(54) 发明名称
对光源进行调光的控制器和系统

(57) 摘要
本发明公开了一种对 LED 光源进行调光的控制器及系统。该控制器包括探测引脚、输入信号引脚和监测引脚。探测引脚用于监测整流电压并探测整流电压来自于三端可控硅调光器还是来自于开 / 关调光器。输入信号引脚用于接收指示整流电压的输入信号，如果整流电压来自三端可控硅调光器，控制器根据输入信号控制与 LED 光源串联的开关以控制 LED 光源的亮度。监测引脚用于接收指示开 / 关调光器动作的监测信号，如果整流电压来自开 / 关调光器，控制器根据监测信号控制开关以控制 LED 光源的亮度。由于本发明提供的调光控制器能够判断采用的调光器类型，并根据调光器类型对光源进行相应的调光操作，因此可以灵活的适用于不同类型的调光器。
1. 一种对 LED 光源进行调光的控制器，其特征在于，所述控制器包括；
 探测引脚，用于检测整流电压并检测所述整流电压是来自于三端可控硅调光器还是来自
 于开/关调光器；
 输入信号引脚，用于接收指示所述整流电压的输入信号，如果所述整流电压来自所述
 三端可控硅调光器，所述控制器根据所述输入信号控制与所述 LED 光源串联的开关以控制
 所述 LED 光源的亮度；及
 监测引脚，用于接收指示所述开/关调光器动作的监测信号，如果所述整流电压来自
 所述开/关调光器，所述控制器根据所述监测信号控制所述开关以控制所述 LED 光源的亮
 度。

2. 根据权利要求 1 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器还包
 括分流控制引脚，如果所述整流电压来自所述三端可控硅调光器，所述分流控制引脚通
 过分流路为所述三端可控硅调光器提供维持电流。

3. 根据权利要求 1 所述的对 LED 光源进行调光的控制器，其特征在于，如果所述整流
 电压来自所述三端可控硅调光器，所述控制器通过计算所述整流电压的导通角以控制所述
 LED 光源的亮度。

4. 根据权利要求 1 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器还包
 括；
 平均信号引脚，用于接收指示所述整流电压的平均值的平均信号，如果所述整流电压
 来自所述三端可控硅调光器，所述控制器通过比较所述输入信号和所述平均信号以控制所
 述 LED 光源的亮度。

5. 根据权利要求 1 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器产生
 脉冲宽度调制信号，在所述脉冲宽度调制信号的第一状态，所述控制器交替接通和断开所
 述开关，在所述脉冲宽度调制信号的第二状态，所述开关保持断开。

6. 根据权利要求 5 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器将所
 述输入信号与指示所述整流电压的平均值的平均信号进行比较以产生所述脉冲宽度调制
 信号。

7. 根据权利要求 5 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器还包
 括；
 第一分流控制引脚，如果所述整流电压来自所述三端可控硅调光器，所述第一分流控
 制引脚导通第一分流通路为所述三端可控硅调光器提供维持电流；及
 第二分流控制引脚，如果所述整流电压来自所述三端可控硅调光器，所述第二分流控
 制引脚导通第二分流通路为所述三端可控硅调光器提供维持电流。
 其中，所述第一分流控制引脚在所述脉冲宽度调制信号为所述第一状态时导通所述第
 一分流通路，所述第二分流控制引脚在所述脉冲宽度调制信号为所述第二状态时导通所述
 第二分流通路。

8. 根据权利要求 7 所述的对 LED 光源进行调光的控制器，其特征在于，所述控制器还包
 括；
 第一误差放大器，用于接收预设参考信号并产生输出信号至所述第一分流控制引脚；
 及
权利要求书

第二误差放大器，用于接收所述预设参考信号并产生输出信号至所述第二分流控制引脚。

其中，如果所述整流电压来自所述开/关调光器，所述第一误差放大器和所述第二误差放大器关闭。

9. 根据权利要求5所述的对LED光源进行调光的控制器，其特征在于，所述控制器还包括：
 电流感应引脚，用于提供指示所述LED光源的电流的感应信号；及
 比较器，用于比较所述感应信号和预设参考信号，

其中，在所述脉冲宽度调制信号的所述第一状态，所述控制器根据所述比较器的输出
和一个脉冲信号交替接通和断开所述开关。

10. 根据权利要求5所述的对LED光源进行调光的控制器，其特征在于，所述控制器还包括：
 电流感应引脚，用于提供指示所述LED光源的电流的感应信号；及
 放大器，用于比较所述感应信号和调光信号，所述调光信号的幅度由所述开/关调光
 器的动作决定。

11. 根据权利要求10所述的对LED光源进行调光的控制器，其特征在于，所述控制器还包括：
 采样保持电路，用于接收所述放大器的输出；及
 比较器，用于比较所述采样保持电路的输出和锯齿波信号，

