

US 20160160217A1

(19) United States

(12) Patent Application Publication Emerson et al.

(10) **Pub. No.: US 2016/0160217 A1** (43) **Pub. Date: Jun. 9, 2016**

(54) COMPOSITIONS AND METHODS FOR CHARACTERIZING AND TREATING MUSCULAR DYSTROPHY

(71) Applicant: **University of Massachusetts**, Boston, MA (US)

(72) Inventors: Charles P. Emerson, Lyndon, VT (US); Jennifer Chen, Watertown, MA (US); Oliver D. King, Cambridge, MA (US)

(21) Appl. No.: 15/042,371

(22) Filed: Feb. 12, 2016

Related U.S. Application Data

(63) Continuation of application No. 13/861,227, filed on Apr. 11, 2013, now Pat. No. 9,260,755. (60) Provisional application No. 61/622,942, filed on Apr. 11, 2012.

Publication Classification

(51) **Int. Cl.** (2006.01)

(52) U.S. Cl.

(57) ABSTRACT

Compositions and methods for identifying new treatments for Facioscapulohumeral muscular dystrophy (FSHD), and uses thereof.

COLLODT	BIC	EPS	DEL	TOID
COHORT	FSHD	CONTROL	FSHD	CONTROL
01*	01Abic 01Bbic	01Ubic	01Adel 01Bdel	01Udel
3	03Abic	03Ubic	03Adel	03Udel
5	05Abic 05Cbic	05Vbic	05Adel 05Bdel 05Cdel	05Vdel
7	07Abic	07Ubic	07Adel	07Udel
9	09Abic	09Ubic	09Adel	09Udel
10	10Abic	In progress	10Adel	In progress
12	12Abic	12Ubic	12Adel	12Ubic
12	12Bbic	12Vbic	12Bdel	12Vdel
13	13Bbic	13Ubic	13Bdel	13Udel
14	14Abic 14Bbic	14Vbic 14Wbic	14Adel 14Bdel	14Vdel 14Wdel
15*	15Abic 15Bbic	15Vbic	15Adel 15Bdel	15Vdel
16	16Abic	16Ubic	16Adel	16Udel
17	17Abic	17Ubic 17Vbic	17Adel	17Udel 17Vdel
18	18Abic	18Ubic	18Adel	18Udel
19	19Abic	19Ubic	19Adel	19Udel
20	20Abic	20Ubic	20Adel	20Udel
21	21Abic 21Bbic	21Ubic	21Adel 21Bdel	21Udel
22	22Abic	22Ubic	22Adel	22Udel
23	Not available	Not available	23Adel	23Udel
26	26Abic	In progress	26Adel	In progress
27	27Abic		27Adel	
27	27Bbic	In progress	27Bdel	In progress
COHORT	BIC	EPS	DEL	TOID
COHOKI	FSHD	CONTROL	FSHD	CONTROL
28	28Abic 28Bbic	In progress	28Adel 28Bdel	In progress
29	29Abic	In progress	29Adel	In progress
25	29Bbic	III brogress	29Bdel	in progress
30	30Abic 30Bbic	30Wbic	30Adel 30Bdel	30Wdel
31	31Abic	31Ubic	31Adel	31Udel
32	32Abic	32Ubic	32Adel	32Udel
33	33Abic	33Ubic	33Adel	33Udel
	33Cbic	330000	33Cdel	
34	34Abic	34Ubic	34Adel 34Bdel	34Udel
35	Not available	35Ubic	35Adel	35Udel
36	36Abic	36Ubic	36Adel	36Udel

COMPOSITIONS AND METHODS FOR CHARACTERIZING AND TREATING MUSCULAR DYSTROPHY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation application of and claims priority to U.S. patent application Ser. No. 13/861, 227, filed on Apr. 11, 2013, now U.S. Pat. No. 9,260,755, which claims the benefit of U.S. Provisional Patent Application No. 61/622,942, filed on Apr. 11, 2012. The entire contents are hereby incorporated by reference herein.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with Government support under Grant No. U54 HD060848 awarded by the National Institutes of Health. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. There is currently no effective treatment available for FSHD and clinical trials with novel therapeutics have been discouraged by the lack of a recognized mouse model. Clinical trials have also been discouraged by the fact that FSHD is a highly variable and slowly progressing disease whereas the efficacy of therapeutic interventions is ideally established over short periods of time. Therefore, molecular biomarkers of FSHD that could be used to assay responsiveness to therapy would greatly facilitate FSHD therapeutic development and clinical research. High-density oligonucleotide arrays reliably quantify the expression levels of thousands of genes simultaneously and enable identification of such biomarkers.

SUMMARY OF THE INVENTION

[0004] As described below, the present invention features panels of biomarkers useful in diagnosing muscular dystrophy (e.g., FSHD) in a subject, as well as cellular compositions and chimeric animals useful in drug screening.

[0005] Thus, in a first aspect, the invention provides methods for identifying a candidate compound for treatment of Facioscapulohumeral muscular dystrophy (FSHD). The methods include contacting a sample comprising a cell derived from an FSHD affected subject with a test compound; determining a level of expression of a gene selected from the group consisting of PRAMEF1, SLC34A2, TRIM49, TRIM43, CD177, NAAA, HSPA6, TC2N, CD34, ATP2A1, PAX7, MYF5, MRAP2, DAG1, CLYBL, CALCRL, ZNF445, and SPATA17, or at least two genes selected from the group consisting of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, CD34, ATP2A1, PAX7, MYF5, MRAP2, DAG1, CLYBL, CAL-CRL, ZNF445, and SPATA17 in the sample; and selecting as a candidate compound a test compound that reduces the level of expression of one or more of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, or CD34, or a test compound that increases the level of expression of one or more of ATP2A1, PAX7, MYF5, MRAP2, DAG1, CLYBL, CALCRL, ZNF445, or SPATA17. In some embodiments, where expression of only a single gene is determined, that gene is not PRAMEF1 or TRIM43. In some embodiments where expression of only two genes is determined, the genes are not PRAMEF1 and TRIM43. Thus, in some embodiments, where PRAMEF1 or TRIM43 are determined, at least one other gene that is not PRAMEF1 or TRIM43 is also determined.

[0006] In some embodiments, the methods include determining a level of expression of at least one gene shown in Table 4 that is upregulated in FSHD, optionally wherein the gene is selected from the group consisting of PRAMEF1; TRIM43; SLC34A2; TRIM49 and CD34, in a sample comprising a cell from the subject; and determining a level of expression of at least one gene shown in Table 4 that is downregulated in FSHD, optionally wherein the gene is selected from the group consisting of PAX7; MYF5; ATP2A1; DAG1; and MRAP2; in the sample; and selecting as a candidate compound a test compound that reduces the level of expression of a gene shown in Table 4 that is upregulated in FSHD and increases the level of expression of a gene shown in Table 4 that is downregulated in FSHD.

[0007] In some embodiments, the methods include administering the selected candidate compound to an animal model of FSHD, wherein the animal model comprises at least one chimeric muscle tissue comprising cells from a subject affected with FSHD; performing an assay to determine a level of expression of at least one gene shown in Table 4; comparing the level of expression of the at least one gene to a reference level of expression that represents a level of expression in the absence of the candidate compound; and selecting as a candidate therapeutic compound a candidate compound that reduces the level of expression of a gene shown in Table 4 that is upregulated in FSHD and increases the level of expression of a gene shown in Table 4 that is downregulated in FSHD.

[0008] In some embodiments, the level of expression of a gene shown in Table 4 that is upregulated in FSHD is reduced to a level that is nearly or substantially the same as, i.e., not statistically significantly different from, a level in a control cell that is not derived from an FSHD affected subject, or an animal model that comprises at least one chimeric muscle tissue comprising cells from a control subject who is not affected with FSHD.

[0009] In some embodiments, the level of expression of a gene shown in Table 4 that is downregulated in FSHD is increased to a level that is nearly or substantially the same as, i.e., not statistically significantly different from, a level in a control cell that is not derived from an FSHD affected subject, or an animal model that comprises at least one chimeric muscle tissue comprising cells from a control subject who is not affected with FSHD.

[0010] In some embodiments, levels of expression are determined using quantitative PCR (qPCR).

[0011] In some embodiments, the control cell is derived from a first degree relative of the FSHD affected subject.

[0012] In another aspect, the invention provides methods (e.g., computer-implemented methods) for identifying a candidate compound for treatment of Facioscapulohumeral muscular dystrophy (FSHD). The methods include contacting a sample comprising a cell derived from an FSHD affected subject with a test compound; determining a level of expression of at least one gene shown in Table 4 that is upregulated in FSHD, optionally wherein the gene is selected from the group consisting of PRAMEF1; TRIM43; SLC34A2;

TRIM49 and CD34, in the sample, to determine a value [GeneUP]; determining a level of expression of at least one gene shown in Table 4 that is downregulated in FSHD, optionally wherein the gene is selected from the group consisting of PAX7; MYF5; ATP2A1; DAG1; and MRAP2; in the sample, to determine a value [GeneDOWN]; using the value [GeneDOWN] and the value for [GeneUP] to calculate a classifier for the test compound; comparing the classifier to a reference classifier that represents a classifier in a cell that is from a control subject who is not affected with FSHD; and selecting as a candidate compound a test compound that has a classifier that is not statistically different from the reference classifier.

[0013] In some embodiments, [GeneUP] is a level of PRAMEF1 in the sample.

[0014] In some embodiments, [GeneDOWN] is a level of PAX7 in the sample.

[0015] In some embodiments, the classifier is calculated as:

[GeneUP]-[GeneDOWN]=classifier

[0016] In some embodiments, the test compound is an inhibitory nucleic acid.

[0017] In some embodiments, the methods include administering the selected candidate compound to an animal model of FSHD, wherein the animal model comprises at least one chimeric muscle tissue comprising cells from a subject affected with FSHD; performing an assay to determine a level of expression of at least one gene selected from the group consisting of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, CD34, ATP2A1, PAX7, MYF5, MRAP2, DAG1, CLYBL, CALCRL, ZNF445, SPATA17; comparing the level of expression of the at least one gene to a reference level of expression that represents a level of expression in the absence of the candidate compound; selecting as a candidate therapeutic compound a candidate compound that reduces the level of expression of one or more of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, or CD34, and increases the level of expression one or more of ATP2A1, PAX7, MYF5, MRAP2, DAG1, CLYBL, CALCRL, ZNF445, or SPATA17.

[0018] In some embodiments, the methods include administering the selected candidate compound to an animal model of FSHD, wherein the animal model comprises at least one chimeric muscle tissue comprising cells from a subject affected with FSHD; evaluating an effect of the candidate compound on a biological function associated with FSHD in the animal model; and selecting as a candidate therapeutic compound a candidate compound that improves the biological function (i.e., effects a return to normal or near normal function) in the animal model.

[0019] In some embodiments, biological function is assayed using live cell imaging, muscle fiber turnover, the number of muscle stem cells, or biomarker expression.

[0020] In another aspect, the invention provides methods for treating FSHD in a subject, the method comprising administering to the subject one or more inhibitory nucleic acids targeting one or more of SLC34A2, TRIM49, TRIM43, CD177, NAAA, HSPA6, TC2N, or CD34. In an additional aspect, the invention provides methods for treating FSHD in a subject, the method comprising administering to the subject two or more inhibitory nucleic acids targeting two or more of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, or CD34. In some embodiments, the inhibi-

tory nucleic acid is a double-stranded RNA, siRNA, shRNA, or antisense oligonucleotide, e.g., a morpholino oligonucleotide.

[0021] Also provided herein are inhibitory nucleic acids targeting SLC34A2, TRIM49, TRIM43, CD177, NAAA, HSPA6, TC2N, or CD34 for treating FSHD, and the use of such inhibitory nucleic acids for treating FSHD, as well as for the manufacture of a medicament for the treatment of FSHD. [0022] In another aspect, the invention provides cell lines, e.g., shown in FIG. 1, optionally selected from the group consisting of cell lines designated 07A, 07U, 09A, 09U, 12A, 12U, 15A, 15B, 15V, 21B, or 21U, where A and B designate cells from genetically affected persons with FSHD, and U and V designate genetically unaffected family members of the persons with FSHD.

[0023] In another aspect, the invention provides kits including a plurality of cell lines, e.g., a pair or trio of cell lines, from a family cohort as shown in FIG. 1, wherein the kit includes at least one cell line from a genetically affected person with FSHD, and at least one cell line from a genetically unaffected family member, e.g., a first degree relative, of the person with FSHD. In some embodiments, the kit comprises pairs or trios of cell lines selected from the group consisting of: 07A, 07U; 09A, 09U; 12A, 12U; 15A, 15B, 15V; and 21B, 21U; where A and B designate cells from genetically affected persons with FSHD, and U and V designate genetically unaffected family members of the persons with FSHD.

[0024] In one aspect, the invention features a panel of isolated biomarkers including a DUX4 nucleic acid molecule and one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20) additional biomarkers including any one or more of the biomarkers listed in Table 2 or 4.

[0025] In another aspect, the invention features a microarray containing at least a DUX4 nucleic acid molecule and one or more polynucleotides listed in Table 2 or 4 or their encoded polypeptides, or fragments thereof, fixed to a solid support. In one embodiment, the solid support is a membrane, bead, biochip, multiwell microtiter plate, or a resin.

[0026] In another aspect, the invention features a method of characterizing Facioscapulohumeral muscular dystrophy (FSHD) in a cell derived from an FSHD affected subject, the method involving determining the level of expression of one or more nucleic acid molecules listed in Table 2 or 4 or their encoded polypeptides in the cell relative to the level of expression of the nucleic acid molecules or polypeptides in a cell obtained from a first degree relative of the subject who does not have FSHD, thereby characterizing FSHD in the cell. In one embodiment, the method identifies the molecular biomarker profile of the cell. In another embodiment, the FSHD subject is identified as having a contracted 4q D4Z4 region in combination with a 4 qA telomeric allele.

[0027] In another aspect, the invention features a set of cell cultures, containing one culture containing cells derived from a subject identified as having FSHD and at least one control culture containing cells derived from a first degree relative of the subject that does not have FSHD. In one embodiment, the set comprises two, three or four control cultures obtained from first degree relatives of the subject. In another embodiment, the cell cultures are enriched for myogenic cells. In another embodiment, the cells are isolated by selecting cells positive for human CD56. In another embodiment, the cells are obtained from skeletal muscle biopsies. In another embodiment, the biopsy is of a bicep or deltoid muscle. In

another embodiment, the FSHD subject is identified as having a contracted 4q D4Z4 region in combination with a 4 qA telomeric allele, and the first degree relative does not have the contracted 4q D4Z4 region.

[0028] In another aspect, the invention features a collection containing two or more sets of the cell cultures of any previous aspect or any other aspect of the invention delineated herein, where each set comprises a culture containing cells obtained from a distinct FSHD affected subject and at least one control culture containing cells obtained from that FSHD affected subject's first degree relatives.

[0029] In another aspect, the invention features a method for identifying an FSHD biomarker, the method involving comparing the expression of one or more polynucleotides in cells derived from a subject having FSHD relative to the expression of the polynucleotide in control cells derived from a first degree relative of the subject, where an increase or decrease in the polynucleotides relative to the control identifies the polynucleotide as an FSHD biomarker.

[0030] In another aspect, the invention features a chimeric mouse containing at least one human cell derived from an FSHD affected subject or a first degree relative thereof.

[0031] In another aspect, the invention features a set of chimeric mice including one mouse containing a human cell of an FSHD affected subject, and at least one mouse containing a human cell derived from a first degree relative of the FSHD affected subject.

[0032] In another aspect, the invention features a method of identifying an agent that ameliorates FSHD in a subject in need thereof, the method involving contacting a cell derived from an FSHD affected subject with a candidate agent, and comparing the cell's biological function or the level of expression of a nucleic acid molecule of Table 2 or 4 with the biological activity or the level of expression of the nucleic acid molecule in a control cell, where an agent that normalizes the expression of the nucleic acid molecule or enhances biological function ameliorates FSHD. In one embodiment, the control cell is derived from a first degree relative of the affected.

[0033] In another aspect, the invention features a method of identifying an agent that ameliorates FSHD in a subject in need thereof, the method involving administering the agent to the chimeric mouse of any previous aspect, and comparing the biological function of a human cell of the mouse before and after treatment, where an agent that enhances the biological function of the cell is identified as ameliorating FSHD.

[0034] In another aspect, the invention features a method of identifying an agent that ameliorates FSHD in a subject in need thereof, the method involving administering the agent to the chimeric mouse of any previous aspect, and comparing the level of expression of a nucleic acid molecule of Table 2 or 4 in a human cell of the mouse relative to the level in an untreated control cell, where an agent that normalizes expression in the cell is identified as ameliorating FSHD.

[0035] In another aspect, the invention features a method of identifying an inhibitory nucleic acid that ameliorates FSHD in a subject in need thereof, the method involving contacting a cell derived from an FSHD affected subject with an inhibitory nucleic acid molecule that targets a polynucleotide over expressed in FSHD, and comparing the level of expression of the polynucleotide relative to the level in a reference, where an inhibitory nucleic acid molecule that reduces expression of the polynucleotide ameliorates FSHD.

[0036] In another aspect, the invention features a method of identifying an inhibitory nucleic acid that ameliorates FSHD in a subject in need thereof, the method involving contacting a cell derived from an FSHD affected subject with an inhibitory nucleic acid molecule that targets a polynucleotide over expressed in FSHD, and comparing the biological function of a human cell of the mouse before and after treatment, where an agent that enhances the biological function of the cell is identified as ameliorating FSHD.

[0037] In another aspect, the invention features a method of diagnosing a subject as having, or having a propensity to develop, Facioscapulohumeral muscular dystrophy (FSHD), the method involving determining the level of expression of one or more nucleic acid molecules listed in Table 2 or 4 or their encoded polypeptides in a biological sample of the subject relative to the level of expression of the nucleic acid molecules or polypeptides in a reference, where an alteration in the level of expression is indicative of FSHD.

[0038] In various embodiments of the previous aspects or any other aspect of the invention delineated herein, the panel includes polynucleotide or polypeptide biomarkers that are any one or more of DUX4, tripartite motif containing 43 (TRIM43), TRIM49, tandem C2 domains, nuclear (TC2N), PRAME family member 13 (PRAMEF13), PRAMEF2, PRAMEF1, solute carrier family 34 (SLC34A2), heat shock 70 kDa protein 6 (HSP70B), FLJ44674 protein, CD177, and chromosome 9 open reading frame 4 (C9orf4). In one embodiment, the panel includes or consists of DUX4 and one or more additional upregulated biomarkers selected from the group consisting of TRIM43, PRAMEF13, PRAMEF2, PRAMEF1, SLC34A2, TRIM49, CCNA1, and TNXA. In another embodiment, the panel comprises DUX4 and a downregulated biomarker selected from the group consisting of microRNA 30b (MIR30B), dystroglycan 1 (DAG1), melanocortin 2 receptor accessory protein (MRAP2), chromosome 9 open reading frame 153 (C9orf153), ATPase, Ca++transporting, cardiac (ATP2A1), citrate lyase beta like (CLYBL), calcitonin receptor-like (CALCRL), cytochrome P450, family 39, subfamily (CYP39A1), mastermind-like 3 (MAML3), adrenergic, beta, receptor kinase 2 (ADRBK2), Rho guanine nucleotide exchange factor (ARHGEF7), microRNA 95 (miR95), spermatogenesis associated 17 (SPATA17), islet cell autoantigen 1.69 kDa-like (ICA1L), GABRR1, gammaaminobutyric acid (GABA) KIAAl217, zinc finger protein 445 (ZNF445), and chromosome 14 open reading frame 39 (C14orf39. In another embodiment, the panel comprises or consists of DUX4 and a downregulated biomarker selected from the group consisting of CALCRL, ATP2A1, MYLK4, E2F8, RGS13, MYOZ2, LRRC39, C6orf142, and MYOZ1. In other embodiments, the human cell is a skeletal muscle cell, muscle stem cell, or differentiated muscle fiber. In other embodiments, the human cells replace 1-100% (e.g., 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%) of the cells present in a muscle of the mouse. In one embodiment, the human cells replace cells present in the tibialis anterior. In still other embodiments, biological function is assayed using live cell imaging, muscle fiber turnover, the number of muscle stem cells, or biomarker expression.

[0039] The invention provides compositions and methods for characterizing FSHD in a subject, as well as compositions and methods useful in drug screening. Compositions and articles defined by the invention were isolated or otherwise manufactured in connection with the examples provided

below. Other features and advantages of the invention will be apparent from the detailed description, and from the claims.

DEFINITIONS

[0040] Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.

[0041] By "agent" is meant any small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.

[0042] By "ameliorate" is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.

[0043] By "alteration" is meant a change (increase or decrease) in the expression levels or activity of a gene or polypeptide as detected by standard art known methods such as those described herein. As used herein, an alteration includes a 10% change in expression levels, preferably a 25% change, more preferably a 40% change, and most preferably a 50% or greater change in expression levels."

[0044] By "analog" is meant a molecule that is not identical, but has analogous functional or structural features. For example, a polypeptide analog retains the biological activity of a corresponding naturally-occurring polypeptide, while having certain biochemical modifications that enhance the analog's function relative to a naturally occurring polypeptide. Such biochemical modifications could increase the analog's protease resistance, membrane permeability, or half-life, without altering, for example, ligand binding. An analog may include an unnatural amino acid.

[0045] By "biomarker" is meant a polypeptide, polynucleotide, or clinical criteria associated with a disease or condition. For example, an alteration in the presence, level of expression, or sequence of a biomarker may be associated with or diagnostic of a disease or condition.

[0046] In this disclosure, "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean "includes," "including," and the like; "consisting essentially of" or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

[0047] By "cell culture" is meant a cell or cells in vitro. A cell culture includes a cell growing or capable of growing in vitro. Thus, a cell culture includes frozen cells capable of growth in vitro.

[0048] "Detect" refers to identifying the presence, absence or amount of the analyte to be detected.

[0049] By "detectable label" is meant a composition that when linked to a molecule of interest renders the latter detectable. Exemplary methods used to detect a detectable label,

include spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, or haptens.

[0050] By "disease" is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.

[0051] By "effective amount" is meant the amount of a required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active compound(s) used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an "effective" amount.

[0052] The invention provides a number of targets that are useful for the development of highly specific drugs to treat a condition or a disorder characterized by the methods delineated herein. In addition, the methods of the invention provide a facile means to identify therapies that are safe for use in subjects. In addition, the methods of the invention provide a route for analyzing virtually any number of compounds for effects on a disease described herein with high-volume throughput, high sensitivity, and low complexity.

[0053] By "fragment" is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids.

[0054] "Hybridization" means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases. For example, adenine and thymine are complementary nucleobases that pair through the formation of hydrogen bonds.

[0055] By "inhibitory nucleic acid" is meant a double-stranded RNA, siRNA, shRNA, or antisense RNA, or a portion thereof, or a mimetic thereof, that when administered to a mammalian cell results in a decrease (e.g., by 10%, 25%, 50%, 75%, or even 90-100%) in the expression of a target gene. Typically, a nucleic acid inhibitor comprises at least a portion of a target nucleic acid molecule, or an ortholog thereof, or comprises at least a portion of the complementary strand of a target nucleic acid molecule. For example, an inhibitory nucleic acid molecule comprises at least a portion of any or all of the nucleic acids delineated herein.

[0056] The terms "isolated," "purified," or "biologically pure" refer to material that is free to varying degrees from components which normally accompany it as found in its native state. "Isolate" denotes a degree of separation from original source or surroundings. "Purify" denotes a degree of separation that is higher than isolation. A "purified" or "biologically pure" protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when

chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, polyacrylamide gel electrophoresis or high performance liquid chromatography. The term "purified" can denote that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated proteins, which can be separately purified.

[0057] By "isolated polynucleotide" is meant a nucleic acid (e.g., a DNA) that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid molecule of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In addition, the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.

[0058] By an "isolated polypeptide" is meant a polypeptide of the invention that has been separated from components that naturally accompany it. Typically, the polypeptide is isolated when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the invention. An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.

[0059] By "marker" is meant any protein or polynucleotide having an alteration in expression level or activity that is associated with a disease or disorder.

[0060] By "Marker profile" is meant a characterization of the expression or expression level of two or more polypeptides or polynucleotides.

[0061] As used herein, "obtaining" as in "obtaining an agent" includes synthesizing, purchasing, or otherwise acquiring the agent.

[0062] "Primer set" means a set of oligonucleotides that may be used, for example, for PCR. A primer set would consist of at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 80, 100, 200, 250, 300, 400, 500, 600, or more primers. In particular embodiments, primers of the invention are useful in amplifying a gene listed in Table 2 or 4.

[0063] By "reduces" is meant a negative alteration of at least 10%, 25%, 50%, 75%, or 100%.

[0064] By "reference" is meant a standard or control condition. For example, the level of a polynucleotide or polypeptide of the invention (e.g., a polynucleotide listed in Table 2 or 4 or the encoded polypeptide) in a subject that is not affected with FSHD, such as a first degree relative of the subject.

[0065] A "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset of or the entirety of a specified sequence; for example, a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence. For polypeptides,

the length of the reference polypeptide sequence will generally be at least about 16 amino acids, preferably at least about 20 amino acids, more preferably at least about 25 amino acids, and even more preferably about 35 amino acids, about 50 amino acids, or about 100 amino acids. For nucleic acids, the length of the reference nucleic acid sequence will generally be at least about 50 nucleotides, preferably at least about 60 nucleotides, more preferably at least about 75 nucleotides, and even more preferably about 100 nucleotides or about 300 nucleotides or any integer thereabout or therebetween.

[0066] By "a set" is meant a group having more than one member. The group may be composed of 2, 4, 5, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, or 300 polypeptide, nucleic acid molecule, cell culture, or chimeric mouse members.

[0067] By "siRNA" is meant a double stranded RNA. Optimally, an siRNA is 18, 19, 20, 21, 22, 23 or 24 nucleotides in length and has a 2 base overhang at its 3' end. These dsRNAs can be introduced to an individual cell or to a whole animal; for example, they may be introduced systemically via the bloodstream. Such siRNAs are used to downregulate mRNA levels or promoter activity. In one embodiment, the invention provides siRNA that target a polynucleotide of the invention (e.g., a polynucleotide upregulated in FSHD).

[0068] By "specifically binds" is meant a compound or antibody that recognizes and binds a polypeptide of the invention, but which does not substantially recognize and bind other molecules in a sample, for example, a biological sample, which naturally includes a polypeptide of the invention. In one embodiment, the invention provides antibodies against polypeptides, or fragments thereof, encoded by a gene listed in Table 2 or 4.

[0069] Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By "hybridize" is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).

[0070] For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide.

Stringent temperature conditions will ordinarily include temperatures of at least about 30° C., more preferably of at least about 37° C., and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred: embodiment, hybridization will occur at 30° C. in 750 mM NaCl, 75 mM trisodium citrate, and 1%SDS. In a more preferred embodiment, hybridization will occur at 37° C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 $\mu g/ml$ denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

[0071] For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25° C., more preferably of at least about 42° C., and even more preferably of at least about 68° C. In a preferred embodiment, wash steps will occur at 25° C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196:180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.

[0072] By "substantially identical" is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). Preferably, such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.

[0073] Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, BESTFIT, GAP, or PILEUP/PRETTYBOX programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifi-

cations. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e⁻³ and e⁻¹⁰⁰ indicating a closely related sequence.

[0074] By "subject" is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.

[0075] Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.

[0076] As used herein, the terms "treat," treating," "treatment," and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.

[0077] Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.

[0078] Unless specifically stated or obvious from context, as used herein, the term "about" is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.

[0079] The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

[0080] Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0081] FIG. 1 shows a table of cell lines as described herein. Each cohort was composed of at least one affected individual with genetically and clinically verified FSHD (designated A or B), and at least one unaffected first degree relative with unshortened D4Z4 alleles and normal strength (designated U or V).

DETAILED DESCRIPTION OF THE INVENTION

[0082] The invention provides compositions and methods that are useful treating Facioscapulohumeral muscular dystrophy (FSHD), and methods of identifying new treatments for FSHD.

[0083] The invention is based, at least in part, on the discovery of genes whose expression is aberrantly regulated in

cells derived from subjects having FSHD (e.g., genes listed in Tables 2 and 4). In certain embodiments, a subset of genes is identified whose expression is most robustly altered in FSHD affected subjects (e.g. 20 genes in Table 2 with smallest p-values among those genes upregulated in FSHD and 20 genes in Table 2 with smallest p-values among those genes downregulated in FSHD). Genes whose expression is altered in FSHD are useful as biomarkers in methods for diagnosing or characterizing FSHD. Thus, the invention provides panels comprising FSHD biomarkers, as well as polynucleotide and polypeptide microarrays comprising such biomarkers.

[0084] The discovery of FSHD biomarkers was made possible using a unique collection of cultured cells derived from the skeletal muscles of subjects affected by FSHD, as well as of their first degree relatives. These "FSHD paired cultures" provide a unique advantage not only in identifying genes that are aberrantly regulated in FSHD, but also in identifying and/or assessing the efficacy of therapeutic agents useful in ameliorating FSHD or symptoms thereof. These FSHD paired cultures provide a unique advantage over other cells derived from FSHD affected subjects because they control for familial relationships by comparing expression differences in related FSHD affected subjects and controls, thereby diminishing the effects of interindividual variation on gene expression. Therefore, the expression differences observed between FSHD and control muscles in these FSHD paired cultures likely reflect true pathogenic gene expression profiles suitable for developing into disease biomarkers. The invention further provides screening methods using collections of FSHD paired cultures to identify agents that modify the expression of genes and/or proteins that are aberrantly regulated in FSHD.

[0085] In other embodiments, the invention provides pairs of chimeric mice, wherein one member of the pair comprises cells derived from a subject affected by FSHD, and the other member of the pair comprises a cell derived from a first degree relative of the subject. In other embodiments, the invention provides two, three, four or more mice, where one mouse comprises cells from an FSHD affected subject, and the other mice comprises cells derived from one or more of the first degree relatives of that subject. Preferably, certain skeletal muscle cells of the mouse are derived from an FSHD subject or first degree relative of such a subject. Thus, the invention provides a mouse model that is uniquely suited for the identification and characterization of agents useful in treating and/or ameliorating FSHD, and or symptoms thereof. [0086] In still other embodiments, the invention provides panels of biomarkers comprising at least 2, 3, 5, 10, 15, 20, or more of the genes listed in Table 2 or 4. In one embodiment, the panel comprises those genes identified as upregulated in FSHD. In another embodiment, the panel comprises those genes identified as downregulated in FSHD.

Facioscapulohumeral Muscular Dystrophy

[0087] Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular dystrophy affecting approximately 1 in 7,000-20,000 individuals. It is characterized by progressive weakness and wasting of facial, shoulder girdle and upper arm muscles from which the disease takes its name, and also trunk, hip and leg muscles in some patients. One of the hallmarks of FSHD is asymmetrical and selective degeneration of skeletal muscles. For example, biceps muscle is involved early and severely, whereas the proximal deltoid muscle is relatively spared. The underlying mechanism of this

distinctive sparing of certain muscle types is unknown. In addition to muscle degeneration, abnormalities in retinal vasculature and hearing loss are observed in up to 49% and 64% respectively in some populations.

[0088] FSHD is caused by partial deletion of a critical number of repeat elements within the highly polymorphic macrosatellite D4Z4 on the subtelomeric region of chromosome 4q. In unaffected individuals, the D4Z4 array consists of 11 to 100 repeats (corresponding to EcoRI fragments of 41 to 350 kb), whereas FSHD patients carry 1 to 10 repeats (corresponding to EcoRI fragments of 10 to 35 kb). Longer residual repeat sizes are often associated with later onset or milder disease severity. In addition to reduction of the tandemly arranged D4Z4 3.3 kb repeat units, the disease causing deletions must occur on chromosomal allele 4 qA, whereas deletions on the equally common 4 qB allele do not result in FSHD. Although the genetic lesion responsible for 95% of FSHD cases was identified two decades ago, the molecular mechanisms leading to disease progression have long been controversial. The predominantly held position-effect variegation hypothesis proposed that contraction of the D4Z4 repeats induces derepression of one or more genes adjacent to D4Z4 with myopathic potential. Several genes (FRG1, FRG2, SLC25A4) residing in the vicinity of D4Z4 have been evaluated using various quantitative approaches by numerous studies but no consistent deregulation of these genes have been demonstrated in human muscle (Winokur et al., (2003) Hum Genet, 12, 2895-2907; Osborne (2007) Neurology, 68, 569-577; Masny et al., (2010) Eur J Hum Genet, 18, 448-456).

DUX4

[0089] Several studies have demonstrated the myopathic potential of DUX4, a gene located within each repeat element, in skeletal muscle cells. Overexpression of DUX4, as a result of chromatin relaxation within D4Z4, was initially proposed to induce toxicity to muscle cells, potentially leading to muscle degeneration in vivo. Subsequent studies demonstrated further evidence to support this finding. Recently, genetic analysis of rare families carrying translocations between 4q and 10q chromosomes identified single nucleotide polymorphisms (SNPs) in the pLAM region adjacent to the distal D4Z4 repeat that segregate with FSHD. These SNPs create a canonical polyadenylation signal on the permissive chromosomal allele, whereas the non-permissive alleles lack these SNPs. DUX4 transcripts expressed from the distal-most repeat extends into the pLAM sequence and are polyadenylated when the poly(A) signal SNPs are incorporated into the transcripts, thus increasing their intracellular stability. DUX4, a double homeodomain containing protein, shares similarities with transcription factors PAX3 and PAX7 and is proposed to interfere with transcriptional networks regulated by PAX3/7. It has yet to be determined whether DUX4 overexpression results in global gene misexpression, and in particular it is of considerable interest to determine whether the expression of PAX3/7 target genes are compromised in FSHD muscles, as these transcription factors play an important role in muscle development and maintenance. In view of these findings, agents that reduce DUX4 expression are of interest in treating FSHD and/or ameliorating symptoms associated with FSHD. The analysis of such agents has been hampered by the lack of suitable in vitro and in vivo models systems useful for assaying the efficacy of such agents on FSHD. Thus, the invention provides cell and animal models

useful for analysing the agents that treat FSHD. In particular, FSHD paired cultures are useful for analysing the effect of such agents on the expression of genes that are aberrantly regulated in FSHD. In other embodiments, chimeric FSHD mice of the invention are useful for assaying the efficacy of such agents on muscle cells affected with FSHD. In particular, the invention provides methods for assaying the effects of agents that reduce DUX4 expression on genes that are aberrantly regulated in FSHD (e.g., genes listed in Table 2 or 4).

FSHD Cell Cultures and Collections

[0090] While the results reported herein provide specific examples of the isolation of muscle cells from subjects identified as having FSHD (or their first degree relatives) during the course of a muscle biopsy, the invention is not so limited. The unpurified source of cells for use in the methods of the invention may be any tissue known in the art obtained from an FSHD subject, although preferably, muscle cells derived from FSHD affected subjects are used. In various embodiments, cells of the invention are isolated from muscle tissue whose biological function is reduced in FSHD (e.g., adult biceps or deltoid skeletal muscles). In one embodiment, the FSHD subject is identified as having a contracted 4q D4Z4 region in combination with a 4 qA telomeric allele and the first degree relative is identified as lacking such genetic abnormalities.

