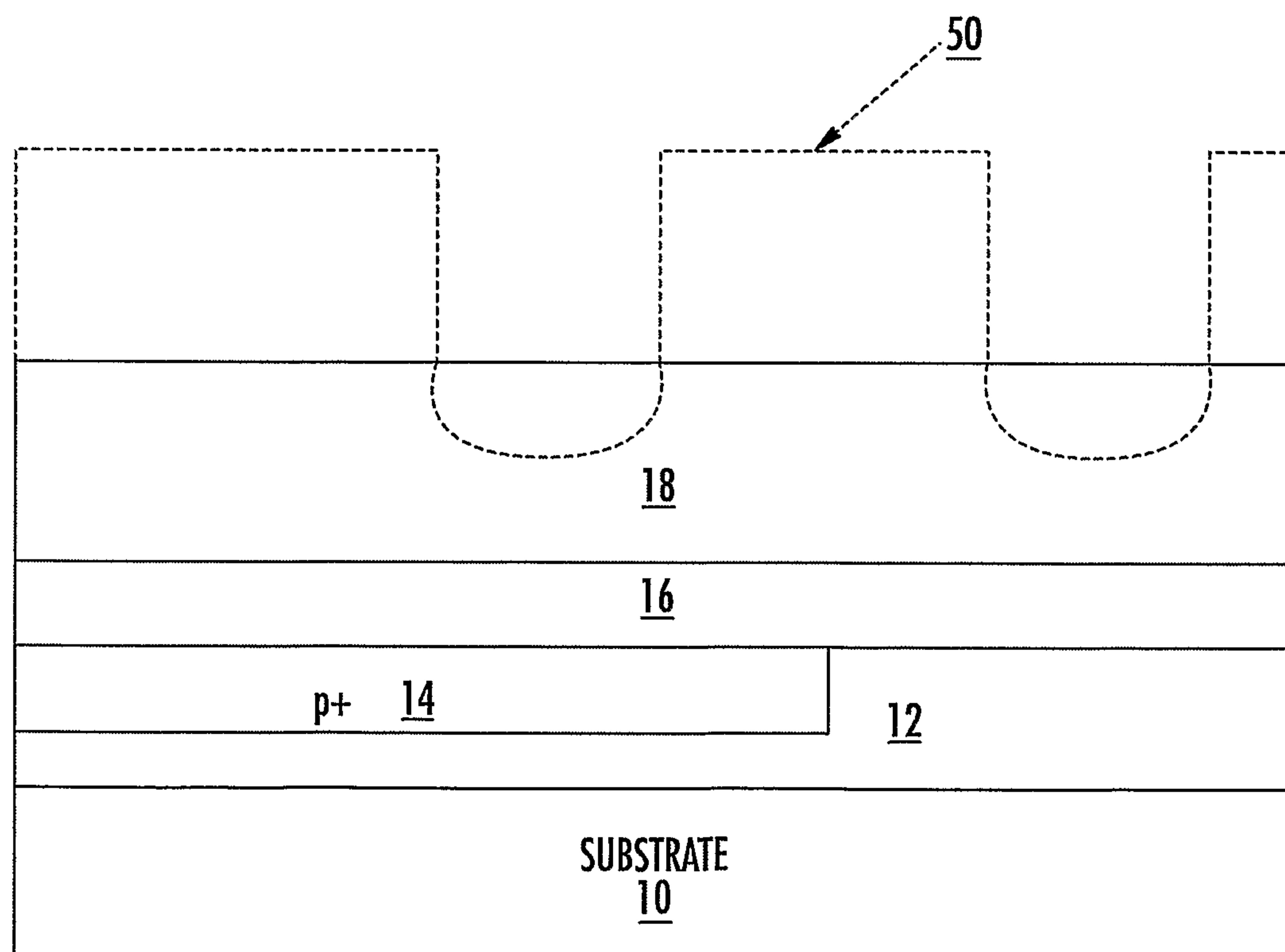


FIG. 2C

3/11

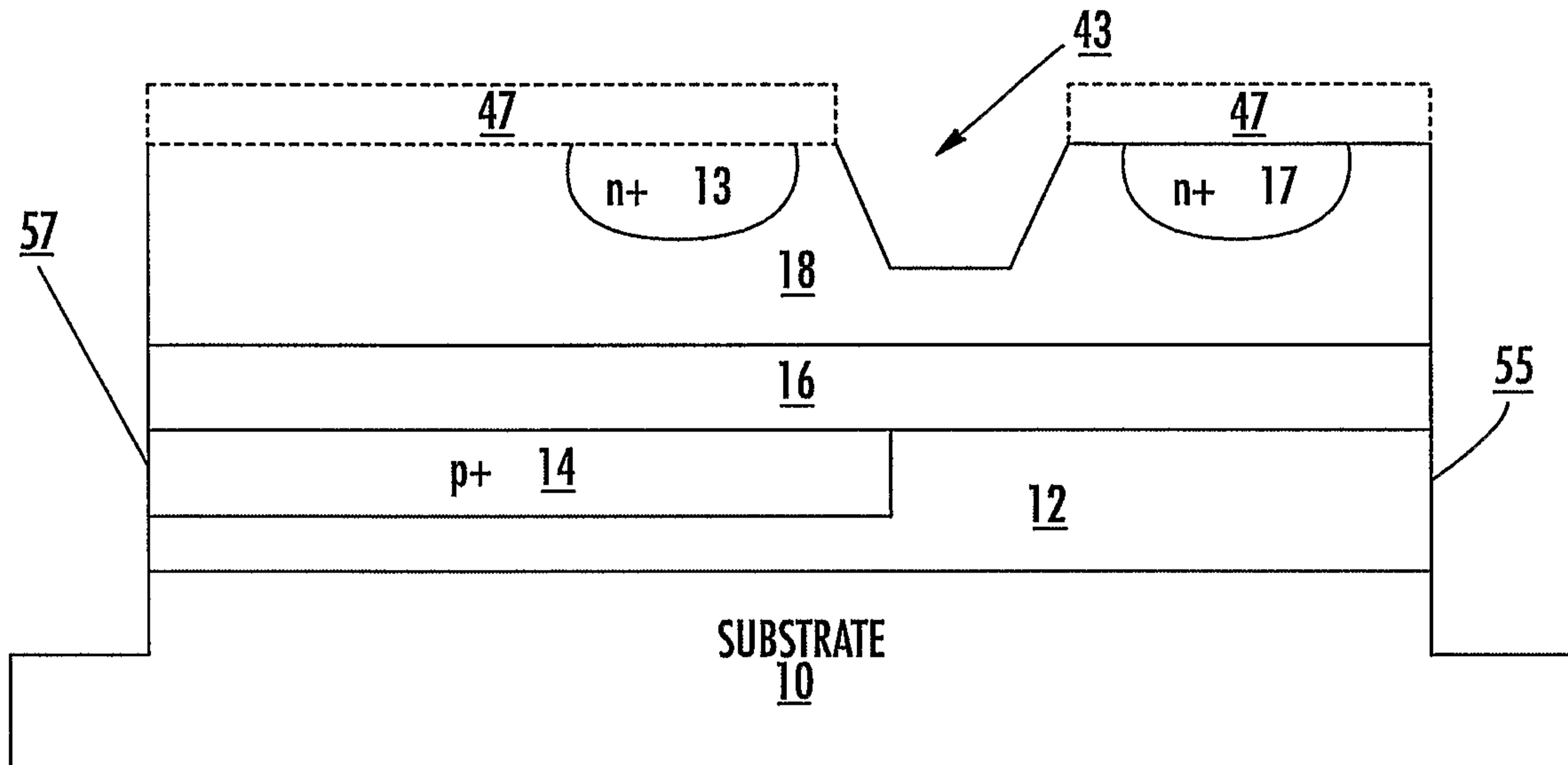


FIG. 2D.