其中，在所述脉冲宽度调制信号的所述第一状态，所述控制器根据所述比较器的输出
交替接通和断开所述开关。

12. 根据权利要求1所述的对LED光源进行调光的控制器，其特征在于，所述控制器还包括：
 与所述探测引脚耦合的时钟产生器，当所述整流电压大于第一预设电压并小于第二预
 设电压时所述时钟产生器产生时钟信号；及
 与所述时钟产生器耦合的计数器，用于对所述时钟信号的脉冲进行计数。

13. 根据权利要求12所述的对LED光源进行调光的控制器，其特征在于，所述控制器还包括：
 与所述计数器耦合的比较器，用于比较所述计数器的计数值和参考值以产生选择信
 号，

其中，所述选择信号指示所述整流电压来自于所述三端可控硅调光器还是来自所述开
/关调光器。

14. 一种对光源进行调光的系统，其特征在于，所述系统包括：
 整流器，用于对交流电压进行整流并产生整流电压；
 与所述整流器耦合的电源转换器，用于接收所述整流电压并为光源提供调节后的电
 源；及

 调光控制器，用于探测所述交流电压来自于三端可控硅调光器还是来自于开/关调光
 器，并控制所述电源转换器以控制所述光源的亮度。

其中，如果所述交流电压来自所述三端可控硅调光器，所述调光控制器根据所述整流
电压控制与所述光源串联的开关以控制所述光源的亮度；如果所述交流电压来自所述开关 / 关调光器，所述调光控制器根据所述开关 / 关调光器的动作控制所述开关以控制所述光源的亮度。

15. 根据权利要求 14 所述的对光源进行调光的系统，其特征在于，如果所述整流电压来自所述三端可控硅调光器，所述调光控制器将指示所述整流电压的输入信号与指示所述整流信号的平均值的平均信号进行比较从而控制所述光源的亮度。

16. 根据权利要求 14 所述的对光源进行调光的系统，其特征在于，如果所述整流电压来自所述三端可控硅调光器，所述调光控制器计算所述整流电压的导通角以控制所述光源的亮度。

17. 根据权利要求 14 所述的对光源进行调光的系统，其特征在于，所述调光控制器产生脉冲宽度调制信号，在所述脉冲宽度调制信号的第一状态，所述调光控制器交替接通和断开所述开关，在所述脉冲宽度调制信号的第二状态，所述开关保持断开。

18. 根据权利要求 17 所述的对光源进行调光的系统，其特征在于，所述调光控制器将指示所述整流电压的输入信号与指示所述整流电压的平均值的平均信号进行比较而产生所述脉冲宽度调制信号。

19. 根据权利要求 17 所述的对光源进行调光的系统，其特征在于，所述调光控制器在所述脉冲宽度调制信号为所述第一状态时导通第一分流通路为所述三端可控硅调光器提供维持电流，所述调光控制器在所述脉冲宽度调制信号为所述第二状态时导通第二分流通路为所述三端可控硅调光器提供维持电流。

20. 根据权利要求 17 所述的对光源进行调光的系统，其特征在于，所述调光控制器将指示流经所述光源的电流的感应信号与预设参考信号进行比较，在所述脉冲宽度调制信号的所述第一状态，所述控制器根据所述感应信号和所述预设参考信号的比较结果和一个脉冲信号交替接通和断开所述开关。

21. 根据权利要求 17 所述的对光源进行调光的系统，其特征在于，所述调光控制器将指示流经所述光源的电流的感应信号与调光信号进行比较，所述调光信号的幅度由所述开关 / 关调光器的动作决定，在所述脉冲宽度调制信号的所述第一状态，所述控制器根据所述感应信号和所述调光信号的比较结果和一个锯齿波信号交替接通和断开所述开关。