[0091] The invention provides for the generation of primary muscle cell cultures. Such cultures are obtained by enzymatic dissociation of the tissue using, for example, collagenase IV, dispase and other enzymes known in the art. The cells can be selected against dead cells, by employing dyes associated with dead cells such as propidium iodide (PI). Preferably, the cells are collected in a medium comprising fetal calf serum (FCS) or bovine serum albumin (BSA) or any other suitable, preferably sterile, isotonic medium. Dissociated cells are cultured under standard conditions using cell culture media (e.g., Ham's F10 medium supplemented with fetal bovine serum and/or chicken embryo extract) suitable for maintaining cultures of primary muscle cells. Examples of suitable media for incubating cells of the invention include, but are not limited to, Dulbecco's Modified Eagle Medium (DMEM), RPMI media or other medias known in the art. The media may be supplemented with fetal calf serum (FCS) or fetal bovine serum (FBS), as well as antibiotics, growth factors, amino acids, inhibitors or the like, which is well within the general knowledge of the skilled artisan.

[0092] Cultures are expanded to increase cell number (e.g., to about 50%, 60%, 70%, 80% confluence). Cells are harvested and selected for myogenic cells using standard methods. Such methods include a positive selection for cells expressing one or more myogenic markers. Monoclonal antibodies are particularly useful for identifying markers associated with the desired cells. If desired, negative selection methods can be used in conjunction with the methods of the invention to reduce the number of irrelevant cells present in a population of cells selected for a myogenic phenotype.

[0093] In one approach, fluorescence-activated cell sorting (FACS) is carried out to identify cells that are positive for human CD56 (BD Biosciences), MYOD, PAX7, or MYFS. In another approach, magnetic-activated cell sorting (MACS) is used to select for the desired cell type. Other procedures which may be used for selection of cells of interest include, but are not limited to, fluorescence based cell sorting, density gradient centrifugation, flow cytometry, magnetic separation

with antibody-coated magnetic beads, cytotoxic agents joined to or used in conjunction with a mAb, including, but not limited to, complement and cytotoxins; and panning with antibody attached to a solid matrix or any other convenient technique.

[0094] CD56-positive myogenic cells obtained by FACS are incubated in culture. Cells derived from the skeletal muscles of subjects affected by FSHD, as well as of their first degree relatives are termed "FSHD paired cultures." In one embodiment, such paired cultures are useful in identifying markers that are aberrantly regulated in FSHD. In another embodiment, such cells are useful in identifying and/or assessing the efficacy of therapeutic agents useful in ameliorating FSHD or symptoms thereof. These FSHD paired cultures provide for the analysis of expression differences in related FSHD affected subjects and controls, thereby diminishing the effects of interindividual variation on gene expression.

[0095] Selected cells of the invention may be employed in methods of the invention following isolation and/or growth in vitro

[0096] In one approach, the invention provides paired cell cultures, where one culture is derived from a subject having FSHD and the other culture is obtained from a first degree relative of the subject. Such paired cell cultures comprise skeletal muscle cells isolated from the subject or his relative during muscle biopsy. Such cells are then cultured in vitro to obtain sufficient cells for drug screening or marker expression analysis. The invention further provides a collection of such paired cell cultures. Desirably, the collection includes cell samples from two, three, four, five, six, seven, eight, nine, ten or more FSHD affected subjects and paired control cultures obtained from one or more of the subjects first degree relatives. In certain embodiments, the invention provides a frozen collection of cells suitable for paired culture. Frozen cell compositions typically comprise cryoprotective agents that provide for cell viability when the cells are frozen for a period of months or years and then subsequently thawed.

FSHD Chimeric Animals

[0097] The invention further provides chimeric animals that comprise human cells obtained from an FSHD affected. Preferably, the invention provides pairs of chimeric mice, wherein one member of the pair comprises human cells obtained from an FSHD affected and the other member of the pair comprises human cells obtained from a first degree relative of the FSHD affected.

[0098] In one embodiment, skeletal muscle cells of a mouse are injured or destroyed, for example, using cardiotoxin. The skeletal muscle cells of the injured mouse are replaced with at least about 10%, 20%, 30%, 50%, 75% or even 100% human cells derived from an FSHD subject. In one embodiment, the mouse's endogenous tibialis anterior is replaced, at least to some degree, with human muscle cells derived from an FSHD affected or a first degree relative thereof. If desired, such cells are genetically modified to express a detectable reporter (e.g., GFP, YFP, RFP, luciferase).

[0099] In one embodiment, the method provides chimeric animals, wherein one animal comprises cells of an FSHD affected and one or more other animals comprises cells of a first degree relative of the affected individual. Such chimeric animals are useful in identifying markers that are aberrantly regulated in FSHD. The invention provides a collection of such paired chimeric mice. Desirably, the collection includes

cell samples from two, three, four, five, six, seven, eight, nine, ten or more FSHD affected subjects and paired control chimeric mice comprising cells obtained from one or more of the subjects' first degree relatives.

Diagnostics

[0100] The present invention features diagnostic assays for the detection of FSHD or the propensity to develop such conditions. In one embodiment, levels of any one or more of the markers listed in Table 2 or 4 are measured in a subject sample and used to characterize FSHD or the propensity to develop FSHD. In other embodiments, levels of markers listed in Table 2 or 4, are characterized in a subject sample. Standard methods may be used to measure levels of a marker in any biological sample. Biological samples include tissue samples (e.g., cell samples, biopsy samples) or biological fluid samples that include markers of the invention (e.g., blood, serum, plasma, urine). Methods for measuring levels of polypeptide biomarkers of the invention (e.g., markers listed in Table 2 or 4) include immunoassay, ELISA, western blotting and radioimmunoassay. The increase in marker levels may be altered (e.g., increased, decreased) by at least about 10%, 25%, 50%, 75% or more relative to levels of markers found in a corresponding control sample (e.g., samples obtained from a normal subject unaffected by FSHD). In one embodiment, any increase or decrease in a marker of the invention, i.e., a marker listed in Table 2 or 4, is indicative of FSHD.

[0101] Any suitable method can be used to detect one or more of the markers described herein. Successful practice of the invention can be achieved with one or a combination of methods that can detect and, preferably, quantify the markers. These methods include, without limitation, hybridizationbased methods, including those employed in biochip arrays, mass spectrometry (e.g., laser desorption/ionization mass spectrometry), fluorescence (e.g. sandwich immunoassay), surface plasmon resonance, ellipsometry and atomic force microscopy. Expression levels of markers (e.g., polynucleotides or polypeptides) are compared by procedures well known in the art, such as RT-PCR, Northern blotting, Western blotting, flow cytometry, immunocytochemistry, binding to magnetic and/or antibody-coated beads, in situ hybridization, fluorescence in situ hybridization (FISH), flow chamber adhesion assay, ELISA, microarray analysis, or colorimetric assays. Methods may further include, one or more of electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS)n, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS)n, atmospheric pressure photoionization mass spectrometry (APPI-MS), APPI-MS/MS, and APPI-(MS)n, quadrupole mass spectrometry, fourier transform mass spectrometry (FTMS), and ion trap mass spectrometry, where n is an integer greater than zero.

[0102] Detection methods may include use of a biochip array. Biochip arrays useful in the invention include protein and polynucleotide arrays. One or more markers are captured on the biochip array and subjected to analysis to detect the level of the markers in a sample.

[0103] Markers may be captured with capture reagents immobilized to a solid support, such as a biochip, a multiwell microtiter plate, a resin, or a nitrocellulose membrane that is subsequently probed for the presence or level of a marker. Capture can be on a chromatographic surface or a biospecific surface. For example, a sample containing the markers, such as serum, may be used to contact the active surface of a biochip for a sufficient time to allow binding. Unbound molecules are washed from the surface using a suitable eluant, such as phosphate buffered saline. In general, the more stringent the eluant, the more tightly the proteins must be bound to be retained after the wash.

[0104] Upon capture on a biochip, analytes can be detected by a variety of detection methods selected from, for example, a gas phase ion spectrometry method, an optical method, an electrochemical method, atomic force microscopy and a radio frequency method. In one embodiment, mass spectrometry, and in particular, SELDI, is used. Optical methods include, for example, detection of fluorescence, luminescence, chemiluminescence, absorbance, reflectance, transmittance, birefringence or refractive index (e.g., surface plasmon resonance, ellipsometry, a resonant mirror method, a grating coupler waveguide method or interferometry). Optical methods include microscopy (both confocal and non-confocal), imaging methods and non-imaging methods. Immunoassays in various formats (e.g., ELISA) are popular methods for detection of analytes captured on a solid phase. Electrochemical methods include voltametry and amperometry methods. Radio frequency methods include multipolar resonance spectroscopy.

[0105] Mass spectrometry (MS) is a well-known tool for analyzing chemical compounds. Thus, in one embodiment, the methods of the present invention comprise performing quantitative MS to measure the serum peptide marker. The method may be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. This can be accomplished, for example with MS operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Methods for performing MS are known in the field and have been disclosed, for example, in US Patent Application Publication Nos: 20050023454; 20050035286; U.S. Pat. No. 5,800,979 and references disclosed therein.

[0106] The protein fragments, whether they are peptides derived from the main chain of the protein or are residues of a side-chain, are collected on the collection layer. They may then be analyzed by a spectroscopic method based on matrixassisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). The preferred procedure is MALDI with time of flight (TOF) analysis, known as MALDI-TOF MS. This involves forming a matrix on the membrane, e.g. as described in the literature, with an agent which absorbs the incident light strongly at the particular wavelength employed. The sample is excited by UV, or IR laser light into the vapour phase in the MALDI mass spectrometer. Ions are generated by the vaporization and form an ion plume. The ions are accelerated in an electric field and separated according to their time of travel along a given distance, giving a mass/ charge (m/z) reading which is very accurate and sensitive. MALDI spectrometers are commercially available from Per-Septive Biosystems, Inc. (Frazingham, Mass., USA) and are described in the literature, e.g. M. Kussmann and P. Roepstorff, cited above.

[0107] Magnetic-based serum processing can be combined with traditional MALDI-TOF. Through this approach, improved peptide capture is achieved prior to matrix mixture and deposition of the sample on MALDI target plates. Accordingly, methods of peptide capture are enhanced through the use of derivatized magnetic bead based sample processing.

[0108] MALDI-TOF MS allows scanning of the fragments of many proteins at once. Thus, many proteins can be run simultaneously on a polyacrylamide gel, subjected to a method of the invention to produce an array of spots on the collecting membrane, and the array may be analyzed. Subsequently, automated output of the results is provided by using the ExPASy server, as at present used for MIDI-TOF MS and to generate the data in a form suitable for computers.

[0109] Other techniques for improving the mass accuracy and sensitivity of the MALDI-TOF MS can be used to analyze the fragments of protein obtained on the collection membrane. These include the use of delayed ion extraction, energy reflectors and ion-trap modules. In addition, post source decay and MS-MS analysis are useful to provide further structural analysis. With ESI, the sample is in the liquid phase and the analysis can be by ion-trap, TOF, single quadrupole or multi-quadrupole mass spectrometers. The use of such devices (other than a single quadrupole) allows MS-MS or MS' analysis to be performed. Tandem mass spectrometry allows multiple reactions to be monitored at the same time.

[0110] Capillary infusion may be employed to introduce the marker to a desired MS implementation, for instance, because it can efficiently introduce small quantities of a sample into a mass spectrometer without destroying the vacuum. Capillary columns are routinely used to interface the ionization source of a MS with other separation techniques including gas chromatography (GC) and liquid chromatography (LC). GC and LC can serve to separate a solution into its different components prior to mass analysis. Such techniques are readily combined with MS, for instance. One variation of the technique is that high performance liquid chromatography (HPLC) can now be directly coupled to mass spectrometer for integrated sample separation/and mass spectrometer analysis.

[0111] Quadrupole mass analyzers may also be employed as needed to practice the invention. Fourier-transform ion cyclotron resonance (FTMS) can also be used for some invention embodiments. It offers high resolution and the ability of tandem MS experiments. FTMS is based on the principle of a charged particle orbiting in the presence of a magnetic field. Coupled to ESI and MALDI, FTMS offers high accuracy with errors as low as 0.001%.

[0112] In one embodiment, the marker qualification methods of the invention may further comprise identifying significant peaks from combined spectra. The methods may also further comprise searching for outlier spectra. In another embodiment, the method of the invention further comprises determining distant dependent K-nearest neighbors.

[0113] In another embodiment of the method of the invention, an ion mobility spectrometer can be used to detect and characterize FSHD markers. The principle of ion mobility spectrometry is based on different mobility of ions. Specifically, ions of a sample produced by ionization move at different rates, due to their difference in, e.g., mass, charge, or shape, through a tube under the influence of an electric field. The ions (typically in the form of a current) are registered at the detector which can then be used to identify a marker or

other substances in a sample. One advantage of ion mobility spectrometry is that it can operate at atmospheric pressure.

[0114] In an additional embodiment of the methods of the present invention, multiple markers are measured. The use of multiple markers increases the predictive value of the test and provides greater utility in diagnosis, toxicology, patient stratification and patient monitoring. The process called "Pattern recognition" detects the patterns formed by multiple markers greatly improves the sensitivity and specificity of clinical proteomics for predictive medicine. Subtle variations in data from clinical samples indicate that certain patterns of protein expression can predict phenotypes such as the presence or absence of FSHD.

[0115] Expression levels of particular nucleic acids or polypeptides are correlated with FSHD, and thus are useful in diagnosis. Antibodies that bind a polypeptide described herein, oligonucleotides or longer fragments derived from a nucleic acid sequence described herein (e.g., one or more Markers listed in Table 2 or 4), or any other method known in the art may be used to monitor expression of a polynucleotide or polypeptide of interest. Detection of an alteration relative to a normal, reference sample can be used as a diagnostic indicator of FSHD. In particular embodiments, the expression of one or more Markers listed in Table 2 or 4 is indicative of FSHD or the propensity to develop FSHD. In other embodiments, a 2, 3, 4, 5, or 6-fold change in the level of a marker of the invention is indicative of FSHD. In yet another embodiment, an expression profile that characterizes alterations in the expression of two, three, four, five, ten, fifteen, twenty, thirty, or forty markers is correlated with a particular disease state (e.g., FSHD). Such correlations are indicative of FSHD or the propensity to develop FSHD. In one embodiment, FSHD can be monitored using the methods and compositions of the invention.

[0116] In one embodiment, the level of one or more markers is measured on at least two different occasions and an alteration in the levels as compared to normal reference levels over time is used as an indicator of FSHD or the propensity to develop FSHD. The level of marker in a subject having FSHD or the propensity to develop such a condition may be altered by as little as 10%, 20%, 30%, or 40%, or by as much as 50%, 60%, 70%, 80%, or 90% or more relative to the level of such marker in a normal control. In general, levels of Markers listed in Table 2 or 4 are present at low or undetectable levels in a healthy subject (i.e., those who do not have and/or who will not develop FSHD). In one embodiment, a subject sample of a skeletal muscle (e.g., bicep) is collected prior to the onset of symptoms of FSHD or early on in the progression of FSHD.

[0117] The diagnostic methods described herein can be used individually or in combination with any other diagnostic method described herein for a more accurate diagnosis of the presence or severity of FSHD.

[0118] The diagnostic methods described herein can also be used to monitor and manage FSHD, or to reliably distinguish FSHD from other degenerative diseases or diseases having symptoms that are similar to or overlap with FSHD.

[0119] As indicated above, the invention provides methods for aiding a muscular dystrophy (e.g., FSHD) diagnosis using one or more markers, as specified herein. These markers can be used alone, in combination with other markers in any set, or with entirely different markers in aiding human muscular dystrophy (e.g., FSHD) diagnosis. The markers are differentially present in samples of a human FSHD patient and a

normal subject (e.g., first degree relative of an FSHD subject) in whom FSHD is undetectable. Therefore, detection of one or more of these markers in a person would provide useful information regarding the probability that the person may have FSHD or have a propensity to develop FSHD.

[0120] The detection of one or more peptide marker is then correlated with a probable diagnosis of FSHD. In some embodiments, the detection of the mere presence of a marker (e.g., a marker listed in Table 2 or 4), without quantifying the amount thereof, is useful and can be correlated with a probable diagnosis of FSHD. The measurement of markers may also involve quantifying the markers to correlate the detection of markers with a probable diagnosis of FSHD. Thus, if the amount of the markers detected in a subject being tested is different compared to a control amount (i.e., higher or lower than the control), then the subject being tested has a higher probability of having FSHD.

[0121] The correlation may take into account the amount of the marker or markers in the sample compared to a control amount of the marker or markers (e.g., in normal subjects). A control can be, e.g., the average or median amount of marker present in comparable samples of normal subjects. The control amount is measured under the same or substantially similar experimental conditions as in measuring the test amount. As a result, the control can be employed as a reference standard, where each result can be compared to that standard, rather than re-running a control.

[0122] Accordingly, a marker profile may be obtained from a subject sample and compared to a reference marker profile, so that it is possible to classify the subject as having or not having FSHD. The correlation may take into account the presence or absence of the markers in a test sample and the frequency of detection of the same markers in a control. The correlation may take into account both of such factors to facilitate determination of FSHD status.

[0123] In certain embodiments of the invention, the methods further comprise managing subject treatment based on the status.

[0124] The markers of the present invention have a number of other uses. For example, they can be used to identify agents useful in methods of treating or ameliorating FSHD. In yet another example, the markers can be used in heredity studies. For instance, certain markers associated with FSHD may be genetically associated with the disease. This can be determined by, e.g., analyzing samples from a population of human subjects whose families have a history of FSHD. The results can then be compared with data obtained from, e.g., subjects whose families do not have a history of FSHD. The markers that are genetically linked may be used as a tool to determine if a subject whose family has a history of FSHD is pre-disposed to having FSHD.

[0125] While individual markers are useful diagnostic markers, in some instances, a combination of markers provides greater predictive value than a single marker alone. The detection of a plurality of markers (or absence thereof, as the case may be) in a sample can increase the percentage of true positive and true negative diagnoses and decrease the percentage of false positive or false negative diagnoses. Thus, preferred methods of the present invention comprise the measurement of more than one marker.

Microarrays

[0126] As reported herein, a number of markers (e.g., a marker listed in Table 2 or 4) have been identified that are

associated with FSHD. Methods for assaying the expression of these polypeptides are useful for characterizing FSHD. In particular, the invention provides diagnostic methods and compositions useful for identifying a polypeptide expression profile that identifies a subject as having or having a propensity to develop FSHD. Such assays can be used to measure an alteration in the level of a polypeptide.

[0127] The polypeptides and nucleic acid molecules of the invention are useful as hybridizable array elements in a microarray. The array elements are organized in an ordered fashion such that each element is present at a specified location on the substrate. Useful substrate materials include membranes, composed of paper, nylon or other materials, filters, chips, glass slides, and other solid supports. The ordered arrangement of the array elements allows hybridization patterns and intensities to be interpreted as expression levels of particular genes or proteins. Methods for making nucleic acid microarrays are known to the skilled artisan and are described, for example, in U.S. Pat. No. 5,837,832, Lockhart, et al. (Nat. Biotech. 14:1675-1680, 1996), and Schena, et al. (Proc. Natl. Acad. Sci. 93:10614-10619, 1996), herein incorporated by reference. Methods for making polypeptide microarrays are described, for example, by Ge (Nucleic Acids Res. 28: e3. i-e3. vii, 2000), MacBeath et al., (Science 289: 1760-1763, 2000), Zhu et al. (Nature Genet. 26:283-289), and in U.S. Pat. No. 6,436,665, hereby incorporated by reference.

Protein Microarrays

[0128] Proteins (e.g., proteins encoded by genes listed in Table 2 or 4) may be analyzed using protein microarrays. Such arrays are useful in high-throughput low-cost screens to identify alterations in the expression or post-translation modification of a polypeptide of the invention, or a fragment thereof. In particular, such microarrays are useful to identify a protein whose expression is altered in FSHD. In one embodiment, a protein microarray of the invention binds a marker present in a subject sample and detects an alteration in the level of the marker. Typically, a protein microarray features a protein, or fragment thereof, bound to a solid support. Suitable solid supports include membranes (e.g., membranes composed of nitrocellulose, paper, or other material), polymer-based films (e.g., polystyrene), beads, or glass slides. For some applications, proteins (e.g., antibodies that bind a marker of the invention) are spotted on a substrate using any convenient method known to the skilled artisan (e.g., by hand or by inkjet printer).

[0129] The protein microarray is hybridized with a detectable probe. Such probes can be polypeptide, nucleic acid molecules, antibodies, or small molecules. For some applications, polypeptide and nucleic acid molecule probes are derived from a biological sample taken from a patient, such as a homogenized tissue sample (e.g. a tissue sample obtained by muscle biopsy); or a cell isolated from a patient sample. Probes can also include antibodies, candidate peptides, nucleic acids, or small molecule compounds derived from a peptide, nucleic acid, or chemical library. Hybridization conditions (e.g., temperature, pH, protein concentration, and ionic strength) are optimized to promote specific interactions. Such conditions are known to the skilled artisan and are described, for example, in Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual. 1998, New York: Cold Spring Harbor Laboratories. After removal of non-specific probes, specifically bound probes are detected, for example, by fluorescence, enzyme activity (e.g., an enzyme-linked calorimetric assay), direct immunoassay, radiometric assay, or any other suitable detectable method known to the skilled artisan.

Nucleic Acid Microarrays

[0130] To produce a nucleic acid microarray, oligonucleotides may be synthesized or bound to the surface of a substrate using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application WO95/251116 (Baldeschweiler et al.), incorporated herein by reference. Alternatively, a gridded array may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedure.

[0131] A nucleic acid molecule (e.g. RNA or DNA) derived from a biological sample may be used to produce a hybridization probe as described herein. The biological samples are generally derived from a patient, as a tissue sample (e.g. a tissue sample obtained by muscle biopsy). For some applications, cultured cells or other tissue preparations may be used. The mRNA is isolated according to standard methods, and cDNA is produced and used as a template to make complementary RNA suitable for hybridization. Such methods are known in the art. The RNA is amplified in the presence of fluorescent nucleotides, and the labeled probes are then incubated with the microarray to allow the probe sequence to hybridize to complementary oligonucleotides bound to the microarray.

[0132] Incubation conditions are adjusted such that hybridization occurs with precise complementary matches or with various degrees of less complementarity depending on the degree of stringency employed. For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30 C., more preferably of at least about 37 C., and most preferably of at least about 42 C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30 C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37 C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42 C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

[0133] The removal of nonhybridized probes may be accomplished, for example, by washing. The washing steps that follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing

temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25 C., more preferably of at least about 42° C., and most preferably of at least about 68 C. In a preferred embodiment, wash steps will occur at 25 C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

[0134] A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct nucleic acid sequences simultaneously (e.g., Heller et al., Proc. Natl. Acad. Sci. 94:2150-2155, 1997). Preferably, a scanner is used to determine the levels and patterns of fluorescence.

Diagnostic Kits

[0135] The invention provides kits for diagnosing or monitoring FSHD. In one embodiment, the kit includes a composition containing at least one agent that binds a polypeptide or polynucleotide whose expression is increased in FSHD. In another embodiment, the invention provides a kit that contains an agent that binds a nucleic acid molecule whose expression is altered in FSHD. In some embodiments, the kit comprises a sterile container which contains the binding agent; such containers can be boxes, ampoules, bottles, vials, tubes, bags, pouches, blister-packs, or other suitable container forms known in the art. Such containers can be made of plastic, glass, laminated paper, metal foil, or other materials suitable for holding medicaments.

[0136] If desired the kit is provided together with instructions for using the kit to diagnose FSHD. The instructions will generally include information about the use of the composition for diagnosing a subject as having FSHD or having a propensity to develop FSHD. In other embodiments, the instructions include at least one of the following: description of the binding agent; warnings; indications; counter-indications; animal study data; clinical study data; and/or references. The instructions may be printed directly on the container (when present), or as a label applied to the container, or as a separate sheet, pamphlet, card, or folder supplied in or with the container.

Screening Assays

[0137] As discussed herein, the expression of genes listed in Tables 2 and 4 is altered in FSHD. Based on this discovery, compositions of the invention are useful for the high-throughput low-cost screening of candidate agents to identify those that modulate the expression of genes that are aberrantly expressed in FSHD. In one embodiment, the effects of candidate agents on genes expressed in Tables 2 and 4 are assayed using microarrays, cell compositions, and/or chimeric animals of the invention.

[0138] Those genes identified in Tables 2 or 4 whose expression is inappropriately increased in FSHD are targets for therapeutic intervention. The genes TRIM43 and PRAMEF1 are of particular interest. The inappropriate acti-

vation of one or more genes unregulated in FSHD likely contributes to the pathology observed in FSHD. Therefore, agents that reduce the expression of genes that are over-expressed in FSHD are useful in the methods of the invention. Such agents include, for example, inhibitory nucleic acids that reduce or eliminate the expression of such genes, as well as proteins (e.g., antibodies and fragments thereof) and small compounds that interfere with the expression or biological activity of the genes or the proteins that they encode. The present methods can be used to identify such agents.

[0139] Those genes identified in Table 2 or 4 whose expression is inappropriately decreased in FSHD are also targets for therapeutic intervention. Such agents include, for example, small compounds that increase the biological activity or expression of a gene listed in Table 2 or 4 or of the protein that gene encodes. In other embodiments, agents (e.g., expression vectors encoding proteins downregulated in FSHD) are useful to increase the expression of such genes, particularly in skeletal muscle. Such expression would be expected to ameliorate FSHD or symptoms associated with FSHD. The present methods can be used to identify such agents.

[0140] A number of methods are available for carrying out screening assays to identify candidate agents that reduce the expression of genes that are overexpressed in FSHD, or that increase the expression of a gene that is downregulated in FSHD. In one example, candidate agents are added at varying concentrations to the culture medium of cultured cells (e.g., FSHD paired cultures) expressing one of the nucleic acid sequences of the invention. Gene expression is then measured, for example, by microarray analysis, Northern blot analysis (Ausubel et al., supra), reverse transcriptase PCR, quantitative real-time PCR, or any other method known in the art using any appropriate fragment prepared from the nucleic acid molecule as a hybridization probe. The level of gene expression in the FSHD derived cells in the presence of the candidate agent is compared to the level measured in a control culture. In one embodiment, the control culture is a culture of FSHD derived cells that lack the agent. In another embodiment, the control culture is the paired culture of cells obtained from a first degree relative of the FSHD affected. An agent that normalizes or promotes the normalization of expression of aberrantly regulated genes is considered useful in the invention. Such an agent may be used, for example, as a therapeutic to treat FSHD in a human patient. An agent that "normalizes" the expression of an aberrantly regulated gene restores the expression of that gene to a level that is substantially normal. An agent that "promotes normalization" reduces the extent of the disregulation.

[0141] In one example, the effect of candidate agents is measured at the level of polypeptide production using the same general approach and standard immunological techniques, such as Western blotting or immunoprecipitation with an antibody specific for a polypeptide encoded by a gene listed in Table 2 or 4. For example, immunoassays may be used to detect or monitor the expression of at least one of the polypeptides of the invention in an organism. Polyclonal or monoclonal antibodies, (produced as described above) that are capable of binding to such a polypeptide may be used in any standard immunoassay format (e.g., ELISA, Western blot, or RIA assay) to measure the level of the polypeptide. In some embodiments, a agent that normalizes or promotes normalization of the expression or biological activity of an aberrantly regulated polypeptide is considered useful. Again, such

an agent may be used, for example, as a therapeutic to delay, ameliorate, or treat FSHD disorder, or the symptoms of FSHD, in a human patient.

[0142] In yet another working example, candidate agents may be screened for those that specifically bind to a polypeptide encoded by a gene listed in Table 2 or 4. The efficacy of such a candidate agent is dependent upon its ability to interact with such a polypeptide or a functional equivalent thereof. Such an interaction can be readily assayed using any number of standard binding techniques and functional assays (e.g., those described in Ausubel et al., supra). In one embodiment, a candidate agent may be tested in vitro for its ability to specifically bind a polypeptide of the invention. In another embodiment, a candidate agent is tested for its ability to normalize or promote the normalization of the biological activity of a polypeptide described herein. The biological activity of a polypeptide may be assayed using any standard method.

[0143] In another example, a gene described herein (e.g., listed in Table 2 or 4) is expressed as a transcriptional or translational fusion with a detectable reporter, and expressed in an isolated cell (e.g., mammalian or insect cell) under the control of a heterologous promoter, such as an inducible promoter. The cell expressing the fusion protein is then contacted with a candidate agent, and the expression of the detectable reporter in that cell is compared to the expression of the detectable reporter in an untreated control cell. A candidate agent that alters (e.g., normalizes or promotes normalization) the expression of the detectable reporter is an agent that is useful for the treatment of FSHD. In preferred embodiments, the candidate agent increases the expression of a reporter gene fused to a gene that is downregulated in FSHD.

[0144] In one particular working example, a candidate agent that binds to a polypeptide encoded by a gene listed in Table 2 or 4 may be identified using a chromatography-based technique. For example, a recombinant polypeptide of the invention may be purified by standard techniques from cells engineered to express the polypeptide (e.g., those described above) and may be immobilized on a column. A solution of candidate agents is then passed through the column, and an agent specific for the polypeptide encoded by a nucleic acid molecule listed in Table 2 or 4 is identified on the basis of its ability to bind to the polypeptide and be immobilized on the column. To isolate the agent, the column is washed to remove non-specifically bound molecules, and the agent of interest is then released from the column and collected. Similar methods may be used to isolate an agent bound to a polypeptide microarray. Agents isolated by this method (or any other appropriate method) may, if desired, be further purified (e.g., by high performance liquid chromatography). In addition, these candidate agents may be tested for their ability to increase the activity of gene whose expression is downregulated in FSHD. Agents isolated by this approach may also be used, for example, as therapeutics to treat FSHD in a human patient. Agents that are identified as binding to a polypeptide of the invention with an affinity constant less than or equal to 10 mM are considered particularly useful in the invention. Alternatively, any in vivo protein interaction detection system, for example, any two-hybrid assay may be utilized.

[0145] Potential agonists and antagonists include organic molecules, peptides, peptide mimetics, polypeptides, nucleic acid molecules, and antibodies that bind to a nucleic acid sequence or polypeptide of the invention. (e.g., those listed in Table 2 or 4). For those nucleic acid molecules or polypep-

tides whose expression is decreased in a patient having FSHD, agonists would be particularly useful in the methods of the invention. For those nucleic acid molecules or polypeptides whose expression is increased in a patient having FSHD, antagonists would be particularly useful in the methods of the invention.

[0146] Each of the DNA sequences identified herein may be used in the discovery and development of a therapeutic agent for the treatment of FSHD. The encoded protein, upon expression, can be used as a target for the screening of drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct sequences that promote the expression of the coding sequence of interest. Such sequences may be isolated by standard techniques (Ausubel et al., supra). Optionally, agents identified in any of the above-described assays may be confirmed as useful in cell culture or in a chimeric animal of the invention. Small molecules of the invention preferably have a molecular weight below 2.000 daltons, more preferably between 300 and 1,000 daltons, and most preferably between 400 and 700 daltons. It is preferred that these small molecules are organic molecules.

Test Agents and Extracts

[0147] In general, agents capable of normalizing or promoting the normalization of expression of a gene listed in Table 2 or 4 are identified from large libraries of both natural product or synthetic (or semi-synthetic) extracts or chemical libraries or from polypeptide or nucleic acid libraries (e.g., Table 2 or 4), according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or agents is not critical to the screening procedure(s) of the invention. Agents used in screens may include known agents (for example, known therapeutics used for other diseases or disorders). Alternatively, virtually any number of unknown chemical extracts or agents can be screened using the methods described herein. Examples of such extracts or agents include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic agents, as well as modification of existing agents. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical agents, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based agents. Synthetic agent libraries are commercially available from Brandon Associates (Merrimack, N.H.) and Aldrich Chemical (Milwaukee, Wis.). Alternatively, libraries of natural agents in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, Fla.), and PharmaMar, U.S.A. (Cambridge, Mass.). In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods. Furthermore, if desired, any library or agent is readily modified using standard chemical, physical, or biochemical methods.

[0148] In addition, those skilled in the art of drug discovery and development readily understand that methods for dereplication (e.g., taxonomic dereplication, biological dereplication, and chemical dereplication, or any combination thereof)

or the elimination of replicates or repeats of materials already known for their activity should be employed whenever possible.

[0149] When a crude extract is found to normalize or promote normalization of the activity of a polypeptide that is aberrantly regulated in FSHD, further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract that increases the expression or activity of the polypeptide. Methods of fractionation and purification of such heterogenous extracts are known in the art. If desired, agents shown to be useful as therapeutics for the treatment of human FSHD are chemically modified according to methods known in the art.

Inhibitory Nucleic Acids

[0150] Inhibitory nucleic acid molecules are those oligonucleotides that inhibit the expression or activity of a polypeptide that is overexpressed in FSHD (e.g., a polypeptide encoded by a gene listed in Table 2 or 4). Such oligonucleotides include single and double stranded nucleic acid molecules (e.g., DNA, RNA, and analogs thereof) that bind a nucleic acid molecule that encodes a polypeptide that is overexpressed in FSHD (e.g., antisense molecules, siRNA, shRNA) as well as nucleic acid molecules that bind directly to the polypeptide to modulate its biological activity (e.g., aptamers).

[0151] MOE Gapmers

[0152] In one embodiment, the invention provides methods for characterizing the effects of RNaseH1-activating antisense oligonucleotides (ASO's) ("MOE gapmers") on markers of the invention. The RNAseH1 ASO chemistry provides for a 20 nucleotide phosphorothioate backbone (5-10-5 gapmer). In particular, the oligonucleotide comprises five nucleotides at each end with the 2'-O-(2-methoxyethyl) (MOE) modification and ten central deoxyribonucleotides for activation of RNase H1. In one embodiment, cells derived from an FSHD affected and paired control cells are contacted with ASO's targeting DUX4. The effect of the downregulation of DUX4 on markers of the invention (e.g., markers listed in Table 2 or 4) is assayed. In another embodiment, a marker of the invention (e.g., a marker upregulated in FSHD) is targeted, and the effect of such targeting is assessed on the levels of other markers of the invention.

[0153] siRNA

[0154] Short twenty-one to twenty-five nucleotide double-stranded RNAs are effective at down-regulating gene expression (Zamore et al., Cell 101: 25-33; Elbashir et al., Nature 411: 494-498, 2001, hereby incorporated by reference). The therapeutic effectiveness of an sirNA approach in mammals was demonstrated in vivo by McCaffrey et al. (Nature 418: 38-39.2002).

[0155] Given the sequence of a target gene, siRNAs may be designed to inactivate that gene. Such siRNAs, for example, could be administered directly to an affected tissue, or administered systemically. The nucleic acid sequence of a gene can be used to design small interfering RNAs (siRNAs). The 21 to 25 nucleotide siRNAs may be used, for example, as therapeutics to treat FSHD.

[0156] The inhibitory nucleic acid molecules of the present invention may be employed as double-stranded RNAs for RNA interference (RNAi)-mediated knock-down of expres-

sion. In one embodiment, expression of a gene listed in Table 2 or 4 is reduced in a skeletal muscle cell. RNAi is a method for decreasing the cellular expression of specific proteins of interest (reviewed in Tuschl, Chembiochem 2:239-245, 2001; Sharp, Genes & Devel. 15:485-490, 2000; Hutvagner and Zamore, Curr. Opin. Genet. Devel. 12:225-232, 2002; and Hannon, Nature 418:244-251, 2002). The introduction of siRNAs into cells either by transfection of dsRNAs or through expression of siRNAs using a plasmid-based expression system is increasingly being used to create loss-of-function phenotypes in mammalian cells.