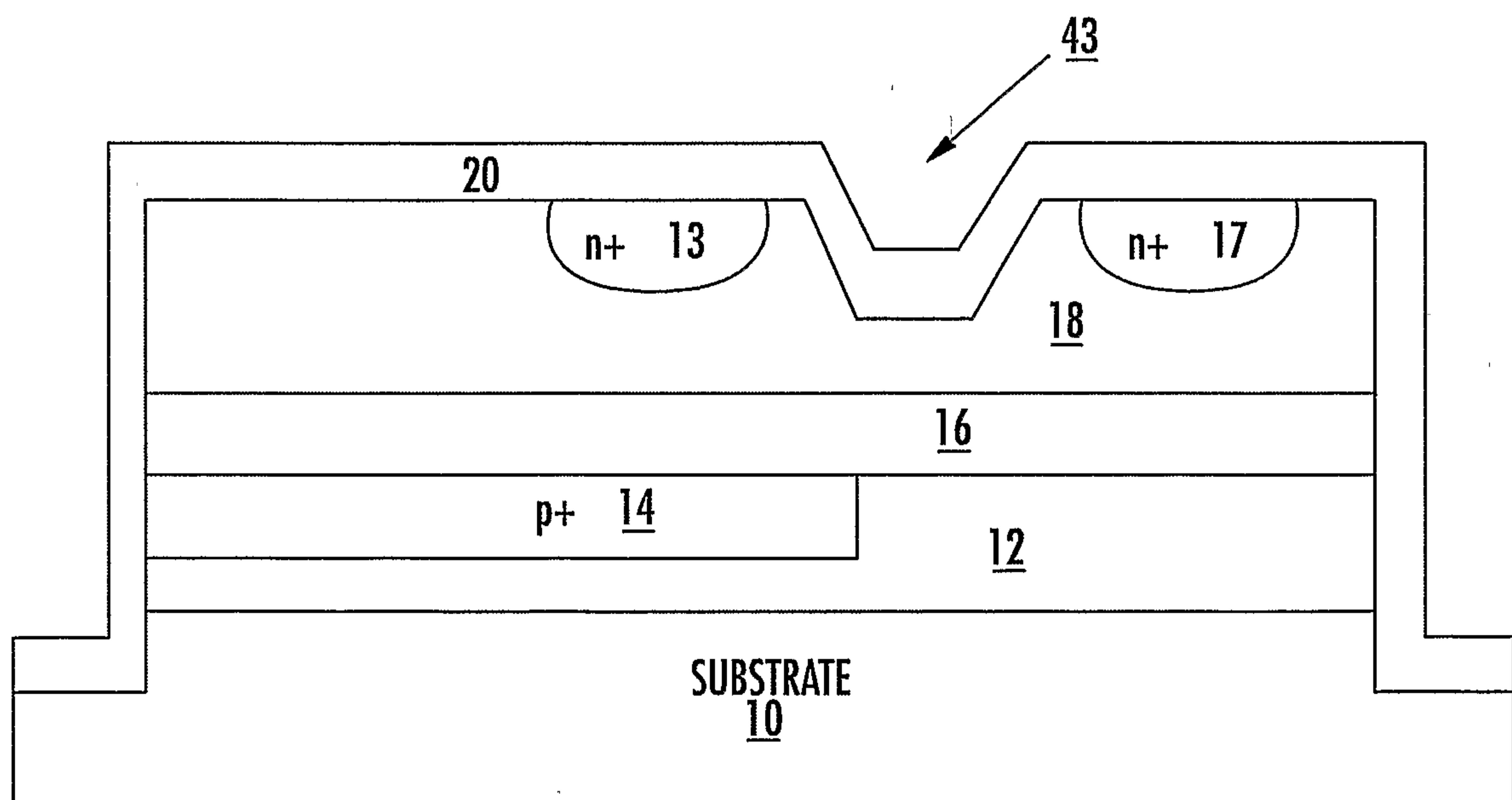


FIG. 2E.

4/11

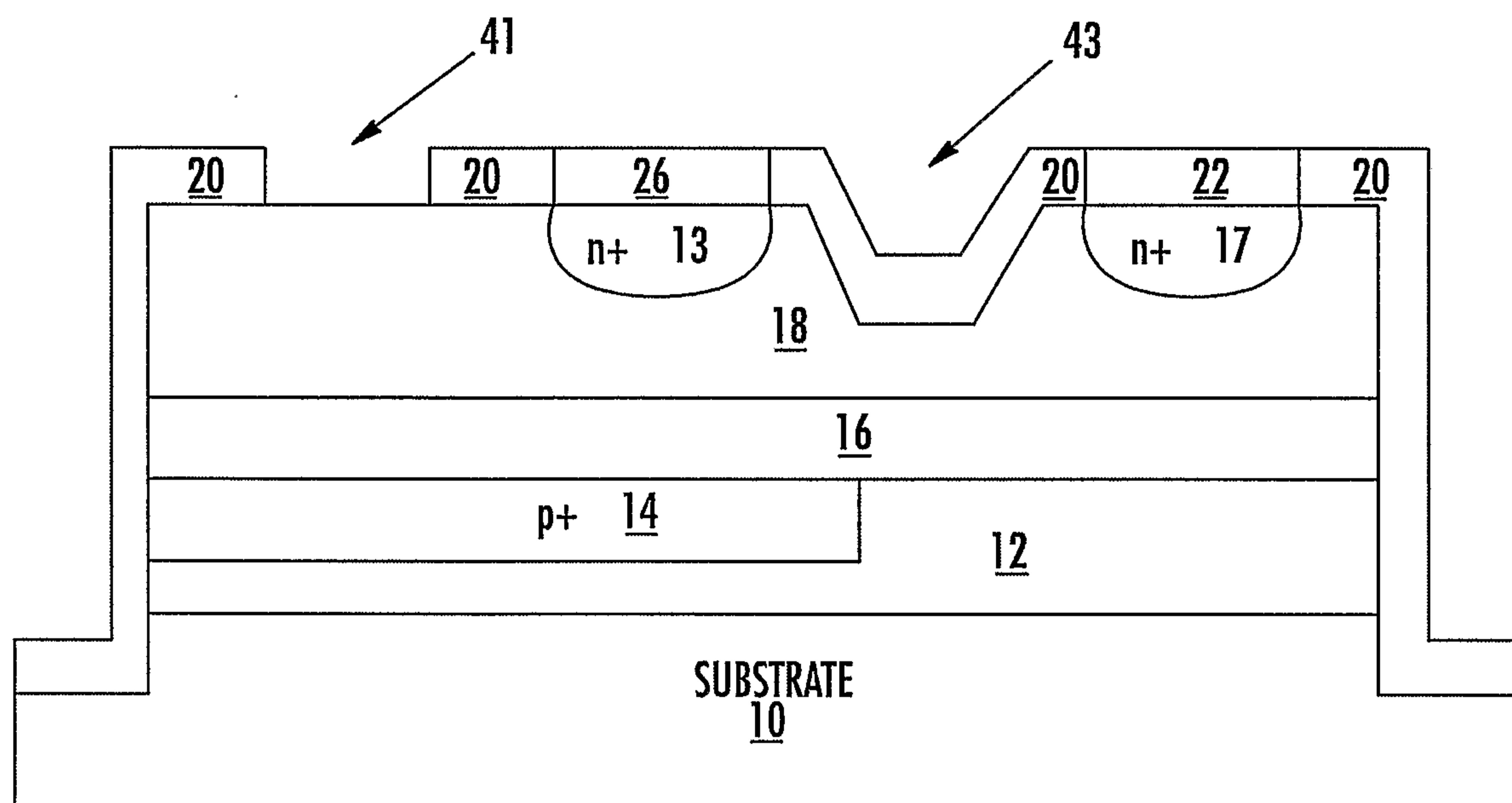


FIG. 2F.