22. 根据权利要求 14 所述的对光源进行调光的系统，其特征在于，所述调光控制器包括：

时钟产生器，当所述整流电压大于第一预设电压并小于第二预设电压时所述时钟产生器产生时钟信号；及

与所述时钟产生器耦合的计数器，用于对所述时钟信号的脉冲进行计数。

23. 根据权利要求 22 所述的对光源进行调光的系统，其特征在于，所述调光控制器还包括：

与所述计数器耦合的比较器，用于比较所述计数器的计数值和参考值以产生选择信号，

其中，所述选择信号指示所述交流电压来自于所述三端可控硅调光器还是来自所述开关 / 关调光器。
对光源进行调光的控制器和系统

技术领域
[0001] 本发明涉及一种光源驱动电路，尤其涉及一种对光源进行调光的控制器和系统。

背景技术
[0002] 近年来，利用发光二极管 (LED) 进行照明的技术得以发展。LED 相比荧光灯和白炽灯等传统光源具有一些优势。比如，LED 具有更低的功耗。传统光源，如白炽灯，将相当大一部分功耗用于加热金属灯丝到很高的温度从而发光，而 LED 几乎不发热，仅仅消耗很少的功率就能产生与白炽灯同等亮度的光。如果产生同样亮度的光，采用 LED 作为光源仅需消耗 7W 的功率，而传统白炽灯灯泡需要消耗大概 60W 的功率。对于 T-8 荧光灯而言，LED 消耗不到 20 瓦的功率所产生的亮度超过消耗 60W 功率的荧光灯的亮度。
[0003] LED 的寿命可以超过 50000 小时，甚至可以达到 100000 小时。而白炽灯的平均寿命大约为 5000 小时，荧光灯的平均寿命大约为 15000 小时。此外，LED 不含汞等有害物质，也不产生紫外线辐射。
[0004] 调节光源的亮度可以采用不同的方法。比如，电源转换器接收交流电源提供的交流电压，并产生直流电压为 LED 光源供电。控制器根据耦合在交流电源和电源转换器之间的调光器调整电源转换器的输出，从而调整 LED 光源的亮度。该调光器可以是三端可控硅调光器 (TRIAC dimmer) 或是开/关调光器 (on/off switch dimmer)。针对不同类型的调光器，所述控制器的结构也各不相同。因此，对于不同的调光方式，限制了控制器的可用性。

发明内容
[0005] 本发明所要解决的技术问题是提供一种对光源进行调光的控制器和系统，以根据不同类型的调光器对光源进行相应的调光操作。
[0006] 为解决上述技术问题，本发明提供了一种调光控制器。该调光控制器包括探测输入脚、输入信号引脚和监测引脚。探测引脚用于监测整流电压并探测所述整流电压来自于三端可控硅调光器还是来自于开/关调光器。输入信号引脚用于接收指示所述整流电压的输入信号，如果所述整流电压来自所述三端可控硅调光器，所述控制器根据所述输入信号控制与 LED 光源串联的开关以控制所述 LED 光源的亮度。监测引脚用于接收指示所述开/关调光器动作的监测信号，如果所述整流电压来自所述开/关调光器，所述控制器根据所述监测模块控制所述开关以控制所述 LED 光源的亮度。
[0007] 本发明还提供了一种对光源进行调光的系统。该系统包括整流器、与整流器耦合的电源转换器和调光控制器。整流器用于对交流电压进行整流并产生整流电压。电源转换器与所述整流器耦合，用于接收所述整流电压并为光源提供调节后的电源。调光控制器用于探测所述整流电压来自于三端可控硅调光器或是来自于开/关调光器，并控制所述电源转换器以控制所述光源的亮度。如果所述交流电压来自所述三端可控硅调光器，所述调光控制器根据所述整流电压控制与所述光源串联的开关以控制所述光源的亮度。如果所述交流电压来自所述开/关调光器，所述调光控制器根据所述开/关调光器的动作控制所述开/关调光器。
关以控制所述光源的亮度。

【0008】与现有技术相比，本发明提供的调光控制器和系统能够判断采用的调光器类型是三端可控硅调光器或是开/关调光器，并根据调光器类型对光源进行相应的调光操作，因此可以灵活的适用于不同类型的调光器。

附图说明
【0009】以下附图对本发明的一些实施例结合其附图的描述，可以进一步理解本发明的目的、具体结构特征和优点。
【0010】图1所示为根据本发明一个实施例的光源驱动电路的方框图；
【0011】图2A所示为根据本发明一个实施例的包含三端可控硅调光器的光源驱动电路；
【0012】图2B所示为图2A所示光源驱动电路的波形图；
【0013】图3A所示为根据本发明一个实施例的包含开/关调光器的光源驱动电路；
【0014】图3B所示为图3A所示光源驱动电路的波形图；
【0015】图4所示为根据本发明一个实施例的光源驱动电路的电路图；
【0016】图5所示为图4中控制模块的示意图；
【0017】图6所示为根据本发明一个实施例的判断整流电压是来自于三端可控硅调光器还是来自于开/关调光器的判断流程图；
【0018】图7A所示为图4中调光控制器在第一种工作模式下的波形图；
【0019】图7B所示为图4中调光控制器在第二种工作模式下的波形图。

具体实施方式
【0020】以下对本发明的实施例给出详细的参考。尽管本发明通过这些实施例进行阐述和说明，但需要注意的是本发明并不仅仅只局限于这些实施方式。相反，本发明涵盖所有权利要求所定义的发明精神和发明范围内所有替代物、本体和等同物。
【0021】另外，为了更好的说明本发明，在下文的具体实施方式中给出了众多的具体细节。本领域技术人员将理解，没有这些具体细节，本发明同样可以实施。在另外一些实例中，对于大家熟知的方法、手段、元件和电路未作详细描述，以便于凸显本发明的主旨。
【0022】图1所示为根据本发明一个实施例的光源驱动电路100的方框图。光源驱动电路100包括电源（比如交流电源）102、整流器108和电源变换器112。整流器108来自于三端可控硅调光器104或开/关调光器106的交流电压整流并产生整流电压V_{REC}。电源变换器112接收整流电压V_{REC}并为光源118提供调节后的电源。调光控制器110监测整流器108产生的整流电压V_{REC}并探测交流电压是来自于三端可控硅调光器104还是来自于开/关调光器106。根据调光器的类型，调光控制器110控制电源变换器112的输出以调整光源118的亮度。如果调光控制器110判断调光器类型是三端可控硅调光器104，调光控制器110则根据三端可控硅调光器104的动作控制光源亮度并导通分流通路114为三端可控硅调光器104提供维持电流。如果调光控制器110判断调光器类型是开/关调光器106，调光控制器110则根据开/关调光器106的动作控制光源亮度。
【0023】图2A所示为根据本发明一个实施例的包含三端可控硅调光器104的光源驱动电路200。图2A中与图1标号相同的部件具有类的功能。光源驱动电路200包括电源（比
如交流电源）102、三端可控硅调光器104、整流器108和电源转换器112。三端可控硅调光器104接收电源102提供的交流输入电压V_{IN}并输出交流电压V_{TRIAC}。整流器108将来自三端可控硅调光器104的交流电压V_{TRIAC}整流并产生直流电压V_{REC}。电源转换器112接收整流电压V_{REC}并为光源118提供调节后的电源。调光控制器110接收指示整流电压V_{REC}的信号，并判断整流器108接收到的交流电压是来自于三端可控硅调光器104。调光控制器110控制电源转换器112的输出以调整光源118的亮度。在一个实施例中，调光控制器110导通分流通路114为三端可控硅调光器104提供维持电流。