[0157] In one embodiment of the invention, a doublestranded RNA (dsRNA) molecule is made that includes between eight and nineteen consecutive nucleobases of a nucleobase oligomer of the invention. The dsRNA can be two distinct strands of RNA that have duplexed, or a single RNA strand that has self-duplexed (small hairpin (sh)RNA). Typically, dsRNAs are about 21 or 22 base pairs, but may be shorter or longer (up to about 29 nucleobases) if desired. dsRNA can be made using standard techniques (e.g., chemical synthesis or in vitro transcription). Kits are available, for example, from Ambion (Austin, Tex.) and Epicentre (Madison, Wis.). Methods for expressing dsRNA in mammalian cells are described in Brummelkamp et al. Science 296:550-553, 2002; Paddison et al. Genes & Devel. 16:948-958, 2002. Paul et al. Nature Biotechnol. 20:505-508, 2002; Sui et al. Proc. Natl. Acad. Sci. USA 99:5515-5520, 2002; Yu et al. Proc. Natl. Acad. Sci. USA 99:6047-6052, 2002; Miyagishi et al. Nature Biotechnol. 20:497-500, 2002; and Lee et al. Nature Biotechnol. 20:500-505 2002, each of which is hereby incorporated by reference.

[0158] Small hairpin RNAs (shRNAs) comprise an RNA sequence having a stem-loop structure. A "stem-loop structure" refers to a nucleic acid having a secondary structure that includes a region of nucleotides which are known or predicted to form a double strand or duplex (stem portion) that is linked on one side by a region of predominantly single-stranded nucleotides (loop portion). The term "hairpin" is also used herein to refer to stem-loop structures. Such structures are well known in the art and the term is used consistently with its known meaning in the art. As is known in the art, the secondary structure does not require exact base-pairing. Thus, the stem can include one or more base mismatches or bulges. Alternatively, the base-pairing can be exact, i.e. not include any mismatches. The multiple stem-loop structures can be linked to one another through a linker, such as, for example, a nucleic acid linker, other molecule, or some combination

[0159] As used herein, the term "small hairpin RNA" includes a conventional stem-loop shRNA, which forms a precursor miRNA (pre-miRNA). While there may be some variation in range, a conventional stem-loop shRNA can comprise a stem ranging from 19 to 29 bp, and a loop ranging from 4 to 30 bp. "shRNA" also includes micro-RNA embedded shRNAs (miRNA-based shRNAs), wherein the guide strand and the passenger strand of the miRNA duplex are incorporated into an existing (or natural) miRNA or into a modified or synthetic (designed) miRNA. In some instances the precursor miRNA molecule can include more than one stem-loop structure. MicroRNAs are endogenously encoded RNA molecules that are about 22-nucleotides long and generally expressed in a highly tissue- or developmental-stage-specific fashion and that post-transcriptionally regulate target genes. More than 200 distinct miRNAs have been identified in plants and animals. These small regulatory RNAs are believed to serve important biological functions by two prevailing modes of action: (1) by repressing the translation of target mRNAs, and (2) through RNA interference (RNAi), that is, cleavage and degradation of mRNAs. In the latter case, miRNAs function analogously to small interfering RNAs (siRNAs). Thus, one can design and express artificial miRNAs based on the features of existing miRNA genes.

[0160] shRNAs can be expressed from DNA vectors to provide sustained silencing and high yield delivery into almost any cell type. In some embodiments, the vector is a viral vector. Exemplary viral vectors include retroviral, including lentiviral, adenoviral, baculoviral and avian viral vectors, and including such vectors allowing for stable, single-copy genomic integrations. Retroviruses from which the retroviral plasmid vectors can be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. A retroviral plasmid vector can be employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which can be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14x, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14 (1990), which is incorporated herein by reference in its entirety. The vector can transduce the packaging cells through any means known in the art. A producer cell line generates infectious retroviral vector particles which include polynucleotide encoding a DNA replication protein. Such retroviral vector particles then can be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express a DNA replication protein.

[0161] Catalytic RNA molecules or ribozymes that include an antisense sequence of the present invention can be used to inhibit expression of a nucleic acid molecule in vivo (e.g., a nucleic acid molecule listed in Table 2 or 4). The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs. The design and use of target RNA-specific ribozymes is described in Haseloff et al., Nature 334:585-591. 1988, and U.S. Patent Application Publication No. 2003/0003469 A1, each of which is incorporated by reference.

[0162] Accordingly, the invention also features a catalytic RNA molecule that includes, in the binding arm, an antisense RNA having between eight and nineteen consecutive nucleobases. In preferred embodiments of this invention, the catalytic nucleic acid molecule is formed in a hammerhead or hairpin motif. Examples of such hammerhead motifs are described by Rossi et al., Aids Research and Human Retroviruses, 8:183, 1992. Example of hairpin motifs are described by Hampel et al., "RNA Catalyst for Cleaving Specific RNA Sequences," filed Sep. 20, 1989, which is a continuation-inpart of U.S. Ser. No. 07/247,100 filed Sep. 20, 1988, Hampel and Tritz, Biochemistry, 28:4929, 1989, and Hampel et al., Nucleic Acids Research, 18: 299, 1990. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.

[0163] Essentially any method for introducing a nucleic acid construct into cells can be employed. Physical methods of introducing nucleic acids include injection of a solution containing the construct, bombardment by particles covered by the construct, soaking a cell, tissue sample or organism in a solution of the nucleic acid, or electroporation of cell membranes in the presence of the construct. A viral construct packaged into a viral particle can be used to accomplish both efficient introduction of an expression construct into the cell and transcription of the encoded shRNA. Other methods known in the art for introducing nucleic acids to cells can be used, such as lipid-mediated carrier transport, chemical mediated transport, such as calcium phosphate, and the like. Thus the shRNA-encoding nucleic acid construct can be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, promote annealing of the duplex strands, stabilize the annealed strands, or otherwise increase inhibition of the target gene. [0164] For expression within cells, DNA vectors, for example plasmid vectors comprising either an RNA polymerase II or RNA polymerase III promoter can be employed. Expression of endogenous miRNAs is controlled by RNA polymerase II (Pol II) promoters and in some cases, shRNAs are most efficiently driven by Pol II promoters, as compared to RNA polymerase III promoters (Dickins et al., 2005, Nat. Genet. 39: 914-921). In some embodiments, expression of the shRNA can be controlled by an inducible promoter or a conditional expression system, including, without limitation, RNA polymerase type II promoters. Examples of useful promoters in the context of the invention are tetracycline-inducible promoters (including TRE-tight), IPTG-inducible promoters, tetracycline transactivator systems, and reverse tetracycline transactivator (rtTA) systems. Constitutive promoters can also be used, as can cell- or tissue-specific promoters. Many promoters will be ubiquitous, such that they are expressed in all cell and tissue types. A certain embodiment uses tetracycline-responsive promoters, one of the most effective conditional gene expression systems in in vitro and in vivo studies. See International Patent Application PCT/

Modified Nucleic Acids

description of inducible shRNA.

[0165] At least two types of oligonucleotides induce the cleavage of RNA by RNase H: polydeoxynucleotides with phosphodiester (PO) or phosphorothioate (PS) linkages. Although 2'-OMe-RNA sequences exhibit a high affinity for RNA targets, these sequences are not substrates for RNase H. A desirable oligonucleotide is one based on 2'-modified oligonucleotides containing oligodeoxynucleotide gaps with some or all internucleotide linkages modified to phosphorothioates for nuclease resistance. The presence of methylphosphonate modifications increases the affinity of the oligonucleotide for its target RNA and thus reduces the IC₅₀. This modification also increases the nuclease resistance of the modified oligonucleotide. It is understood that the methods and reagents of the present invention may be used in conjunction with any technologies that may be developed, including covalently-closed multiple antisense (CMAS) oligonucleotides (Moon et al., Biochem J. 346:295-303, 2000; PCT Publication No. WO 00/61595), ribbon-type antisense

US2003/030901 (Publication No. WO 2004-029219 A2) and

Fewell et al., 2006, Drug Discovery Today 11: 975-982, for a

(RiAS) oligonucleotides (Moon et al., J. Biol. Chem. 275: 4647-4653, 2000; PCT Publication No. WO 00/61595), and large circular antisense oligonucleotides (U.S. Patent Application Publication No. US 2002/0168631 A1).

[0166] As is known in the art, a nucleoside is a nucleobasesugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn, the respective ends of this linear polymeric structure can be further joined to form a circular structure; open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

[0167] Specific examples of preferred nucleobase oligomers useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, nucleobase oligomers having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone are also considered to be nucleobase oligomers.

[0168] Nucleobase oligomers that have modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl-phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriest-ers, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity, wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included. Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.

[0169] Nucleobase oligomers having modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene for-

macetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH.sub.2 component parts. Representative United States patents that teach the preparation of the above oligonucleotides include, but are not limited to, U.S. Pat. Nos. 5,034, 506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.

[0170] In other nucleobase oligomers, both the sugar and the internucleoside linkage, i.e., the backbone, are replaced with novel groups. The nucleobase units are maintained for hybridization with a gene listed in Table 2 or 4. One such nucleobase oligomer, is referred to as a Peptide Nucleic Acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Methods for making and using these nucleobase oligomers are described, for example, in "Peptide Nucleic Acids: Protocols and Applications" Ed. P. E. Nielsen, Horizon Press, Norfolk, United Kingdom, 1999. Representative United States patents that teach the preparation of PNAs include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

[0171] In particular embodiments of the invention, the nucleobase oligomers have phosphorothioate backbones and nucleosides with heteroatom backbones, and in particular $-CH_2-NH-O-CH_2-$, $-CH_2-N(CH_3)-O-CH_2-$ (known as a methylene (methylimino) or MMI backbone), $-CH_2-O-N(CH_3)-CH_2-$, $-CH_2-N(CH_3)-N$ (CH_3)— CH_2- , and $-O-N(CH_3)-CH_2-$. In some embodiments, the oligonucleotides have morpholino backbone structures described in U.S. Pat. No. 5.034.506.

[0172] Nucleobase oligomers may also contain one or more substituted sugar moieties. Nucleobase oligomers comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl, and alkynyl may be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_nCH₃, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred nucleobase oligomers include one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl, or O-aralkyl, SH, SCH₃, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a nucleobase oligomer, or a group for improving the pharmacodynamic properties of an nucleobase oligomer, and other substituents having similar properties. Preferred modifications are 2'-O-methyl and 2'-methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE). Another desirable modification is 2'-dimethylaminooxyethoxy (i.e., O(CH₂)₂ON(CH₃)₂), also known as 2'-DMAOE. Other modifications include, 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on an oligonucleotide or other nucleobase oligomer, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Nucleobase oligomers may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference in its entirety.

[0173] Nucleobase oligomers may also include nucleobase modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases, such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine; 2-propyl and other alkyl derivatives of adenine and guanine; 2-thiouracil, 2-thiothymine and 2-thiocytosine; 5-halouracil and cytosine; 5-propynyl uracil and cytosine; 6-azo uracil, cytosine and thymine; 5-uracil (pseudouracil); 4-thiouracil; 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines; 5-halo (e.g., 5-bromo), 5-trifluoromethyl and other 5-substituted uracils and cytosines; 7-methylguanine and 7-methyladenine; 8-azaguanine and 8-azaad-7-deazaguanine and 7-deazaadenine; 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of an antisense oligonucleotide of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines, and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2.degree. C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are desirable base substitutions, even more particularly when combined with 2'-O-methoxyethyl or 2'-O-methyl sugar modifications. Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; and 5,750,692, each of which is herein incorporated by reference.

[0174] Another modification of a nucleobase oligomer of the invention involves chemically linking to the nucleobase oligomer one or more moieties or conjugates that enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 86:6553-6556, 1989), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let, 4:1053-1060, 1994), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 660:306-309, 1992; Manoharan et al., Bioorg. Med. Chem. Let., 3:2765-2770, 1993), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 20:533-538: 1992), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 10:1111-1118, 1991; Kabanov et al., FEBS Lett., 259:327-330, 1990; Svinarchuk et al., Biochimie, 75:49-54, 1993), a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-0-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 36:3651-3654, 1995; Shea et al., Nucl. Acids Res., 18:3777-3783, 1990), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 14:969-973, 1995), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 36:3651-3654, 1995), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1264:229-237, 1995), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 277:923-937, 1996. Representative United States patents that teach the preparation of such nucleobase oligomer conjugates include U.S. Pat. Nos. 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,828,979; 4,835,263; 4,876,335; 4,904,582; 4,948,882; 4,958,013; 5,082,830; 5,109,124; 5,112,963; 5,118,802; 5,138,045; 5,214,136; 5,218,105; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,414,077; 5,416,203, 5,451,463; 5,486,603; 5,510,475; 5,512,439; 5,512,667; 5,514,785; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,565,552; 5,567,810; 5,574,142; 5,578,717; 5,578,718; 5,580,731; 5,585,481; 5,587,371; 5,591,584; 5,595,726; 5,597,696; 5,599,923; 5,599,928; 5,608,046; and 5,688,941, each of which is herein incorporated by reference.

[0175] The present invention also includes nucleobase oligomers that are chimeric compounds. "Chimeric" nucleobase oligomers are nucleobase oligomers, particularly oligonucleotides, that contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide. These nucleobase oligomers typically contain at least one region where the nucleobase oligomer is modified to confer, upon the nucleobase oligomer, increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the nucleobase oligomer may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of nucleobase oligomer inhibition of gene expression. Consequently, comparable results can often be obtained with shorter nucleobase oligomers when chimeric nucleobase oligomers are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region.

[0176] Chimeric nucleobase oligomers of the invention may be formed as composite structures of two or more nucleobase oligomers as described above. Such nucleobase oligomers, when oligonucleotides, have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein incorporated by reference in its entirety.

[0177] The nucleobase oligomers used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

[0178] The nucleobase oligomers of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

Delivery of Polynucleotides

[0179] Naked polynucleotides, or analogs thereof, are capable of entering mammalian cells and inhibiting expression of a gene of interest. Nonetheless, it may be desirable to utilize a formulation that aids in the delivery of oligonucleotides or other nucleobase oligomers to cells (see, e.g., U.S. Pat. Nos. 5,656,611, 5,753,613, 5,785,992, 6,120,798, 6,221, 959, 6,346,613, and 6,353,055, each of which is hereby incorporated by reference).

Polynucleotide Therapy for FSHD

[0180] Polynucleotide therapy is one therapeutic approach for preventing or ameliorating FSHD associated with the reduced expression of a nucleic acid molecule listed in Table 2 or 4. Such nucleic acid molecules can be delivered to cells that lack sufficient, normal protein expression or biological activity. The nucleic acid molecules must be delivered to those cells in a form in which they can be taken up by the cells and so that sufficient levels of protein can be produced to increase protein expression or function in a patient having FSHD.

[0181] Transducing viral (e.g., retroviral, adenoviral, and adeno-associated viral) vectors can be used for somatic cell gene therapy, especially because of their high efficiency of infection and stable integration and expression (see, e.g., Cayouette et al., Human Gene Therapy 8:423-430, 1997; Kido et al., Current Eye Research 15:833-844, 1996; Bloomer et al., Journal of Virology 71:6641-6649, 1997;

Naldini et al., Science 272:263-267, 1996; and Miyoshi et al., Proc. Natl. Acad. Sci. U.S.A. 94:10319, 1997). For example, a full length gene (e.g., a nucleic acid molecule listed in Table 2 or 4), or a portion thereof, can be cloned into a retroviral vector and expression can be driven from its endogenous promoter, from a retroviral long terminal repeat, or from a promoter specific for a target cell type of interest (e.g., a skeletal muscle cell). Promoters useful in the methods of the invention include, for example, myoD.

[0182] Other viral vectors that can be used include, for example, a vaccinia virus, a bovine papilloma virus, or a herpes virus, such as Epstein-Barr Virus (also see, for example, the vectors of Miller, Human Gene Therapy 15-14, 1990; Friedman, Science 244:1275-1281, 1989; Eglitis et al., BioTechniques 6:608-614, 1988; Tolstoshev et al., Current Opinion in Biotechnology 1:55-61, 1990; Sharp, The Lancet 337:1277-1278, 1991; Cornetta et al., Nucleic Acid Research and Molecular Biology 36:311-322, 1987; Anderson, Science 226:401-409, 1984; Moen, Blood Cells 17:407-416, 1991; Miller et al., Biotechnology 7:980-990, 1989; Le Gal La Salle et al., Science 259:988-990, 1993; and Johnson, Chest 107:77S-83S, 1995). Retroviral vectors are particularly well developed and have been used in clinical settings (Rosenberg et al., N. Engl. J. Med 323:370, 1990; Anderson et al., U.S. Pat. No. 5,399,346). Most preferably, a viral vector is used to administer the gene of interest (e.g., nucleic acid molecules listed in Table 2 or 4) systemically or to a skeletal

[0183] Non-viral approaches can also be employed for the introduction of therapeutic agent to a cell of an FSHD affected. For example, a nucleic acid molecule can be introduced into a cell by administering the nucleic acid in the presence of lipofection (Feigner et al., Proc. Natl. Acad. Sci. U.S.A. 84:7413, 1987; Ono et al., Neuroscience Letters 17:259, 1990; Brigham et al., Am. J. Med. Sci. 298:278, 1989; Staubinger et al., Methods in Enzymology 101:512, 1983), asialoorosomucoid-polylysine conjugation (Wu et al., Journal of Biological Chemistry 263:14621, 1988; Wu et al., Journal of Biological Chemistry 264:16985, 1989), or by micro-injection under surgical conditions (Wolff et al., Science 247:1465, 1990). Preferably the nucleic acids are administered in combination with a liposome and protamine.

[0184] Gene transfer can also be achieved using non-viral means involving transfection in vitro. Such methods include the use of calcium phosphate, DEAE dextran, electroporation, and protoplast fusion. Liposomes can also be potentially beneficial for delivery of DNA into a cell. Transplantation of normal genes into the affected tissues of a patient can also be accomplished by transferring a normal nucleic acid into a cultivatable cell type ex vivo (e.g., an autologous or heterologous primary cell or progeny thereof), after which the cell (or its descendants) are injected into a targeted tissue.

[0185] cDNA expression for use in gene therapy methods can be directed from any suitable promoter (e.g., the human cytomegalovirus (CMV), simian virus 40 (SV40), or metallothionein promoters), and regulated by any appropriate mammalian regulatory element. For example, if desired, enhancers known to preferentially direct gene expression in specific cell types, such as cells of the central nervous system or their associated glial cells, can be used to direct the expression of a nucleic acid. The enhancers used can include, without limitation, those that are characterized as tissue- or cell-specific enhancers. Alternatively, if a genomic clone is used as a therapeutic construct, regulation can be mediated by the

cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, including any of the promoters or regulatory elements described above.

[0186] Another therapeutic approach included in the invention involves administration of a recombinant therapeutic, such as a recombinant polypeptide encoded by a gene downregulated in FSHD. In one embodiment, the protein is either administered directly to a disease-affected tissue (for example, by injection into the muscle) or systemically (for example, by any conventional recombinant protein administration technique). The dosage of the administered protein depends on a number of factors, including the size and health of the individual patient. For any particular subject, the specific dosage regimes should be adjusted over time according to the individual need and the professional judgement of the person administering or supervising the administration of the compositions. Generally, between 0.1 mg and 100 mg, is administered per day to an adult in any pharmaceutically acceptable formulation.

Pharmaceutical Therapeutics

[0187] The invention provides a simple means for identifying agents (including nucleic acid molecules, inhibitory nucleic acid molecules, peptides, small molecules, and mimetics) capable of acting as therapeutics for the treatment of FSHD. Accordingly, a chemical entity discovered to have medicinal value using the methods described herein is useful as a drug or as information for structural modification of existing agents, e.g., by rational drug design.

[0188] For the rapeutic uses, the agents identified using the methods disclosed herein may be administered systemically. for example, formulated in a pharmaceutically-acceptable buffer such as physiological saline. Preferable routes of administration include, for example, subcutaneous, intravenous, interperitoneally, intramuscular, or intradermal injections that provide continuous, sustained levels of the drug in the patient. Treatment of human patients or other animals will be carried out using a therapeutically effective amount of FSHD therapeutic in a physiologically-acceptable carrier. Suitable carriers and their formulation are described, for example, in Remington's Pharmaceutical Sciences by E. W. Martin. The amount of the therapeutic agent to be administered varies depending upon the manner of administration, the age and body weight of the patient, and with the clinical symptoms of FSHD. An agent is administered at a dosage that controls the clinical or physiological symptoms of FSHD as determined by clinical evaluation or by a diagnostic method of the invention that assays the expression of a nucleic acid molecule listed in Table 2 or 4, or the biological activity of a polypeptide encoded by such a nucleic acid molecule.

Formulation of Pharmaceutical Compositions

[0189] The administration of an agent for the treatment of FSHD may be by any suitable means that results in a concentration of the therapeutic that, combined with other components, is effective in ameliorating, reducing, or stabilizing FSHD. The agent may be contained in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of the total weight of the composition. The composition may be provided in a dosage form that is suitable for parenteral (e.g., subcutaneously, intravenously, intramuscularly, or intraperitoneally) administration route. The pharmaceutical compositions may

be formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, Lippincott Williams & Wilkins, 2000 and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).

[0190] Pharmaceutical compositions according to the invention may be formulated to release the active agent substantially immediately upon administration or at any predetermined time or time period after administration. The latter types of compositions are generally known as controlled release formulations, which include (i) formulations that create a substantially constant concentration of the drug within the body over an extended period of time; (ii) formulations that after a predetermined lag time create a substantially constant concentration of the drug within the body over an extended period of time; (iii) formulations that sustain action during a predetermined time period by maintaining a relatively, constant, effective level in the body with concomitant minimization of undesirable side effects associated with fluctuations in the plasma level of the active substance (sawtooth kinetic pattern); (iv) formulations that localize action by, e.g., spatial placement of a controlled release composition adjacent to or in the central nervous system or cerebrospinal fluid; (v) formulations that allow for convenient dosing, such that doses are administered, for example, once every one or two weeks; and (vi) formulations that target FSHD by using carriers or chemical derivatives to deliver the therapeutic agent to a particular cell type (e.g., skeletal muscle cell) whose function is perturbed in FSHD. For some applications, controlled release formulations obviate the need for frequent dosing during the day to sustain the plasma level at a therapeutic level.

[0191] Any of a number of strategies can be pursued in order to obtain controlled release in which the rate of release outweighs the rate of metabolism of the agent in question. In one example, controlled release is obtained by appropriate selection of various formulation parameters and ingredients, including, e.g., various types of controlled release compositions and coatings. Thus, the FSHD therapeutic is formulated with appropriate excipients into a pharmaceutical composition that, upon administration, releases the FSHD therapeutic in a controlled manner. Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, molecular complexes, nanoparticles, patches, and liposomes.

Parenteral Compositions

[0192] The pharmaceutical composition may be administered parenterally by injection, infusion or implantation (subcutaneous, intravenous, intramuscular, intraperitoneal, or the like) in dosage forms, formulations, or via suitable delivery devices or implants containing conventional, non-toxic pharmaceutically acceptable carriers and adjuvants. The formulation and preparation of such compositions are well known to those skilled in the art of pharmaceutical formulation. Formulations can be found in Remington: The Science and Practice of Pharmacy, supra.

[0193] Compositions for parenteral use may be provided in unit dosage forms (e.g., in single-dose ampoules), or in vials containing several doses and in which a suitable preservative may be added (see below). The composition may be in form of a solution, a suspension, an emulsion, an infusion device, or a delivery device for implantation, or it may be presented as

a dry powder to be reconstituted with water or another suitable vehicle before use. Apart from the active therapeutic (s), the composition may include suitable parenterally acceptable carriers and/or excipients. The active therapeutic (s) may be incorporated into microspheres, microcapsules, nanoparticles, liposomes, or the like for controlled release. Furthermore, the composition may include suspending, solubilizing, stabilizing, pH-adjusting agents, tonicity adjusting agents, and/or dispersing, agents.

[0194] As indicated above, the pharmaceutical compositions according to the invention may be in a form suitable for sterile injection. To prepare such a composition, the suitable active therapeutic(s) are dissolved or suspended in a parenterally acceptable liquid vehicle. Among acceptable vehicles and solvents that may be employed are water, water adjusted to a suitable pH by addition of an appropriate amount of hydrochloric acid, sodium hydroxide or a suitable buffer, 1,3-butanediol, Ringer's solution, and isotonic sodium chloride solution and dextrose solution. The aqueous formulation may also contain one or more preservatives (e.g., methyl, ethyl or n-propyl p-hydroxybenzoate). In cases where one of the agents is only sparingly or slightly soluble in water, a dissolution enhancing or solubilizing agent can be added, or the solvent may include 10-60% w/w of propylene glycol or the like.

Solid Dosage Forms for Oral Use

[0195] Formulations for oral use include tablets containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients. Such formulations are known to the skilled artisan. Excipients may be, for example, inert diluents or fillers (e.g., sucrose, sorbitol, sugar, mannitol, microcrystalline cellulose, starches including potato starch, calcium carbonate, sodium chloride, lactose, calcium phosphate, calcium sulfate, or sodium phosphate); granulating and disintegrating agents (e.g., cellulose derivatives including microcrystalline cellulose, starches including potato starch, croscarmellose sodium, alginates, or alginic acid); binding agents (e.g., sucrose, glucose, sorbitol, acacia, alginic acid, sodium alginate, gelatin, starch, pregelatinized starch, microcrystalline cellulose, magnesium aluminum silicate, carboxymethylcellulose sodium, methylcellulose, hydroxypropyl methylcellulose, ethylcellulose, polyvinylpyrrolidone, or polyethylene glycol); and lubricating agents, glidants, and antiadhesives (e.g., magnesium stearate, zinc stearate, stearic acid, silicas, hydrogenated vegetable oils, or talc). Other pharmaceutically acceptable excipients can be colorants, flavoring agents, plasticizers, humectants, buffering agents, and the like.

[0196] The tablets may be uncoated or they may be coated by known techniques, optionally to delay disintegration and absorption in the gastrointestinal tract and thereby providing a sustained action over a longer period. The coating may be adapted to release the active drug in a predetermined pattern (e.g., in order to achieve a controlled release formulation) or it may be adapted not to release the active drug until after passage of the stomach (enteric coating). The coating may be a sugar coating, a film coating (e.g., based on hydroxypropyl methylcellulose, methylcellulose, methylcellulose, carboxymethylcellulose, acrylate copolymers, polyethylene glycols and/or polyvinylpyrrolidone), or an enteric coating (e.g., based on methacrylic acid copolymer, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose

acetate succinate, polyvinyl acetate phthalate, shellac, and/or ethylcellulose). Furthermore, a time delay material such as, e.g., glyceryl monostearate or glyceryl distearate may be employed.

[0197] The solid tablet compositions may include a coating adapted to protect the composition from unwanted chemical changes, (e.g., chemical degradation prior to the release of the active therapeutic substance). The coating may be applied on the solid dosage form in a similar manner as that described in Encyclopedia of Pharmaceutical Technology, supra. Formulations for oral use may also be presented as chewable tablets, or as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent (e.g., potato starch, lactose, microcrystalline cellulose, calcium carbonate, calcium phosphate or kaolin), or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin, or olive oil. Powders and granulates may be prepared using the ingredients mentioned above under tablets and capsules in a conventional manner using, e.g., a mixer, a fluid bed apparatus or a spray drying equipment.

[0198] The present invention provides methods of treating FSHD or symptoms thereof which comprise administering a therapeutically effective amount of a pharmaceutical composition comprising a compound of the formulae herein to a subject (e.g., a mammal such as a human). Thus, one embodiment is a method of treating a subject suffering from or susceptible to FSHD or a symptom thereof. The method includes the step of administering to the mammal a therapeutic amount of a compound herein sufficient to treat the disease or disorder or symptom thereof, under conditions such that the disease or disorder is treated.

[0199] The methods herein include administering to the subject (including a subject identified as in need of such treatment) an effective amount of a compound described herein, or a composition described herein to produce such effect. Identifying a subject in need of such treatment can be in the judgment of a subject or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).

[0200] As used herein, the terms "treat," treating," "treatment," and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.

[0201] As used herein, the terms "prevent," "preventing," "prevention," "prophylactic treatment" and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.

[0202] The therapeutic methods of the invention (which include prophylactic treatment) in general comprise administration of a therapeutically effective amount of the compounds herein, such as a compound of the formulae herein to a subject (e.g., animal, human) in need thereof, including a mammal, particularly a human. Such treatment will be suitably administered to subjects, particularly humans, suffering from, having, susceptible to, or at risk for a disease, disorder, or symptom thereof. Determination of those subjects "at risk" can be made by any objective or subjective determination by a diagnostic test or opinion of a subject or health care provider (e.g., genetic test, enzyme or protein marker, Marker (as defined herein), family history, and the like). The compounds

herein may be also used in the treatment of any other disorders in which muscular dystrophy may be implicated.

[0203] In one embodiment, the invention provides a method of monitoring treatment progress. The method includes the step of determining a level of diagnostic marker (Marker) (e.g., any target delineated herein modulated by a compound herein, a protein or indicator thereof, etc.) or diagnostic measurement (e.g., screen, assay) in a subject suffering from or susceptible to FSHD, in which the subject has been administered a therapeutic amount of a compound herein sufficient to treat the disease or symptoms thereof. The level of Marker determined in the method can be compared to known levels of Marker in either healthy normal controls or in other afflicted patients to establish the subject's disease status. In preferred embodiments, a second level of Marker in the subject is determined at a time point later than the determination of the first level, and the two levels are compared to monitor the course of disease or the efficacy of the therapy. In certain preferred embodiments, a pre-treatment level of Marker in the subject is determined prior to beginning treatment according to this invention; this pre-treatment level of Marker can then be compared to the level of Marker in the subject after the treatment commences, to determine the efficacy of the treatment.

[0204] The practice of the present invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook, 1989); "Oligonucleotide Synthesis" (Gait, 1984); "Animal Cell Culture" (Freshney, 1987); "Methods in Enzymology" "Handbook of Experimental Immunology" (Weir, 1996); "Gene Transfer Vectors for Mammalian Cells" (Miller and Calos, 1987); "Current Protocols in Molecular Biology" (Ausubel, 1987); "PCR: The Polymerase Chain Reaction", (Mullis, 1994); "Current Protocols in Immunology" (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.

EXAMPLES

[0205] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.

Example 1

Microarray Analysis Identifies Genes that are Differentially Regulated in FSHD

[0206] Open muscle biopsy was performed on both the biceps and deltoid muscles of 6 FSHD affected and 5 unaffected subjects that are first degree relatives of the FSHD affected subjects. Characteristics of the donors are provided in Table 1.

TABLE 1

Clir	Clinical characteristics of FSHD subjects and unaffected donors.									
Donor*	Familial Relations	Gender	Age at Enroll- ment (yrs)	EcoRI/ Blnl Allele	Deltoid Strength**	Biceps Strength				
07 A	proband	F	18	29 kb	4+/5 at 90°	full				
07U	mother of	F	49	34 kb	full	full				
	proband			(4qB),						
				53 kb						
				(4qA)						
09A	proband	F	31	25 kb	5/5 at 45°	4+/5				
09U	mother of 09A	F	57	47 kb	full	full				
12A	proband	M	49	18 kb	4+/5 at 90°	4+/5				
12U	sister of 12A	F	45	>112 kb	full	full				
15A	proband	M	67	28 kb	5/5 at 90°	5/5				
15B	brother of 15A	M	69	28 kb	full	full				
15V	sister of 15A	F	60	107 kb	full	full				
21B	proband	F	59	34 kb	5/5	4+/5				
21U	sister of 21B	F	48	150 kb	full	full				

*Donors are designated by cohort (family) number (07, 09, etc.) followed by A, B for the FSHD donors or U,V for the unaffected 1st degree relative(s) of the FSHD subject(s) in the cohort. Each cohort was composed of at least one affected individual with genetically and clinically verified FSHD, and at least one unaffected first degree relative with unshortened D4Z4 alleles and normal strength.

**Muscle strength is presented using a modified MRC scale where 5/5 is full strength for right/left sides.

[0207] Molecular diagnosis of FSHD was confirmed by the University of Iowa Diagnostic Laboratories and indicated that each donor with a clinical diagnosis of FSHD also had a contracted 4q D4Z4 region in combination with a 4 qA telomeric allele (Table 1).

Primary Cell Culture.

[0208] Primary muscle cell strains were established from open muscle biopsies following collagenase IV and dispase dissociation as previously described (Stadler et al., 2011). Cells were cultured at 37° C. in 5% CO₂ on 0.1% gelatin-coated dishes and propagated by daily feeding with HMP growth medium consisting of Ham's F10 medium (Cellgro) supplemented with 20% characterized fetal bovine serum (Hyclone), 0.5% chicken embryo extract, 1.2 mM CaCl₂, and 1% antibiotics/antimycotics (Cellgro). Cultures were incubated until cells reached 50-70% confluence, at which time cells were harvested after dissociation with TrypLE Express (Gibco), counted, and expanded for fluorescence-activated cell sorting (FACS) or frozen storage.

[0209] The initial primary cultures were enriched for myogenic cells by using a FacsAria instrument (BD Biosciences) to select cells based on positive staining with APC-conjugated anti-human CD56 (BD Biosciences). For FACS, cells were trypsinized, counted, and collected by centrifugation, after which ~1×10⁶ cells were resuspended in 0.1 ml 10% fetal bovine serum (Hyclone) in PBS and incubated with the CD56 antibody according to manufacturer's instructions. As a control, cells were incubated with APC-conjugated mouse IgG1 K isotype antibody (BD Biosciences). Cells were incubated for 30-60 min on ice, collected by centrifugation, washed twice with 10% fetal bovine serum in PBS, and resuspended in 0.5-1.0 ml 10% fetal bovine serum in PBS and subjected to FACS to select CD56-positive cells.

[0210] The CD56-positive populations of myogenic cells that were obtained by FACS were seeded on dishes coated with 0.1% gelatin (Sigma) and incubated at 37° C. and 5% $\rm CO_2$, with each cell strain grown independently. Cells were propagated by daily feeding with HMP growth medium con-

sisting of Ham's F10 medium (Cellgro) supplemented with 20% characterized FBS (Hyclone), 1% chicken embryo extract, 120 mM CaCl₂, and 1% antibiotics/antimycotics (Cellgro). Cultures were incubated until cells reached 50-70% confluence, at which time cells were harvested after dissociation with TrypLE Express (Gibco), counted, and used for expansion or for frozen storage. For all experiments described here, cultures were examined at 20-35 population doublings after the initial isolation, which was at least 10-15 population doublings prior to loss of proliferative capacity. [0211] FIG. 1 provides a table showing cell lines produced using these methods.

Primary Cell Cultures for RNA Isolation.

[0212] To initiate cultures, CD56-positive cells were seeded at ~4000 cells/cm² and cultured with daily feeding with LHCN growth medium consisting of 4:1 DMEM:Medium 199 supplemented with 15% characterized FBS (Hyclone), 0.02M HEPES (Sigma-Aldrich), 0.03 μg/ml ZnSO₄ (Sigma-Aldrich), 1.4 ug/ml Vitamin B12 (Sigma-Aldrich), 0.055 ug/ml dexamethasone (Sigma-Aldrich), 1% antibiotics/antimycotics (Cellgro), 2.5 ng/ml hepatocyte growth factor (Chemicon International) and 10 ng/ml basic fibroblast growth factor (Millipore). To induce differentiation, cells were propagated by daily feeding with LHCN growth medium until ~95% confluent, at which time cultures were switched to a low serum differentiation medium (DM) consisting of 4:1 DMEM:Medium 199 supplemented with 2% horse serum (Hyclone), 2 mM L-glutamine (Gibco), 1% antibiotics/antimycotics (Cellgro), 10 mM HEPES (Gibco), and 1 mM sodium pyruvate (Gibco). For RNA isolation for microarray analysis, cultures were harvested at two different stages of culture: (1) after two days of proliferation in growth medium, at which point cells were sub-confluent (GM); (2) after four days in differentiation medium (DM). Cells were harvested by rinsing culture dishes 2x with PBS and removing the cells with cell lifters (Costar), after which the cells were collected by centrifugation, snap frozen in liquid nitrogen, and stored at -80° C.