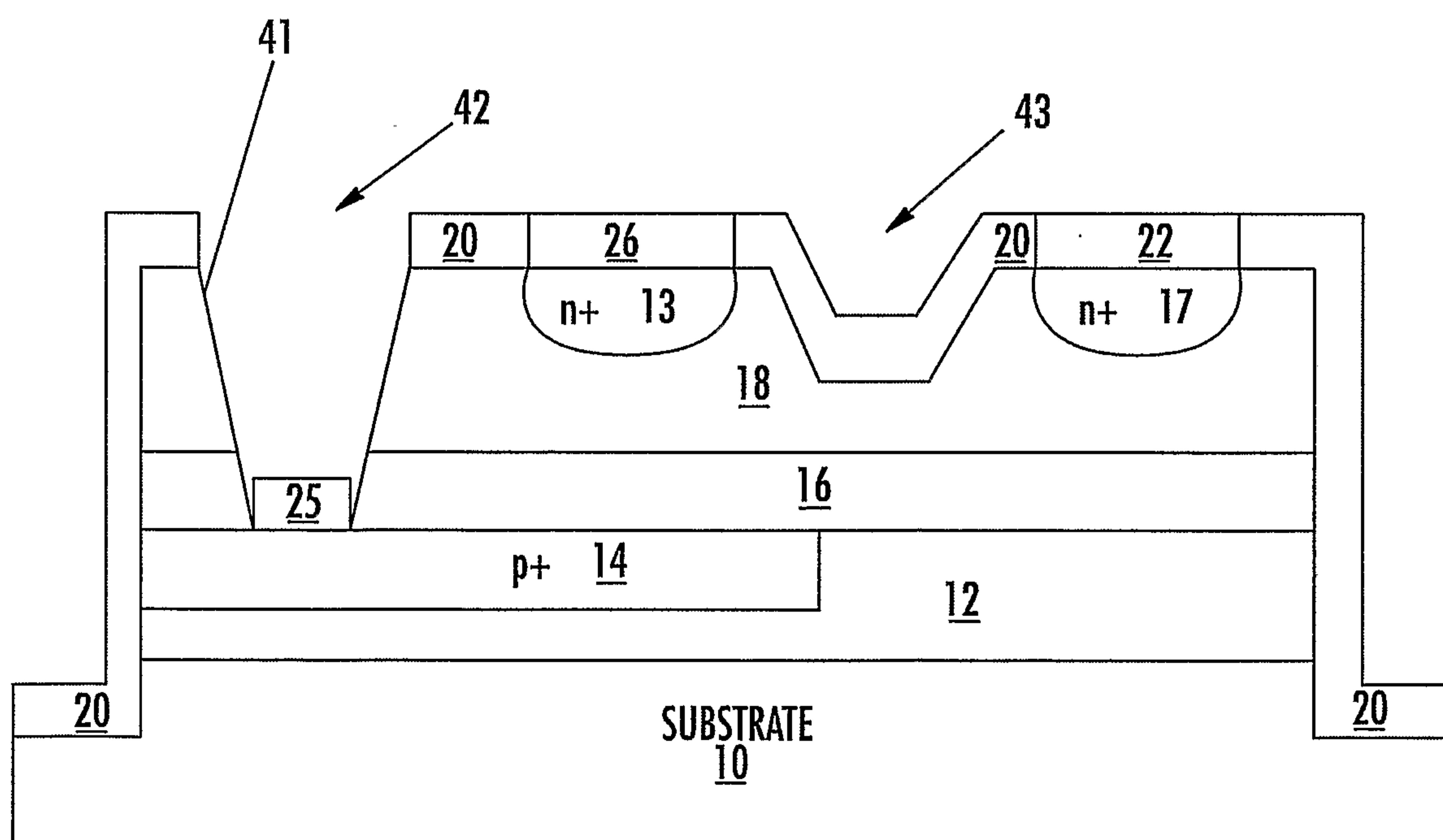


FIG. 2G.