【0024】在图2A的例子中，三端可控硅调光器104包括耦合于电源102和整流器108之间的三端可控硅206。三端可控硅206具有第一电极A1、第二电极A2和栅极G。三端可控硅调光器104还包括串联连接的可调电阻208和电容210，以及双向触发二极管212。双向触发二极管212一端与电容210相连，另一端与三端可控硅206的栅极相连。三端可控硅206是一种双向开关，当触发后可以双向导通。当有正电压或负电压施加于栅极G时，三端可控硅206可以被触发。触发后，三端可控硅206持续导通，直到电流经其的电流减小到其所需要的维持电流（holding current）之下。换言之，触发后，为了保持三端可控硅206导通，流经其的电流需要大于或等于其所需要的维持电流，否则三端可控硅206将关闭。

【0025】图2B所示为图2A所示光基电源驱动电路200的波形图。图2B中的波形包括交流输入电压V_{IN}、三端可控硅206电极A1和A2之间的电压V_{A2-A1}、双向触发二极管212的电流I_{REC}、三端可控硅调光器104产生的交流电压V_{TRIAC}和整流器108产生的整流电压V_{REC}。在图2B的例子中，交流输入电压V_{IN}是正弦波。图2B将结合图2A描述。

【0026】初始时刻，三端可控硅206关闭，电极A1和A2之间的电压V_{A2-A1}随交流输入电压V_{IN}增大。在时间T1，电容210两端的电压差使得双向触发二极管212导通。双向触发二极管212导通产生的电流脉冲作用于三端可控硅206的栅极，使得三端可控硅206导通，从而将交流输入电压V_{IN}传递至整流器108，三端可控硅206上有电流流过。在交流输入电压V_{IN}前半周期将结束时的时间T2，因为流经三端可控硅206的电流减小至维持电流之下，三端可控硅206关闭。在交流输入电压V_{IN}后半周期，当电容210上的电压差使得双向触发二极管212导通时，三端可控硅206再次导通。通过增大或减小可调电阻208的阻值，可以调节电容210充电电流的大小，从而调整双向触发二极管212的导通角。因此，可调电阻208的阻值最终决定了三端可控硅206的导通角。整流器108将交流电压V_{TRIAC}的负值部分的波形转换为对应的正值部分波形以产生整流电压V_{REC}。

【0027】图3A所示为根据本发明一个实施例的包含开关/光控器106的电源驱动电路300。图3A中与图1标号相同的部件具有类似的功能。图3B所示为图3A所示电源驱动电路300当开关302接通时的波形图。图3B将结合图3A描述。

【0028】电源驱动电路300包括电源（比如交流电源）102，位于电源102和整流器108之间的开/光控器106以及电源转换器112。电源转换器112接收整流器108提供的整流电压V_{REC}并为光源118提供调节后的电源。光控控制器110接收指示整流电压V_{REC}的信号，并判断整流器108接收到的交流电压是来自于开/光控器106。光控控制器110控制电源转换器112的输出以调整光源118的亮度。

【0029】在图3A的例子中，开关/光控器106包括开关302。当开关302接通，交流输入电压V_{IN}传递至整流器108。整流器108对交流输入电压V_{IN}进行整流并产生整流电压V_{REC}。
整流器 108 将交流输入电压 \(V_{IN} \) 的负值部分的波形转换为对应的正值部分波形以产生整流电压 \(V_{REC} \)。

[0030] 图 4 所示为根据本发明一个实施例的电源驱动电路 400 的电路图。图 4 中与图 1 标号相同的部件具有类似的功能。在图 4 的例子中，电源驱动电路 400 驱动 LED 串 408。电源驱动电路 400 也能用于驱动其他不同的电源。整流器 108 是包括 4 个二极管 408 以及电容 C7 的桥式整流器。电源转换器 112 包括电感 L1、二极管 D1 和开关 Q1。开关 Q1 与 LED 串 408 搭配，其开关状态由调光控制器 110 控制。

