(54) 实用新型名称
抗核辐射电缆

(57) 摘要
一种抗核辐射电缆，涉及电缆技术领域，所解决的是现有电缆在核辐射环境中安全使用寿命短的技术问题。该电缆包括至少一根缆线，所述缆线包括线芯，及包裹在线芯外周面的绝缘层，其特征在于，还包括能抗核辐射的护套管，所述缆线穿置于护套管内。本实用新型提供的电缆，特别适合核电站等具有核辐射的场合使用。
1. 一种抗核辐射电缆，包括至少一根电缆，所述电缆包括线芯，及包覆在线芯外周面的绝缘层，其特征在于：还包括能抗核辐射的护套管，所述电缆穿置于护套管内。

2. 根据权利要求1所述的抗核辐射电缆，其特征在于：所述护套管是铅管，或是含铅量在80%以上的铝合金管。

3. 根据权利要求1所述的抗核辐射电缆，其特征在于：所述电缆还包括导电屏蔽层，所述屏蔽层包覆住绝缘层的外周面。

4. 根据权利要求1所述的抗核辐射电缆，其特征在于：所述电缆与护套管之间填充有用限位定位的限位填充料。

5. 根据权利要求4所述的抗核辐射电缆，其特征在于：所述限位填充料是工业黄油、沥青、重油、炭纤维、含氟纤维中的一种或多种的混合物。
抗核辐射电缆

技术领域
[0001] 本实用新型涉及电缆技术，特别是涉及一种抗核辐射电缆的技术。

背景技术
[0002] 传统的电缆都有线芯，及包覆在线芯外周的绝缘层构成，传统电缆都是为常规环境使用设计的，不适合具有核辐射的场合使用，其原因是：在核辐射的场所中，长时间的核辐射照射会对绝缘层造成损害，从而影响电缆电缆的传导特性，影响信号的可靠传输。因此，传统电缆在核辐射环境中使用时，其使用寿命较短。

实用新型内容
[0003] 针对上述现有技术中存在的缺陷，本实用新型所要解决的技术问题是提供一种在核辐射环境中使用寿命长的抗核辐射电缆。
[0004] 为了解决上述技术问题，本实用新型所提供的种抗核辐射电缆，包括至少一根缆线，所述缆线包括线芯，及包覆在线芯外周的绝缘层，其特征在于：还包括能抗核辐射的护套管，所述缆线穿置于护套管内。
[0005] 进一步的，所述护套管是铅管，或是含铅量在80%以上的铅合金管。
[0006] 进一步的，所述缆线还包括导电的屏蔽层，所述屏蔽层包括在绝缘层的外周面。
[0007] 进一步的，所述缆线与护套管之间填充有用于限定缆线位置的限位填料。
[0008] 进一步的，所述限位填料是工业黄油、沥青、重油、炭纤维、含氟纤维中的一种或多种的混合物。
[0009] 本实用新型提供的抗核辐射电缆，护套管能有效的保护护套管内的缆线，能有效避免核辐射对缆线的影响，从而能延长缆线在核辐射环境中的使用寿命，特别适核电站等具有核辐射的场合使用；进一步的，在缆线与护套管填充限位填料可以有效避免缆线在外力作用下窜动，能避免缆线与护套管因相互摩擦而造成损伤，能进一步延长缆线的使用寿命，并且在选用具有防潮特性的工业黄油、沥青、重油作为限位填料时，还能有效避免缆线受潮。