5/11

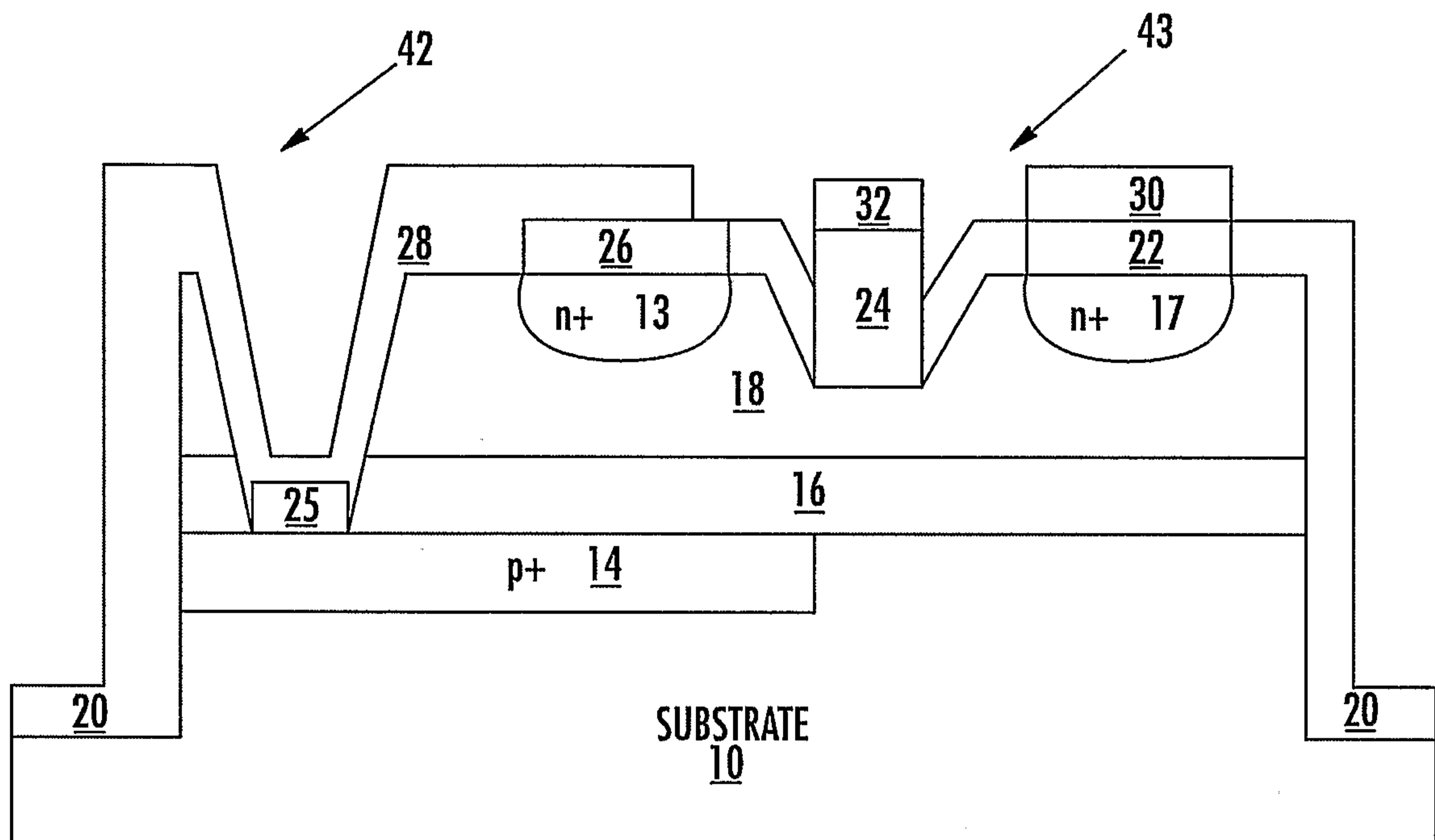


FIG. 2H.

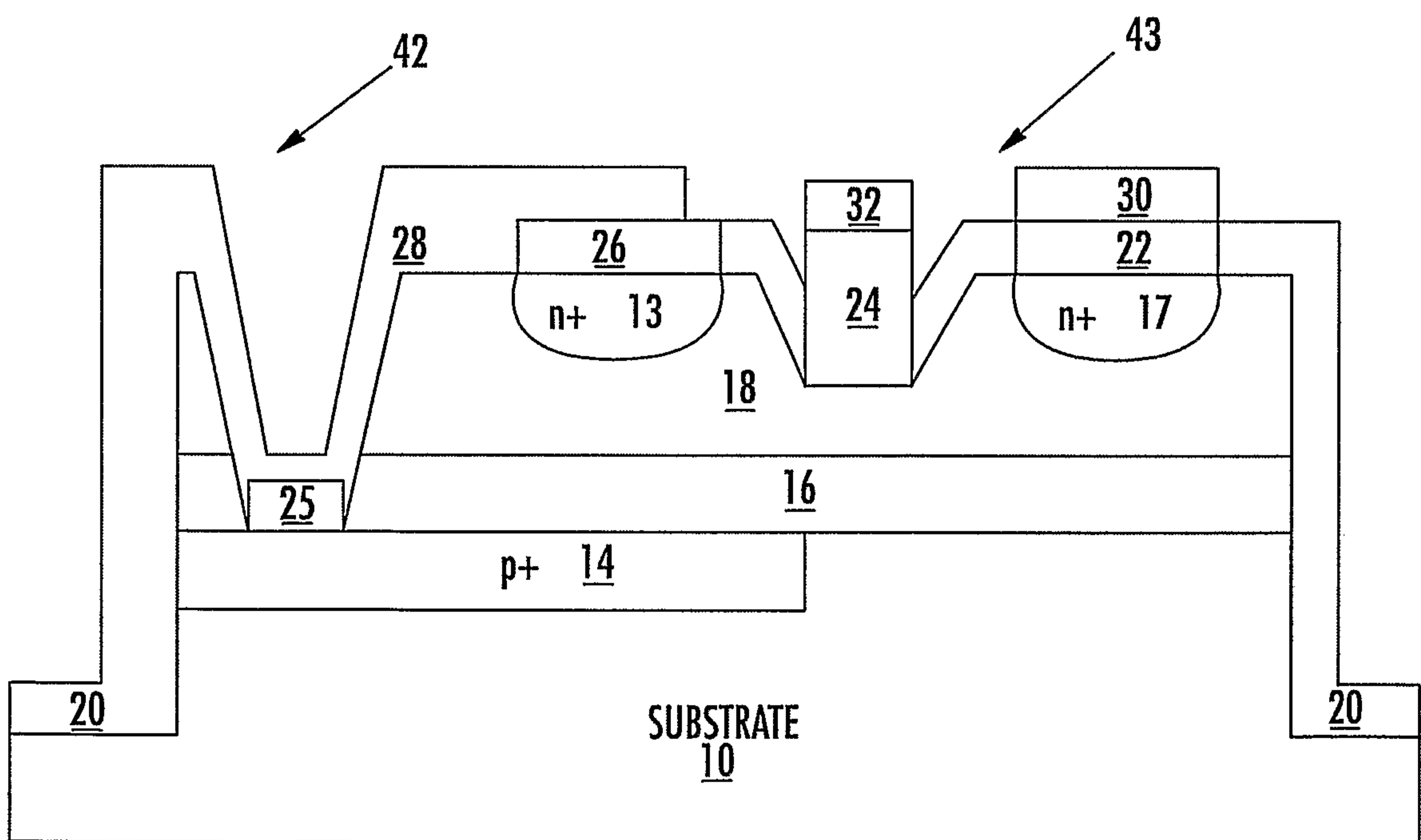


FIG. 3.