[0031] 在一个实施例中，调光控制器 110 包括控制模块 190。控制模块 190 可以是但不限于集成电路。在一个实施例中，控制模块 190 的引脚包括 VDC、RT、GND、SOURCE、CLK、DETECT、V5N、HV_GATE、VDD、DRAIN、COMP、PWM、BLEED1、BLEED2、IBLD1 和 IBLD2。探测引脚 DETECT 接收指示整流电压 \(V_{REC} \) 的信号并探测整流电压 \(V_{REC} \) 是来自于三端可控硅调光器 104 还是来自于开/关调光器 106。在图 4 的例子中，探测引脚 DETECT 通过电容 C3 和电阻 R5、R6 与整流器 108 的输出耦合。

[0032] 输入信号引脚 VSN 接收指示整流电压 \(V_{REC} \) 的输入信号 \(V_{SN} \)。在图 4 的例子中，输入信号引脚 VSN 通过电阻 R7、R8 与整流器 108 的输出耦合。平均信号引脚 VDC 接收指示整流电压 \(V_{REC} \) 的平均值 \(V_{AVG} \) 的平均信号 \(V_{AVG} \)。图 4 的例子中，平均信号引脚 VDC 通过电容 C2 和电阻 R1、R2 与整流器 108 的输出耦合。

[0033] 如果三端可控硅调光器 104 与整流器 108 连接，第一分流控制引脚 BLEED1 通过控制开关 Q2 以导通第一分流通路，从而为三端可控硅调光器 104 提供维持电流。第一分流通路包括开关 Q2 和电阻 R12。如果引脚 DETECT 接收到的信号指示三端可控硅调光器 104 与整流器 108 相连，并且引脚 VSN 接收到的信号 \(V_{SN} \) 大于引脚 VDC 接收到的信号 \(V_{DC} \)，开关 Q2 接通。在图 4 的例子中，第一分流控制引脚 BLEED1 根据一个感应信号（如导引 IBLD1 上侦测到的电阻 R12 上的电压）线性地控制开关 Q2。

[0034] 如果三端可控硅调光器 104 与整流器 108 相连，第二分流控制引脚 BLEED2 通过控制开关 Q3 以导通第二分流通路，从而为三端可控硅调光器 104 提供维持电流。第二分流通路包括开关 Q3 和电阻 R11。如果引脚 DETECT 接收到的信号指示三端可控硅调光器 104 与整流器 108 相连，并且引脚 VSN 接收到的信号 \(V_{SN} \) 小于引脚 VDC 接收到的信号 \(V_{DC} \)，开关 Q3 接通。图 4 的例子中，第二分流控制引脚 BLEED2 根据一个感应信号（如引脚 IBLD2 上侦测到的电阻 R11 上的电压）线性地控制开关 Q3。

[0036] 引脚 HV_GATE 控制开关 Q1。如果采用开/关调光器 106 且引脚 CLK 监测到开/关调光器 106 进行了接通操作，则控制模块 190 接通开关 Q1。如果引脚 CLK 监测到开/关调光器 106 进行了断开操作，则控制模块 190 断开开关 Q1，从而当电感 L1 完全放电后 LED
串 408 关闭。引脚 VDD 与开关 Q1 芯合以给控制模块 190 供电。引脚 DRAIN 与开关 Q1 芯合。引脚 SOURCE 与电阻 R13 芯合。引脚 COMP 与电容 C5 芯合。引脚 GND 与地芯合。引脚 RT 通过电阻 R14 与地芯合，用以决定控制模块 190 内部产生的脉冲信号的频率。

【0037】图 5 所示为图 4 中控制模块 190 的示意图。图 5 将结合图 4 描述。

【0038】控制模块 190 包括驱动器 516、比较器 514、多段调光器 538、电压监测器 540、分流控制器 542 和分流控制器 546。驱动器 516 通过控制耦合于引脚 DRAIN 和引脚 SOURCE 之间的开关 Q4 以控制 LED 串 408 的电流。比较器 514 比较指示整流电压 VREC 的输入信号 VSTN 和指示整流电压 VREC 的平均值 VAVG 的平均信号 VDC 以产生脉冲宽度制调信号 LPWM。多段调光器 538 与监测引脚 CLK 耦合以根据开/关调光器 106 的动作调整 LED 串 408 的亮度。电压监测器 540 监测整流电压 VREC。分流控制器 542 利用误差放大器 550 控制包含开关 Q2 和电阻 R12 的第一分流通路。分流控制器 546 利用误差放大器 552 控制包含开关 Q3 和电阻 R11 的第二分流通路。控制模块 190 还包括温度保护单元 502、短路保护单元 504、过流保护单元 506 和低压锁定单元 510。

【0039】在图 5 的例子中，控制模块 190 利用电压监测器 540、时钟产生器 532、计数器 534 和比较器 536 判断整流电压 VREC 是来自于三端可控硅调光器 104 还是来自于开/关调光器 106。图 6 所示为根据本发明一个实施例的判断整流电压 VREC 是来自于三端可控硅调光器 104 还是来自于开/关调光器 106 的方法流程图。图 6 将结合图 5 描述。