RNA Isolation and Microarray Analysis.

[0213] Total RNA was isolated from frozen cell pellets using 1 ml TRIzol reagent (Invitrogen). RNA concentration was quantified with UV absorption at 260 nm using Nano-Drop ND-1000 Spectrophotometer (Thermo Fisher Scientific) and the RNA integrity was assessed using the RNA 6000 Nano chip on the Agilent 2100 Bioanalyzer (Agilent Technologies). Gene expression profiling was carried out using the Affymetrix GeneChip Human Gene 1.0 ST arrays. The current format of these arrays interrogates 28,869 annotated genes in the human genome with approximately twenty six 25-mer oligonucleotide probes spread across the full length of the transcript. Microarray data was collected at Expression Analysis, Inc. (Durham, N.C.). Biotin-labeled target for the microarray experiment was prepared using 100 ng of total RNA and cDNA was synthesized using the GeneChip WT (Whole Transcript) Sense Target Labeling and Control Reagents kit as described by the manufacturer (Affymetrix). The sense cDNA was then fragmented by UDG (uracil DNA glycosylase) and APE 1 (apurinic/apyrimidic endonuclease 1) and biotin-labeled with TdT (terminal deoxynucleotidyl transferase) using the GeneChip WT Terminal labeling kit (Affymetrix). Hybridization was performed using 5 micrograms of biotinylated target, which was incubated with the GeneChip Human Gene 1.0 ST array (Affymetrix) at 45° C. for 16-20 hours. Following hybridization, non-specifically bound material was removed by washing and detection of specifically bound target was performed using the GeneChip Hybridization, Wash and Stain kit, and the GeneChip Fluidics Station 450 (Affymetrix). The arrays were scanned using the GeneChip Scanner 3000 7G (Affymetrix) and raw data was extracted from the scanned images and analyzed with the Affymetrix GeneChip Command Console Software (Affymetrix).

Microarray Data Analysis.

[0214] The raw array data was preprocessed and normalized using the Robust Multichip Average (RMA) method. This procedure includes background correction and quantile normalization of the arrays at the probe level, followed by robust summarization of expression at the transcript level. Differential expression between classes was calculated using linear models with the limma package from the Bioconductor project (Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, No. 1, Article 3). The linear model used was "~0+Class:Muscle:Medium+Cohort", where Class, Muscle, and Medium are each two-level factors with levels FSHD & Control; Biceps & Deltoid; and GM & DM, respec-

tively; and the factor Cohort has one level for each cohort. The interaction terms (denoted ":") for the three two-level factors model changes between FSHD and Control expression levels that may vary for each of the four combinations of muscle type and medium, and the additive Cohort factor models different baseline expression levels for samples from different cohorts. To control for multiple hypothesis testing false discovery rates (FDRs) were computed based on the p-values from empirical Bayes moderated t-statistics for differential expression. The reported results are based on only those probesets annotated with Entrez gene IDs, and in cases of multiple probesets with the same Entrez ID on only the probeset with the largest interquartile range; after this filtering probesets corresponding to 19,983 genes were left. FSHD typically affects biceps more severely than deltoid, and differences between FSHD and control cell-cultures were stronger in DM than in GM.

[0215] Table 2 lists 142 genes for which the expression difference between FSHD and control biceps in DM had p-value at most 0.001, which corresponded to an FDR of 0.15. The columns labeled AvsU.DM.B.pval and AvsU.DM.B. gives the p-value and FDR, respectively, and the column labeled AvsU.DM.B.Ifc gives the log 2(fold-change) between FSHD and control expression levels, with positive scores indicating higher expression in FSHD samples relative to controls, and negative scores indicating lower expression in FSHD samples relative to controls (Table 2).

TABLE 2

Probeset SYMBOL	UNIGENE	ENTREZID	REFSEQ	GENENAME	AvsU. DM.B.lfc	AvsU.DM.B. pval	AvsU.DM. B.fdr
7933733 FAM13C	Hs.499704	220965	NM_001001971.2	family with sequence similarity 13, member C	-0.85	5.30E-07	0.011
8153065 MIR30B	NA	407030	NR_029666.1	microRNA 30b	-0.9	1.70E-06	0.017
8079753 DAG1	Hs.76111	1605	NM_001165928.3	dystroglycan 1 (dystrophin-associated glycoprotein 1)	-0.59	1.20E-05	0.071
7910923 FMN2	Hs.24889	56776	NM_020066.4	formin 2	0.77	1.40E-05	0.071
7927876 TET1	Hs.567594	80312	NM_030625.2	tet oncogene 1	-0.65	1.80E-05	0.072
8075673 RBFOX2	Hs.282998	23543	NM_001031695.2	RNA binding protein, fox-1 homolog (<i>C. elegans</i>) 2	-0.43	4.10E-05	0.1
7980891 TC2N	Hs.510262	123036	NM_001128595.1	tandem C2 domains, nuclear	0.72	5.20E-05	0.1
8126770 CYP39A1	Hs.387367	51302	NM_016593.3	cytochrome P450, family 39, subfamily A, polypeptide 1	-0.51	6.60E-05	0.1
8054041 TRIM43	Hs.232026	129868	NM_138800.1	tripartite motif	2.59	7.30E-05	0.1
8034099 MIR199A1	NA	406976	NR_029586.1	microRNA 199a-1	0.88	7.50E-05	0.1
8057578 CALCRL	Hs.470882	10203	NM_005795.5	calcitonin receptor-like	-1.17	8.40E-05	0.1
7898537 PAX7	Hs.113253	5081	NM_001135254.1	paired box 7	-0.75	8.40E-05	0.1
8084100 USP13	Hs.175322	8975	NM_003940.2	ubiquitin specific peptidase 13 (isopeptidase T-3)	-0.75	8.40E-05	0.1
7994463 ATP2A1	Hs.657344	487	NM_004320.4	ATPase, Ca++ transporting, cardiac muscle, fast twitch 1	-1.82	8.70E-05	0.1
7958174 TXNRD1	Hs.728817	7296	NM_001093771.2	,	0.49	8.80E-05	0.1
7982000 SNORD116- 26	NA	100033438	NR_003340.2	small nucleolar RNA, C/D box 116-26	-0.78	9.10E-05	0.1
7973580 FITM1	Hs.128060	161247	NM_203402.2	fat storage-inducing transmembrane protein 1	-0.72	9.90E-05	0.1
7928661 MBL1P	Hs.102310	8512	NR_002724.2	mannose-binding lectin (protein A) 1, pseudogene	-0.67	1.00E-04	0.1

TABLE 2-continued

Probeset SYMBOL	UNIGENE	ENTREZID	REFSEQ	GENENAME	AvsU. DM.B.lfc	AvsU.DM.B. pval	AvsU.DM. B.fdr
8053984 ANKRD23	Hs.643430	200539	NM_144994.7	ankyrin repeat domain	-0.45	0.00011	0.1
7941761 RHOD	Hs.15114	29984	NM_014578.3	ras homolog gene	0.45	0.00011	0.1
8072015 ADRBK2	Hs.657494	157	NM_005160.3	family, member D adrenergic, beta,	-0.78	0.00012	0.1
8027674 ZNF302 8120961 MRAP2	Hs.436350 Hs.370055	55900 112609	NM_001012320.1 NM_138409.2	melanocortin 2 receptor accessory	-0.36 -0.93	0.00012 0.00013	0.1 0.1
7960865 SLC2A3	Hs.419240	6515	NM_006931.2	protein 2 solute carrier family 2 (facilitated glucose	0.64	0.00013	0.1
7947052 IGSF22	Hs.434152	283284	NM_173588.3	transporter), member 3 immunoglobulin superfamily, member 22	-0.58	0.00014	0.1
8093665 GRK4	Hs.32959	2868	NM_001004056.1	G protein-coupled receptor kinase 4	-0.46	0.00014	0.1
8162132 C9orf153	Hs.632073	389766	NM_001010907.1	chromosome 9 open reading frame 153	-0.52	0.00014	0.1
8008664 AKAP1	Hs.463506	8165	NM_003488.3	A kinase (PRKA) anchor protein 1	-0.64	0.00015	0.11
8101086 NAAA	Hs.437365	27163	NM_001042402.1	N-acylethanolamine acid amidase	0.52	0.00016	0.11
7915261 TRIT1	Hs.356554	54802	NM_017646.4	tRNA isopentenyltransferase	-0.48	0.00016	0.11
8058570 C2orf67	Hs.282260	151050	NM_152519.2	chromosome 2 open reading frame 67	-0.56	0.00018	0.11
7912595 PRAMEF13	Hs.531192	400736	NM_001024661.1		1.52	0.00019	0.11
7978932 SOS2	Hs.291533	6655	NM_006939.2	son of sevenless homolog 2 (Drosophila)	-0.27	0.00019	0.11
8023121 ST8SIA5	Hs.465025	29906	NM_013305.4	ST8 alpha-N-acetyl- neuraminide alpha-2,8- sialyltransferase 5	-0.61	0.00021	0.12
7934945 PANK1 7979483 C14orf39	Hs.376351 Hs.335754	53354 317761	NM_138316.3 NM_174978.2	pantothenate kinase 1 chromosome 14 open reading frame 39	-0.66 -0.79	0.00021 0.00022	0.12 0.12
7923978 CD34	Hs.374990	947	NM_001025109.1		0.79	0.00023	0.12
7920552 KCNN3	Hs.490765	3782	NM_001204087.1	potassium intermediate/small conductance calcium- activated channel, subfamily N, member 3	-0.88	0.00024	0.12
8082003 EAF2	Hs.477325	55840	NM_018456.4	ELL associated factor	-0.69	0.00024	0.12
8024518 ZNF555	Hs.47712	148254	NM_001172775.1		-0.82	0.00026	0.12
8151074 PDE7A 8130071 C15orf29	Hs.527119 Hs.633566	5150 79768	NM_002603.3 NM_024713.2	phosphodiesterase 7A chromosome 15 open	-0.61 -0.76	0.00026 0.00027	0.12 0.12
8123584 MYLK4	Hs.127830	340156	NM_001012418.3	kinase family, member	-1.18	0.00028	0.12
7906764 HSPA6	Hs.654614	3310	NM_002155.3	heat shock 70kDa	0.49	0.00029	0.12
7897987 PRAMEF2	Hs.104991	65122	NM_023014.1	protein 6 (HSP70B') PRAME family	1.59	0.00029	0.12
7926679 KIAA1217	Hs.445885	56243	NM 001098500.1	member 2 KIAA1217	-0.58	0.00031	0.12
8163733 CDK5RAP2	Hs.269560	55755	NM_001011649.2	CDK5 regulatory subunit associated protein 2	-0.4	0.00032	0.12
8050443 SMC6	Hs.526728	79677	NM_001142286.1	*	-0.5	0.00033	0.12
7947110 E2F8	Hs.523526	79733	NM_024680.3	E2F transcription factor 8	-1.38	0.00033	0.12
8073943 ZBED4	Hs.475208	9889	NM_014838.2	zinc finger, BED-type containing 4	-0.36	0.00034	0.12
7958884 OAS1	Hs.524760	4938	NM_001032409.1	containing 4 2',5'-oligoadenylate synthetase 1, 40/46kDa	0.63	0.00035	0.12

TABLE 2-continued

			1111111111111				
Probeset SYMBOL	UNIGENE	ENTREZID	REFSEQ	GENENAME	AvsU. DM.B.lfc	AvsU.DM.B. pval	AvsU.DM. B.fdr
8133477 GTF2IRD1	Hs.647056	9569	NM_001199207.1	GTF2I repeat domain	-0.51	0.00035	0.12
7944955 PKNOX2	Hs.278564	63876	NM_022062.2	containing 1 PBX/knotted 1 homeobox 2	-0.62	0.00036	0.12
8020068 ANKRD12	Hs.464585	23253	NM_001083625.2	ankyrin repeat domain 12	-0.43	0.00037	0.12
7983704 GLDN 8131803 IL6	Hs.526441 Hs.654458	342035 3569	NM_181789.2 NM_000600.3	gliomedin interleukin 6 (interferon, beta 2)	-0.45 1.12	0.00037 0.00037	0.12 0.12
7909730 KCNK2	Hs.497745	3776	NM_001017424.2	potassium channel, subfamily K, member	1.18	0.00037	0.12
7908397 RGS13	Hs.497220	6003	NM_002927.4	regulator of G-protein signaling 13	-1.02	0.00037	0.12
8072170 KREMEN1	Hs.229335	83999	NM_001039570.2	kringle containing transmembrane protein	-0.53	0.00037	0.12
8002020 TPPP3	Hs.534458	51673	NM_015964.2	tubulin polymerization- promoting protein	-0.61	0.00039	0.12
7897978 PRAMEF1	Hs.454859	65121	NM_023013.2	family member 3 PRAME family member 1	1.33	0.00039	0.12
7909545 TRAF5	Hs.523930	7188	NM_001033910.2		-0.64	0.00039	0.12
8094441 SLC34A2	Hs.479372	10568	NM_001177998.1	solute carrier family 34 (sodium	2.23	4.00E-04	0.12
8137670 PDGFA	Hs.535898	5154	NM_002607.5	phosphate), member 2 platelet-derived growth factor alpha polypeptide	-0.58	4.00E-04	0.12
8086482 ZNF445 7964646 PPM1H	Hs.250481 Hs.435479	353274 57460	NM_181489.5 NM_020700.1	zinc finger protein 445 protein phosphatase, Mg2+/Mn2+ dependent, 1H	-0.31 -0.42	0.00041 0.00041	0.12 0.12
8027312 ZNF429	Hs.572567	353088	NM_001001415.2		-0.58 -0.57	0.00042 0.00043	0.12 0.12
7969815 CLYBL 8099302 MIR95	Hs.655642 NA	171425 407052	NM_206808.2 NR_029511.1	microRNA 95	-0.37 -1	0.00045	0.12
7971653 DLEU2	Hs.547964	8847	NR_002612.1	deleted in lymphocytic leukemia 2 (non- protein coding)	-0.53	0.00045	0.12
8069991 TCP10L	Hs.728804	140290	NM_144659.5	t-complex 10 (mouse)- like	-0.4	0.00047	0.12
7970111 ARHGEF7	Hs.508738	8874	NM_001113511.1	Rho guanine nucleotide exchange factor (GEF) 7	-0.4	0.00047	0.12
7995440 FLJ44674	Hs.514338	400535	XR_041153.1	FLJ44674 protein	0.35	5.00E-04	0.12
7898211 DDI2	Hs.718857	84301	NM_032341.4	DNA-damage inducible 1 homolog 2 (S. cerevisiae)	-0.48	5.00E-04	0.12
8163109 C9orf4	Hs.347537	23732	NM_014334.2	chromosome 9 open reading frame 4	0.4	0.00052	0.12
7918552 C1orf183	Hs.193406	55924	NM_019099.4	chromosome 1 open reading frame 183	-0.43	0.00052	0.12
7960850 SLC2A14	Hs.655169	144195	NM_153449.2	solute carrier family 2 (facilitated glucose transporter), member 14	0.49	0.00053	0.12
8050658 ATAD2B	Hs.467862	54454	NM_017552.2	ATPase family, AAA domain containing 2B	-0.33	0.00053	0.12
8124502 ZNF184	Hs.158174	7738	NM_007149.2	zinc finger protein 184	-0.35	0.00053	0.12
8060813 MCM8	Hs.597484	84515	NM_032485.4	minichromosome maintenance complex component 8	-0.39	0.00053	0.12
8097086 MYOZ2	Hs.381047	51778	NM_016599.4	myozenin 2	-1.2	0.00054	0.12
8044008 IL1RL2	Hs.659863	8808	NM_003854.2	interleukin 1 receptor like 2	0.38	0.00054	0.12
8054664 ZC3H8	Hs.418416	84524	NM_032494.2	zinc finger CCCH-type containing 8	-0.4	0.00055	0.12
8097256 FGF2	Hs.284244	2247	NM_002006.4	fibroblast growth factor 2 (basic)	0.88	0.00056	0.12
8100312 LRRC66	Hs.661450	339977	NM_001024611.1		-0.77	0.00056	0.12

TABLE 2-continued

IABLE 2-continued								
Probeset SYMBOL	UNIGENE	ENTREZID	REFSEQ	GENENAME	AvsU. DM.B.lfc	AvsU.DM.B. pval	AvsU.DM. B.fdr	
8102352 PITX2	Hs.643588	5308	NM_000325.5	paired-like homeodomain 2	-0.53	0.00056	0.12	
8015590 STAT5B	Hs.595276	6777	NM_012448.3	signal transducer and activator of transcription 5B	-0.54	0.00056	0.12	
8069348 PCNT	Hs.474069	5116	NM_006031.5	pericentrin	-0.34	0.00057	0.12	
8136235 CPA1	Hs.2879	1357	NM_001868.2	carboxypeptidase A1 (pancreatic)	-0.4	0.00058	0.12	
7968883 C13orf31	Hs.210586	144811	NM_001128303.1		0.94	0.00058	0.12	
7950955 TRIM49	Hs.534218	57093	NM_020358.2	tripartite motif containing 49	1.68	0.00058	0.12	
7957126 KCNMB4	Hs.525529	27345	NM_014505.5	potassium large conductance calcium- activated channel, subfamily M, beta member 4	-0.82	0.00059	0.12	
8102862 MAML3	Hs.586165	55534	NM_018717.4	mastermind-like 3 (Drosophila)	-0.54	0.00059	0.12	
7951781 C11orf71	Hs.715083	54494	NM_019021.3	chromosome 11 open reading frame 71	-0.37	6.00E-04	0.12	
7909768 SPATA17	Hs.171130	128153	NM_138796.2	spermatogenesis associated 17	-0.49	0.00061	0.12	
8094778 UCHL1	Hs.518731	7345	NM_004181.4	ubiquitin carboxyl- terminal esterase L1 (ubiquitin thiolesterase)	0.77	0.00061	0.12	
8164580 PTGES	Hs.146688	9536	NM_004878.4	prostaglandin E synthase	0.94	0.00061	0.12	
8104163 LRRC14B	Hs.683662	389257	NM_001080478.1		-0.57	0.00062	0.12	
8036406 ZNF571	Hs.590944	51276	NM_016536.3	zinc finger protein 571	-0.41	0.00062	0.12	
8128087 GABRR1	Hs.99927	2569	NM_002042.4	gamma-aminobutyric acid (GABA) receptor, rho 1	-0.63	0.00063	0.12	
8028219 ZNF420 8057771 STAT4	Hs.444992 Hs.80642	147923 6775	NM_144689.3 NM_003151.3	zinc finger protein 420 signal transducer and activator of transcription 4	-0.39 0.67	0.00064 0.00067	0.13 0.13	
8058350 ICA1L	Hs.516629	130026	NM_138468.4	islet cell autoantigen 1,69kDa-like	-0.46	0.00068	0.13	
8018922 CYTH1	Hs.191215	9267	NM_004762.2	cytohesin 1	-0.47	0.00068	0.13	
7968637 CCNA1	Hs.417050	8900	NM_001111045.1		2.12	0.00073	0.14	
7974771 C14orf135	Hs.509499	64430	NM_022495.5	chromosome 14 open reading frame 135	-0.37	0.00076	0.14	
7907790 CEP350	Hs.413045	9857	NM_014810.4	centrosomal protein 350kDa	-0.44	0.00076	0.14	
8030823 IGLON5	Hs.546636	402665		IgLON family member 5	0.45	0.00077	0.14	
7917996 LRRC39	Hs.44277	127495	NM_144620.3	leucine rich repeat containing 39	-1.23	0.00078	0.14	
7905986 FDPS	Hs.335918	2224	NM_001135821.1	farnesyl diphosphate synthase	0.59	0.00079	0.14	
8097867 KIAA0922	Hs.205572	23240	NM_001131007.1		-0.4	0.00079	0.14	
8120300 C6orf142	Hs.449276	90523	NM_138569.2	chromosome 6 open reading frame 142	-1.71	0.00079	0.14	
8068220 C21orf49	Hs.54725	54067	NR_024622.1	chromosome 21 open reading frame 49	-0.43	8.00E-04	0.14	
8037298 CD177	Hs.232165	57126	NM_020406.2	CD177 molecule	0.83	8.00E-04	0.14	
8148501 PTP4A3	Hs.43666	11156	NM_007079.2	protein tyrosine phosphatase type IVA, member 3	-0.93	0.00081	0.14	
7954012 LOH12CR1	Hs.720779	118426	NM_058169.3	loss of heterozygosity, 12, chromosomal region 1	-0.43	0.00084	0.14	
8108708 PCDHB7	Hs.203830	56129	NM_018940.2	protocadherin beta 7	-0.37	0.00085	0.14	
8116595 WRNIP1	Hs.236828	56897	NM_020135.2	Werner helicase interacting protein 1	-0.31	0.00085	0.14	
7934434 MYOZ1	Hs.238756	58529	NM_021245.3	myozenin 1	-1.55	0.00085	0.14	
8024909 KDM4B	Hs.654816	23030	NM_015015.2	lysine (K)-specific	-0.26	0.00086	0.14	
8144812 PCM1	Hs.491148	5108	NM_006197.3	demethylase 4B pericentriolar material 1	-0.33	0.00086	0.14	

TABLE 2-continued

Probeset SYMBOL	UNIGENE	ENTREZID	REFSEQ	GENENAME	AvsU. DM.B.lfc	AvsU.DM.B. pval	AvsU.DM. B.fdr
7933092 ZNF248	Hs.528423	57209	NM_021045.2	zinc finger protein 248	-0.5	0.00086	0.14
7928705 TSPAN14	Hs.310453	81619	NM_001128309.1		-0.62	0.00086	0.14
8151457 HEY1	Hs.234434	23462	NM_001040708.1	hairy/enhancer-of-split related with YRPW motif 1	-0.58	0.00087	0.14
7934442 SYNPO2L	Hs.645273	79933	NM_001114133.1	synaptopodin 2-like	-0.78	0.00088	0.14
8033241 CD70	Hs.501497	970	NM_001252.3	CD70 molecule	0.32	0.00088	0.14
7921955 RXRG	Hs.26550	6258	NM_006917.4	retinoid X receptor, gamma	-0.58	0.00089	0.14
8167603 CLCN5	Hs.166486	1184	NM_000084.3	chloride channel 5	-0.57	9.00E-04	0.14
8089647 KIAA2018	Hs.632570	205717	NM_001009899.2		-0.4	0.00091	0.14
8139160 FAM183B	Hs.144075	340286	NR_028347.1	acyloxyacyl hydrolase (neutrophil)	0.35	0.00091	0.14
7957379 MYF5	Hs.178023	4617	NM_005593.2	myogenic factor 5	-0.91	0.00094	0.14
8144082 C7orf13	Hs.647014	129790	NR_026865.1	chromosome 7 open reading frame 13	-0.39	0.00095	0.14
7986004 ZNF774	Hs.55307	342132	NM_001004309.2	zinc finger protein 774	-0.28	0.00095	0.14
8045198 CFC1B	Hs.503733	653275	NM_001079530.1	cripto, FRL-1, cryptic family 1B	0.26	0.00096	0.14
8125289 TNXA	Hs.708061	7146	NR_001284.2	tenascin XA pseudogene	1.87	0.00097	0.14
7915277 MYCL1	Hs.437922	4610	NM_001033081.2	v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian)	-0.77	0.00098	0.14
8002303 NQO1	Hs.406515	1728	NM_000903.2	NAD(P)H dehydrogenase, quinone 1	0.67	0.001	0.15
8033362 INSR	Hs.465744	3643	NM 000208.2	insulin receptor	-0.59	0.001	0.15
8025672 SLC44A2	Hs.534560	57153	NM_001145056.1	solute carrier family 44, member 2	-0.35	0.001	0.15
7965510 TMCC3	Hs.370410	57458	NM_020698.2	transmembrane and coiled-coil domain family 3	-0.42	0.001	0.15
8118644 RPS18	Hs.627414	6222	NM_022551.2	ribosomal protein S18	0.34	0.001	0.15
7940824 NAA40	Hs.523753	79829	NM_024771.2	N(alpha)- acetyltransferase 40, NatD catalytic subunit, homolog (S. cerevisiae)	-0.33	0.001	0.15

Example 2

A Humanized Mouse Model of FSHD

[0216] Both FSHD- and control-derived myoblasts from multiple cohorts (described in Homma et al., European Journal of Human Genetics (2012) 20, 404-410) engrafted and formed human muscle fibers after 30 days in vivo. All mouse experiments were performed using BBRI IACUC-approved protocols. Nonobese diabetic Rag1 and IL2ry null (NOD-Rag1 null IL2r null or RAG, Jax stock number 007799) mice were used as recipients for human cell transplantations. Adult muscle, composed of multinucleated terminally differentiated myofibers, has a very low rate of cellular turnover under normal conditions. However, it has a remarkable capacity to regenerate in response to injury due to the presence of quiescent satellite cells. A regenerating muscle, which is in the process of incorporating newly differentiating cells, provides a favourable environment to receive a cell graft. Recipient tibialis anterior (TA) muscles were injected with 10 μM cardiotoxin to induce a muscle degeneration/regeneration cycle. 1×10⁶FSHD myoblasts (from five different family cohorts), maintained in culture between 15 and 20 population doublings, were injected into surgically-exposed TA muscles 6 hours after cardiotoxin injection; following surgery, mice were monitored for recovery from anaesthesia and provided analgesics as required. Mice were sacrificed 4 weeks after transplantation and injected TA muscles, as well as non-injected gastrocnemius muscles were dissected and frozen in nitrogen-cooled isopentane. Entire muscle samples were cut into $10~\mu m$ transverse cryostat sections and analyzed by immunofluorescence.

[0217] Visualization of engrafted fibers was performed via immunofluorescence using antibodies against the human specific sarcolemmal protein spectrin and the human specific nuclear protein lamin A/C. As shown in FIG. 1, immunofluorescence using human specific antibodies demonstrated high engraftment efficiency. To date, 36 xenografted mice have been generated and investigated. Histological analyses have confirmed that injected human FSHD myoblasts participate in the regeneration of murine muscle to form "humanized" fibers within the host TA. Quantifications have revealed that engraftment rates of greater than 100,000 human nuclei can be achieved in host muscle. These engraftments are of a sufficient magnitude to conduct morphological and molecular phenotype analyses of xenografted muscles. It is hypothesized that prior irradiation of host mice enriches engraftment of human myoblasts.

Example 3

DUX4-Fl Expressing FSHD Cells Engraft

[0218] Five cell strains (described in Homma et al., European Journal of Human Genetics (2012) 20, 404-410) were used for engraftment studies. Recent breakthroughs in the field suggest that DUX4, a gene identified inside D4Z4 repeats, is inappropriately expressed in the muscles of patients with FSHD. The disease could arise though a toxic gain of function. The precise molecular and cellular pathological mechanism involving DUX4 remains to be uncovered. Recent studies described the detection of two DUX4 transcripts, a long form (or full-length, fl) and a short form, and while the role of the short form is still unclear, the long form was specifically detected in FSHD samples, suggesting a central role in the pathogenic mechanism.

[0219] Based on engraftability and expression of DUX4-fl, cell strain selection for engraftment was refined to consist of three strains derived from the biceps of patients affected by FSHD, and three cell strains from corresponding unaffected firstdegree relatives. DUX4-fl transcript and protein were detected in cultured, differentiated myotubes for each of the three FSHD cell strains, and was absent in each control. Two control cell strains possessed at least one permissive allele for the disease (4 qA), but repressed DUX4 transcription. The third control strain did not contain the permissive allele (i.e. was genotyped as 4 qB/4 qB), and was therefore an ideal negative control for these studies.

[0220] Current theory predicts that DUX4 is actively transcribed in an average of 1 out of a 1,000 FSHD-derived nuclei at a given time. Recent engraftment trials have established that over 100,000 human myonuclei can be integrated with murine muscle. Adapting current theory to the invention's xenograft model, DUX4 might be expressed in greater than 100 nuclei in sizeable xenografts. This represents an amount of DUX4 mRNA detectable using 55 cycles of nested PCR; therefore, DUX4 expression at these levels should be detectable in xenografts from FSHD-derived myoblasts. Currently the expression of DUX4 at the mRNA and/or protein level is being assessed in FSHD- and control-transplanted TAs.

Example 4

Xenograft Integration with the Murine Skeletal Muscle Environment: Innervation of Human Fibers

[0221] Injecting cultured human myoblasts into murine skeletal muscle imposes a drastic environmental change. The ability of human myoblasts to assimilate successfully with host muscle is one important feature of a disease model. Immunohistological assays have confirmed that injected myoblasts successfully adapted to the murine microenvironment and integrated with the host muscle. Innervation of engrafted fibers by the nervous system of the host is important to prevent atrophy. Immunohistology studies using antibodies against neurofilament and Synaptic Vesicle protein 2 (SV2) were used to visualize afferent murine neurons in transverse sections. SV2 immunofluorescence at the pre-synaptic cleft was coupled with bungarotoxin-rhodamine staining at corresponding post-synaptic acetylcholine receptors to demonstrate an active neuromuscular junction (FIG. 2). Neuromuscular junction dispersion was observed throughout the muscle in specific patterns, directly innervating fibers in their vicinity without appearing to discriminate between mouse and human. Neuromuscular junctions on human and mouse fibers had no noticeable morphological differences. It is likely that resulting human fibers are successfully integrating with the murine musculature and nervous system.

Example 5

Xenograft Integration with Murine Skeletal Muscle Environment: Satellite Cell Pool Replenishment

[0222] The ability of injected cells to contribute to long-term muscle regeneration is dependent upon their inclusion into the satellite cell pool of host muscle. Satellite cells are muscle progenitor cells located beneath the basal lamina of myofibers. They are activated in response to damage, causing them to proliferate and fuse to form new myofibers during the repair process. Satellite cells can be identified by the expression of the transcription factor PAX7 and their anatomical location beneath the basal lamina. Using antibodies against these distinct features coupled with human LaminA/C, human nuclei that express PAX7 were identified. This indicates that these cells have assumed a satellite cell identity (FIG. 3).

Example 6

Development of a Tracking Strategy to Follow the Transplant Over Time

[0223] In vivo imaging provides a powerful tool to track the growth and survival of implanted muscle cells over time. Lentiviral particles are highly efficient at infection and stable integration of a gene of interest into a cell system. Lentiviral particles expressing a firefly luciferase (Luc) reporter gene provide a simple, long-term cell tracking system. Live small animal in vivo imaging techniques can then be performed to follow the destiny of transplanted Luc+cells over time. These techniques have been used successfully to track the evolution of muscle cell transplantations. Accordingly, a commercial lentiviral vector carrying a luciferase reporter gene under the control of a CMV promoter (SABiosciences, FIG. 4) was used to develop stable Luc+FSHD and control myoblast cell lines.

[0224] To develop cell lines that could be tracked in vivo following engraftment, FSHD and their matching control cells were seeded on day 0 and lentivirus infection was performed on day 2 according to Manufacturer's directions. Cells were transduced using a 4-hour infection with a Multiplicity of Infection (MOI) of 50. Cells were further amplified and maintained in culture under proliferative conditions where they showed normal signs of proliferation and differentiation. In vitro luciferase assays demonstrated luciferase activity, confirming development of cell models that can be used to track the destiny of the engrafted cells in vivo using bioluminescence imaging techniques.

[0225] In short, these results demonstrate the successful engraftment of FSHD cells into murine muscle with high efficiency as well as the development of a method to track the implanted cells in vivo. Live whole animal imaging experiments will be carried out to investigate how engrafted FSHD cells survive and regenerate compared to controls, and to identify biomarkers specific to FSHD.

[0226] Luciferase-expressing FSHD cells are engrafted into injured TA muscles, and their growth and differentiation assayed over time in vivo using Bioluminescence Imaging (BLI). Cell number is assessed as the bioluminescence signal

derived from constitutive luciferase activity, and the linearity, sensitivity, and reproducibility of the bioluminescence assay for quantifying cell numbers will be first validated both in vitro and in vivo.

[0227] For BLI studies, cell-transplanted animals are anesthetized prior to receiving an intraperitoneal injection of luciferin (15 mg/ml at a dose of 130 mg/kg body weight recommended) and assayed in an imaging chamber with a Xenogen device. Images are acquired continuously for 30 minutes, and the same mice are imaged repeatedly over time once a month for up to 6 months. It has been shown that the dynamics of muscle cell behavior during muscle repair can be followed using this imaging technique. In vivo BLI of same mice imaged repeatedly over time has established the ability of transplanted satellite cells to respond to serial injury with successive waves of progenitor expansion and regeneration of muscle fibers. The magnitude of the regeneration response to sequential cardiotoxin injection, as monitored by imaging luciferase activity, reflects the persistence and renewal of stem cells over time. The relative regenerative responses of FSHD versus control muscles over time will test whether satellite cell regenerative capacity is impaired as an FSHD disease mechanism.

[0228] Live in vivo imaging technologies provide a unique technology to evaluate the role of satellite cell regenerative potential and muscle fiber survival in FSHD disease progression. In addition to engraftment studies of affected FSHD subjects, gene expression and regeneration and survival aree evaluated in xenografts of myogenic cells from non-manifesting FSHD subjects (i.e. individuals with shortened D4Z4 arrays but no detectable signs of muscle weakness). While cell culture studies have suggested that these non-manifesting cells behave similarly to cells from subjects with clinically diagnosed FSHD (e.g. expression of DUX4-fl), it is possible that their in vivo characteristics will show reduced pathology, providing opportunities to investigate modifiers of disease progression.

Example 7

RNaseH1-Active Antisense Oligonucleotides (ASOs)

[0229] As indicated in Tables 2 and 4, certain markers are increased in subjects with FSHD relative to the levels of those markers in first degree unaffected subjects. Therapeutic effects are achieved by reducing the levels or biological activity of markers whose expression is upregulated in FSHD. In particular the invention provides targeted for degradation using RNaseH1-activating antisense oligonucleotides (ASO's) ("MOE gapmers"). The RNAseH1 ASO chemistry provides for a 20 nucleotide phosphorothioate backbone (5-10-5 gapmer). In particular, the oligonucleotide comprises five nucleotides at each end with the 2'-O-(2-methoxyethyl) (MOE) modification and ten central deoxyribonucleotides for activation of RNase H1.

[0230] For screening purposes, cell cultures of the invention are contacted with ASOs and the cells assayed for an amelioration of FSHD phenotype. In particular, the cells are assayed for an increase in the biological function of the cell or for an increase in the levels of one or more markers downregulated in FSHD. In another embodiment, ASOs are administered to a chimeric mouse comprising a human FSHD cell. The chimeric mouse is then assayed for an increase in the biological activity of a human FSHD cell or an increase in the

level of expression of a marker down-regulated in FSHD. In one embodiment, 25 mg/kg of the ASOs are administered by sub-cutaneous injection at least about 2× per week for 4 weeks or more.

[0231] In particular embodiments, the effects of ASOs on cells or chimeric mice of the invention are assayed using live cell imaging, muscle fiber turnover, or biomarker expression. In one embodiment, nude mice are treated to eliminate or reduce the number of muscle stem cells and/or differentiated muscle cell fibers and muscle stem cell replacement of muscle fiber turnover is assayed.