6/11

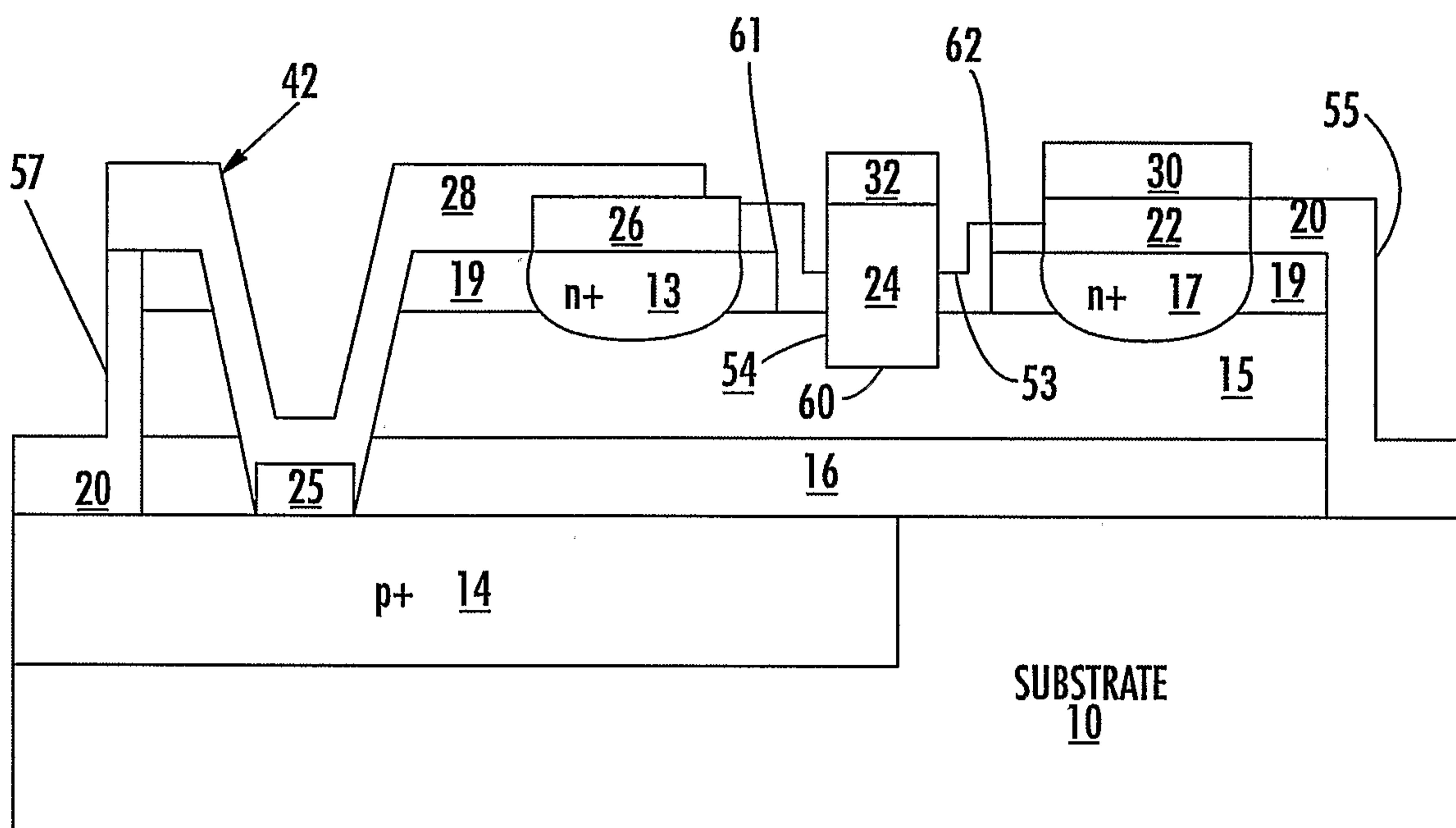


FIG. 4.

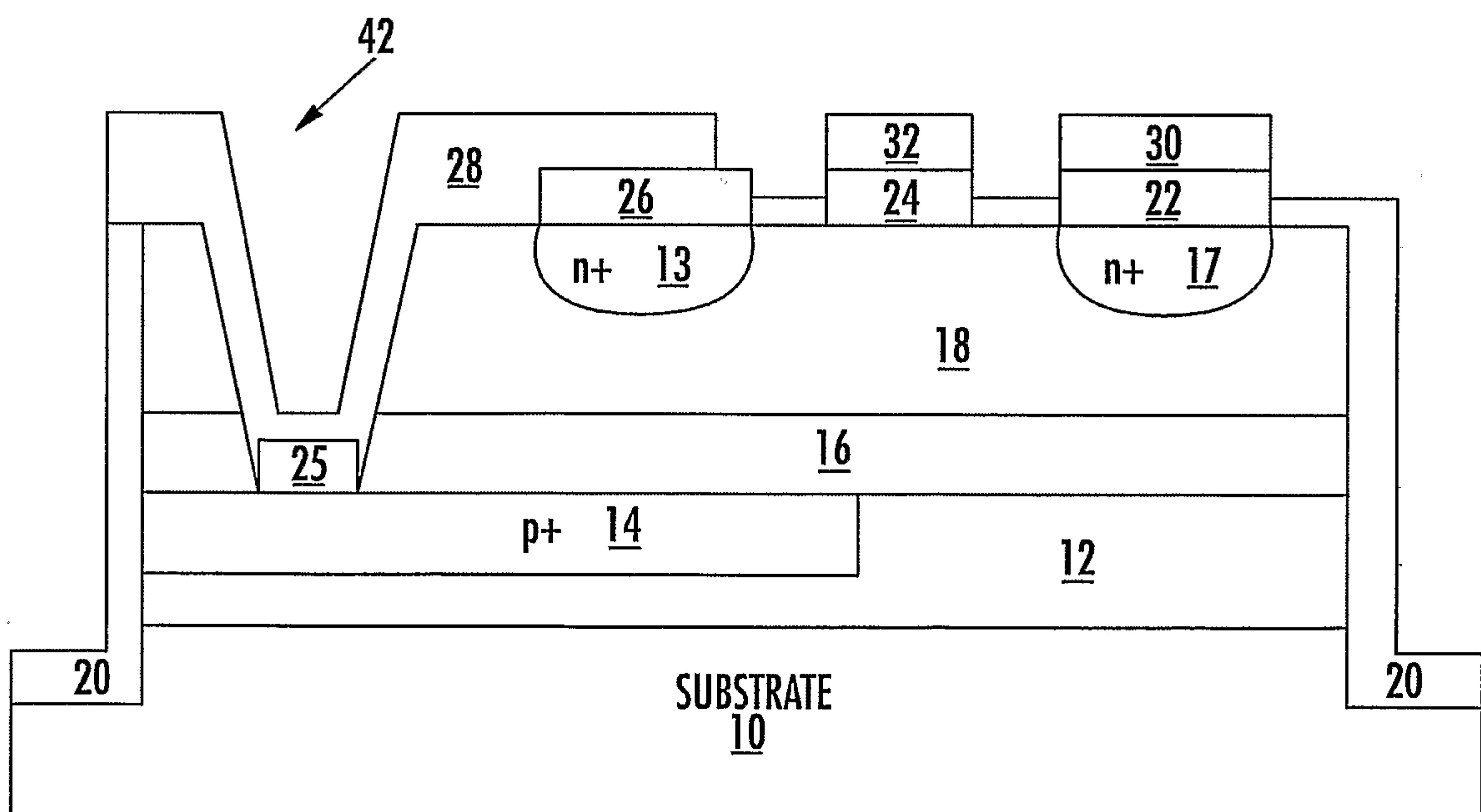


FIG. 5.