【0040】在步骤 602 中，电压监测器 540 从引脚 DETECT 接收指示整流电压 VREC 的信号并监测整流电压 VREC。在步骤 604 中，如果整流电压 VREC 大于第一预设电压 V1，流程图转到步骤 606，电压监测器 540 启动时钟产生器 532 以驱动计数器 534。在步骤 608 中，响应于时钟产生器 532 产生的每个时钟脉冲，计数器 534 的计数值加 1。在步骤 610 中，如果整流电压 VREC 小于第二预设电压 V2，流程图返回步骤 608。在步骤 610 中，如果整流电压 VREC 大于第二预设电压 V2，流程图转到步骤 612，电压监测器 540 关闭时钟产生器 532。在步骤 614 中，利用比较器 536 将计数器 534 的计数值与参考值 CNT 比较。在步骤 616 中，如果计数值大于参考值 CNT，比较器 536 产生选择信号，该选择信号指示整流电压 VREC 来自于开/关调光器 106。在步骤 618 中，如果计数值小于或等于参考值 CNT，比较器 536 产生选择信号，该选择信号指示整流电压 VREC 来自于三端可控硅调光器 104。

【0041】回到图 5，如果控制模块 190 判断整流电压 VREC 来自于开/关调光器 106，SR 触发器 528、分流控制器 542、误差放大器 550、分流控制器 546 和误差放大器 552 被关闭。多段调光器 538 根据开/关调光器 106 的动作输出调光信号 ADJ。多段调光器 538 通过引脚 CLK 接收指示开/关调光器 106 动作的开关监测信号。例如，当开/关调光器 106 断开，调光信号 ADJ 的电压从第一幅值下降到第二幅值。放大器 530 将调光信号 ADJ 与电流感应引脚 SOURCE 接收到的感应信号 SEN 进行比较。感应信号 SEN 指示 LED 串 408 的电流。采样保持电路 520 接收放大器 530 的输出信号，比较器 518 比较比较振荡器 524 产生的锯齿波信号 SAW 和采样保持电路 520 的输出信号产生控制信号 CTRL1 以控制开关 Q4。比较器 514 与输入信号引脚 VSSN 以及平均信号引脚 VDC 耦合，将指示整流电压 VREC 的输入信号 VSTN 与指示整流电压 VREC 的平均值 VAVG 的平均信号 VDC 进行比较以产生脉冲宽度调制信号 LPWM。在一个实施例中，如果 VSTN 大于 VREC，则脉冲宽度调制信号 LPWM 为第一状态（如逻辑 1），此时开关 Q4 由比较器 518 的输出信号控制。具体而言，在一个实施例中，如果采样保持电路 520 的
输出信号大于锯齿波信号SAW，比较器518产生的控制信号CTRL1为第一状态（如逻辑1），开关Q4接通。如果采样保持电路520的输出信号小于锯齿波信号SAW，比较器518产生的控制信号CTRL1为第二状态（如逻辑0），开关Q4断开。因此，当脉冲宽度调制信号LPWM为第一状态时，控制信号CTRL1的占空比由调光信号ADJ决定，而调光信号ADJ由指示开/关调光器106操作的开关监测信号决定。

如果V_{SIN}小于V_{REC}，脉冲宽度调制信号LPWM为第二状态（如逻辑0），此时开关Q4保持断开。换言之，若脉冲宽度调制信号LPWM为第一状态，开关Q4则在控制信号CTRL1的作用下交替接通和断开。若脉冲宽度调制信号LPWM为第二状态，开关Q4则保持断开。

在一个实施例中，如果控制模块190判断整流电压V_{REC}来自于三端可控硅调光器104，则多段调光器538、放大器530、采样保持电路520和比较器518被关闭。SR触发器528、分流控制器542、误差放大器550、分流控制器546、误差放大器552被启动。

比较器514将指示整流电压V_{REC}的输入信号V_{SIN}与指示整流电压V_{REC}的平均值V_{AVG}的平均信号V_{EC}进行比较以产生脉冲宽度调制信号LPWM。如果V_{SIN}大于V_{EC}，则脉冲宽度调制信号LPWM为第一状态（如逻辑1），开关Q1（如图4所示）接通。开关Q4由SR触发器528的输出信号CTRL2控制。具体而言，SR触发器528的S输入端接收振荡器524产生的脉冲信号PULSE，响应于接收到的脉冲信号PULSE中的每一个脉冲，SR触发器528输出逻辑1以接通Q4。比较器526将参考信号REF3和电流感应引脚SOURCE接收到的感应信号SEN进行比较。参考信号REF3决定LED串408的最大电流值。感应信号SEN指示开关Q4接通时的LED串408的电流。如果感应信号SEN增加到REF3，比较器526在SR触发器528的R输入端产生逻辑1，从而SR触发器528输出逻辑0以断开开关Q4。如果V_{SIN}小于V_{EC}，脉冲宽度调制信号LPWM为第二状态（如逻辑0），开关Q1和Q4均断开。换言之，若脉冲宽度调制信号LPWM为第一状态，开关Q4则在SR触发器528输出信号的作用下交替接通和断开。若脉冲宽度调制信号LPWM为第二状态，开关Q4则保持断开。