Example 8

Validation with qPCR

[0232] Of the 142 genes identified as candidate biomarkers in the microarray study described above, 18 genes (9 of which were up-regulated in FSHD vs. control myotubes and 9 which were down-regulated in FSHD vs. control myotubes) have now been evaluated on a larger collection of samples using quantitative real-time PCR (qPCR). The samples are derived from four of the five families from the microarray study and four additional families. Clinical information for the samples is given in Table 3. The qPCR experiments were performed using the BioMark 96.96 Dynamic Array (Fluidigm) platform with TaqMan Gene Expression Assays (Applied Biosystems).

TABLE 3

	Samples used in qPCR study.									
Subject	Familial relations	Gender	Age	EcoRI/ BlnI (kb)	Deltoid strength (R, L)	Biceps strength (R, L)				
01A 01U 03A 03U 05A 05C 05V 09A 09U 12A 12U 15A 16U 16A 16U 21B 21U	proband brother of 01A proband sister of 03A proband brother of 05A son of 05A proband mother of 12B daughter of 12B roband sister of 15A proband sister of 16A daughter of 21A daughter of 21A		42 46 40 42 55 49 18 31 57 22 24 66 60 56 60 59 48	>40, 18 >40, >40 >40, >40 0 157, 80 67, 25 67, 25 67 >112, 25 >112, 47 63, 18 >112, >112 >112, 28 >145, 107 97, 20 97, 93, 56 26, 40 142, 63	4+, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5	4+, 3- 5, 5 4+, 4+ 5, 5 5, 5 5, 5 5, 5 4+, 4+ 5, 5 4+, 4+ 5, 5 4+, 4+ 5, 5 4+, 4+ 5, 5				

The 18 genes assessed with qPCR are listed in Table 4 below, along with their log(base 2) fold-change (LFC) between FSHD and control myotubes and the associated statistical significance (P-value) of this difference using qPCR. Table 2 also includes columns for the LFC and P-value from the original microarray study for comparison.

TABLE 4

	Genes tested with qPCR.							
Gene	LFC (qPCR)	P-value (qPCR)	LFC (microarray)	P-value (microarray)				
PRAMEF1 TRIM43	15.36* 12.77*	0.008* 0.008*	1.33 2.59	3.90E-04 7.30E-05				

TABLE 4-continued

	(Genes tested v	vith qPCR.	
Gene	LFC (qPCR)	P-value (qPCR)	LFC (microarray)	P-value (microarray)
SLC34A2	11.30*	0.008*	2.23	4.00E-04
TRIM49	11.72*	0.008*	1.68	5.80E-04
TC2N	2.96	0.002	0.72	5.20E-05
DAG1	-0.73	0.002	-0.59	1.20E-05
PAX7	-1.79	0.027	-0.75	8.40E-05
CLYBL	-0.5	0.03	-0.57	4.30E-04
MYF5	-1.72	0.068	-0.91	9.40E-04
ZNF445	-0.35	0.069	-0.31	4.10E-04
ATP2A1	-1.94	0.076	-1.82	8.70E-05
CD34	3.29	0.082	0.79	2.30E-04
MRAP2	-0.88	0.129	-0.93	1.30E-04
NAAA	0.36	0.154	0.52	1.60E-04
CALCRL	-0.36	0.342	-1.17	8.40E-05
HSPA6	0.83	0.38	0.49	2.90E-04
SPATA17	-0.04	0.763	-0.49	6.10E-04
CD177	0.09	0.88	0.83	8.00E-04

Log(base 2) fold-change (LFC) for FSHD vs. control myotubes and the associated p-values are shown for qPCR and also for the original microarray study. Negative values indicate that the gene is down regulated in FSHD. Asterisks (*) in qPCR columns indicate that the transcript was not detected in at least one

Asterisks (*) in qPCR columns indicate that the transcript was not detected in at least one sample. In these cases the LFC may be inaccurate and a non-parametric sign test rather than a t-test was used for computing the p-value.

Cycle threshold (Ct) values for each gene in each sample were computed as the median Ct value of three technical qPCR replicates, and were then normalized by additive scaling of all Cts for each sample so that the average Ct of three reference genes M6PR, HPRT 1, and PPIA was identical across samples (and equal to the un-normalized mean of these three genes across all samples). Transcripts of four genes (PRAMEF1, TRIM43, SLC34A2, TRIM49, highlighted in Table 4) were not detected with qPCR in one or more of the samples. In these cases the normalized Ct value was set to 40, which represents 2⁰.67=1.6-fold lower transcript abundance than the highest observed Ct of 39.33. The LFC estimates may be inaccurate for these genes, and these estimates are flagged with asterisks in the LFC column. Also, because this treatment of non-detected transcripts may violate the assumption of normality in t-tests, non-parametric sign tests were used on the paired (by family) differences between FSHD and control myotubes for these cases, indicated by asterisks in the p-value column. Multiple FSHD samples in a single family were replaced by their median value. In this test non-detected transcripts are considered to have lower expression than detected transcripts, but results do not otherwise depend on the precise Ct value assigned the non-detected transcripts. For genes that were detected in all the samples, p-values are bases on t-tests of the contrast FSHD vs. control from linear models with additive fixed effects for FSHD status and for family. This generalized a usual paired t-test by accommodating families with more than one FSHD subject.

[0233] All 9 genes that were up-regulated in FSHD in the microarray study were also up-regulated in the qPCR study (positive LFC in both cases), and all 9 genes that were down-regulated in FSHD in the microarray study were also down-regulated in the qPCR study (positive LFC in both cases). This overall concordance is directionally of change is significantly better than random (p=3.8e-6 by binomial test), and 6 of the genes individually showed significant differences between FSHD and control myotubes in the qPCR study at the p<0.01 level. Note that in the microarray analysis, to moderate the effect of outliers when ranking the more-than 20,000 genes, a statistical model with a pooled estimate of

variance across the myoblasts and myotubes derived from biceps and deltoid biopsies was used, which further shrunk estimates of variance across different genes towards a common mean (by use of empirical Bayes moderated t-statistics). In the present qPCR analysis self-contained statistical tests were performed on myotubes derived from biceps, with no reference to myotube or deltoid samples, and sharing of information across genes. These factors may explain why more of the genes did not attain p<0.01 in the qPCR study.

[0234] Note that for each of the six genes with p<0.01 in the qPCR study (PRAMEFL TRIM43, SLC34A2, TRIM49, TC2N, and DAG1) the FSHD vs. control paired differences showed the same direction for all of the cohorts: For the first five of these genes, each FSHD sample had a lower Ct value (higher expression) than its paired control sample, and for DAG1 each FSHD sample had a higher Ct value (lower expression) than its paired control sample. A stronger result held for PRAMEL TRIM43 and SLC34A2: for these three genes each FSHD sample had a lower Ct value (higher expression) than all of the control samples, not just the sample from the paired first-degree relative. This property is appealing for a biomarker since scores can then be assigned to individuals without the requirement of first-degree relatives as controls. However, the margin between the highest Ct values of FSHD samples and lowest Ct value of control samples was fairly small for these genes (0.56 Ct for TRIM43, 1.06 Cts for SLC34A2, 1.68 Cts for PRAMEF1).

[0235] It was then tested whether the difference of Ct values between two genes would provide discrimination between the FSHD and control samples with a larger margin, and thus more likely to generalize to other samples. The use of a simple difference rather than a more complex combination involving more genes makes the test simpler, and also removes the reliance on the choice of "housekeeping" gene (s), as these terms would cancel out so the difference is self-normalizing. The precise cutoffs for biomarkers would still depend on qPCR primers and efficiency of qPCR reactions, however, so should be recalibrated if these change.

[0236] Because the genes in the qPCR were selected on the basis of differential expression in the microarray study, assessing discriminants using the samples present in the microarrays will be biased. Moreover, searching over all pairs of genes introduces multiple hypotheses and the potential for overfitting. To address these issues, the pair of genes to use, and the cutoff on their difference to use as a discriminant, were selected based only on the qPCR data for the eight samples present in the microarray, so that the qPCR data for the nine samples not present in the microarray study could serve as an independent validation set. By examining all pairs of the 18 genes with qPCR data, the difference (Ct for PRAMEF1)-(Ct for PAX7) provided the maximum margin between FSHD and control samples, of 4.49 Cts. (Non-detected transcripts were assigned Ct of 40 during this maximization, and in application of the discriminant rule.)

[0237] The midpoint of the gap between FSHD and control samples for this difference was 7.05, yielding the discriminant rule of: classify as FSHD if (Ct for PRAMEF1)–(Ct for PAX7)<7.05, and classify as control otherwise. This rule correctly classified all nine samples (five FSHD and four control) that were not represented in the microarray experiment (and hence played no role in selecting the genes PRAMEF1 or PAX7, or the cutoff of 7.05). This is significantly better than random guessing (p=0.002 by binomial test). The margin between FSHD and control samples was

slightly reduced when these additional nine samples were included, but was still 3.32 Ct, roughly twice the best margin (1.68) for Cts of any single gene when normalized by the reference genes M6PR, HPRT 1, and PPIA.

[0238] Note the there are other pairwise differences that give larger margins that 1.68, and in the above we have focused just on the single maximal example chosen using a subset of the samples to avoid multiple-hypothesis testing on the validation samples. Other pairs with large margin are typically differences between one gene up-regulated in FSHD vs. controls and one gene down regulated in FSHD vs. controls

Example 9

Using FSHD Biomarkers to Identify and Evaluate the Efficacy of Antisense Oligonucleotide-Morpholino Drugs Using FSHD Myogenic Cells and Xenograft Muscles

[0239] Antisense oligonucleotides conjugated to morpholinos are developed as inhibitors of the expression of FSHD disease genes, using cultured FSHD myogenic cells (prepared as described above in Example 1 and in Homma et al.) and FSHD xenograft muscle derived by engraftment and differentiation of FSHD myogenic cells into regenerating mouse muscles as described above. Antisense oligonucleotide mopholinos are designed that have nucleotide sequences designed to disrupt translation initiation, polyadenylation, and/or RNA splicing to knockdown expression of targeted FSHD disease mRNAs and block production of their encoded disease proteins. Specific antisense oligonucleotide drugs will first be tested by introduction into FSHD myogenic cells by electroporation or transfection with EndoPorter (Gene Tools). Drug-treated FSHD and control cells are monitored for evidence of cytotoxicity and changes in cell morphology, myofiber differentiation, and the expression of muscle protein biomarkers (desmin, MyoD, myogenin, MyHC). The efficacy of selected antisense oligonucleotides to block expression of targeted FSHD disease gene RNAs and proteins is evaluated by qPCR and immunoblotting assays. The efficacy of the antisense oligonucleotides as candidate FSHD drugs is evaluated by quantitative assays of the expression of FSHD disease biomarkers using qPCR, as established above. Promising candidate antisense FSHD drugs are identified by their activities to restore expression of FSHD biomarkers to levels produced by control cells derived from unaffected individuals.

[0240] Promising candidates are then tested in FSHD xenograft muscles by localized muscle injection and electroporation or systemic injection of antisense oligonucleotides, followed by qPCR assays of the expression of FSHD biomarkers and evaluation of hepatotoxic and immunostimulatory side effects over the time course of treatment. Antisense drugs with promising therapeutic value are identified by their activities to restore expression of FSHD biomarkers in both FSHD cells and xenograft muscles to levels observed in control myogenic cells and xenograft muscles derived from unaffected individuals.