7/11

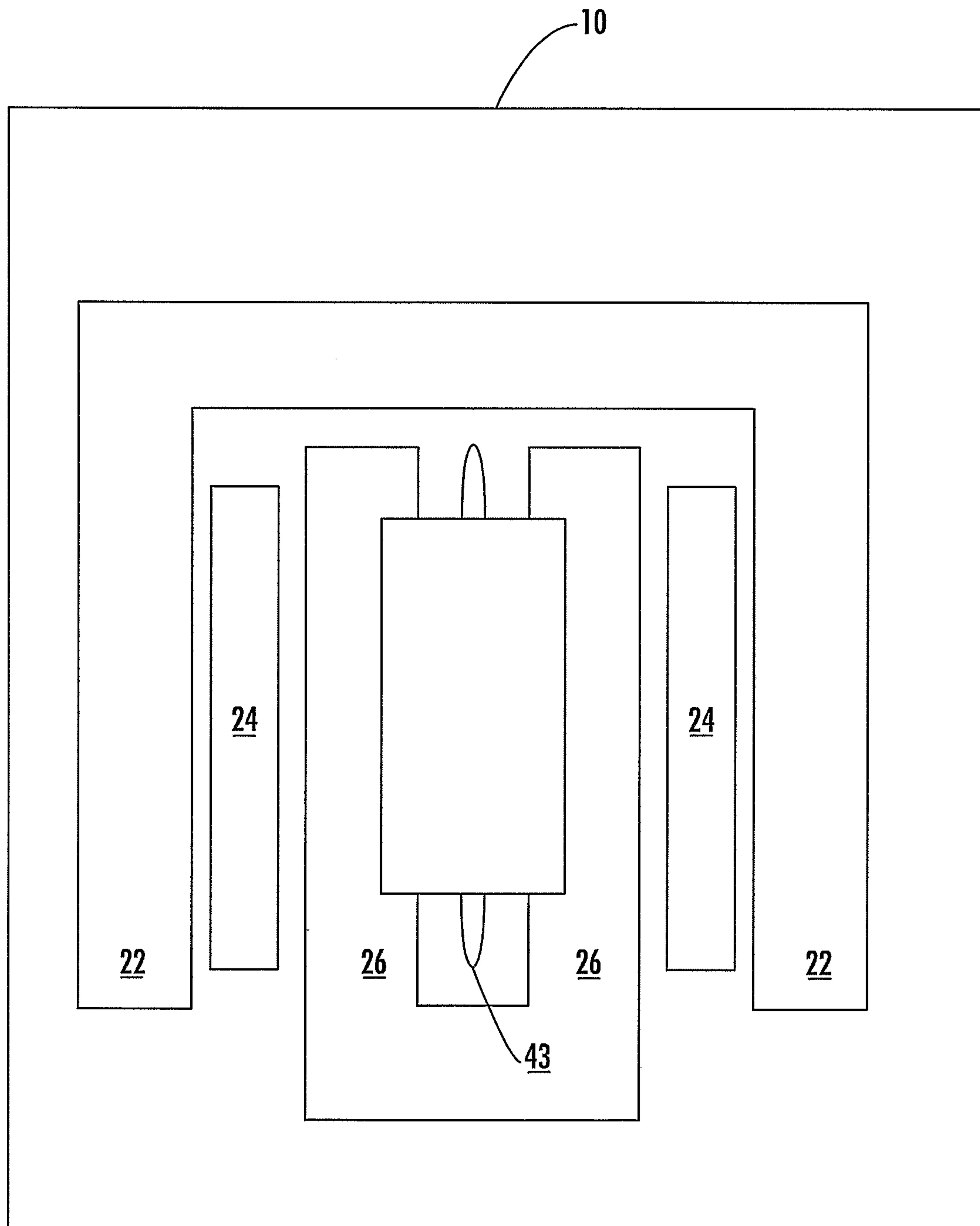


FIG. 6.

8/11

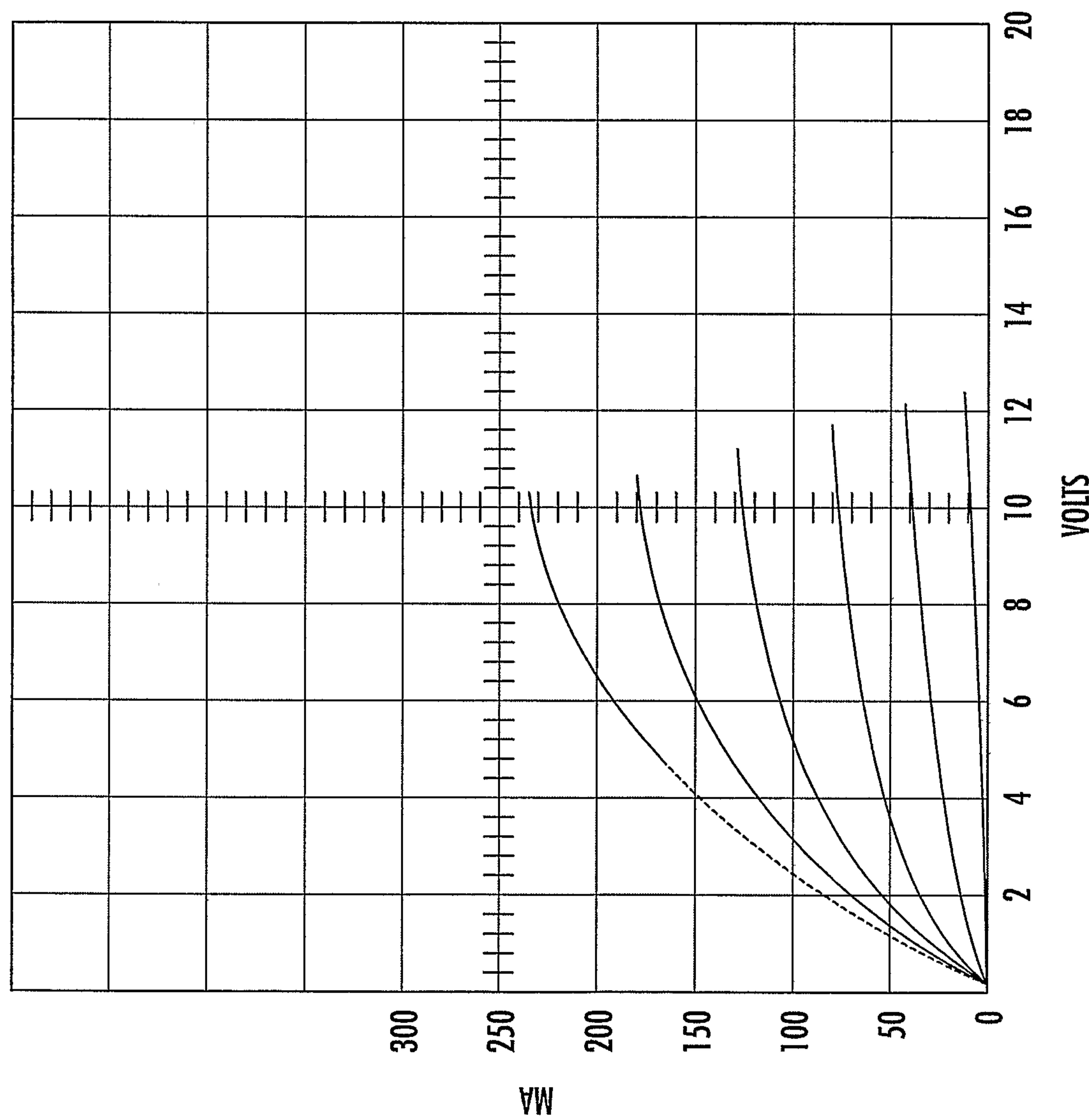


FIG. 7A.
(PRIOR ART)