脉冲宽度调制信号LPWM为第一状态时，分流控制器542接通耦合于引脚BLEED1和误差放大器550之间的开关548，以导通包括开关Q2和电阻R12（图4中示出）的第一分流通路，从而使分流电流从整流器108流经开关Q2和电阻R12到地。误差放大器550接收参考信号REF1和指示电阻R12上电压的感应信号，并线性地控制开关Q2，使流经开关Q2和电阻R12的电流不小于三端可控硅调光器104的维持电流。

脉冲宽度调制信号LPWM为第二状态时，分流控制器546接通耦合于引脚BLEED2和误差放大器552之间的开关554，以导通包括开关Q3和电阻R11（图4中示出）的第二分流通路，从而使分流电流从整流器108流经开关Q3和电阻R11到地。误差放大器552接收参考信号REF1和指示电阻R11上电压的感应信号，并线性地控制开关Q3，使流经开关Q3和电阻R11的电流不小于三端可控硅调光器104的维持电流。在一个实施例中，分流控制器546从引脚PWMOFF接收设置信号。该设置信号决定脉冲宽度调制信号LPWM的最小占空比D_{MIN}。如果脉冲宽度调制信号LPWM的占空比减小到D_{MIN}，则控制模块190断开开关Q4，分流控制器546导通第二分流通路。因此，在一个实施例中，分流控制器546在以下两种情况下接通开关554并导通第二分流通路：当脉冲宽度调制信号LPWM为第二状态时，或是当脉冲宽度调制信号LPWM的占空比减小到最小占空比D_{MIN}时。

当脉冲宽度调制信号LPWM为第一状态时，开关Q4交替接通和断开，电流通过LED
串 408 流到地。控制模块 190 导通第一分流通路，为三端可控硅调光器 104 提供电流。当脉冲宽度调制信号 LPWM 为第二状态，开关 Q4 保持断开，没有经过 LED 串 408 到地的电流。控制模块 190 导通第二分流通路，为三端可控硅调光器 104 提供电流。因此，为了提供同样大小的维持电流，脉冲宽度调制信号 LPWM 为第一状态时流经第一分流通路的电流小于脉冲宽度调制信号 LPWM 为第二状态时流经第二分流通路的电流。尽管图 4 的例子中示出了两条分流通路，即包括开关 Q2 和电阻 R12 的第一分流通路和包括开关 Q3 和电阻 R11 的第二分流通路，本发明并不限于此种设计。在其他的实施例中，可以只有一条分流通路。三端可控硅调光器 104 提供电流。

[0048] 在图 5 的例子中，如果采用的调光器是三端可控硅调光器 104，则通过比较指示整流电压 V_{REC} 的输入信号 V_{SIN} 与指示整流电压 V_{REC} 的平均值 V_{AVG} 的平均信号 V_{DC} 来决定光源 118 的亮度。在另外的实施例中，如果采用的调光器是三端可控硅调光器 104，也可以通过计算整流电压 V_{REC} 的导通角来决定光源 118 的亮度。

[0049] 在电路的工作过程中，如果监测到温度过高、短路或过流等异常情况，温度保护单元 502、短路保护单元 504 或过流保护单元 506 产生控制信号（如逻辑 0），并通过与门 508 和 512 传输到驱动器 516，以断开开关 Q4。

[0050] 图 7A 所示为图 4 中调光控制器在采用开 / 关调光器 106 的工作模式下的波形图。图 7A 示出了开关 302 的状态，整流器 108 输出的整流电压 V_{REC}、比较器 514 产生的脉冲宽度调制信号 LPWM、多端调光器 538 产生的调光信号 ADJ、振荡器 524 产生的锯齿波信号 SAW、采样保持电路 520 的输出信号 V_{S20} 以及比较器 518 产生的控制信号 CTRL1。图 7A 将结合图 4 和图 5 描述。

[0051] 当开关 302 接通，比较器 514 将指示整流电压 V_{REC} 的输入信号 V_{SIN} 与指示整流电压 V_{REC} 的平均值 V_{AVG} 的平均信号 V_{DC} 进行比较以产生脉冲宽度调制信号 LPWM。当 V_{SIN} 大于 V_{DC}，脉冲宽度调制信号 LPWM 为第一状态（如逻辑 1）。当 V_{SIN} 小于 V_{DC}，脉冲宽度调制信号 LPWM 为第二状态（如逻辑 0）。振荡器 524 产生锯齿波信号 SAW。当脉冲宽度调制信号 LPWM 为第一状态，比较器 518 通过比较振荡器 524 产生的锯齿波信号 SAW 和采样保持电路 520 的输出信号 V_{S20} 产生控制信号 CTRL1 以交替接通和断开开关 Q4。信号 V_{S20} 与多端调光器 538 产生的调光信号 ADJ 成比例。在一个实施例中，如果采样保持电路 520 的输出信号 V_{S20} 大于锯齿波信号 SAW，比较器 514 产生具有第一状态（如逻辑 1）的控制信号 CTRL1 以接通开关 Q4。如果采样保持电路 520 的输出信号 V_{S20} 小于锯齿波信号 SAW，比较器 514 产生具有第二状态（如逻辑 0）的控制信号 CTRL1 以断开开关 Q4。当脉冲宽度调制信号 LPWM 为第二状态，控制信号 CTRL1 为第二状态，从而开关 Q4 保持断开。