OTHER EMBODIMENTS

[0241] From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

[0242] The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

[0243] All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 41
<210> SEQ ID NO 1
<211> LENGTH: 88
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 1
accaagtttc agttcatgta aacatcctac actcagctgt aatacatgga ttggctggga
                                                                        88
ggtggatgtt tacttcagct gacttgga
<210> SEQ ID NO 2
<211> LENGTH: 5904
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 2
aggcagaage eggeggegeg eggacageea gteggegeeg egeggagetg geegetggat
                                                                        60
                                                                       120
tggctgcaac actegegtgt caggeggttg ctaggeteeg geegegege eegecettge
qctcaqcqcc ctctcaccqc ccqqtacqtq ctcqcqcqaa qqctqcqqcq cqqcqctcqc
                                                                       180
```

-continued

gcctcttagg	cttggcggtg	gcggcggcgg	cagettegeg	ccgaatcccc	ggggagcggc	240
ggtggcggcg	tcctggggcc	aggaggagcg	aacacctgcc	gcggtcctcc	cgccggcgct	300
gggcacacga	ctgtctatcc	cagatggctg	cactggccta	ggacagacgg	ttcttcccc	360
agtacgtcaa	gaccctggag	ggtgcaagct	acagaacagc	tgggctcctg	cattcctccc	420
agaccctgtc	ttcagtagga	caacaggcaa	caaacttaaa	tttgggtcaa	gcgattcccc	480
tgcctcagct	tcctgagtag	ctgggattac	agatagccct	gggatctcct	gaatttccag	540
gttgggctac	tcaggcatgg	attgactcct	acagttcagg	cggatggaga	tcccaccaac	600
ccacagctta	attcttcaga	tgctttatct	tcatttctca	tgtatcttca	gttggcttct	660
aatgctctgt	gtgctccggg	atggagcagg	tgtgcagagg	gtgagaaccc	agctctggga	720
ccaagtcact	tgcttcctta	cttagcaaga	ctatcgactt	gagcaaactt	ggacctggga	780
tgaggatgtc	tgtgggcctc	tegetgetge	tgcccctctg	ggggaggacc	tttctcctcc	840
tgctctctgt	ggttatggct	cagtcccact	ggcccagtga	accctcagag	gctgtcaggg	900
actgggaaaa	ccagcttgag	gcatccatgc	actcagtgct	ctcagacctc	cacgaggctg	960
ttcccacagt	ggttggcatt	cctgatggca	cggctgtcgt	cgggcgctca	tttcgagtga	1020
ccattccaac	agatttgatt	gcctccagtg	gagatatcat	caaggtatca	gcggcaggga	1080
aggaggcttt	gccatcttgg	ctgcactggg	actcacagag	ccacaccctg	gagggcctcc	1140
cccttgacac	tgataagggt	gtgcattaca	tttcagtgag	cgctacacgg	ctgggggcca	1200
acgggagcca	cateceecag	acctccagtg	tgttctccat	cgaggtctac	cctgaagacc	1260
acagtgagct	gcagtcggtg	aggacagcct	ccccagaccc	tggtgaggtg	gtatcatctg	1320
cctgtgctgc	ggatgaacct	gtgactgttt	tgacggtgat	tttggatgcc	gacctcacca	1380
agatgacccc	aaagcaaagg	attgacctcc	tgcacaggat	geggagette	tcagaagtag	1440
agcttcacaa	catgaaatta	gtgccggtgg	tgaataacag	actatttgac	atgtcggcct	1500
tcatggctgg	cccgggaaat	gcaaaaaagg	tggtggagaa	tggggccctt	ctctcctgga	1560
agctgggctg	ctccctgaac	cagaacagtg	tgcctgacat	tcatggtgta	gaggcccctg	1620
ccagggaggg	cgcaatgtct	gctcagcttg	gctaccctgt	ggtgggttgg	cacatcgcca	1680
ataagaagcc	ccctcttccc	aaacgcgtcc	ggaggcagat	ccatgctaca	cccacacctg	1740
tcactgccat	tgggccccca	accacggcta	tccaggagcc	cccatccagg	atcgtgccaa	1800
cccccacatc	tccagccatt	gctcctccaa	cagagaccat	ggctcctcca	gtcagggatc	1860
ctgttcctgg	gaaacccacg	gtcaccatcc	ggactcgagg	cgccattatt	caaaccccaa	1920
ccctaggccc	catccagcct	actcgggtgt	cagaagctgg	caccacagtt	cctggccaga	1980
ttcgcccaac	gatgaccatt	cctggctatg	tggagcctac	tgcagttgct	acccctccca	2040
caaccaccac	caagaagcca	cgagtatcca	caccaaaacc	agcaacgcct	tcaactgact	2100
ccaccaccac	cacgactcgc	aggccaacca	agaaaccacg	gacaccccgg	ccagtgcccc	2160
gggtcaccac	caaagtttcc	atcaccagat	tggaaactgc	ctcaccgcct	actcgtattc	2220
gcaccaccac	cagtggagtg	ccccgtggcg	gagaacccaa	ccagcgccca	gagctcaaga	2280
accatattga	cagggtagat	gcctgggttg	gcacctactt	tgaggtgaag	atcccgtcag	2340
acactttcta	tgaccatgag	gacaccacca	ctgacaagct	gaagctgacc	ctgaaactgc	2400
		gagaagtcct				2460
	_ 33 333-			-		

-continued

tgtatggcct	tcccgacagc	agccacgtgg	gcaaacacga	gtatttcatg	catgccacag	2520
acaagggggg	cctgtcggct	gtggatgcct	tcgagatcca	cgtccacagg	cgcccccaag	2580
gggatagggc	tcctgcaagg	ttcaaggcca	agtttgtggg	tgacccggca	ctggtgttga	2640
atgacatcca	caagaagatt	gccttggtaa	agaaactggc	cttcgccttt	ggagaccgaa	2700
actgtagcac	catcaccctg	cagaatatca	cccggggctc	catcgtggtg	gaatggacca	2760
acaacacact	gcccttggag	ccctgcccca	aggagcagat	cgctgggctg	agccgccgga	2820
tegetgagga	tgatggaaaa	cctcggcctg	ccttctccaa	cgccctagag	cctgacttta	2880
aggccacaag	catcactgtg	acgggctctg	gcagttgtcg	gcacctacag	tttatccctg	2940
tggtaccacc	caggagagtg	ccctcagagg	cgccgcccac	agaagtgcct	gacagggacc	3000
ctgagaagag	cagtgaggat	gatgtctacc	tgcacacagt	cattccggcc	gtggtggtcg	3060
cagccatcct	gctcattgct	ggcatcattg	ccatgatctg	ctaccgcaag	aagcggaagg	3120
gcaagcttac	ccttgaggac	caggccacct	tcatcaagaa	gggggtgcct	atcatctttg	3180
cagacgaact	ggacgactcc	aagcccccac	cctcctccag	catgccactc	attctgcagg	3240
aggagaaggc	tcccctaccc	cctcctgagt	accccaacca	gagtgtgccc	gagaccactc	3300
ctctgaacca	ggacaccatg	ggagagtaca	cgcccctgcg	ggatgaggat	cccaatgcgc	3360
ctccctacca	gcccccaccg	cccttcacag	cacccatgga	gggcaagggc	tcccgtccca	3420
agaacatgac	cccataccgg	tcacctcctc	cctatgtccc	accttaaccc	gcaagcgcct	3480
gggtggaggc	agggtagggc	aggggcctgg	agacgacatg	gtgttgtctg	tggagaccgg	3540
tggcctgcag	accattgccc	accgggagcc	gacacctgac	ctagcacaca	ctgacacagg	3600
ggcctggaca	agcccgccct	ctctggtcct	cccaaacccc	aaagcagctg	gagagacttt	3660
ggggactttt	ttatttttat	tttttgccta	acagcttttg	gtttgttcat	agagaattct	3720
tcgcttcatt	tttgatggct	ggctctgaaa	gcaccatgtg	gagtggaggt	ggagggagcg	3780
aggaaccatg	aatgaactcg	caggcagtgc	cgggcggccc	cctggctctc	tgcgttttgc	3840
ctttaacact	aactgtactg	ttttttctat	tcacgtgtgt	ctagctgcag	gatgtaacat	3900
ggaaaacagt	aactaaagat	taaattcaaa	ggactttcag	aagttaaggt	taagttttta	3960
cgtttaatct	gctgtttacc	taaacttgta	tgtataattt	ttgggtgggt	atggggaatt	4020
gctttgctaa	aaataagctc	ccagggtgtt	tcaaacttag	agaagaccaa	gggacagtat	4080
tttttatcaa	aggaatacta	ttttttcaca	ctacgtcaac	ttggttgctc	tgatacccca	4140
gagcctgatt	gggggcctcc	cggccctggc	tcacgccaag	tccctggtgc	tgggtttgct	4200
ctcccgctgt	tgccaggggc	tggaagctgg	aggggtctct	tgggccatgg	acatccccac	4260
ttccagccca	tgtacactag	tggcccacga	ccaaggggtc	ttcatttcca	tgaaaaaggg	4320
actccaagag	gcagtggtgg	ctgtggcccc	caactttggt	gctccagggt	gggccagctg	4380
cttgtggggg	cacctgggag	gtcaaaggtc	tccaccacat	caacctattt	tgttttaccc	4440
tttttctgtg	cattgttttt	tttttcctc	ctaaaaggaa	tatcacggtt	ttttgaaaca	4500
ctcagtgggg	gacattttgg	tgaagatgca	atattttat	gtcatgtgat	gctctttcct	4560
cacttgacct	tggccgcttt	gtcctaacag	tccacagtcc	tgccccgacc	caccccatcc	4620
cttttctctg	gcactccagt	cccaggcctt	gggcctgaac	tactggaaaa	ggtctggcgg	4680
ctggggagga	gtgccagcaa	tagttcataa	taaaaatctg	ttagctctca	aagctaattt	4740
		-	J	-	-	

-continued

tttactaaag tttttataca gcctcaaatt gttttattaa aaaaaagatt taaaatggtg	4800
atgettacag cagtttgtae gagetettaa gtgttgatte catggaactg aeggetttge	4860
ttgttttgat tetttteece etaettttee taatggttta aattetggaa ttacaetggg	4920
gttettttge ettttttage agaacateeg teegteeate tgeatetetg teecatgaet	4980
caggggcgcc cactetgett egatteteet eetgtggaag aaaccatttt gagcatgaet	5040
tttcttgatg tctgaagcgt tattttgggt actttttagg gaggaatgcc tttcgcaata	5100
atgtatccat tecetgattg agggtgggtg ggtggaceca ggeteeettt geacacagag	5160
cagctactte taagccatat egactgtttt geagaggatt tgtgtgtget geeteaggag	5220
gggagggctg gtaggagggg gggagaggtc tetgtectac tgetetecag agggeattte	5280
ccettgegee tteteceaea gggeeeagee ceteteceet geeeeagtee ecagggggta	5340
ctctggagtg agcagtgccc ctgtggggga gcctgtaaat gcgggctcag tggaccactg	5400
gtgactgggc tcatgcctcc aagtcagagt ttccctggtg ccccagagac aggagcacaa	5460
gtgggatctg acctggtgag attatttctg atgacctcat caaaaaataa acaattccca	5520
atgttccagg tgagggettt gaaaggeett ccaaacaget ccgtcgcccc tagcaactec	5580
accattgggc actgccatgc agagacgtgg ctggcccaga atggcctgtt gccatagcaa	5640
ctggaggcga tggggcagtg aacagaataa caacagcaac aatgcctttg caggcagcct	5700
gctcccctga gcgctgggct ggtgatggcc gttggactct gtgagatgga gagccaatct	5760
cacattcaag tgttcaccaa ccactgatgt gtttttattt ccttctatat gattttaaga	5820
tgtgttttct gcattctgta aagaaacata tcaaactaaa taaaagcagt gtctttatta	5880
caacgcaaaa aaaaaaaaa aaaa	5904
<210> SEQ ID NO 3 <211> LENGTH: 2229 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 3	
teeggegeee egegeegeet eegetgeggg tegggagege gegteteege egeacetegg	60
atctaggage tactegeceg geeetgggeg gtgggaggeg geggeggegg eggegetege	120
gcacctcgga ggagccagga gccggaacca gggccgagcc cgcgggccgg ggctagccag	180
ccggtcggag atgtccgccc agaggttaat ttctaacaga acctcccagc aatcggcatc	240
taattotgat tacacotggg aatatgaata ttatgagatt ggaccagttt cotttgaagg	300
actgaagget cataaatatt ccattgtgat tggattttgg gttggtettg cagtettegt	360
gatttttatg ttttttgtgc tgaccttgct gaccaagaca ggagccccac accaagacaa	420
tgcagagtcc tcagagaaga gattcagaat gaacagcttt gtgtcagact ttggaagacc	480
totggagoca gataaagtat tttotogoca aggoaacgag gagtocaggt otototttoa	540
ctgctacatc aatgaggtgg aacgcttgga cagagccaaa gcttgtcacc agaccacagc	600
ccttgacagt gacgtccaac tccaggaagc catcagaagc agtgggcagc cagaggagga	660

720

780

gctgaacagg ctcatgaagt ttgacatccc caactttgtg aacacagacc agaactactt

tggggaggat gatcttctga tttctgaacc acctattgtt ctggaaacta agccactttc

ccagacctca cacaaagacc tggattgaga aacatgctct gtaaagggtc ttcctgaaga

tgtggattct atctttatgt agcaagaaat ctacatccac caaaattgtg tgt	gtttggg 900							
ggagagagag acatagagat agagacagag aggcagagaa gagacccctt tag	aagagag 960							
ctgagctgat taagctgagt ggttttttgt tttgttttgt	tacattt 1020							
ggagctttgg gagtattaaa gtatttacac caagcttgtc caacccgtgg cat	gtgtccc 1080							
aggacagett tgaatgtgge ecaatacaaa ttttaaactt tattaaaaca tga	gttttgt 1140							
tttttttttt getattttt ttaaageteg teagetateg ttagtgttag tgt	actttat 1200							
gtgtggccca agacaactct tettecagtg tggcacaggg aagctaaaag att	ggacacc 1260							
totgatttat actagotogt tttgottgtt gaaaaatttg gocaaataco tat	tgtcagc 1320							
attettgggt gaggattage etaceatgtt etaatetgge eetgecacta eta	tgctcta 1380							
cctttggtga gttgctttac ctctctgggc tgccccattt ttaactgtag gtt	gacaggt 1440							
ctagagtgat ccatcccacc tctaatattt tgtgaattta tgactttgcc ttc	agatgag 1500							
gctgagctat acataaaaca gtataaacta gggtactgcc tcgtatctct tgt	aggetet 1560							
ctcaaatctc tgtaccttcc acttaaccct aattgagcca agctttagtc agg	ggatctg 1620							
gttgtctacc agaatgtcag gagactcatc ttacacagtc atggtggcca atg	tttctgg 1680							
tgggttgtgc tgaaacagct cttctgagaa cttccaacca cccatgctct aac	ctggaga 1740							
cagocatoco otgootoaga ataagtacca attogtagta catgtatggt act	cttgtcc 1800							
ccaagaaatg ttaggaagct tgtcagctga atgagaggag gtgccttctg ggt	atctctg 1860							
tgttggtgta tctgtgccat tggctacaga acaagaaaaa tactatttgc cat	gctatta 1920							
ccttggcaga tgtgtaggtg atagtcatct ggctttgagc tgagatggtc agt	gggttgt 1980							
aaattcccca ctagcagata ttcagggtgg cctgagttat gtaaacaagt gag	caacaca 2040							
gctttaattt catggaggaa tcaaagctgc acactggtat taaaacaact tga	ttttgcg 2100							
cacacagttg catgcatggc aagctgttaa cctctgggtg gcattttcat tat	gaatttg 2160							
ttcaccacct gtcttgctta agctacaaaa taaatgcatt tgactgcaca gaa	aaaaaaa 2220							
aaaaaaaaa	2229							
<210> SEQ ID NO 4 <211> LENGTH: 409 <212> TYPE: DNA <213> ORGANISM: Homo sapiens								
<400> SEQUENCE: 4								
gtgcagagac tcaagacaga tatgaccacg tgaagagaca actgtaaaac aag	tggaatt 60							
agagaataaa atcccagcac gatgttcctc actggagaca ccagtccagc tga	ggacaat 120							
agagaagcca cccttcctca atgttcactt ccagaattat atgcatgtat tga	gaatttt 180							
aataaggaga gcaagaaatc aaatcttcta aaaatgcatg gtatttcact taa	cgaagca 240							
caggaagtac ttgctagaaa cctgaatgtc atgtcattca ccaggggcgc tga	tgtgaga 300							

ggagatetee aacetgttat cagtgteaat aaaatgaaca ageetggaaa acatagaaag

360

409

<210> SEQ ID NO 5

<211> LENGTH: 3570 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUE	ENCE: 5					
ggccggctgc	tcaagtggga	cgggggtcag	agctttgtgg	agggaagaaa	aacctggagg	60
gggcaggaga	gtaaaaagaa	gaaacccagg	cagacaggca	gttggacaca	ctgaggaaga	120
cccccacga	gtgggaaccc	cctggaagga	acacaccggc	cccggccccc	aggaagggag	180
cacaatggag	gccgctcatg	ctaaaaccac	ggaggaatgt	ttggcctatt	ttggggtgag	240
tgagaccacg	ggcctcaccc	cggaccaagt	taagcggaat	ctggagaaat	acggcctcaa	300
tgagctccct	gctgaggaag	ggaagaccct	gtgggagctg	gtgatagagc	agtttgaaga	360
cctcctggtg	cggattctcc	tcctggccgc	atgcatttcc	ttcgtgctgg	cctggtttga	420
ggaaggtgaa	gagaccatca	ctgcctttgt	tgaacccttt	gtcatcctct	tgatcctcat	480
tgccaatgcc	atcgtggggg	tttggcagga	gcggaacgca	gagaacgcca	tcgaggccct	540
gaaggagtat	gagccagaga	tggggaaggt	ctaccgggct	gaccgcaagt	cagtgcaaag	600
gatcaaggct	cgggacatcg	tccctgggga	catcgtggag	gtggctgtgg	gggacaaagt	660
ccctgcagac	atccgaatcc	tcgccatcaa	atccaccacg	ctgcgggttg	accagtccat	720
cctgacaggc	gagtctgtat	ctgtcatcaa	acacacggag	cccgttcctg	acccccgagc	780
tgtcaaccag	gacaagaaga	acatgctttt	ctcgggcacc	aacattgcag	ccggcaaggc	840
cttgggcatc	gtggccacca	ctggtgtggg	caccgagatt	gggaagatcc	gagaccaaat	900
ggctgccaca	gaacaggaca	agaccccctt	gcagcagaag	ctggatgagt	ttggggagca	960
gctctccaag	gtcatctccc	tcatctgtgt	ggetgtetgg	cttatcaaca	ttggccactt	1020
caacgacccc	gtccatgggg	gctcctggtt	ccgcggggcc	atctactact	ttaagattgc	1080
cgtggccttg	gctgtggctg	ccatccccga	aggtetteet	gcagtcatca	ccacctgcct	1140
ggccctgggt	acccgtcgga	tggcaaagaa	gaatgccatt	gtaagaagct	tgccctccgt	1200
agagaccctg	ggctgcacct	ctgtcatctg	ttccgacaag	acaggcaccc	tcaccaccaa	1260
ccagatgtct	gtctgcaaga	tgtttatcat	tgacaaggtg	gatggggaca	tctgcctcct	1320
gaatgagttc	tccatcaccg	gctccactta	cgctccagag	ggagaggtct	tgaagaatga	1380
taagccagtc	cggccagggc	agtatgacgg	gctggtggag	ctggccacca	tctgtgccct	1440
ctgcaatgac	tectecttgg	acttcaacga	ggccaaaggt	gtctatgaga	aggtcggcga	1500
ggccaccgag	acagcactca	ccaccctggt	ggagaagatg	aatgtgttca	acacggatgt	1560
gagaagcctc	tcgaaggtgg	agagagccaa	cgcctgcaac	teggtgatee	gccagctaat	1620
gaagaaggaa	ttcaccctgg	agttctcccg	agacagaaag	tccatgtctg	tctattgctc	1680
cccagccaaa	tetteeeggg	ctgctgtggg	caacaagatg	tttgtcaagg	gtgcccctga	1740
gggcgtcatc	gaccgctgta	actatgtgcg	agttggcacc	acccgggtgc	cactgacggg	1800
gccggtgaag	gaaaagatca	tggcggtgat	caaggagtgg	ggcactggcc	gggacaccct	1860
gcgctgcttg	gccctggcca	cccgggacac	cccccgaag	cgagaggaaa	tggtcctgga	1920
tgactctgcc	aggttcctgg	agtatgagac	ggacctgaca	ttcgtgggtg	tagtgggcat	1980
gctggaccct	ccgcgcaagg	aggtcacggg	ctccatccag	ctgtgccgtg	acgccgggat	2040
ccgggtgatc	atgatcactg	gggacaacaa	gggcacagcc	attgccatct	gccggcgaat	2100
tggcatcttt	ggggagaacg	aggaggtggc	cgatcgcgcc	tacacgggcc	gagagttcga	2160
cgacctgccc	ctggctgaac	agcgggaagc	ctgccgacgt	gcctgctgct	tegecegtgt	2220

-continued	
ggagccctcg cacaagtcca agattgtgga gtacctgcag tcctacgatg agatcacagc	2280
catgacaggt gatggcgtca atgacgcccc tgccctgaag aaggctgaga ttggcattgc	2340
catgggatet ggcactgeeg tggccaagae tgcctctgag atggtgetgg etgacgacaa	2400
cttctccacc atcgtagctg ctgtggagga gggccgcgcc atctacaaca acatgaagca	2460
gttcatccgc tacctcattt cctccaacgt gggcgaggtg gtctgtatct tcctgaccgc	2520
tgccctgggg ctgcctgagg ccctgatccc ggtgcagctg ctatgggtga acttggtgac	2580
cgacgggctc ccagccacag ccctgggctt caacccacca gacctggaca tcatggaccg	2640
cccccccgg agccccaagg agcccctcat cagtggctgg ctcttcttcc gctacatggc	2700
aatcgggggc tatgtgggtg cagccaccgt gggagcagct gcctggtggt tcctgtacgc	2760
tgaggatggg ceteatgtea actaeageea getgaeteae tteatgeagt geaeegagga	2820
caacacccac tttgagggca tagactgtga ggtcttcgag gcccccgagc ccatgaccat	2880
ggccctgtcc gtgctggtga ccatcgagat gtgcaatgca ctgaacagcc tgtccgagaa	2940
ccagtccctg ctgcggatgc caccctgggt gaacatctgg ctgctgggct ccatctgcct	3000
etecatgice etgeactice teatecteta tgttgaecee etgeegatga tetteaaget	3060
cegggeeetg gaceteacee agtggeteat ggteeteaag ateteaetge eagteattgg	3120
gctcgacgaa atcctcaagt tcgttgctcg gaactaccta gagggataac tgttccccct	3180
cctccatctc tgagcccgtg tcacagatcc agaagatgaa agaaggaagt gagcatcctt	3240
ttgctctgtc ctccccaccc cgatagtgac acatcttcag gcagagctgt ggcacagacc	3300
cccgtcctgt cccccacacc cgtgtcatgt gtctgtttat aaacatgtcc ccttcccttt	3360
cettececet eggecaceeg cetecetete aacettgtaa atteceette ecaaceega	3420
ggggcttgca gggacaaggc gaccgactgc gctgagctgc ttatttattg aaaataaacg	3480
acggaaaagt ctggccttgc ctctgtgcaa gcttggaggc ctgggtcgcc gctgtgaaaa	3540
aaaaaaaaaa aaaaaaaaaaaaaaaaaa	3570
<210> SEQ ID NO 6 <211> LENGTH: 5779 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 6	
aggcaaaggg cggggcgcgc gcgtcgggaa gatggcgcta cgtctgctgc ggagggcggc	60
gegeggaget geggeggegg egetgetgag getgaaageg tetetageag etgatateee	120
cagacttgga tatagttcct catcccatca caagtacatc ccccggaggg cagtgcttta	180
tgtacctgga aatgatgaaa agaaaataaa gaagattcca tccctgaatg tagattgtgc	240
agtgctcgac tgtgaggatg gagtggctgc aaacaaaaag aatgaagctc gactgagaat	300
tgtaaaaact cttgaagaca ttgatctggg ccctactgaa aaatgtgtga gagtcaactc	360
agtttccagt ggtctggcgg aagaagacct agagaccctt ttgcaatccc gggtccttcc	420
ttccagcctg atgctaccaa aggtggaaag tcctgaagaa atccagtggt ttgcagacaa	480
attttcattc cacttaaaag gccgaaaact tgaacaacca atgaatttaa tcccttttgt	540

600

ggaaactgca atgggtttgc tcaattttaa ggcagtgtgt gaagaaaccc tgaaggtcgg

gcctcaagta ggtctctttc tagatgcagt cgtttttgga ggagaagact ttcgagccag

cataggtgca	acaagtagta	aagaaaccct	ggatattctc	tacgcccggc	aaaagattgt	720
tgtcatagcg	aaagcctttg	gtctccaagc	catagatctg	gtgtacattg	actttcgaga	780
tggagctggg	ctgcttagac	agtcacgaga	aggagccgcc	atgggcttca	ctggtaagca	840
ggtgattcac	cctaaccaaa	ttgccgtggt	ccaggagcag	ttttctcctt	cccctgaaaa	900
aattaagtgg	gctgaagaac	tgattgctgc	ctttaaagaa	catcaacaat	taggaaaggg	960
ggcctttact	ttccaaggga	gtatgatcga	catgccatta	ctgaagcagg	cccagaacac	1020
tgttacgctt	gccacctcca	tcaaggaaaa	atgatctgtt	aaatgaagct	gtcatcaggc	1080
taaagggtat	tgaagctgca	gagggatcaa	cttgtgcttg	ccagaggacg	ccaatgaagt	1140
ttgaaacacc	aacaatcaga	gattttgttt	ctgttcctca	ttaaatcatg	agcttttgtg	1200
ccgagactct	ggacgactgt	tccttaagaa	attaacagaa	tgggaagttt	taaactctac	1260
accaaccttt	tcatgaccta	cacagcagca	acgctgctac	tcttagacaa	acaccgcggg	1320
gaaggetgtt	ctgtttattt	aaatttgtaa	atagaaaaca	gttgttttt	actttcattt	1380
ttcacctcct	cctacgccct	tttggattat	tteetetgeg	gcccctagca	tgagccccaa	1440
ccaggeetee	ccttttcccc	acttctctca	attcccacag	gaagcccgag	aggtgaggag	1500
ctgaggttag	acaccaggag	aggcaccatc	acacaaaagc	gcggccgcag	agtcccaccg	1560
ccaccaggcg	acccccaccc	agagagggac	agacatgcgg	ggagccagca	ccgggcaaga	1620
tggctctggg	gateeteatt	ctgtgaagac	accaactcat	ttctcaaaca	caggatccag	1680
gagacagata	gctcctaaat	ggagatggca	catgeteegt	ggggtccctc	atagaggagt	1740
gccaccctcc	acactggcca	egetgggetg	ccccagagcg	gccagaaagg	aaggtgggag	1800
ctagccccat	cctcactcag	aggccggaag	gaggaagatg	gcatctcgcc	aacttcagag	1860
ccgaatggcc	tctagccaca	ctgcttccag	accccagacg	gggcagcagc	agcagttccc	1920
agaggagcac	ccattgttgc	agctaggacc	caccaaggat	gggactcctg	gagtcaggtg	1980
cacaccaggt	aacccaggac	cacgetgtge	acccccagtc	tgcccctctg	ctcagaacac	2040
agagggatgg	gaggatggct	tggcagtggg	aaggcaaaag	aaggeetete	tcactctgcc	2100
cctgccatac	gcacccgctg	agggtgttag	aagcagtgga	ggcagagctg	gccctaagca	2160
aaagaagaaa	ataaacctca	ccttgtcctt	cctatgggca	gccctcaccc	caatctaact	2220
aaccttccca	tectecagee	taatccaaag	aagcccttgg	cttgagggga	tgaagggctt	2280
gcgttctagt	ctccacccca	gccccacagg	cagccagcca	gccagcccca	cacagagggg	2340
cctcctcaag	gcctcactgg	gageeteetg	tccccagcca	aggagcccta	cagacctggg	2400
gaaaagcagg	cccctccgca	aggeeeetgg	gtggtgcgga	ggccggaccg	gctaggcctc	2460
ccgctgctgg	ccactcccag	gccacgggtt	cctaggtccc	aaccacattg	gactgctcgc	2520
cacgccactg	ccctcatccc	aaactgcttt	gttcaaacaa	aaccaccttg	tttcagtctc	2580
cccaaatgtc	cagttcatta	tcttcctcat	aacccatggt	ccctattagg	gtaggatcat	2640
gagactaaga	cctatgagag	ccacaaatct	ggaccaaagt	cccattccct	gaacagagac	2700
ccaaacgacg	agggtcccag	aagagagttc	agtcctgatc	agaaacccat	ggtgccttag	2760
tccttgaaga	acaaaactct	aggaagaaga	tgctggaagg	caaagggtat	tccccctctt	2820
tecceaceeg	cgtctctgtg	gtgccatggg	tgggcccagg	taccctggga	aaggtgggag	2880
		tgatctccac				2940
		-			_ 3333 "	

agtgagagct	gcccgactcc	tgagccaggc	gtgggtgaca	ggaagaggac	cttgcagcta	3000
atctgattca	ttagaaacca	tacctgttta	tgttttgtgt	agctcatcac	aagccgctta	3060
gccatatcac	ccccgttatt	aattettggg	gtctaaatta	tgggtaacac	tattaaaaca	3120
ttatcagaac	taatgagaaa	caattactta	gaaaatgagc	cgggacaaga	ctgagttggg	3180
aacatcagtg	gtgatcactg	tagattagtt	taataaatca	tcaggtgcaa	ggcaagactg	3240
actgtatgta	tgcaaagccc	cgtcacggga	aaatgaaatt	gagattttt	ttttttgcat	3300
aattttttca	ttaatctcaa	taggacccgt	gtggtgtaga	ttgctttatt	cccctaatac	3360
cttgcctgag	9c99999999	gggggggtgc	ccaataatgt	cttcattgtt	ttactgaggt	3420
cttaatgaca	atctgtgaca	acctcatttt	aatgtataga	ggattatatc	aatacagtca	3480
tgttttattg	aaatggtgaa	gggaactcca	gtcagagtca	ggcagtgtct	gtgagcacaa	3540
gttaggaagt	ttctcggcat	ccgggagcgt	tecegtetga	tgtcccagtg	ttagtcctcc	3600
cggccgccct	cccctcctct	cctccaggga	cggctgggaa	aacagtcctg	cgggatgaag	3660
acttcaccgc	ctccgatttg	aatttgaaag	taactccttc	cgtggcatat	ttcgctgggc	3720
agatagaaca	aaccatgtcg	ttttcccccg	tctctaaaat	agacatatta	ttatcattca	3780
cacttttgca	cccggtcgtt	ttgcgggagt	tcgggaaact	gactttcttc	attggggaca	3840
ttgtaatttt	ctgatgatgc	cacgaggaga	aaaaaaatac	gggtttgttt	taattggaag	3900
gaccttccgc	ttttatgatt	tcggtttacc	ttggaaaact	gaatcttctg	tgttttattt	3960
ctttcctcta	gtactagaaa	agcaatgaat	taattgcaca	aaacaggttc	tgagacggcc	4020
cgcaggcccc	gagctcgtgg	acgcggccga	gggtcgggtg	tgacccgcgg	agccgctgcc	4080
aggcttccca	gctcgtcttc	gcggggaggc	gggaggcagg	accagacccc	agcatttcag	4140
cgtgaaagtc	ttcgcctttc	tttccgcgct	gtctttcccg	cgggcggagc	ggcgtacctg	4200
agcgcggtcc	ccacggagga	tcagtgactt	tcccagaccc	cgcgggcgag	cccgcgcttg	4260
ggacccggca	gctctgcgcg	ggctggtttt	ggagggggtg	gtgttcgttt	gtttaaattc	4320
cagttgttat	ttggcagcat	atcgccttcc	gagtcagtaa	gaattgccca	cgacgtaaag	4380
agcgacttgc	aggaaggggc	cgaagccgtc	gttagcgccc	gggcggcggc	ggccactcga	4440
accccgtttc	cgccaagcgc	gctgcaacct	gcggggcgag	ttcgttttgt	tttgccaaaa	4500
tcatttgggg	acttctttgt	cattcatgcc	cttcctttta	aatgattttt	attttttcc	4560
actgtaagtg	accggctggg	tttgactttt	gcttcttccg	acggaagggc	accgcgagcc	4620
ggggtgggcg	gccccgcggg	caggaggagc	gcggggtaca	cgcggtggcc	gcagacgccg	4680
agccctgcgg	agccccgagg	cctcgtcgcc	cgcgcccccg	gtgcgcgcgg	agccggggcc	4740
gaggccgggc	caggaggagt	gtggcggccc	aggaggcctg	gactgtgggc	cctgctcgcc	4800
cgcccgccgc	gggccgcccg	gagcccgcgc	gcctgtcgcg	cagecegget	gtaatggtgg	4860
cagatcaaag	geggeeeegt	gtccccgcgg	agcccgggac	aatcccgcgc	ctttgtgcgc	4920
tgttgctagg	agcccgagaa	actaagagaa	agtgtcagga	gcatgttaat	cagactcgtt	4980
acactgtaac	aataacgtct	ctctcgggtc	tcccaggccc	cagtaccccc	gcgcaccctg	5040
cgcgcaggcc	ggacacctgc	gcagggccct	tgegeeegee	ctggggtccc	geeggeeetg	5100
gggtccctgc	agccccgaat	ccgcacccga	gccacgcgga	acgactagcc	ccgaggggcc	5160
ccgcaggctc	ccggtgcagc	tccctggtcg	tggtctcctt	gaccgaagcc	ccggcctcac	5220

accgcctggc	cgcgagcccg	agggacgcag	ggacgatccc	ggtcccctgc	ttttcagtcc	5280
			cagtattcga		_	5340
tecetttatg	gtagcttttt	ggttatgagt	tttggcaaaa	ctgttaaatc	aactttgccg	5400
atttcccttg	ggaatccctg	gaggccactc	taagtggtaa	tcccaagttt	aagaaggaaa	5460
tggggaaatt	ttgctgagag	taaagatgtc	gccgaacttt	ttgaagggat	ttgcttcatt	5520
cattcattta	gtcattcaac	agacacctgt	tgaacccgac	tgggtgccag	aggggccagt	5580
cacaggactt	attccagatg	aacttttctt	ttgaaattag	aatgcccttg	tggaagccaa	5640
aggaggagca	gaggcctaaa	ataatgtcaa	gtgtcaaagc	aaaaagaagt	gccattggct	5700
actacagtgt	gtgatgataa	caagagaggt	gcgaattagg	aattaaaaac	gtttgaaaaa	5760
ctacaggcca	aaaaaaaa					5779
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAN	TH: 5006	sapiens				
<400> SEQUI	ENCE: 7					
gctgctgatc	acttacaatc	tgacaacact	tacaatctac	tcagaacaac	ctctctctct	60
ccagcagaga	gtgtcacctc	ctgctttagg	accatcaagc	tctgctaact	gaatctcatc	120
ctaattgcag	gatcacattg	caaagctttc	actctttccc	accttgcttg	tgggtaaatc	180
tettetgegg	aatctcagaa	agtaaagttc	catcctgaga	atatttcaca	aagaatttcc	240
ttaagagctg	gactgggtct	tgacccctga	atttaagaaa	ttcttaaaga	caatgtcaaa	300
tatgatccaa	gagaaaatgt	gatttgagac	tggagacaat	tgtgcatatc	gtctaataat	360
aaaaacccat	actagcctat	agaaaacaat	atttgaaaga	ttgctaccac	taaaaagaaa	420
actactacaa	cttgacaaga	ctgctgcaaa	cttcaatttg	tcaaccacaa	cttgacaagg	480
			agtttatgtt			540
gcttaatgat	ggagaaaaag	tgtaccctgt	attttctggt	tctcttgcct	ttttttatga	600
			ctgaggactc			660
			gttaccaaaa			720
aacaagcaga	aggcgtttac	tgcaacagaa	cctgggatgg	atggctctgc	tggaacgatg	780
			gccctgatta			840
			atggaaactg			900
			atgttaacac			960
			gacacggatt			1020
tctcgcttgg	catattcttt	tatttcaaga	gcctaagttg	ccaaaggatt	accttacaca	1080
aaaatctgtt	cttctcattt	gtttgtaact	ctgttgtaac	aatcattcac	ctcactgcag	1140
tggccaacaa	ccaggcctta	gtagccacaa	atcctgttag	ttgcaaagtg	tcccagttca	1200
ttcatcttta	cctgatgggc	tgtaattact	tttggatgct	ctgtgaaggc	atttacctac	1260
acacactcat	tgtggtggcc	gtgtttgcag	agaagcaaca	tttaatgtgg	tattatttc	1320
ttggctgggg	atttccactg	attcctgctt	gtatacatgc	cattgctaga	agcttatatt	1380

acaatgacaa ttgctggatc agttctgata cccatctcct ctacattatc catggcccaa 1440

tttgtgctgc	tttactggtg	aatcttttt	tcttgttaaa	tattgtacgc	gttctcatca	1500
ccaagttaaa	agttacacac	caagcggaat	ccaatctgta	catgaaagct	gtgagagcta	1560
ctcttatctt	ggtgccattg	cttggcattg	aatttgtgct	gattccatgg	cgacctgaag	1620
gaaagattgc	agaggaggta	tatgactaca	tcatgcacat	ccttatgcac	ttccagggtc	1680
ttttggtctc	taccattttc	tgcttcttta	atggagaggt	tcaagcaatt	ctgagaagaa	1740
actggaatca	atacaaaatc	caatttggaa	acagcttttc	caactcagaa	gctcttcgta	1800
gtgcgtctta	cacagtgtca	acaatcagtg	atggtccagg	ttatagtcat	gactgtccta	1860
gtgaacactt	aaatggaaaa	agcatccatg	atattgaaaa	tgttctctta	aaaccagaaa	1920
atttatataa	ttgaaaatag	aaggatggtt	gtctcactgt	tttgtgcttc	tcctaactca	1980
aggacttgga	cccatgactc	tgtagccaga	agacttcaat	attaaatgac	tttttgaatg	2040
tcataaagaa	gagccttcac	atgaaattag	tagtgtgttg	ataagagtgt	aacatccagc	2100
tctatgtggg	aaaaaagaaa	tcctggtttg	taatgtttgt	cagtaaatac	tcccactatg	2160
cctgatgtga	cgctactaac	ctgacatcac	caagtgtgga	attggagaaa	agcacaatca	2220
acttttctga	gctggtgtaa	gccagttcca	gcacaccatt	gcatgaattc	acaaacaaat	2280
ggctgtaaaa	ctaaacatac	atgttgggca	tgattctacc	cttattgccc	caagagacct	2340
agctaaggtc	tataaacatg	aagggaaaat	tagcttttag	ttttaaaact	ctttatccca	2400
tcttgattgg	ggcagttgac	ttttttttg	cccagagtgc	cgtagtcctt	tttgtaacta	2460
ccctctcaaa	tggacaatac	cagaagtgaa	ttatccctgc	tggctttctt	ttctctatga	2520
aaagcaactg	agtacaattg	ttatgatcta	ctcatttgct	gacacatcag	ttatatcttg	2580
tggcatatcc	attgtggaaa	ctggatgaac	aggatgtata	atatgcaatc	ctacttctat	2640
atcattagga	aaacatctta	gttgatgcta	caaaacacct	tgtcaacctc	ttcctgtctt	2700
accaaacagt	gggagggaat	tcctagctgt	aaatataaat	tttgtccctt	ccatttctac	2760
tgtataaaca	aattagcaat	cattttatat	aaagaaaatc	aatgaaggat	ttcttatttt	2820
cttggaattt	tgtaaaaaga	aattgtgaaa	aatgagcttg	taaatactcc	attattttat	2880
tttatagtct	caaatcaaat	acatacaacc	tatgtaattt	ttaaagcaaa	tatataatgc	2940
aacaatgtgt	gtatgttaat	atctgatact	gtatetggge	tgatttttta	aataaaatag	3000
agtctggaat	gctatatttg	gtaaatattt	taaagacaac	cagatgccag	catcagaagt	3060
ctgtttgaga	actaagagaa	cagaaacatc	tatcataaga	tatatttatt	ttaaaaacac	3120
aaggtcacta	ttttattgaa	tatatttgtt	ttgataactc	ataccttaat	aataggtgtg	3180
tttgacatat	ttctttttc	attttgacaa	tgaactcaca	ttctaatcca	gaaattttaa	3240
acaactactg	tgataaatac	caatctgcta	cttttataga	ttttacccca	ttaaaatatt	3300
actttactga	cttttactat	gtgaagatat	atagctttgg	aaatgtccca	ggctattcaa	3360
gaaatataaa	aaactagaag	gatactatat	ataccatata	caatgcttta	atattttaat	3420
agagctactg	tatataatac	aaattaggga	aatacttgaa	tatatcattg	agaaaaaatt	3480
attgtcagat	cttactgaat	tattgtcaga	ctttattaaa	taaagataga	agaaaacctt	3540
gctaatgaat	taaagtgaaa	tttgcatggg	attcagtttc	tctaatgtta	ttttccgctg	3600
aaatctctaa	agaacaagaa	tgacttcaat	tagtaaaagt	caattttggg	aaaagtcatg	3660
	ttttaagtgt					3720
55550	5-59	5 5	554	5	25 5 55 5	

Concinued	
aagttgtttc ttaagctgtc aatatgtcaa tagatggtga gttcagaact tatttcaaat	3780
tgctaagaca aattatctaa attcgtaaga attaacatat agaatggtct ggtcagtaca	3840
tttataattt atctatgcat gaaaaagtat tgttttgttt	3900
agctgccata gaaaggaacg caggctgttc tagaccttca actgcctaaa ttatacaaaa	3960
attcatttta ataaactcaa ttattagcta tttattattc aaagacccat atttaaatcc	4020
tttgctgacc atgttgacat atatcagcct tcttctagac aaactgtcaa ctctcaacca	4080
tcttgacagt agaagtgaca gtaaaaaatg ttgaatgatc agagattata ttaaaataaa	4140
catgtaattt tcaagtattt ttgttgtgct tttataatat taattctaga tcagatttat	4200
tttatagcca gggtttgtct gttgtagagt cttgaggcgt agcagtcatt catgattaat	4260
cactgttagt tttgtaccca tatattttta gaatagtttt aaatgttaga tttctcaaaa	4320
gctaaatgct acttaatatc tttgtatcat actcataaag caaagtaaat ctgacacttt	4380
ttttaaagca aacttctttg ctgtcaaaaa aataaatttg gggaaatttc tagcttttaa	4440
aatgtagatc tgcattttac tgtgattact tgtgaaagtc atattttaat tttctaaatt	4500