9/11

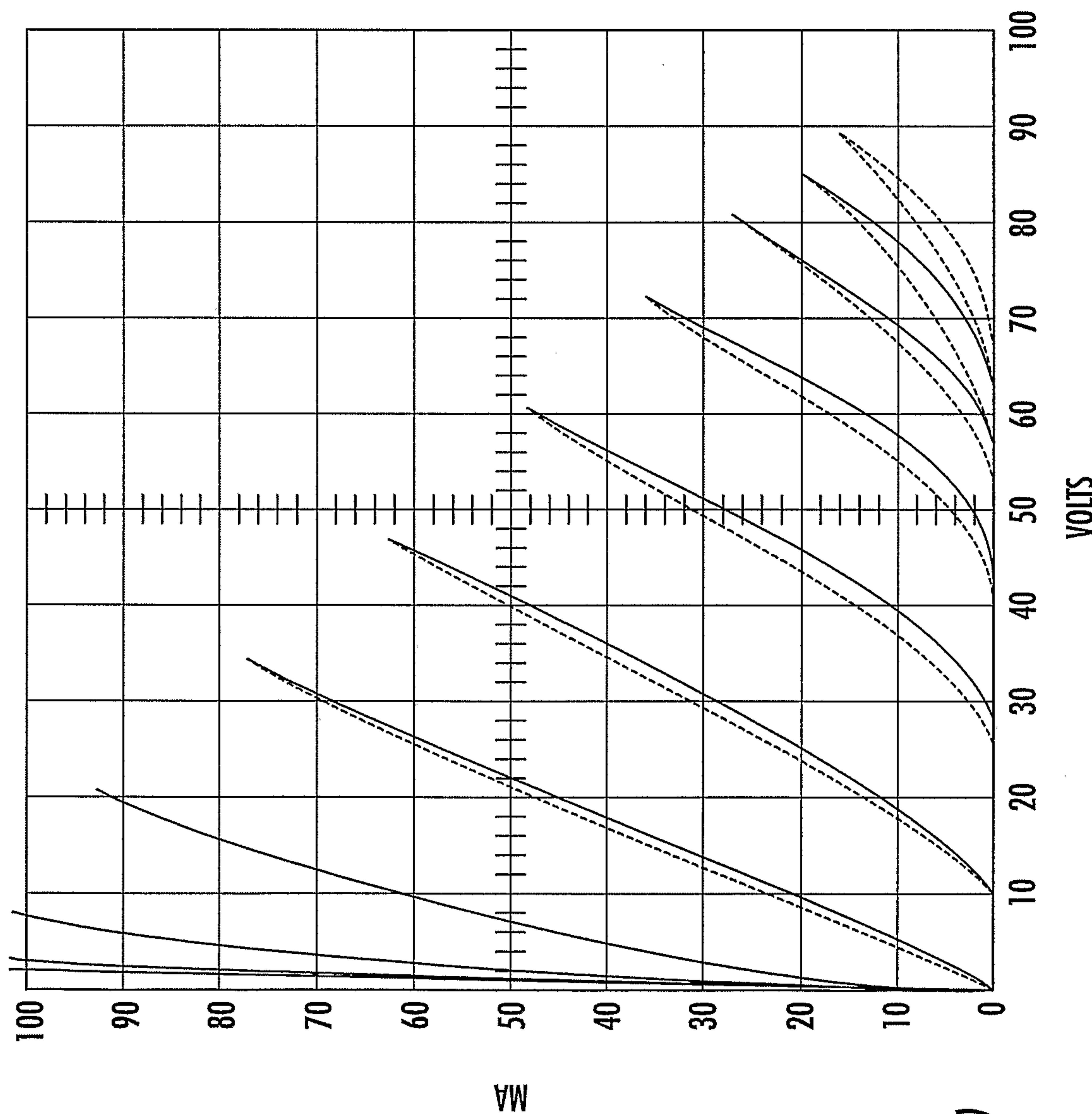


FIG. 7B.
(PRIOR ART)

10/11

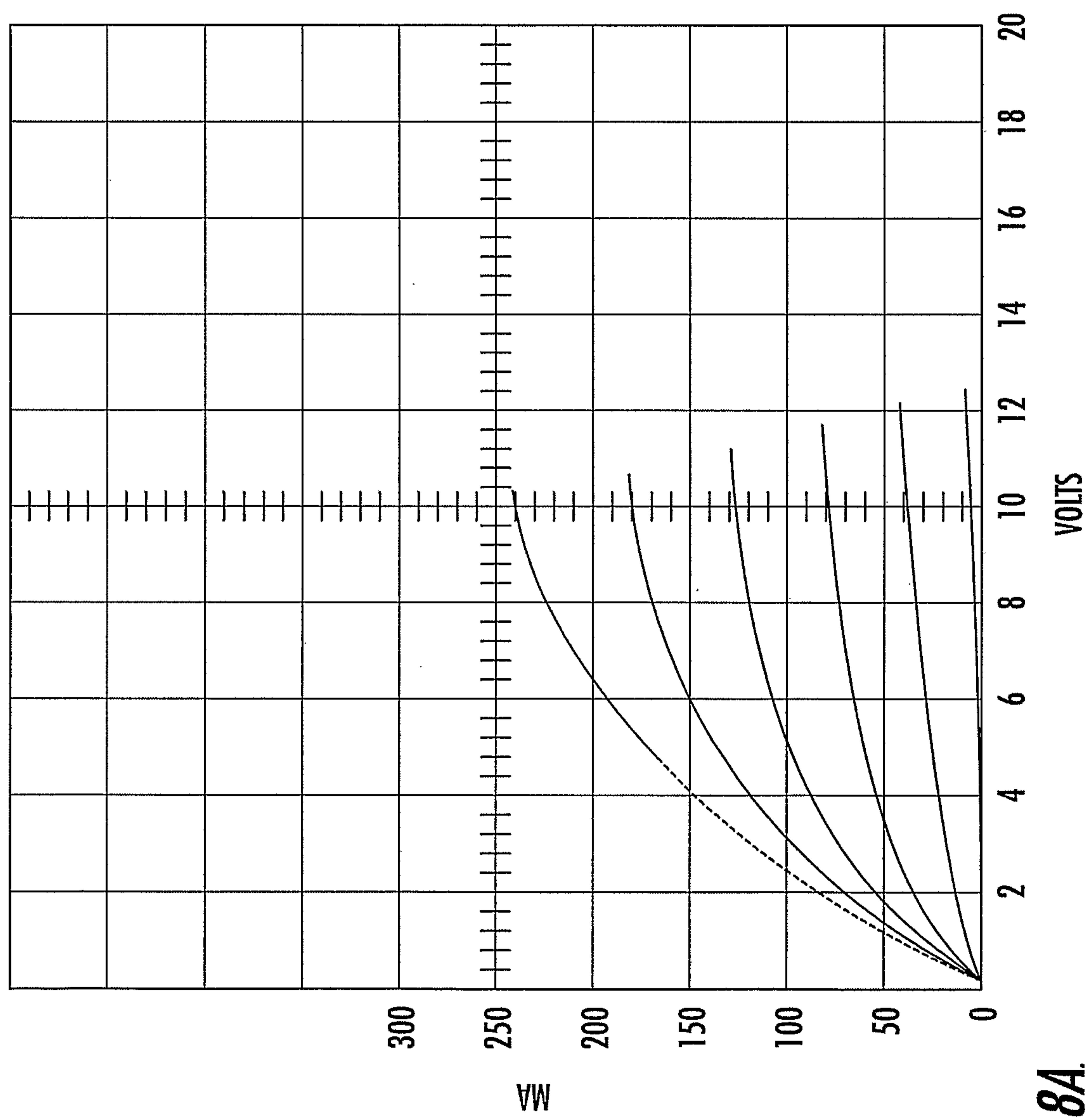


FIG. 8A.