[0052] 如果开关 302 断开，多端调光器 538 通过引脚 CLK 接收到开关检测信号，该监测信号指示开 / 关调光器 106 进行了断开操作。当开关 302 再次接通，多端调光器 538 将调光信号 ADJ 的电压从第一幅度减小到第二幅度。采样保持电路 520 的输出信号 V_{S20} 的电压也随之减小，从而使得控制信号 CTRL1 的占空比减小。因此 LED 串 408 的亮度减小。换言之，如果采用开 / 关调光器 106，控制信号 CTRL1 的占空比由调光信号 ADJ 决定，而调光信号 ADJ 由引脚 CLK 接收到的开关检测信号决定。

[0053] 图 7B 所示为图 4 中调光控制器在采用三端可控硅调光器 104 的工作模式下的波形图。图 7B 示出了整流器 108 输出的整流电压 V_{REC}、比较器 514 产生的脉冲宽度调制信号
LPWM、控制模块 190 的电流感应引脚 SOURCE 接收到的感应信号 SEN、振荡器 524 产生的脉冲信号 PULSE 以及 SR 触发器 528 输出的控制信号 CTRL2。图 7B 将结合图 4 和图 5 描述。

[0054] 在一个实施例中，比较器 514 将指示整流电压 V_{ISC} 的输入信号 V_{SIN} 与指示整流电压 V_{ESC} 的平均值 V_{AVG} 的平均信号 V_{EC} 进行比较以产生脉冲宽度调制信号 LPWM。如果 V_{SIN} 大于 V_{EC}，则脉冲宽度调制信号 LPWM 为第一状态（如逻辑 1）。如果 V_{SIN} 小于 V_{EC}，则脉冲宽度调制信号 LPWM 为第二状态（如逻辑 0）。振荡器 524 产生脉冲信号 PULSE。每当接收到一个脉冲，SR 触发器 528 就输出状态为逻辑 1 的控制信号 CTRL2。如果开关 Q4 接通，经过 LED 串 408 的电流增大，从而感应信号 SEN 增大。如果感应信号 SEN 增大到参考信号 REF3，比较器 526 在 SR 触发器 528 的 R 输入端产生逻辑 1，从而使 SR 触发器 528 输出的控制信号 CTRL2 的状态变为逻辑 0。

[0055] 如果操作者调节三端可控硅调光器 104，减小三端可控硅 206 的导通角，脉冲宽度调制信号 LPWM 的占空比随之减小，所以 LED 串 408 的亮度减小。因此，如果采用三端可控硅调光器 104，LED 串 408 的亮度随着整流电压 V_{ESC} 变化。在图 7B 的例子中，通过将指示整流电压 V_{ESC} 的输入信号 V_{SIN} 与指示整流电压 V_{ESC} 的平均值 V_{AVG} 的平均信号 V_{EC} 进行比较以产生脉冲宽度调制信号 LPWM。在其他的实施例中，如果采用三端可控硅调光器 104，也可以通过计算整流电压 V_{ESC} 的导通角来产生脉冲宽度调制信号 LPWM。比如，在整流电压 V_{ESC} 的导通角对应的时间里脉冲宽度调制信号 LPWM 为第一状态（如逻辑 1），在其他时间段脉冲宽度调制信号 LPWM 为第二状态（如逻辑 0）。

[0056] 如前所述，本发明提供了用于对光源进行调光的电路和方法。本发明描述的调光控制器能够判断输入电源和电源转换器之间的调光器类型是三端可控硅调光器还是开/关调光器。在判断调光器类型后，调光控制器对光源进行相应的调光操作。如果判断采用的是三端可控硅调光器，调光控制器根据三端可控硅调光器的操作进行调光。如果判断采用的是开/关调光器，调光控制器根据开/关调光器的操作进行调光。因此，该调光控制器可以适用于不同类型的调光器，从而具有更大的灵活性。

[0057] 在此使用之措辞和表达都是用于说明而非限制，使用这些措辞和表达并不将在此图示和描述的特性之任何等同物（或部分等同物）排除在发明范围之外，在权利要求的范围内可能存在各种修改。其它的修改、变形和替换物也可能存在。因此，权利要求旨在涵盖所有此类等同物。
图2B
检测整流电压 V_{REC}

$V_{REC} > V_1$？

是

启动时钟产生器以驱动计数器

计数值加1

$V_{REC} > V_2$？

是

关闭时钟产生器

计数值 $> CNT$？

是

判断调光器类型为开/关调光器

否

判断调光器类型为三端可控硅调光器