ctaatttgtc attttatttc ctaaagttaa tttccaatgc atttattcat aaaatattca	4560
ttctggaatg cagtgtttgt ttaaatgtaa tccaatgtat atagaattag tggtggctgt	4620
agtgctgtat ttattgctta taatttttt taaatgtgaa cttactttta attttctctt	4680
ggttttaatc tgctagtaga aaccactagt tatctgtaaa aatatattca agatattctg	4740
atcaattata acaatttatg ttatgcctag agtatatctc tattttttga ttgtatgaaa	4800
atattaaagt tatgagttaa agtttatttt cactgatatt tactacagtg ccaaataatc	4860
taatttataa acataattot tacagtaato aatgggatao ttotcaaaat taacaaatot	4920
cttaacaaaa tatatetttt geeetettta aagtetteag taaaceagta aatgaattea	4980
ataaaccaat taagaaaaaa aaaaaa	5006
<210> SEQ ID NO 8 <211> LENGTH: 2288 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 8	
gaagtggagg tgggagggag cgacaatgga aaaatcacct gaaaactggg acagaggaag	60
gaagctacag ttacgaagga gagctgcaaa agttgcagca gaaaggttgg gagtcccgac	120
aggttccgta gcccacagaa aagaagcaag ggacggcagg actgtttcac acttttctgc	180
ttctggaagg tgctggacaa aaacatggaa ctaatttccc caacagtgat tataatcctg	240
ggttgccttg ctctgttctt actccttcag cggaagaatt tgcgtagacc cccgtgcatc	300
aagggetgga tteettggat tggagttgga tttgagtttg ggaaageeee tetagaattt	360
atagagaaag caagaatcaa gtatggacca atatttacag tctttgctat gggaaaccga	420
atgacetttg ttactgaaga agaaggaatt aatgtgttte taaaateeaa aaaagtagat	480
tttgaactag cagtgcaaaa tatcgtttat cgtacagcat caattccaaa gaatgtcttt	540
ttagcactgc atgaaaaact ctatattatg ttgaaaggga aaatggggac tgtcaatctc	600
catcagttta ctgggcaact gactgaagaa ttacatgaac aactggagaa tttaggcact	660

catgggacaa tggacctgaa caacttagta agacatctcc tttatccagt cacagtgaat

atgetettta ataaaagttt gtttteeaca aacaagaaaa aaateaagga gtteeateag	780
tattttcaag tttatgatga agattttgag tatgggtccc agttgccaga gtgtcttcta	840
agaaactggt caaaatccaa aaagtggttc ctggaactgt ttgagaaaaa cattccagat	900
ataaaagcat gtaaatctgc aaaagataat tccatgacat tattgcaagc tacgctggat	960
attgtagaga cggaaacaag taaggaaaac tcacccaatt atgggctctt actgctttgg	1020
gettetetgt ctaatgetgt teetgttgea ttttggacae ttgcataegt eettteteat	1080
cctgatatcc acaaggccat tatggaaggc atatcttctg tgtttggcaa agcaggcaaa	1140
gataagatta aagtgtctga ggatgacctg gagaatctcc ttctaattaa atggtgtgtt	1200
ttggaaacca ttcgtttaaa agctcctggt gtcattacta gaaaagtggt gaagcctgtg	1260
gaaattttga attacatcat teettetggt gaettgttga tgttgtetee attttggetg	1320
catagaaatc caaagtattt tootgagoot gaattgttoa aacctgaacg ttggaaaaag	1380
gcaaatttag agaagcactc tttcttggac tgcttcatgg catttggaag cgggaagttc	1440
cagtgtcctg caaggtggtt tgctctgtta gaggttcaga tgtgtattat tttaatactt	1500
tataaatatg actgtagtct tetggaccca ttacccaaac agagttatet ccatttggtg	1560
ggtgtccccc agccggaagg gcaatgccga attgaatata aacaaagaat atgacatctg	1620
ttgggcctca caaggaccag ggccttctgg aggagtggca ctaccccacc tggcagcacc	1680
tagacctgag ctctacaaaa acacactgct tcactttgtt ttaggactta gttcaagaac	1740
acattcaaat ggtgcatgtg tttggtatct tcaacagtag accaagaatc taacatcact	1800
ctcagtaata tagagaccgg aatacatggt ttataggaaa tgatcaaatg atccaaaaaa	1860
actccacatt ttttaagaag ttggaatttg atttcatgca taactgtatt aaaacattaa	1920
atagaaataa tgtcatttga atgaaaatct tatcacatta aattcactgt gaaggcagca	1980
tacttaaatt tttattttga aaagtctaaa aggcttagat ttttaaaaatt taataattat	2040
ttctacaaat tttctatttt tcttgaggtg attctcaact agcaattgga actcctaggc	2100
tctattaaca taattcttta ttgtaaacgt atctaatgct aaaagtaata aaatggtagt	2160
tttctgagac ctgtgaggac aggaatggtg tcttacattc atttctacac tttattatgc	2220
tcaggattgc accttcttta cagagtatat tcaataaatg tatgttgatt gaaaaaaaaa	2280
aaaaaaaa	2288
<210> SEQ ID NO 9 <211> LENGTH: 7086 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 9	
agcageggeg geageggeag cecageegag egttaggtge tgetetetge geggegtttt	60

gcaaaggact tcaccgatct acttttgcag tcgcctcgga ctgtccatgt gtttacttcc cccagcccga ggattcgata tctaggttcc tgtgaaatgc aactgagcag ccaaagtact

ttgagaacac ggggcggcat aaacaccaaa acttttttgt ggaaggaaaa tgcaataagc

aagettgeeg titteegatg eggtgtggag tgagtgtgtg tegegegtgt eegeactgga

ggcatatgct tgtgtgtgta catggggtgt gtttttcggt atgtagggag aaaatgcttg

ccaaccaccg gaaatctcct ggaatttatt agaaaataat ggattataaa aagaaggcaa

180

240

300

360

gcaaggagcg	gateteeet	tgagttgcaa	cccgatttgc	tgctggctca	gtttgttgtg	480
attctttttg	ttgataggtg	tctgatggta	ttccgataac	gttcccccct	tttcttcccc	540
ttgagctttt	acagtttaaa	aaaaggaaac	aaaaaccacc	ccaaaatctc	ccccccgtt	600
tttttcgccc	cgtcgggatc	gccgtttcca	tccatgtgct	tgcgtctccc	ccgcgttcca	660
cttaaactat	tttaatcctt	ggacccaagg	aggaggetga	taggggggtg	gataaaaaaa	720
gttcttccaa	aatagtgtgc	ccggggagca	ggatggggga	tttcgcagcc	cccgctgctg	780
ccgcgaatgg	cagtagtatt	tgcatcaaca	gtagcctgaa	cagcagcctc	ggcggggccg	840
ggatcggtgt	gaataatact	cccaatagta	ctcccgctgc	tccgagtagc	aatcacccgg	900
cagccggtgg	atgcggcggc	tccgggggcc	ccggcggcgg	ttcggcggcc	gttcccaagc	960
acagcaccgt	ggtggagcgg	ctccgccagc	gcatcgaggg	ctgccgtcgg	caccacgtca	1020
actgcgagaa	caggtaccag	caggctcagg	tggagcagct	ggagctggag	cgccgggaca	1080
ccgtgagcct	ctaccagcgg	accctggagc	agagggccaa	gaaatcgggc	gccggcaccg	1140
gcaaacagca	gcacccgagc	aaaccccagc	aagatgcgga	ggctgcctcg	gcggagcaga	1200
ggaaccacac	gctgatcatg	ctacaagaga	ctgtgaaaag	gaagttggaa	ggagctcgat	1260
caccacttaa	tggagaccag	cagaatggtg	cttgtgatgg	gaatttttct	ccgactagca	1320
aacgaattcg	aaaggacatt	tetgegggga	tggaagccat	caacaatttg	cccagtaaca	1380
tgccactgcc	ttcagcttct	cctcttcacc	aacttgacct	gaaaccttct	ttgcccttgc	1440
agaacagtgg	aactcacact	cctgggcttc	tagaagatct	aagtaagaat	ggtaggetee	1500
ctgagattaa	acttcctgtc	aacggttgca	gtgacctgga	ggatagette	accatcttgc	1560
agagcaaaga	cctcaaacaa	gaacctctcg	atgaccctac	ttgcatagac	acatcagaaa	1620
catctctttc	aaatcagaac	aagetgttet	cagacattaa	tctgaatgat	caggagtggc	1680
aagaattaat	agatgaattg	gccaacacgg	ttcctgagga	tgacatacag	gacctgttca	1740
acgaagactt	tgaagagaag	aaggagccag	aattetegea	gccagcaact	gagacccctc	1800
tctcccagga	gagtgcgagc	gtgaagagcg	acccctctca	ctctcccttc	gcacatgtct	1860
ccatgggatc	tececaggeg	aggccttctt	cttctggtcc	tecetttet	actgtctcca	1920
cggccactag	tttaccttct	gttgccagca	ctcccgcagc	tccaaaccct	gcaagctcac	1980
cagcaaactg	tgctgtccag	tcccctcaaa	ctccaaacca	agcccacact	ccaggccaag	2040
ctccacctcg	gcctggaaat	ggttatctcc	tgaatccggc	agcagtgaca	gtggccggtt	2100
cagcgtcagg	gcctgtggct	gtgcccagct	ctgacatgtc	tccagcagaa	cagctcaaac	2160
agatggctgc	acagcagcaa	caaagggcca	aactcatgca	gcagaaacag	caacagcaac	2220
agcagcagca	gcagcagcag	cagcagcagc	agcagcagca	gcagcaacag	cactcaaatc	2280
agacttcaaa	ttggtctccc	ttaggacctc	cctctagtcc	atatggagca	gcttttactg	2340
cagaaaaacc	aaatagccca	atgatgtacc	cccaagcctt	taacaaccaa	aaccctatag	2400
tgcctccaat	ggcaaacaac	ctgcagaaga	caacaatgaa	taactacctc	cctcagaatc	2460
acatgaatat	gatcaatcag	cagccaaata	acttgggtac	aaactcctta	aacaaacagc	2520
acaatattct	gacttatggc	aacactaaac	ccctgaccca	cttcaatgca	gacctgagtc	2580
agaggatgac	accaccagtg	gccaacccca	acaaaaaccc	cttgatgccg	tatatccagc	2640
agcagcaaca	gcagcagcaa	cagcaacagc	agcagcagca	gcagcagcag	ccgccacctc	2700
		- 3			-	

cacageteca	ggcccccagg	gcacacctga	gcgaagacca	gaaacgcctg	cttctcatga	2760
agcagaaagg	agtgatgaat	cagcccatgg	cttacgctgc	acttccatcc	cacggtcagg	2820
agcagcatcc	agttggactt	ccccgaacca	caggccccat	gcagtcctcc	gtgcccccag	2880
gctcaggtgg	catggtctca	ggagccagtc	ccgcaggccc	eggetteetg	ggcagccagc	2940
cccaagcagc	catcatgaag	cagatgctca	ttgatcagcg	ggcccagttg	atagagcagc	3000
agaagcaaca	gtteetgegg	gagcaaaggc	agcagcagca	gcagcagcag	cagattttgg	3060
cggaacagca	gttgcagcaa	tcacatctac	cccggcagca	cctccagcca	cagcggaatc	3120
catacccagt	gcagcaggtc	aatcagtttc	aaggttetee	ccaggatata	gcagccgtaa	3180
gaagccaagc	agccctccag	agcatgcgaa	cgtcacggct	gatggcacag	aacgcaggca	3240
tgatgggaat	aggaccctcc	cagaaccctg	ggacgatggc	caccgcagct	gcgcagtcgg	3300
agatgggact	ggccccttat	agcaccacgc	ctaccagcca	accaggaatg	tacaatatga	3360
gcacaggcat	gacccaaatg	ttgcagcatc	caaaccaaag	tggcatgagc	atcacacata	3420
accaagccca	gggaccgagg	caacctgcct	ctgggcaggg	ggttggaatg	gtgagtggct	3480
ttggtcagag	catgctggtg	aactcagcca	ttacccagca	acatccacag	atgaaagggc	3540
cagtaggcca	ggccttgcct	aggccccaag	cccctccaag	gctgcagagc	cttatgggaa	3600
cagtccagca	aggagcacaa	agctggcaac	agaggagett	gcagggcatg	cctgggagga	3660
ctagtggaga	attgggacca	ttcaacaatg	gcgccagcta	ccctcttcaa	gctgggcagc	3720
cgagactgac	caagcagcac	ttcccacagg	gactgagcca	gtcagtcgtg	gatgctaaca	3780
cgggcacagt	gaggaccctc	aacccagctg	ccatgggtcg	gcagatgatg	ccatcgctcc	3840
cggggcagca	aggcaccagc	caggcgaggc	caatggtcat	gtctggcctg	agccagggag	3900
tcccaggcat	gccagcgttc	agccagcccc	cagcacagca	gcagataccc	agtggcagct	3960
ttgctccaag	cagccagagc	caagcctatg	agcggaatgc	ccctcaggac	gtgtcataca	4020
attacagtgg	cgacggagct	gggggttcct	tecetggeet	cccggacggt	gcagaccttg	4080
tggactccat	catcaaaggc	gggccagggg	acgagtggat	gcaggagctt	gatgaattgt	4140
ttggtaaccc	ctaatcaaga	gaggccccaa	gatccacaac	tcgagtggtt	aaagcttaaa	4200
aagtgaaaaa	gaaacaggat	gttgacccat	ccttgttttt	tgtttttttg	acccacgtaa	4260
actgagcaaa	actgcagctg	gctgacaatg	gaagatccag	gtgccaatcc	acagccccac	4320
caggcctcat	ttcacctgat	tttcacacag	caatcgagat	gagacgccat	gcagateceg	4380
gctgcgagag	agggagacac	ccggaggagc	aggtgggaag	atgaagccgg	ccagageeee	4440
tetgeecage	atgecetgtg	ategeetgge	ccagcaggag	ctgcttcagc	cgagagggac	4500
tattacccaa	gagaggtatc	ctcagcccct	cctgccccag	gtcgggagac	agcagctttg	4560
gagacacaaa	agagacagag	cctcagccag	ggagagtgag	tcccccagaa	gaggctgggt	4620
ggttgcacag	gccaggtgca	caggttggaa	atgcactgaa	ctctgggtgc	cgagagatgt	4680
aaggctttga	gacatgctac	tgaatttgga	gggcaggcac	gaagaacagt	gagattgtca	4740
aaaggagaca	accacagatc	ctacaggact	gtctgtctcc	tgccccatga	tgaccctcag	4800
gaattgcaaa	ggetetgetg	tcacaaggag	agcaggctga	gtttggagca	gggtccatcc	4860
ggcagtcctg	ggacggcttc	cctctgctgg	tgcccctggt	ggcagtccct	ccaggtgggg	4920
		atacaaaacc				4980
55 5 5	33 3					

ggcggccgca	gggcagggaa	acccctactg	gaccctgtgt	gtctgccagc	ctggagcctt	5040
tgtctccagc	cctgccttta	ttcctccttg	cctccacacc	agcctcccct	tgcttctcct	5100
tacagactat	ccaagaagtg	aagcttatgt	ctttagggag	ccttgggcag	agtccacata	5160
aatgcaggaa	gaacttagac	aatgcctgaa	atgcaaaggc	gacactggag	tettettet	5220
ctaacgtgta	gcgttgaatg	aatatetgee	tggaaccaag	agggetgete	tgatgtttgg	5280
gagtcggttt	tttgtgagcc	acatctgata	tttctgatat	ccccaggaag	gagtggcctg	5340
gaggtcactg	gttcaggctc	cctttgggcg	aaatcctggg	agtgatgctc	taaaaatcca	5400
cctttcccat	catccctact	catcagaaag	acaaatataa	aatcccagag	aggtggagga	5460
gctaaaaaag	caattgctcc	accttacaaa	tttggataga	aaggagatgt	agtttatttc	5520
atatgggcaa	agtagtcctc	ttccaaagtc	ctgtacagtt	gttctctgca	attgacgcac	5580
atctgcccta	agcgaaatct	gtcagaagga	atcaacaagg	ctccttgcct	cccctcccaa	5640
tccccctttt	ggaggacttg	tggetteggt	gtcgtcctaa	gtgagagtgg	cgtgtgcttt	5700
tttcctgtcc	cctcctccct	ccgtgtccta	gacgctggct	gccttctgtg	cactcccagg	5760
cagatcacta	cggaagagtc	ggagcctgtg	gggttggact	ggccacactc	agteetgaga	5820
aggcgagttg	ccatggaaag	ctgggggcag	aggtgtttt	ggagaggagg	cggcaggcaa	5880
acattgcctt	tgacttgctc	teegegtace	cggggttgta	gagetgetea	ggaaggggca	5940
ggatgtaagg	ccagaggtgc	ctggtgggtg	agaagcccag	gcaggggctg	ggcgccctct	6000
ccgaagaggt	ggcagcaggg	tgaccctgaa	ctccccaaat	ggggagtgat	gccactgggg	6060
aaactgagtg	gatcaaagag	atgaaaccaa	aaaaaagcaa	acaaacaaat	gagaagacac	6120
aaaacataat	taccttttcc	tgaaaggtac	aggaaataaa	tatataagca	atgatgagaa	6180
actggaggtg	gctaatggaa	gtgagacaga	caggggtggg	gggctccatt	atcttttaaa	6240
agetteetee	aaatgctcag	tactgggacc	aactaatagg	tagattttaa	tatggtggtt	6300
ttgttttggt	tttgttttta	ctacggtgct	gatgtatatg	taatgtctaa	aaaaagttat	6360
ttgtacataa	gtttttacaa	tactgcagat	atcactgggt	ctactatctg	taaaaaatat	6420
acatataaat	atatatac	tgtttgttta	aaatagagta	tttttatttc	attccttaac	6480
tcatcatcac	agcagtggta	ttgcacttca	gatgacatct	aattactaat	ttgtactgta	6540
tgacctctgg	caacttgctc	cattttattc	agatttttct	agttttctgt	ttttactttg	6600
tacattgagc	attgcttatt	tccttttaag	aaatgtacag	aacgctgaaa	tgtagaaatg	6660
aagtgatgtt	gacataccac	ttttaaagaa	aacaaaaaca	aaaataaaag	attatctgaa	6720
tcaatccaaa	gtatagttta	ttttaagatc	ctcactggag	ctccaatctt	aattaagcag	6780
acatattatt	cctgggtttt	aattaactgc	agttcttttc	tcaaaatttt	gatatcattc	6840
tttaaacatt	tatttaatgg	gagagatcaa	tcattcccag	cctttgcatt	caactgcaca	6900
actgatgata	ctttctgaat	ttactgccgc	actctgaagg	atgtggcaaa	gggaagggag	6960
gaaagtcaac	tttgcatgga	acatagtgca	atccatttgt	agattcagta	ccataacaat	7020
tccatttcca	actagttcat	ctggaggtag	ggaggctcca	ctggaaaaat	aaatattttt	7080
gtcaaa						7086

<212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 10 60 120 ggtcggggcg cggcggcgg cggcggcgg cgcgcgtccc gtccaggtcc ggagtaaccg ccgccgccgc cgccaaagct cgccaacatg gcggacctgg aggctgtgct ggccgatgtc agttacctga tggccatgga gaagagcaag gcgaccccgg ccgcccgcgc cagcaagagg 240 atcgtcctgc cggagcccag tatccggagt gtgatgcaga agtaccttgc agagagaaat gaaataacct ttgacaagat tttcaatcag aaaattggtt tcttgctatt taaagatttt tgtttgaatg aaattaatga agctgtacct caggtgaagt tttatgaaga gataaaggaa 420 tatqaaaaac ttqataatqa qqaaqaccqc ctttqcaqaa qtcqacaaat ttatqatqcc 480 tacatcatqa aqqaacttct ttcctqttca catcctttct caaaqcaaqc tqtaqaacac 540 gtacaaagtc atttatccaa gaaacaagtg acatcaactc tttttcagcc atacatagaa 600 gaaatttgtg aaagccttcg aggtgacatt tttcaaaaat ttatggaaag tgacaagttc 660 actagatttt qtcaqtqqaa aaacqttqaa ttaaatatcc atttqaccat qaatqaqttc 720 agtgtgcata ggattattgg acgaggagga ttcggggaag tttatggttg caggaaagca 780 gacactggaa aaatgtatgc aatgaaatgc ttagataaga agaggatcaa aatgaaacaa 840 ggagaaacat tagccttaaa tgaaagaatc atgttgtctc ttgtcagcac aggagactgt 900 cettteattg tatgtatgae ctatgcette cataceceag ataaactetg etteateetg 960 qatctqatqa acqqqqqqa tttqcactac cacctttcac aacacqqtqt qttctctqaq 1020 aaggagatgc ggttttatgc cactgaaatc attctgggtc tggaacacat gcacaatcgg 1080 tttgttgtct acagagattt gaagccagca aatattctct tggatgaaca tggacacgca 1140 agaatatcag atcttggtct tgcctgcgat ttttccaaaa agaagcctca tgcgagtgtt 1200 ggcacccatg ggtacatggc tcccgaggtg ctgcagaagg ggacggccta tgacagcagt 1260 gccgactggt tctccctggg ctgcatgctt ttcaaacttc tgagaggtca cagccctttc 1320 agacaacata aaaccaaaga caagcatgaa attgaccgaa tgacactcac cgtgaatgtg 1380 gaacttccag acaccttctc tcctgaactg aagtcccttt tggagggctt gcttcagcga 1440 gacgttagca agcggctggg ctgtcacgga ggcggctcac aggaagtaaa agagcacagc 1500 tttttcaaag gtgttgactg gcagcatgtc tacttacaaa agtacccacc acccttgatt 1560 cctccccggg gagaagtcaa tgctgctgat gcctttgata ttggctcatt tgatgaagag gataccaaaq ggattaagct acttgattgc gaccaagaac tctacaagaa cttccctttg 1680 qtcatctctq aacqctqqca qcaaqaaqta acqqaaacaq tttatqaaqc aqtaaatqca 1740 gacacagata aaatcgaggc caggaagaga gctaaaaata agcaacttgg ccacgaagaa 1800 gattacgctc tggggaagga ctgtattatg cacgggtaca tgctgaaact gggaaaccca tttctgactc agtggcagcg tcgctatttt tacctctttc caaatagact tgaatggaga 1920 ggagaggag agtcccggca aaatttactg acaatggaac agattctctc tgtggaagaa 1980 actcaaatta aagacaaaaa atgcattttg ttcagaataa aaggagggaa acaatttgtc 2040 ttgcaatgtg agagtgatcc agagtttgtg cagtggaaga aagagttgaa cgaaaccttc 2100 aaggaggccc agcggctatt gcgtcgtgcc ccgaagttcc tcaacaaacc tcggtcaggt 2160

actgtggagc	tcccaaagcc	atccctctgt	cacagaaaca	gcaacggcct	ctagcaccca	2220
gaaacaggga	gggtcctcga	ggaggacaca	ccagggtctc	agccttttgg	ggtgaacgag	2280
gatgaggcat	ctgatctatt	cgctaccggg	actcctccag	gctcccgaga	ggagtcggga	2340
cccttcggct	tggggtcagc	tcagctccct	gccttgtcac	atttgtctgc	attagaaact	2400
actgaagaaa	taaaagttct	ttttctttgc	tacacacttt	ggtacctatg	aacctagaac	2460
ttgaagtgac	tcctacttat	cacgtaaatt	tttatgtctg	atatcaaaca	catcttagac	2520
tccccagaat	ggaatttaaa	gatgttcagt	gttgggtaac	agattgccct	aagcattgcc	2580
acatattctg	tctagtcact	gctgattttc	tatgtctttg	ctccatactg	ctgggggatg	2640
ggagagccac	agtgtgtttc	ttttgtgcac	ttcgcaactg	acttcttgtc	ctggggttaa	2700
aagttgaaga	tattttctga	tgatattaaa	agttgaagat	atttctgcac	ttgggccctc	2760
ctctgggagc	cgcacccaca	tgactgccct	gcctctgacc	agtctgttcc	ggggccccct	2820
cagccaggtg	ggaatgacgg	acacgtacta	tccaagtgta	tgggattaac	taatcattga	2880
aggcattcat	ccgtccatca	ttggaaagat	ttacagtgat	tctgaaggac	aggccgtgga	2940
gttttaggtt	tcaggggcaa	gagcagtttt	caaaagtctt	tgagtccagt	gtgcacgagt	3000
cgacaagcag	tacctggcat	gcaggagcac	tcatgggtga	gtccgtctca	ggtctcgaca	3060
attagcagtt	gtgtgacagt	cattctggtt	ccttctgcct	gaccctggga	gacatatcag	3120
taatggatgt	acaaaagcag	gtctgtttta	tgtcttagta	taatttcaga	tgaattgtat	3180
tgaaaaaatg	ctgaggaatg	aatgtgtcaa	aatgggttaa	ctgtgtatat	tgactttcat	3240
gtcgtcatgc	atctgtcatg	aatgaatgat	actttgcact	gggctgtacg	acagtgagga	3300
ccttagggca	tgaagccttt	ttcctggtcc	cagcagcatc	tgccctgtga	agtttgtttt	3360
ctcccactgc	ctccaggccc	cactgatacc	cccaaataga	tgctgggtta	tgagaaccag	3420
cgaaatcccc	catgtcatca	gtcttaaaaa	aaaaatttta	caaatccacg	tatttgtccc	3480
attcttggag	tagttttagt	gtatgtcttt	acattaacta	ctaacagtat	aaataacttg	3540
acatcgtaat	tgtctgcatc	ctgtccttga	tatttttagc	agttccaaat	ctttgttttt	3600
gtatttgttt	gctgtgttca	tgggcaaagt	aagtactttt	taatgcagtt	attttgagag	3660
tttggaagat	aattaccaaa	agggtccatt	atttcataag	agttactttg	caaaaaaaaa	3720
aatgtgggtt	ttttttttg	tctatctcaa	ctactagttg	gggtttaaat	taacatacat	3780
tttctactat	ctgttatttc	cagtgtggga	ggagggatgt	actacttaca	tgcattctcc	3840
ttatttaaaa	aggaagaata	gtattcaaat	tctgttgaaa	cacacacaca	cacacacaca	3900
cacacacaca	cacactccag	aagcagaaaa	gccattgttc	ttaaagagtg	aatgtcttcc	3960
cagccctggt	taattatagc	tgtgactgat	gccgttcccg	tctgcatctc	aagctcatag	4020
gttctcagca	tgtgcagttg	aggatgcgct	gggcctcatg	cctgttctag	atctccagga	4080
taaagggcct	gctgttgact	ccaccagggt	ctgggcttag	cgtctaatat	ctcgtaccta	4140
gggcgtgagc	tgcacaaacg	tgttcagaaa	gattattcaa	ctttcccata	cttgttctaa	4200
aattgagctg	atccgcatct	ctttcaaaaa	ctagaatttc	tgctctaaga	atagaacata	4260
aggctccact	cccttttaga	aaagatatat	gaattggaaa	atgctctgaa	agtccttttg	4320
cttcaaacaa	aagtgtaaac	ttttacactt	ccccaactca	catttgattt	gtaatgatat	4380
ggttgagaag	tacatctaga	tgtcatttat	taaaagtgct	ttgtaagact	agattgagct	4440
	_	-			- -	

gtttctgagg	gcggtcacca	gttgtgttgg	ggtctggttt	gagtgccttc	tgccaaaatg	4500
ttgtgatgga	ggtgtttctg	cgaccagaca	caggataccg	ctgtgtctgc	acccggttgc	4560
ctgcatggcc	agaggaaaag	tcagttggat	taaacatcat	ggtatacttg	gctgttgttt	4620
ttttttaatt	ttttaatttt	ttgggatagg	gcctcgctct	gtcacccagg	ctggagaaca	4680
gtgggatgat	catggctcac	tgcagccttg	aattcctagg	ttcaagcaat	cctcccacgt	4740
cageeteetg	agtagctagg	actacaggtg	catgccacct	ttcctggcta	atttatttt	4800
tgggtagaga	tggggtcttg	aactcttagg	ctcaagtgat	cctccttcct	tggcctccca	4860
aaatgctgga	attagagatg	taagccacca	tgcccagcca	tagtacttgg	atgttttaga	4920
aggttttcca	agtattacat	aattcctaga	tgttcaccct	tattacactc	caactattaa	4980
aaaggtcaaa	attcagccta	tttttttca	ttattttaga	ttcctgtggt	tgggatattt	5040
taacattgat	gagaaaaata	attgaggttg	atattttac	aaaatcatgc	ggtaataagt	5100
cttgatttca	tgattcaaaa	gaatcaataa	agcctaaaaa	taatagatta	ctttaagctg	5160
ctatgtaaga	tatatatgga	ataaattaaa	aacctttgtg	aattcaggtt	tattattttt	5220
aacctaaaac	attctctttg	gttcattcat	cccctcatgt	catgggggct	cattggtttt	5280
ccttctttgt	catatttaag	tatgattttt	caacaaaact	tctagaagtc	agcttattat	5340
gtcaccattc	atgcaaagtg	ctcatgcctc	tgattggtcc	attcactgac	gtgacaattt	5400
caggtcctat	gtttaaaaag	aaggggctgg	ccgggcacga	tggctcacgc	ctataatccc	5460
agcactttgg	gaggccgaga	ggggcggttc	acgaggtcag	gagattgaga	ccatcctggt	5520
tagcagagtg	aaaccccgtc	tctactaaaa	atacaaataa	aaattagccg	ggcgtggtgg	5580
cgggcgcctg	tagtcccagc	tacttgggag	gctgaggcag	gagaatggca	tgaacccggg	5640
aggcagagct	tgcagtgagc	cgagattgcg	ccactgcact	ccagcctggg	cgacagagcg	5700
agactctgtc	tcaaaaaaaa	aaaggagggg	ggctaaatat	ccagtgagat	gcactgagga	5760
aaggaagcat	tttgctgaag	acagcagcag	caacaaacaa	tggtctgttt	gttgcaaaca	5820
agatgtagct	tgatttctgg	tctgacatat	gccatataca	gatattagaa	acgactgttt	5880
gaaggccaca	ctggtcatct	acaaagtaat	gtttaccaat	tgacgacagg	gatttaacta	5940
gattaaaaag	atcaaagtgt	ggtttttctc	tgctttttaa	aatttcactc	ggaatttgta	6000
gctgggccaa	ttcaacacat	tttacttttc	agtggaattg	atttttctaa	tgtttcagaa	6060
ttttaacata	tcaagaagaa	aacaacgttc	tcaaagtctg	gcctctttag	catgatgtaa	6120
acctatagaa	atgctttgaa	atgtgctggt	gtaagataag	agttatcttg	tatgatttaa	6180
tcatatgcag	tgttgtctca	gttacgttca	gggaaatgtt	tctgtgtcat	tcagagatgc	6240
ttgatgaatt	aacacctccc	accctgagtg	aggggttgac	ttgttgggag	atgatttggg	6300
cttcactggg	atctgtgaca	ggtgggggct	gggctgggtg	tcacaaagag	aatagtggta	6360
gaaateggge	gaaggaagaa	agaagttact	ggtaaaaatc	attacaccat	aaagcaccaa	6420
ggaaataact	gagttaaaat	aggtgaagtt	tctttttcc	cccctgtaac	aggagagttt	6480
tccttatgat	aattattctg	agacttggtc	actttgtttt	tgaatgtgga	gctgctgaac	6540
tcattcagaa	gccatttgct	gcctatcagg	actttctgaa	gaagttcttt	tgcctctgcc	6600
taccctctgg	caccctccca	tggaggcaca	ggggacccag	agctaaagca	ttaccaggcc	6660
atctccaaaa	caccccgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	6720

gcactttgca	gcccccgagg	tggagaggca	gtgtctggat	cactgtgaat	gcattgcccc	6780
attggtcagt	tggggacact	gttacaaatc	cactgaagtc	ctggtaaaac	tgtcaagagt	6840
aacaggcctc	ttctgttcta	ccctgctcac	ttccacggtg	agttaccagc	ctgggcaaca	6900
cagcaagacc	ccatctctac	aaaaaaaatt	tttttaagta	attaaccgtt	taaattttt	6960
cctaaagatt	taacatgatt	tttccctcct	atgtaaagtt	tactggagag	acttgaatta	7020
cttaaattca	tgttaatatg	attttttt	aatccaggtc	acattttaac	aaagtttatt	7080
atgaaacaaa	tgaaatttga	actctaaaat	ggtactcctt	ggcttcctca	agtcacaatg	7140
aactttatat	tttctttgtc	cttaaggact	aagatagttg	ttttatttca	gccgaatcac	7200
agagataacc	actcctgcag	gcccccacag	ctggcccaaa	ggggctgtct	ttctgacctg	7260
gctgtgttag	cactgattga	gaaacgcagg	ctcccaaatt	ttaaattgcc	tttattaaaa	7320
acacaaacta	cagaaaatgg	gttaagagta	tacgcatttc	atcaaacaca	tataggggaa	7380
aaaatccttc	aatttagagt	taaataactc	agctttgtat	agtagagtta	gcgctccagt	7440
atctaacaat	ctcagaatca	tctctgaaaa	ctggtaacta	tgcttccatt	tttaattttg	7500
tcctaaatat	cagatgtctt	tgatgtaagg	gtagggaatg	gagaaatatt	ttcaattgtg	7560
tatttgtatt	acaaagaact	tgaaatttac	tttcttagtt	gattatatta	aatgatgtat	7620
atattatatg	tggtttataa	gctcaacact	ggccattttt	ttagttttat	tgttaaatgg	7680
tatttttcta	tgtttaatta	taatagatct	ggctttttct	ggatagcata	aagatcactg	7740
aactatatat	atataagaaa	caagagttct	attttagcac	aaaggcattt	tatattattt	7800
attgaatcca	taagtttgtt	ttcgtcaaaa	acattccata	ttatttctgc	tcctttttat	7860
ttgtatagtt	tgttatttaa	agaaatggca	gtccttcctg	ttcttaatac	aataaaattg	7920
aaataatgca	cctagtaatg	tggccgacat	ctcttctcac	caccatggac	tgttttcaac	7980
aacagttgat	cttctggtct	gtgctgagag	gcgcatgcat	gtctttcgtc	acgtcgggca	8040
gcacacctgc	tgtgaaatac	tgctttcatc	tacctcttca	gaaggcttct	tgcttgttga	8100
caagtaccgc	aaaggcttta	ttctggactg	gctatctcat	aaaaggattt	ctgtaagact	8160
ttgcagtgtc	attccctcag	aacctaggtt	tgtttctaaa	gccacggtat	tgtccaggag	8220
cccctgtgtg	tggggcaggt	agctatccct	cccatgtcat	tagtaatcct	ttaggattta	8280
aggtacaact	ggacagcatc	attccttccc	cttattgtgc	caaatcccca	ccatcagcct	8340
tgccattgcc	ttaagatttg	attattgcac	ccaattacct	aaccactaaa	cagaaaggcc	8400
accttcactc	tttgaaaaag	gcaagctgtg	cttagaaaca	ctgcttttaa	gagtagcaca	8460
tttgagtgtg	actttttccc	cccttcacta	tttcaaaatg	gttttgaaat	ggggtcttaa	8520
aggtaagcgc	cctcatacat	gactgaaact	ttgtgagagg	tcttatattt	gaatggaccc	8580
ttaatgattt	atgtgaaata	gaatgaagtc	ctgtctctgt	gagagaacgt	gcctcctcac	8640
tcatttgtct	ctgtctgttt	tcatagccat	caatatagta	acatatttac	tatattcttg	8700
aatacccttg	aagaaagaaa	tccgttttct	attgtgcatt	gctatacgaa	gtgaagccag	8760
taaactagat	actgtaaatc	tagatattgt	acctagacaa	aatatcattg	gttctatctc	8820
tttttgtatc	tgttgtgcca	gggaaggttt	ataatccctt	ctcagtatac	actcactagt	8880
gcacgtctga	aatagtatcc	cacgggagat	gctgctccac	gtctgaggtc	acctgccctg	8940
tgtggggcac	accaccgtca	gcaccaccgt	ttttacagtt	actttggagc	tgctagactg	9000
	-	•	-			

gttttctgtg ttggtaaatt gcctatataa atctgaataa aaaggatctg tacaaaaaaa	9060
aaaaaaaa	9068
<210> SEQ ID NO 11 <211> LENGTH: 5069 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 11	
aaaaaagggt gaggagaagc agcggctgag cgggttggca tctggggcag cgggctcgct	60
ccaggccgtc gggggccgct cgccagcgtc gcccgctgtg ttgggagcgc gggccgtggg	120
cgtcgctcgg ccttgtccgc ggcgtccccg ctgccggcca cggcgctcag cgcttgtgct	180
ctgtattgca ggtctacccc gagccccgga gcgagagcga gtgcctgagc aacatccgcg	240
agttcctgcg cggctgcggg gcttccctgc ggctggagac gtttgatgca aatgatttgt	300
atcaggggca gaattttaac aaggteetea gtteettagt gaetetaaat aaagtaacag	360
cagacategg getggggagt gaeteegtgt gtgeeeggee etegteteae egeataaagt	420
cttttgactc ccttggatca cagtctttgc acactcggac ttcaaaactg ttccagggcc	480
agtatcggag tttggacatg accgataata gcaacaatca actggtagta agagcaaagt	540
ttaacttcca gcagaccaat gaggacgagc tttccttctc aaaaggagac gtcatccatg	600
tcacccgtgt ggaagaggga ggctggtggg agggcacact caacggccgg accggctggt	660
tccccagcaa ctacgtgcgc gaggtcaagg ccagcgagaa gcctgtgtct cccaaatcag	720
gaacactgaa gagccctccc aaaggatttg atacgactgc cataaacaaa agctattaca	780
atgtggtgct acagaatatt ttagaaacag aaaatgaata ttctaaagaa cttcagactg	840
tgctttcaac gtacctacgg ccattgcaga ccagtgagaa gttaagttca gcaaacattt	900
catatttaat gggaaatcta gaagaaatat gttctttcca gcaaatgctc gtacagtctt	960
tagaagaatg caccaagttg cccgaagctc agcagagagt cggaggctgc tttttaaacc	1020
tgatgccaca gatgaaaacc ctgtacctca cgtattgtgc caatcaccct tctgcagtga	1080
atgtcctcac ggaacacagt gaggagtttgg gggagttcat ggagaccaaa ggtgccagca	1140
gccctgggat tctcgtgctg accacgggcc tgagcaaacc cttcatgcgc ctggataaat	1200
accetacget geteaaagag etegagagae acatggagga ttateataca gatagacaag	1260
atattcaaaa atccatggct gccttcaaaa acctttcagc ccaatgtcaa gaagtccgga	1320
agaggaaaga gcttgagctg cagatcctga cggaagccat ccggaactgg gagggcgatg	1380
acattaaaac tctgggcaac gtcacttaca tgtcccaggt cctgattcag tgtgccggaa	1440
gtgaggaaaa gaatgaaaga tatcttctac tcttcccaaa tgttttgcta atgttgtctg	1500
ccagtcctag gatgagtggc tttatctatc agggaaagct tccaacgaca ggaatgacaa	1560
tcacaaagct tgaggacagt gaaaatcata gaaatgcatt tgaaatatca gggagcatga	1620
ttgageggat attagtgteg tgeaacaace ageaggatet geaggaatgg gtggageace	1680
tacagaagca aacgaaggtc acgtctgtgg gaaaccccac cataaagcct cattcagtgc	1740
cateteatac ectecectee cacceggtea etcegtecag caagcaegca gacagcaage	1800
cogogocget gaogeocgec taccacaege tgeoceaece eteccaceae ggcacecege	1860
acaccaccat caactgggga cccctggagc ctccgaaaac acccaagccc tggagcctga	1920

gctgcctgcg	gcccgcgcct	ccctccggc	cctcagctgc	tctctgctac	aaggaggatc	1980
ttagtaagag	ccctaagacc	atgaaaaagc	tgctgcccaa	gcgcaaacct	gaacggaagc	2040
cttcagatga	ggagttcgcg	tcccggaaaa	gcacagetge	tttggaagaa	gatgctcaga	2100
ttctgaaagt	cattgaagct	tactgcacca	gcgccaaaac	aaggcaaaca	ctcaattcaa	2160
gttcacgcaa	agaatctgct	ccacaagttt	tgcttccaga	agaagagaaa	attatagtgg	2220
aagaaactaa	aagtaatggt	cagacagtga	tagaagaaaa	gagtcttgtg	gataccgtat	2280
atgcattaaa	ggatgaagtt	caagaattaa	gacaggacaa	caaaaagatg	aagaaatctc	2340
tagaggaaga	acagagagcc	cgcaaagacc	tggagaagct	ggtgaggaaa	gtcctgaaga	2400
acatgaatga	teetgeetgg	gatgagacca	atctataagg	gatgtcctca	gttctttctg	2460
ttgaagacca	gttctgaggt	gaagctgggc	acccctgacc	caagtcgggg	tgcactcagg	2520
accacagggc	agggctgggt	ggggcgccac	cttgctctct	gtatatagaa	aagctggagc	2580
ttattctgcg	aatggagacg	atcaaaccat	gactgatgaa	tccagacagg	agggattgac	2640
tctgaggacc	tgagctacat	caatccactc	tgtgaacatc	tcagttacct	cattctgcaa	2700
taagttcagt	gactgactaa	aagtcttgtt	tttccagact	ttgaattgaa	tatataaata	2760
ttatatatac	atgtttcttg	taaatatccc	attttgaatg	catacctgtg	gtggttctgt	2820
ccgggctaat	ccccatgcta	gaatgtcctt	tccagctacg	tgaataagaa	gtcccatgcc	2880
cgcatccacc	ggaagcagaa	gcctggtgga	tgcctggttc	gttccgcagc	accagggcct	2940
ccaccgtgct	gtggcagcac	ccccatgtc	ggtatttcta	aataacctta	tttatacctg	3000
cagagataca	cttcagtccc	attcagaagt	cttctcttaa	agcagcatta	cagteceaga	3060
cctgcgggtt	tctgagggca	acttgctggc	tgacagactc	agtettgace	tcaaggaagg	3120
cccatacggc	actgccgcat	ccacctagag	gtgtttgctc	ttgtccgctg	tctgagtact	3180
gtgattctca	gatgagtttg	ctgcgttttg	ggaggacaca	gacggttctg	tataggctag	3240
ttcagtaaca	acaaaataca	ctgttttgtc	ttccctcaaa	gagagatett	actagaacct	3300
gtaaatagaa	tgtattattt	attataagtc	actgcagctg	atgaaaacag	atggaggcca	3360
tgctgcaggc	tgatactgat	gggtggagtt	ttgtcatcag	gccagcctca	tcccgaggtc	3420
tectecacea	ttggccgtag	ccagcaggct	tcagtgctca	ccgaaagtaa	aatcccctcc	3480
ttcagcaaga	ataaagcaat	atacacctta	ggttccacta	agtaacatag	gcataagcag	3540
ggaacgtttc	ccccactgtg	ttccagtgca	gaggagacga	agcctgtcct	caccgcggct	3600
cgctgggccc	aggetggete	tggaaagcct	gtgcggtcct	gggcaggaag	cccggcccgt	3660
ggagcaggtt	ttcgttctgc	ttcagcaata	aataagggtg	accacaggga	ctttgctttt	3720
ggtttccttt	cctgtgaaaa	ggttggtttt	aaagtgagat	acacttttcc	gtagaacaag	3780
tgttctatct	ttaaaaaccc	aaattgcagc	accgtggatt	actggtctca	gaacaactca	3840
ttgcgcatca	gatttgactc	tctgattttc	tgtctattgg	ccaaattgcc	ctttaactgc	3900
acctgaatcc	tttgtgtact	gatgcctttg	agctgggcac	cttgggagag	tgttgtgttg	3960
ctgtttacgg	ttcttccttg	cccttgctaa	ttacagtctc	tggtgcccag	caagcccctt	4020