11/11

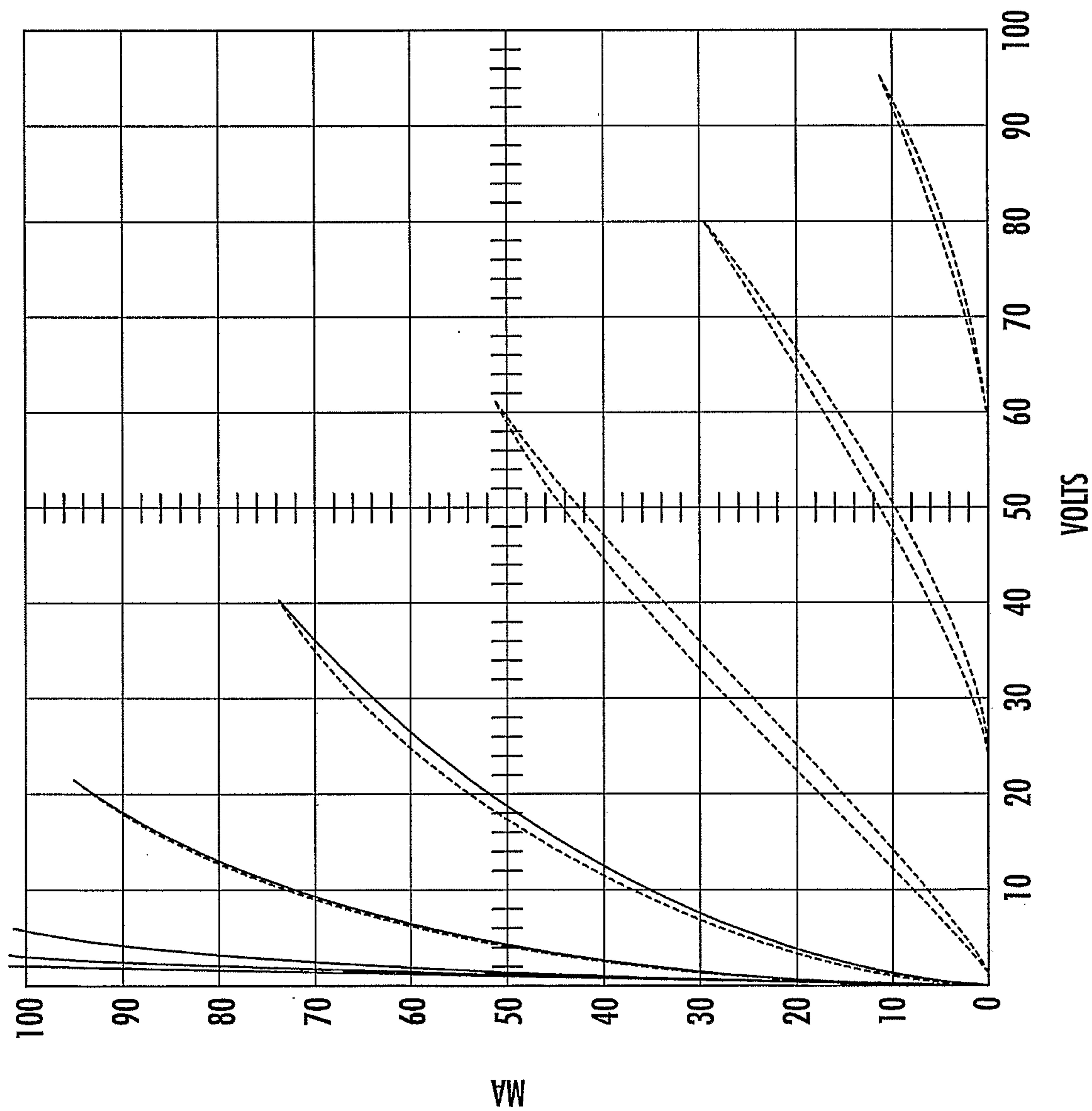
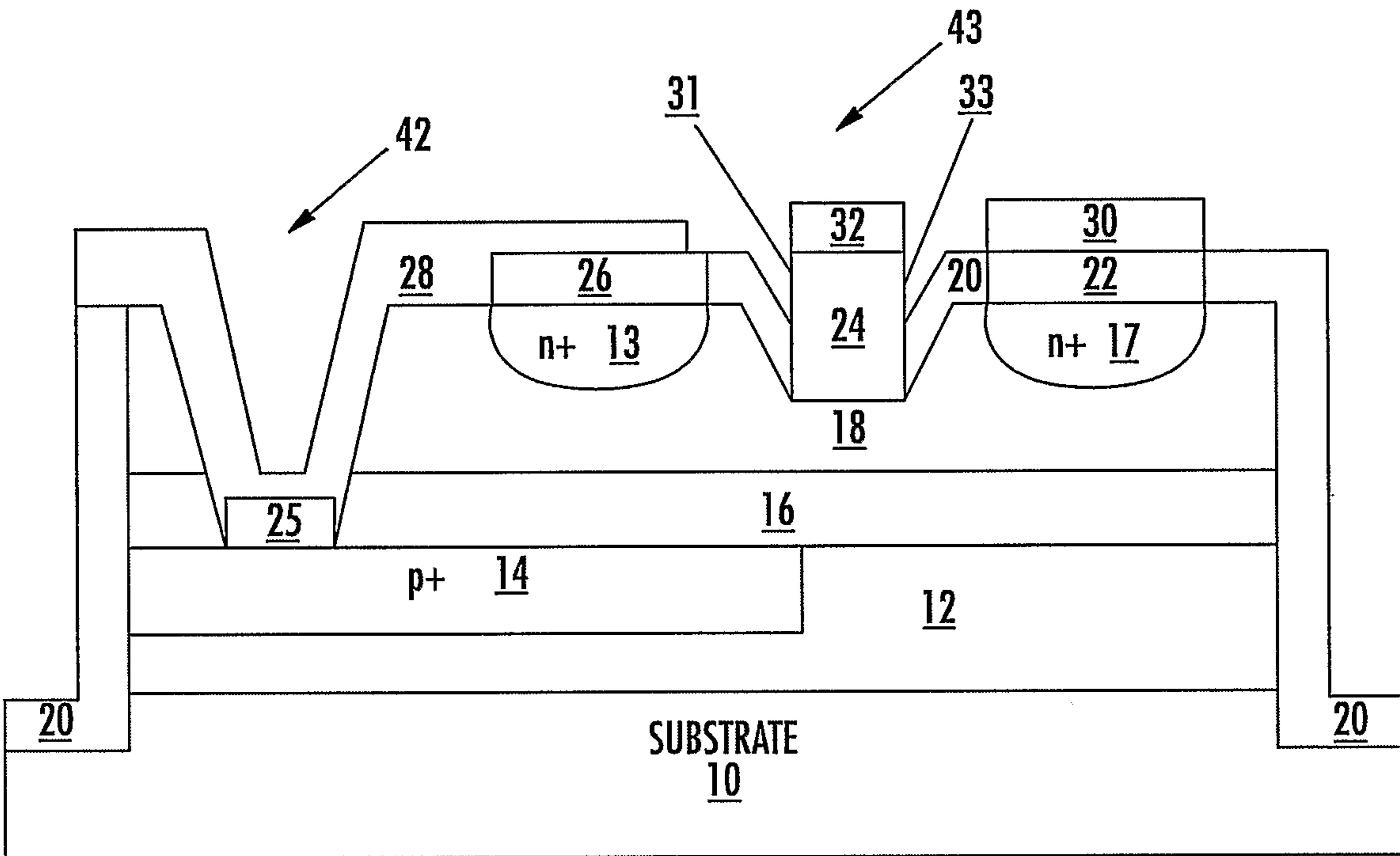



FIG. 8B.