附图说明
[0010] 图1是本实用新型第一实施例的抗核辐射电缆的径向截面示意图；
[0011] 图2是本实用新型第二实施例的抗核辐射电缆的径向截面示意图；
[0012] 图3是本实用新型第三实施例的抗核辐射电缆的径向截面示意图；
[0013] 图4是本实用新型第四实施例的抗核辐射电缆的径向截面示意图；
[0014] 图5是本实用新型第五实施例的抗核辐射电缆的径向截面示意图；
[0015] 图6是本实用新型第六实施例的抗核辐射电缆的径向截面示意图；
[0016] 图7是本实用新型第七实施例的抗核辐射电缆的径向截面示意图；
[0017] 图8是本实用新型第八实施例的抗核辐射电缆的径向截面示意图。
具体实施方式
【0018】以下结合附图说明本实用新型的实施例作进一步详细描述，但本实施例并不用于限制本实用新型，凡采用本实用新型的相似结构及其相似变化，均应列入本实用新型的保护范围，本实用新型中的顿号均表示和的关系。
【0019】如图1所示，本实用新型第一实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管11，及穿置于护套管11内一根缆线，所述缆线包括线芯12，及包覆在线芯12外周面的绝缘层13。
【0020】本实用新型第一实施例中，所述护套管11是铝管，或是含铝量在80%以上的铝合金管。
【0021】本实用新型第一实施例中，所述绝缘层13是交联聚乙烯胶或氟化物层。
【0022】本实用新型第二实施例特别适用核电站等具有核辐射的场合使用，护套管能有效的保护护套管内缆线，能有效避免核辐射对缆线的影响，并且由交联聚乙烯或氟化物构成的绝缘层不但具备绝缘性能，还具备一定的抗核辐射性能，即便有少量核辐射泄漏到护套管内，绝缘层也能有效的避免核辐射对线芯的影响，使得电缆在核辐射环境下的使用寿命可以长达80年以上。
【0023】如图2所示，本实用新型第二实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管21，及穿置于护套管21内一根缆线，所述缆线包括线芯22，及包覆在线芯22外周面的绝缘层23。
【0024】本实用新型第二实施例与第一实施例的区别在于，所述缆线还包括导电的屏蔽层24，所述屏蔽层24包括绝缘层23的外周面。
【0025】本实用新型第二实施例在第一实施例的基础上增加了导电的屏蔽层，屏蔽层的设置可以增加电缆号的传输可靠性，能有效避免外部信号的干扰。
【0026】如图3所示，本实用新型第三实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管31，及穿置于护套管31内一根缆线，所述缆线包括线芯32，及包覆在线芯32外周面的绝缘层33。
【0027】本实用新型第三实施例与第一实施例的区别在于，所述缆线与护套管31之间填充有用于限定缆线位置的限位填料35，所述限位填料35是工业黄油、沥青、重油、炭纤维、含氟纤维中的一种或多种的混合物。
【0028】本实用新型第三实施例在第一实施例的基础上增加了限位填料，限位填料的设置可以有效避免缆线在外力作用下窜动，能避免缆线与护套管因相互摩擦而造成损伤，并且在选用具有防潮特性的工业黄油、沥青、重油作为限位填料时，还能有效避免缆线受潮。
【0029】如图4所示，本实用新型第四实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管41，及穿置于护套管41内一根缆线，所述缆线包括线芯42，及包覆在线芯42外周面的绝缘层43，及包覆在绝缘层43外周面的屏蔽层44。
【0030】本实用新型第四实施例与第二实施例的区别在于，所述缆线与护套管41之间填充有用于限定缆线位置的限位填料45，所述限位填料45是工业黄油、沥青、重油、炭纤维、含氟纤维中的一种或多种的混合物。
【0031】本实用新型第四实施例在第二实施例的基础上增加了限位填料，限位填料的设置
可以有效避免缆线在外力作用下窜动，能避免缆线与护套管因相互摩擦而造成损伤，并且在选用具有防潮特性的工业黄油、沥青、重油作为限位填料时，还能有效避免缆线受潮。

[0032] 如图5所示，本实用新型第五实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管51，及穿置于护套管51内的多根缆线，所述缆线包括线芯52，及包覆在线芯52外周面的绝缘层53。

[0033] 本实用新型第五实施例与第一实施例的区别在于穿置于护套管51内缆线数量有多根。

[0034] 如图6所示，本实用新型第六实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管61，及穿置于护套管61内的多根缆线，所述缆线包括线芯62，及包覆在线芯62外周面的绝缘层63，包覆在绝缘层63外周面的屏蔽层64。

[0035] 本实用新型第六实施例与第二实施例的区别在于穿置于护套管61内缆线数量有多根。

[0036] 如图7所示，本实用新型第七实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管71，及穿置于护套管71内的多根缆线，所述缆线包括线芯72，及包覆在线芯72外周面的绝缘层73，所述缆线与护套管71之间填充有用于限定缆线位置的限位填充75。

[0037] 本实用新型第七实施例与第三实施例的区别在于穿置于护套管71内缆线数量有多根。

[0038] 如图8所示，本实用新型第八实施例所提供的一种抗核辐射电缆，包括能抗核辐射的护套管81，及穿置于护套管81内的多根缆线，所述缆线包括线芯82，及包覆在线芯82外周面的绝缘层83，包覆在绝缘层83外周面的屏蔽层84，所述缆线与护套管81之间填充有用于限定缆线位置的限位填充85。

[0039] 本实用新型第八实施例与第四实施例的区别在于穿置于护套管81内缆线数量有多根。
图8