tggcttcctt	ccgtgactgg	tcacgttgtc	tgcctgggct	cagcgtggac	ctgccccatg	4080
ctgcagaacc	tggcctcacc	tggacttttc	actagaattg	ccagcttcct	caacttagca	4140
gatcattcac	tcatgcgggc	acaagcaaag	atcaacactt	tcttttttgg	taagcttgag	4200

-continued	
ttttacaagt tattttttgg tgatgcgtaa gacattgcag tgggaaacca ttcaacttga	4260
gtttattgga gtttgctgtt gtagcaggtt ttaactcagg aacaactctt gtctgatctc	4320
teegeeeete tgeegggagg egacattaae tgteeteteg gageeggtag egttgetgte	4380
cgagtcccca ggacggatct cctgcagacc tgccttaatg ctcagatcga agtatttcac	4440
aagaatactt gtgtttttaa cageeettee eetggaeggt geggeeatga gggeeteatg	4500
ttacggcatt gccttttctt tctgtggatc cagtatcttc ctcggctttt tagggagcag	4560
gaaaaatgcg tctgagagca actettttta aaaacetgce ctgttgtata taactgtgte	4620
tgtttcaccg tgtgacctcc caagggggtg ggaacttgat ataaacgttt aaaggggcca	4680
cgatttgccc gagggttact cctttgctct caccttgtat ggatgaggag atgaagccat	4740
ttcttatcct gtagatgtga agcactttca gttttcagcg atgttggaat gtagcatcag	4800
aagctegtte etteacacte agtggegtet gtgettgtee acatgegetg ggegtetggg	4860
accttgaatg cctgccctgg ttgtgtggac tccttaatgc caatcatttc ttcacttctc	4920
tgggacaccc agggcgcctg ttgacaagtg tggagaaact cctaatttaa atgtcacaga	4980
caatgtccta gtgttgacta ctacaatgtt gatgctacac tgttgtaatt attaaactga	5040
ttatttttct tatgtcacaa aaaaaaaaa	5069
<210> SEQ ID NO 12 <211> LENGTH: 81 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
aacacagtgg gcactcaata aatgtctgtt gaattgaaat gcgttacatt caacgggtat	60
ttattgagca cocactetgt g	81
<210> SEQ ID NO 13 <211> LENGTH: 1251 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 13	
agttgtaaac ccaaggccaa gagaccatgg ccacgttagc ccggctgcaa gctaggtcgt	60
cgactgtagg aaatcagtac tactttagga acagtgttgt agatccattt agaaaaaagg	120
agaatgatgc agcagttaaa atccaaagct ggtttcgagg atgtcaagtt cgggcatata	180
tcaggcattt aaacaggatt gtaacaatta ttcaaaaatg gtggagaagt ttcttaggca	240
gaaagcaata tcaactaact gtgcaggtag catattatac tatgatgatg aatctctaca	300
atgcaatggc tgtcaggatt cagagacgat ggcgaggcta tagggttcgg aagtacctct	360
ttaattatta ttatttgaaa gagtacctga aagtcgtttc agagaccaat gatgcaatta	420
ggaaggcact ggaggagttt gcagaaatga aagaaagaga agagaagaag gctaacctcg	480
aaagggaaga gaagaaaaga gattaccaag cccgaaagat gcattacctc ctcagcacaa	540
agcagattcc aggaatatac aattcaccct tcagaaaaga gcctgatcca tgggagctgc	600
aattacaaaa ggcaaagcct ttaacacacc gaagacctaa agttaagcag aaggactcca	660

720

ccagcettae tgattggeta gettgtaeaa gegeeegtte tttteetegg tetgaaatte

taccacctat taatagaaag caatgtcagg ggcccttccg agatatcacc gaagtattag

aacaacgcta caggcctttg gagccaacgt tgcgggtggc agaaccaatc gatgagttaa	840
agttggccag agaggagctc agaagagagg aatggctgca aaatgtaaat gacaatatgt	900
ttttgccatt ttcttcatac cataaaaatg aaaagtacat cccatcaatg catttatcaa	960
gcaagtatgg teetatttet tacaaagaac aatteegaag tgaaaateet aagaaatgga	1020
tctgtgacaa ggatttccag actgtattac catcatttga gctcttctca aagtatggaa	1080
aattatattc aaaagctgga cagattgtat aaaggcgtca gaagaagaaa ctgaagccat	1140
ctgcatttta aaacttaaca gttctgaaag gaaaacacag atgaagatcc tgtaggaaat	1200
atacttgcta tgattcaata aactataaaa ttttgaaaaa aaaaaaaaaa	1251
<210> SEQ ID NO 14 <211> LENGTH: 7996 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 14	
gcgacccgag gaggcggaag agcggcgcg gcgacgtact gtaagacgat attactttaa	60
tcatcttcac atcagtattt atggaatagc cacaggtgcc tcatccttta gtaggagtta	120
attatacatt tactggccga gtaaacatct ccgaatgtca ctccatggat tcctttgggc	180
aacccagacc agaagataat cagtcagtag tcagaagaat gcaaaagaaa tactggaaaa	240
ctaaacaggt ctttatcaaa gcaacaggaa aaaaagagga tgagcacttg gtggcgtctg	300
atgctgaact ggatgctaaa cttgaggttt ttcactctgt tcaagagaca tgcactgaac	360
ttctgaagat aatcgagaaa taccagctaa gactcaatgt tatatcagag gaagaaaatg	420
agctagggct ctttttaaaa tttcaagcag aacgggatgc aactcaagct ggcaaaatga	480
tggatgccac tggcaaggca ctttgttctt cagccaagca aagattggcc ctgtgtactc	540
ctctgtctcg tctgaagcaa gaagtagcaa cattcagtca aagggcagta tctgatacct	600
tgatgacaat taatcggatg gagcaggcac gcacagaata cagaggagct ctactgtgga	660
tgaaagatgt atcccaagag ctggacccag acaccttaaa gcaaatggaa aagtttagaa	720
aagtacagat gcaagtgaga aatagcaaag cttcttttga caagttaaag atggatgttt	780
gtcagaaagt ggatttactt ggagctagtc gctgcaatat gctatctcat tcgctcacta	840
cctaccagag aacactgett ggattetgga agaaaacage tegaatgatg teecaaatte	900
atgaagcctg tattggcttt catccgtatg attttgtagc tctcaagcaa ctacaagaca	960
cgccaagcaa gattagtgaa gacaataaag atgaacaaat aggcggtttt cttactgaac	1020
agctcaataa gctagttttg tctgatgagg aagcaagctt tgagagtgaa caagcaaaca	1080
aagatcacaa tgaaaaacat tetcaaatga gagaatttgg agcacetcag ttttetaact	1140
ctgaaaatgt tgcaaaagat ctacctgtag attcattgga aggagaagat tttgagaagg	1200
aattotoatt totgaacaac otootaagtt otggttotto aagtactagt gaatttacco	1260
aagaatgcca gactgccttt gggagcccca gtgccagtct cacatcccag gagccttcca	1320
tggggtctga gcccctcgct cattcttctc gattccttcc ttcacaactc tttgaccttg	1380
gctttcatgt ggctggagcg ttcaacaact gggtctccca agaggaatca gaactttgtc	1440
tttcacacac tgataaccag ccagtgcctt cacagagtcc aaagaaatta acaagatccc	1500

ccaacaatgg caaccaagac atgtcagcct ggttcaatct gtttgcagac ttggatccac 1560

tttcaaaccc	agatgctatt	ggacactcag	atgatgaact	tcttaatgct	tgactgaagt	1620
tataatgtca	cttcagtggc	cttgagacat	caattttgca	acgtatttcc	ttcgtggaaa	1680
ggatttagat	tgtaacccgc	acacaaaagc	acggtgtttg	tgaatataac	acctgtcagc	1740
caactttaga	cagatggtaa	agaccacatt	tgaataagta	cacatctttc	atatcttgga	1800
tttgcagctg	ttggtactat	gtggaaaata	ttagaaactt	ctatgtggaa	aatattagaa	1860
actacagagt	ttgcgatatt	tagatactga	aatttatgtc	aaaataacgg	ctaggaataa	1920
ttctgtcaat	atggagttga	gcttatttct	ttggaaaccc	ttttaagttg	ccttgctggc	1980
tgtgagaatt	ttatatgtgg	ataacaaaga	tagatagata	gcatgtaaat	tgggttgtgg	2040
tttggggtca	gtttttaaat	gaaatagtag	cgaggaggat	tttctgtttt	ggaaaacacc	2100
attagaacca	gaccagcttt	gttttgggtt	agagagagta	agatttgaga	actcagtttg	2160
ctttaatgaa	atcacagaga	aacttggtac	ttgtttttct	tcatttggag	gctaaaatgt	2220
aatgttttt	cattcataca	aaataatgga	cactccctaa	ttccattatt	aaatcttgaa	2280
ggggaagtag	caggataatt	aatttgctaa	gcccatcctc	tgcagaaaca	gaaaaatcta	2340
tcttcccatc	tcctaaaact	cagaatgcac	agtaatactt	aaggettgta	caagtgtctt	2400
cagacccact	ttttcataca	cttgctatat	agtagtatgc	agtatttata	ttattcctga	2460
aaataaaatg	aggggagaat	attccctaag	caactggcaa	tagtattcct	gaaataccta	2520
gaaatttcta	tctgaatgag	ggagacactt	atgaacacct	tatccttaca	tatatttgca	2580
tacttatctc	atattttgtg	acataattat	ttaacccaga	atactttctg	gcagacatac	2640
agaaagctct	gtgtgatcaa	taagggagtg	tctcattttt	ctacttccct	ctttctgtgg	2700
gtgacatgat	ctgaggttct	atttgattac	taagcaaaat	ctgttacccc	tacagggttt	2760
agaacctaag	tattagagag	gaaggctatt	taatggaagt	tagtgtaagc	tgataaaaac	2820
gtagctaccg	tacacacaca	tcaatcactc	aatttcctgt	ccttttaaat	tgcccaccct	2880
ttaattttga	agcaatttcc	caagtgtgtg	tttgttttat	atttgtcatc	cagtccattg	2940
catttccata	agaagacatt	ttgactggct	gggtgcggtg	gctcacgctt	gtaatcccag	3000
cactttggga	ggctgaggca	ggcggatcac	gaggtcagga	gatggagacc	atcctggcta	3060
acatggtgaa	accccgtctc	tactaaaaat	acaaaaaatt	agccaggcgt	ggtggcacgt	3120
gcctgtagtc	ccagctactc	cggaggctga	ggcaggagaa	tggcgtgaac	ccgggaggcg	3180
gagettgeag	tgagctgaga	tggcgccact	gcactccagc	ctaggcaaca	gagcaagact	3240
ccgtctcaaa	aaaaaaaaa	aaaaaaaag	acattttaac	taagttattc	acagtagett	3300
ccatgtgctc	ttagttctat	tctaaacagg	cttatttaga	aaaggattgc	ttgtaatgtt	3360
tgtcatggta	catagaaaac	attggaccag	agtaggtaaa	atgcagtcca	tgtcccatcc	3420
atagccatct	acaatagtaa	ctgcccacag	gctctccaga	aaactactac	aatggccaag	3480
tacagtatag	gctggaaaga	ccttatctga	aggtcagaaa	cattgactca	gaaaaaaggt	3540
atgaagtctt	tccataaaat	cttttcacaa	tattactcct	atttctttta	gattttaatg	3600
agccattact	tatctcttca	gaagacttaa	gtcttccttt	atactcagtg	aaatttccca	3660
gaatgtaata	ctgtcactgt	tctgccaagt	tccaatcacc	aagatcatga	ttacgaatcc	3720
caatctgaat	tctataccca	tggtgactct	gatgctctca	acttttgagt	gcctcaaaaa	3780
atgctaaaac	tttggctggg	catggtggct	cacgeetqta	atcccagcac	tttgggaggc	3840
-	555		- 5	-		

catggcgggt	ggaacatttg	agggcatgag	ttcgagacca	gcctggccaa	catggtgaaa	3900
ccctgtctct	actaaaaata	caaaaattag	ccaggtgtgg	aggtacatgc	ctgtaatccc	3960
agctactcag	gaggctgagg	cagaagaatt	gcttgaaccc	aggcggcaga	ggttgcagtg	4020
agtcgagatt	gcaccactac	actccagcct	gggcaacaga	gagcgactct	ctcaaaaaaa	4080
aaaaaaaaa	aaaaaaaaa	agctaacttt	atgtcttgag	agtttgtacc	atttttcttt	4140
gtagtggtca	ccttgctaat	gcattagttc	tgagatattt	atctccctca	catgtgtgca	4200
aggaagtccc	tgttatcgaa	tacagatact	ttaacaagca	gacaaagcag	aaacccaaag	4260
tccatactag	gaacacccta	aattttccaa	aagcaaaagt	tctcccgaaa	tggagacata	4320
caagggactt	ttattattct	gttactagtt	tctataacat	ttcttctttc	aacagagtat	4380
atgtttccca	tttaacccag	agcaacatta	acttccttag	caagtccagt	tctaacttcc	4440
aacaagtcca	accactgttt	ttgaagagca	tatcagtaac	tatattaaga	tgaaggtaac	4500
cacattcgta	ttttctcaag	attagttatt	tgaagctcag	cagtttttgt	ggtcagaaag	4560
aaattttgct	ctattaaacc	aatactgcta	atataaaaaa	ccaccacact	gaagaaacga	4620
gggaaaggac	gggataagca	cagaacagag	aatgactggt	tgctttttgt	ctcaatctag	4680
ataatccatt	caataagaag	taaattaatt	atccttaacc	aatggtaggc	tgagaacaac	4740
cctcaaaata	gatattttt	atgttaaatg	gggagaaata	tctatacttt	atgttatact	4800
ggataaaaat	gtgttttaag	tctaaaaaaa	accagacgag	ctaaactttg	cctagtgtgt	4860
ctacaaccat	tttttaggag	acgcaggaat	accagggcat	aataagatca	gattggtgta	4920
attttgtatg	tttttgaaat	ccttcattaa	ttgtagaacc	ttgatatgat	tagaaacaaa	4980
ctgtatttca	acaaacaggt	ttcagtattt	gcacactgaa	aaagtgtttt	gtattttaac	5040
tataaatatt	tcacgtatct	gtatagacca	tctagaaatg	tagaggtctt	acagcattag	5100
aacgaaggaa	gtttacatgt	gctctatcta	tttttctgag	cctcttttaa	taaagattgc	5160
aagaaggcat	aaaacaagag	tttgtttcct	gaagttttta	gtacaattat	tgttttccta	5220
ttcaaaaact	tgggttttac	ctcaagatca	tagtattagg	aaagtacatt	gagttgatac	5280
ggacatggga	gaacgaaaat	aaaaccaggg	caattaatat	ccttgtaagg	ccaggcgcgg	5340
tagctcacgc	ctatataaca	gcactttggg	aggccaaggc	aggcagatca	cttgaagttg	5400
ggagtttgag	accaccctgg	ccaacatggt	gaaaccccat	ctctatgaaa	aatataaaaa	5460
ttagctgggc	atggtggcag	atgcctgtaa	tcccagctac	ttgggaggct	gaggcaggag	5520
aatcgcttga	acccgggagg	tggaggttgc	agtgagctga	gatcaggcca	tgcactccag	5580
cctgggtgac	agagtgagac	tccgtctcaa	aagaaaatcc	ttgtgagatg	aattcgttct	5640
tatttcatat	acaaggggac	tatgtaagat	atgggaaata	atataatgta	cgttatttat	5700
gtaaatactt	tcagtaacaa	aaactaacaa	atatcaaaaa	tctgagccta	gacacaaaca	5760
attaaatata	agccatagta	tgtaacctga	cttattgaag	gcaggaataa	aaagaagaga	5820
gccagaattg	attcagttat	ttttgtcttc	catagtgttg	gcagggccct	gcatttctct	5880
accttgagca	atgaagcagt	cccagaattt	tggaatatag	aaattaggaa	ggaaaaacga	5940
actttaaaat	attaatttag	tagaactgaa	agtaatgcat	ttcatgcaac	agtaaagtgc	6000
ttaaacatgg	caaagaaaac	taagggacaa	gataagaaaa	atggttggta	aagatgggtc	6060
	gcccaacata					6120
3	-	-		3	3	

ctaaagagtt	caaaacaaac	tgtccttggc	atttaaagtc	aaaacatggt	tcttcactca	6180
gtggtgtaaa	ttaactactc	attggccaaa	gagtaaatac	aaaaaggaga	tgaagttctg	6240
actggtgttg	tgggtgagat	tttgcagtgt	atgtttttac	atttgtagtg	tacgttttaa	6300
acttccggtt	ttettgetge	ctcaacatct	ccacaaacag	gctgtgagca	cctggcccag	6360
tgtgatatgg	gtggcccctg	ccacaagttt	cccttgctac	cttgcccatg	acctagtaac	6420
atttaaatgc	accagtgaaa	ttctcttttt	cttgtgtgct	tctccctgac	ccaaaggctc	6480
ctgcccatgt	cttaggcctc	teegeteece	acctgcttgg	ctgagccccc	tcccatgtga	6540
cccctctca	gcatgcagtg	actggtctct	ctaggacctg	tgagtatatt	acaacttttt	6600
ttcctgtgtc	tctcctgtga	tatctcttgt	ggctaaacct	cactgaccat	aacctaaaaa	6660
aacacataca	aaaaacatga	aagaaaaagt	tgtttcttga	gctggcctgg	acgaacgggg	6720
agccaggggc	tcgaccctgg	ctgttggagg	cgcagtgagg	cctggtctcc	ggctgccaga	6780
ccacgctgag	cggagcgcgc	ggcaggctcg	cctcagcgct	gcggggaacg	cgcgcgccgc	6840
cgtccgcggt	cgcccgtagg	tgcctgcacg	cgtcggggtc	acggcctttg	gccgacagga	6900
gcgagaagac	tcaggagccg	ccccgcgcct	tcgatccggc	gctgctggag	ttcctggtgt	6960
gcccgctctc	caagaagccg	ctcagatatg	aagcatcaac	aaatgaattg	attaatgaag	7020
agttgagaat	agcttatcca	atcattgatg	ggattcctaa	tattatcata	ttaggcagct	7080
aggatgacac	atcaaagaag	caagaagtgg	agcagcgcta	gttcataatt	taaaaaaata	7140
aaacagccaa	ctcttcttag	taccatatac	cttttaaaac	acagtggcaa	gtaataagcg	7200
gaagagaaga	atctttctgt	ctctttctac	gttgactgtt	cttattccac	tggtttattt	7260
agcaggactg	ttccactcag	cctctgtaga	agaaaacttc	ccacagggct	gcacttgcac	7320
agctagcctt	tgcttttaca	gcctgctctt	gcctattacc	ataccggtgt	atgtattctt	7380
ccacctttgg	acctggatgg	ttattaaact	cttcatgcat	aactgatgca	actagagtca	7440
atatgctgta	tatattaatg	atagctcttg	ggcatctatc	tctgaaagct	caaatggatg	7500
gaatttagtt	tgtgggaaag	aggctttgct	ttgagcatat	caggcttagg	actgtggacg	7560
gcttaagttg	cagacgcttc	ttttattgta	ctcttgttct	gcccgtgttt	tttgaaggct	7620
ctgacataac	tgctttatca	gaagaaacat	tttgacagtg	tcttgttgga	gataaacatc	7680
cctaattgac	atgtgatgac	tacttcttat	tccattcatc	taagagtcat	tgaaattttg	7740
ttttctttgt	ttgtttagct	tcaaggtctt	tggtagtcac	atgttaggga	tgactgaaat	7800
aattccaaag	gagtgatgtt	ggaatagtcc	ctctaaggga	aagaaatgca	tttgaacgaa	7860
tgtgatataa	aaccacataa	tcaaatagaa	atttcatgta	cttacaaaaa	tttagtttgt	7920
aaaattacct	tcatttcttt	gacattaaat	gcttatatta	gcaataaaga	tgttgacact	7980
ttctcataaa	aaattt					7996
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	ΓH: 3174	sapiens				

<400> SEQUENCE: 15

taataatggc cgtaagctta aaatagatcc agggaggagc tcattaacgt gaacatagaa 60 ageagtteeg eacetetgge ettaeteete ttggaaattg etttggteea tttttaette

cttttattcg	acgcaccaga	aaataagact	tttaccaaca	tttttactgc	atttgacgat	180
gaactaattt	agaccggcta	aaataattgt	tccactggga	cacaggaatt	caacctcagt	240
tcagaaaatc	cctgacatct	gacgtaggag	gatttatagg	tttagtggaa	attgctttct	300
cctgctctcc	agattgcatc	ctgtgggttg	attttttt	tgcatgagta	aacatccttc	360
taataatgaa	cagaccaata	atgtcttaag	agagaaaaag	aacaatcttt	teetttttge	420
tgtttctgga	gagagetgtt	tgaatttgga	aacccatgtt	ggctgtccca	aatatgagat	480
ttggcatctt	tettttgtgg	tggggatggg	ttttggccac	tgaaagcaga	atgcactggc	540
ccggaagaga	agtccacgag	atgtctaaga	aaggcaggcc	ccaaagacaa	agacgagaag	600
tacatgaaga	tgcccacaag	caagtcagcc	caattctgag	acgaagtcct	gacatcacca	660
aatcgcctct	gacaaagtca	gaacagcttc	tgaggataga	tgaccatgat	ttcagcatga	720
ggcctggctt	tggaggccct	gccattcctg	ttggtgtgga	tgtgcaggtg	gagagtttgg	780
atagcatctc	agaggttgac	atggacttta	cgatgaccct	ctacctgagg	cactactgga	840
aggacgagag	gctgtctttt	ccaagcacca	acaacctcag	catgacgttt	gacggccggc	900
tggtcaagaa	gatetgggte	cctgacatgt	ttttcgtgca	ctccaaacgc	tccttcatcc	960
acgacaccac	cacagacaac	gtcatgttgc	gggtccagcc	tgatgggaaa	gtgctctata	1020
gtctcagggt	tacagtaact	gcaatgtgca	acatggactt	cagccgattt	cccttggaca	1080
cacaaacgtg	ctctcttgaa	attgaaagct	atgcctatac	agaagatgac	ctcatgctgt	1140
actggaaaaa	gggcaatgac	tccttaaaga	cagatgaacg	gateteacte	tcccagttcc	1200
tcattcagga	attccacacc	accaccaaac	tggctttcta	cagcagcaca	ggctggtaca	1260
accgtctcta	cattaatttc	acgttgcgtc	gccacatctt	cttcttcttg	ctccaaactt	1320
atttccccgc	taccctgatg	gtcatgctgt	cctgggtgtc	cttctggatc	gaccgcagag	1380
ccgtgcctgc	cagagtcccc	ttaggtatca	caacggtgct	gaccatgtcc	accatcatca	1440
cgggcgtgaa	tgcctccatg	ccgcgcgtct	cctacatcaa	ggccgtggac	atctacctct	1500
gggtcagctt	tgtgttcgtg	ttcctctcgg	tgctggagta	tgcggccgtc	aactacctga	1560
ccactgtgca	ggagaggaag	gaacagaagc	tgcgggagaa	gcttccctgc	accagcggat	1620
tacctccgcc	ccgcactgcg	atgctggacg	gcaactacag	tgatggggag	gtgaatgacc	1680
tggacaacta	catgccagag	aatggagaga	agcccgacag	gatgatggtg	cagctgaccc	1740
tggcctcaga	gaggagctcc	ccacagagga	aaagtcagag	aagcagctat	gtgagcatga	1800
gaatcgacac	ccacgccatt	gataaatact	ccaggatcat	ctttccagca	gcatacattt	1860
tattcaattt	aatatactgg	tctattttct	cctagatgct	tgtaattcta	caaatttcac	1920
atttccatgg	catgcactac	agaaataact	gtataatgaa	aaagtattta	aggatatggt	1980
taaaaaaaaa	teccaggace	cacccatgtt	ttcactatcc	cttctgcagc	tttccaaagc	2040
tacattgacg	agacacttac	tggtttaatt	tgcacttatt	aaccatctat	tgaatacaca	2100
gcattatatt	aggtgctgca	ggaaatacga	cactgtagcg	actgatgtta	gttgttaccc	2160
agatcccctg	gaaaagcaca	ctaccagtgt	tgtgggcaca	tttagttcca	cccgttagac	2220
ccttgatgct	attcacatga	ataatttatt	ttcctcaagt	gtcattacat	tgttcaggct	2280
acgtgaactt	ggaagcacct	acaggccatt	tgcatgaaat	tcacatgcac	ctaaatcctc	2340
actttgacag	aaactcatgc	ttcagtttat	aacctattac	ctattttgta	tgcgactcca	2400

cctccgcatg tttattttaa taaaaggcaa tgataacatt cacattattt ttctttat.	at 2460
gctgtggttc acaggettta cecettcaca agaaaagete tttagattgg egcaattg	ct 2520
tetgattttg gtgaaatttt eeetggtagg gaaaetttga agataagagt acacacat	gc 2580
attttgtctg ttgtgtcata gaggtaacta ggctagaaaa tttgtgttta aatgttcc	ct 2640
attttatata atcaccactt catgtttctt cttcttggag catgtccttg ttcaaaga	ga 2700
agtgctttct cagtgatgtg atatcttcac tgaggaactt gggtagagaa tgatttct	tc 2760
tgcataaaca cttcaaggaa atacataatt tgggactact tgtaactcat tagaatga	ga 2820
aatactcaca tggtttctta agagaaaaag aacatcggaa agcaaaataa atgggaag.	at 2880
atcactggac atctgcattt atactcgaaa taccagcatt ttctatggac cagaaaac	tg 2940
ccatcaccta gaccacacag cccagatacc aggcagacgg atggcccaat ggcaactg	at 3000
gtcagggcat ggggtaaagg agagggttct aatctggtgt atcacttaaa aacagtta	tt 3060
tatattatat atctgctata tagatcaacc tccaccaaac ttacccaaac agcatttg	tt 3120
ttatttgaaa ctcactttaa taaagtgaat tatatacaca aaaaaaaaaa	3174
<210> SEQ ID NO 16 <211> LENGTH: 7773 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 16	
agagcctcgg tggtttgcag cagtggaacc aggcaggccc agttgtgggt aggagagg	cc 60
gtcacctgtt gaggcctccc ccccacaccc ccgcatcgcc ctgccctggc agagccca	gc 120
ccccagtccc cggagagcgc gcctgaggac ggacggacgg acggacggac agacctag	gg 180
acggagggcc agggcaggg gagatccaag aggccccgcg ctggaatgca gttttctc	gg 240
gcgagggaga ctttgcaccg gagtggaaaa tagtttgggg tggggtttcg caccgtcc	cc 300
tectececag eccegggeee ecteceagge getttetggg agettttaga actgeget	ct 360
gaagtttcca gagagcgagg agcttttgcg gcaggcagag acaatggaag aaaatgaa	ag 420
ccagaaatgt gagccgtgcc ttccttactc agcagacaga agacagatgc aggaacaa	gg 480
caaaggcaat ctgcatgtaa catcaccaga agatgcagaa tgccgcagaa ccaaggaa	cg 540
cctttctaat ggaaacagtc gtggttcagt ttccaagtct tcccgcaata tcccaagg.	ag 600
acacacccta ggggggcccc gaagttccaa ggaaatactg ggaatgcaaa catctgag.	at 660
ggatcggaag agagaagcgt tcctagaaca tctgaagcag aagtaccccc accacgcc	tc 720
tgcaatcatg ggtcaccaag agaggctgag agaccagaca aggagcccca aactgtct	ca 780
cagteeteaa ceaeceagte tgggtgaeee ggtegageat ttateagaga egteegete	ga 840
ttetttggaa gecatgtetg agggggatge tecaaceeet ttttecagag geageegg	ac 900
tcgtgcgagc cttcctgtgg tgaggtcaac caaccagacg aaagaaagat ctctgggg	gt 960
tototatoto cagtatggag atgaaaccaa gcagotcagg atgoogaatg aaatcaca	ag 1020
tgcagacaca atccgtgctc tcttcgtaag tgcctttcca cagcagctca ccatgaaa	at 1080
gctggaatcg cccagtgtcg ccatttacat caaagatgaa agcagaaatg tctattat	ga 1140
attaaatgat gtaaggaaca ttcaagacag atcactcctc aaagtgtaca acaaggat	cc 1200

tgcacatgcg tttaatcaca caccaaaaac tatgaatgga gacatgagga tgcagagaga 1260

acttgtttat	gcaagaggag	atggccctgg	ggcccctcgc	cccggatcta	ctgctcatcc	1320
accccatgcg	attccaaatt	ccccaccgtc	tactccagtg	ccccattcca	tgccccctc	1380
cccgtccaga	attccttatg	ggggcacccg	ctccatggtt	gttcctggca	atgccaccat	1440
ccccagggac	agaatctcca	gcctgccagt	ctccagaccc	atctctccaa	gcccaagcgc	1500
cattttagaa	agaagagatg	tcaagcctga	tgaagacatg	agtggcaaaa	acattgcaat	1560
gtacagaaat	gagggtttct	atgctgatcc	ttacctttat	cacgagggac	ggatgagcat	1620
agcctcatcc	catggtggac	acccactgga	tgtccccgac	cacatcattg	catatcaccg	1680
caccgccatc	cggtcagcga	gtgcttattg	taacccctca	atgcaagcgg	aaatgcatat	1740
ggaacaatca	ctgtacagac	agaaatcaag	gaaatatccg	gatagccatt	tgcctacact	1800
gggctccaaa	acaccccctg	cctctcctca	cagagtcagt	gacctgagga	tgatagacat	1860
gcacgctcac	tataatgccc	acggcccccc	tcacaccatg	cagccagacc	gggcctctcc	1920
gagccgccag	gcctttaaaa	aggagccagg	caccttggtg	tatatagaaa	agccacggag	1980
cgctgcagga	ttatccagcc	ttgtagacct	eggeeeteet	ctaatggaga	agcaagtttt	2040
tgcctacagc	acggcgacaa	tacccaaaga	cagagagacc	agagagagga	tgcaagccat	2100
ggagaaacag	attgccagtt	taactggcct	tgttcagtct	gcgcttttta	aagggcccat	2160
tacaagttat	agcaaagatg	cgtctagcga	gaaaatgatg	aaaaccacag	ccaacaggaa	2220
ccacacagat	agtgcaggaa	cgccccatgt	gtctggtggg	aagatgctca	gtgctctgga	2280
gtccacggtg	cctcccagcc	agcctccacc	tgtgggcacc	tcagccatcc	acatgagcct	2340
gcttgagatg	aggcggagcg	tggcggaact	caggetecag	ctccagcaga	tgcggcagct	2400
ccagctgcag	aaccaggagt	tgctgagggc	aatgatgaag	aaggccgagc	tggaaatcag	2460
tggcaaagtg	atggaaacaa	tgaagagact	ggaggatccc	gtgcagcgac	agegegteet	2520
agtggagcaa	gagagacaaa	aatatcttca	tgaggaagag	aagatcgtca	agaagttgtg	2580
cgagttggaa	gactttgttg	aagacttgaa	gaaggactcc	acggcagcca	gccgattggt	2640
tactctgaaa	gacgtggaag	acggggcttt	cctcctgcgt	caagtgggag	aggctgtagc	2700
taccctgaaa	ggagaatttc	caaccttaca	aaacaagatg	cgagccatcc	tgcgcataga	2760
agtggaggcc	gtgcggtttc	tgaaggagga	gccacacaag	ctggacagtc	tcctgaagcg	2820
tgtgcgcagc	atgacagacg	tcctgaccat	gctgcggaga	catgtcactg	atgggctcct	2880
gaaaggcacg	gacgcagccc	aagccgcaca	gtacatggct	atggaaaagg	ccacageege	2940
agaagtcctg	aagagtcagg	aggaggcagc	ccacacctcc	ggccagccct	tccacagcac	3000
aggtgcccct	ggcgatgcga	agtcggaagt	ggtgcctttg	tccggcatga	tggttcgcca	3060
cgcgcagagc	teceetgtgg	tcatccagcc	ctcccagcac	teegtggeee	tgctgaaccc	3120
tgctcagaac	ttgcctcacg	tggccagctc	cccagccgtc	ccccaggaag	caacctccac	3180
tctgcagatg	tegeaggete	cgcagtcccc	acagataccc	atgaatgggt	ctgccatgca	3240
gagettgtte	attgaagaaa	tccacagtgt	gagtgccaag	aacagggcag	tgtctatcga	3300
gaaagcagaa	aagaaatggg	aggaaaaaag	gcaaaatctg	gatcactata	atgggaaaga	3360
gtttgagaag	ctcctagaag	aagctcaggc	caatatcatg	aagtcaatac	caaatctgga	3420
gatgccgcca	gccacaggcc	cactgccaag	gggagatgcc	ccagtggaca	aggtggaact	3480
	tctccaaatt					3540
		55	3			

tectectecg	ccacctcctc	gtcgaagcta	cctgccagga	tcgggactca	ccaccacgag	3600
gtcaggcgat	gtggtctaca	ccggcagaaa	ggagaacatc	accgctaagg	caagcagtga	3660
agatgctgga	ccaagcccac	agaccagagc	tacaaaatat	ccagcagagg	agcctgcttc	3720
agcctggacc	ccatccccac	cgcctgtcac	cacctcctcc	tcaaaggatg	aggaggaaga	3780
agaagaagaa	ggagacaaaa	taatggcaga	actccaggca	ttccagaagt	gttcctttat	3840
ggatgtaaat	tcaaacagtc	atgctgagcc	atcccgggct	gacagtcacg	ttaaagacac	3900
taggtcgggc	gccacagtgc	cacccaagga	gaagaagaat	ttggaatttt	tccatgaaga	3960
tgtacggaaa	tctgatgttg	aatatgaaaa	tggcccccaa	atggaattcc	aaaaggttac	4020
cacaggggct	gtaagaccta	gtgaccctcc	taagtgggaa	agaggaatgg	agaatagtat	4080
ttctgatgca	tcaagaacat	cagaatataa	aactgagatc	ataatgaagg	aaaattccat	4140
atccaatatg	agtttactca	gagacagtag	aaactattcc	caggaaactg	tgcctaaggc	4200
cagtttcggt	ttctctggca	ttagtccatt	agaagatgaa	ataaacaaag	ggtctaaaat	4260
ctcaggcctg	caatactcta	tacctgacac	cgagaaccag	acgctgaatt	acggaaagac	4320
aaaggagatg	gaaaagcaaa	atacggataa	gtgtcacgtt	tcctctcaca	ctagactaac	4380
agaatcaagc	gtgcatgatt	ttaaaacaga	agatcaagag	gttatcacga	cagattttgg	4440
ccaagttgtt	ctaagaccca	aggaggcaag	gcatgctaac	gtgaacccta	atgaggatgg	4500
agaatcaagt	tcaagttctc	ccactgaaga	aaatgcagcc	actgacaata	ttgccttcat	4560
gattaccgaa	accactgtcc	aggttctttc	cagtggggag	gtgcatgata	ttgttagcca	4620
aaagggagaa	gacatacaga	cggttaatat	cgatgccaga	aaagagatga	cccccgaca	4680
agaagggact	gacaatgagg	atccagtcgt	gtgcctggac	aagaaaccag	tgatcatcat	4740
tttcgatgag	cccatggaca	tccggtctgc	ctataagaga	ctttcaacta	tctttgagga	4800
atgtgatgag	gaattagaga	gaatgatgat	ggaggaaaag	atagaggagg	aggaagagga	4860
ggaaaatggg	gattctgtag	tccagaataa	taacacttcc	cagatgtctc	ataagaaggt	4920
ggccccaggc	aatcttagaa	ccggacaaca	ggtggaaaca	aagtcacagc	cacactccct	4980
ggccacagag	accagaaacc	caggaggaca	ggaaatgaac	agaacggagc	tgaacaagtt	5040
cagccacgtg	gattctccaa	attcggaatg	caagggtgag	gacgcgaccg	atgaccagtt	5100
tgaaagcccc	aagaaaaagt	ttaaattcaa	attccctaag	aagcaactcg	ccgctctcac	5160
tcaagccatt	cgcaccggaa	ctaaaacagg	gaagaagact	ttgcaagtgg	tagtctatga	5220
agaagaggaa	gaggatggca	ccctgaaaca	gcacaaagaa	gccaagcgct	tcgaaatcgc	5280
taggtctcaa	cctgaagaca	cccctgaaaa	cacagtgagg	aggcaagagc	agcccagcat	5340
cgagagtaca	tctccgattt	caagaactga	tgaaattaga	aaaaacacct	acagaacatt	5400
ggatagcctg	gagcagacca	ttaaacagct	cgaaaataca	atcagtgaaa	tgagtcccaa	5460
agccctagtt	gatacctcat	gttcttccaa	cagagattct	gttgcaagtt	catcccacat	5520
agcccaagag	gcctctcccc	gacccttgct	agttccggat	gaaggtccca	ctgccctaga	5580
gccccctacg	tcgatacctt	cagcttcacg	taagggctcc	ageggggeee	cacagacgag	5640
caggatgcct	gtccccatga	gtgccaagaa	cagacccgga	accctggaca	aacccggcaa	5700
gcagtccaaa	ctgcaggatc	cccgccaata	tcgtcaggct	aatggaagtg	ctaagaaatc	5760
tggtggggac	tttaagccta	cttccccctc	cttacctgct	tctaagattc	cagccctttc	5820
	-		-	-		

tcccagctct	gggaaaagca	gttctctgcc	ctcttctagt	ggtgacagct	ctaacctccc	5880
taatccacct	gctactaaac	catcgattgc	ttctaaccct	ctcagccccc	aaacaggacc	5940
acctgctcac	tetgeeteee	tcatcccttc	tgtctctaat	ggctctttga	agtttcagag	6000
cctcactcat	acaggtaaag	gtcaccatct	ttcattctca	ccgcagagtc	aaaatggccg	6060
agcaccccct	cctttgtcat	tttcctcctc	ccctccttct	cctgcctcct	ccgtctcact	6120
gaatcaaggt	gccaagggca	ccaggaccat	ccatactccc	agcctcacca	gctacaaggc	6180
acagaatgga	agttcaagca	aagccacccc	atccacagca	aaagaaacct	cttaaaggtc	6240
aaatcctatt	aggcacaagt	cggagttaca	tttaaaaaaa	attaacagtc	tacaacaact	6300
gttttcacaa	gagaatgtaa	catattgctg	tatcgtttga	ggcttaatgc	taaatatgtg	6360
ctaaatactg	gattaataga	tttcagtaaa	gctcgttcgt	tttgtttggt	tttcttttta	6420
cctagttgct	atagtgtcta	cagtctatac	tcaataccta	taaaatgcag	taagcatgtg	6480
ttacagaaag	aggttctggt	gggagagaaa	ggtgcgtgtg	agacaggaga	attgtcttaa	6540
gcatataaaa	catgtatgat	tccagaattt	tagtatgttt	tgtataaaac	tatttttcat	6600
tacggagact	agaagtgaac	agagaattac	acaagtgtga	ctatacaaat	tgtaaaacag	6660
atactataat	atttcctttt	attttagtgt	tatttagctt	tattacagat	ttctattttt	6720
gtcaaaactt	catggttcct	ttcaagatct	tttttgccaa	aacattttga	tactatagca	6780
ttgtacattt	gaaagtagtg	ttctagacta	taaaaccaat	gaacttctac	atgagcccta	6840
cagacaggca	tgtgtagaag	gcaatttatc	aaacctattg	cactgccatg	aaaagtgtgt	6900
ataataattt	gctagcccaa	gcaagctagt	tttctttgct	tgcttctttt	ctttctttt	6960
teetteettt	tttttttt	tttcttttt	aacatgttga	gattctctag	ttgttttctt	7020
tggcgtatct	aaccccttct	tttgttttct	gagacctggt	aacccacgct	cttgcattgt	7080
ggattttaaa	atgtatactc	tgtacggttc	tgtaaaccga	aaaacttttg	taaatatata	7140
aatatacata	gacataaaaa	tactgtatgt	gacagcacat	agagtagttt	tcccacacca	7200
aagttaattt	ttatgcatgc	tttaaaagta	tatatcggga	ccggcagaaa	tggaagtatc	7260
catacatttt	taaaaagcaa	caagtttgca	cagctagagt	gtttttgtaa	ataaatgtat	7320
ttgtataaca	cagtcatgta	atatacagaa	ctataagcag	agactttgca	aaactaaata	7380
aagggctgca	tgcttattat	tttttgtacc	ttgtcactat	aactacttcc	tagtcaaaga	7440
acgaaatgta	actgttaccg	agttaaatgt	ttttccgctt	tgagggatgt	aaccacatcc	7500
actcagagga	cactactttt	ctgaaagctc	tggggtgact	aatgatgagt	tcctaataaa	7560
ttaattgcaa	gtgtggtgcc	ttggatgtgg	cctgttggct	cgctttcttc	tctgtggctt	7620
atcaaggtgt	agatgacaga	aagcaaacct	ggatacagag	tttccaccct	cagttcctgg	7680
aggggetett	attattttct	ctctttttaa	aaaacttcca	gtagaagtaa	agtggaaata	7740
aaatgtcttt	atcaaaaaaa	aaaaaaaaa	aaa			7773

<210> SEQ ID NO 17 <211> LENGTH: 10264 <212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 17

tegeteggeg	gcgggagtcg	gtggagtctc	gctctttcgc	aaggctggag	tgcaatggca	120
tgatctcggc	tcactgcagc	ctccgcctcc	tgggttcaag	tgattcttct	gcctcagcct	180
cccgagtagc	tgggactaca	gaaatgctgg	taatttcagt	cacttgctga	tgacttctga	240
tgtcccagca	aatgttggca	ttgttgactg	ctgagaagat	acttctgagg	acccacgtct	300
aaggtggact	tggttcgcac	tettetggtt	agtccctgaa	caggagtgat	gcctccaggc	360
aggtggcatg	ctgcctatcc	agctcaggcc	cagtettega	gggagcgagg	gcggcttcag	420
acagtaaaga	aggaagaaga	ggatgaaagc	tatactccag	tgcaggctgc	caggccacag	480
actctcaacc	gccctggcca	ggagctgttc	cgccagctct	tcagacagct	tcgctaccat	540
gagtetteag	ggcccctaga	aactctgagc	cggctccggg	aactctgtcg	ctggtggctg	600
aggcctgacg	ttctctccaa	ggcacagatc	ctagagctgc	tggtgctgga	acagttcctg	660
agcatectge	ctggggagct	ccgggtttgg	gtgcagcttc	ataaccctga	gagtggcgag	720
gaggctgtgg	ccttgctgga	ggagetgeag	agggaccttg	atgggacatc	ctggagggac	780
ccgggccctg	cccagagccc	agatgtgcat	tggatgggta	caggageeet	gcgatctgca	840
cagatatggt	cccttgcttc	acctctcagg	agcagctctg	ctctggggga	ccacctggag	900
cctccctatg	aaatagaagc	acgtgacttc	ctggctgggc	aatccgatac	tcctgctgcc	960
cagatgcctg	cccttttccc	gagagagggg	tgcccgggag	accaggtaac	accaaccagg	1020
tccctgacag	cccagctcca	ggagaccatg	actttcaagg	atgtggaggt	gaccttctcc	1080
caggacgagt	gggggtggct	ggactctgct	cagaggaacc	tgtacaggga	tgtgatgctg	1140
gagaattata	ggaacatggc	ttccctggtg	ggaccattca	ccaaacctgc	tctgatctcc	1200
tggttggaag	caagggagcc	atggggcctg	aacatgcagg	cageteagee	taaggggaat	1260
ccagttgctg	ctcctacagg	agatgacctc	cagagtaaaa	caaacaaatt	catcttaaat	1320
caggaacctt	tggaagaagc	agaaacctta	gctgtgtcat	caggatgtcc	tgcgacaagt	1380
gtttctgagg	gaattgggct	cagagaatct	tttcaacaga	agagcaggca	gaaggatcaa	1440
tgtgaaaatc	ccatacaagt	aagagttaag	aaagaagaga	ccaatttcag	tcacaggaca	1500
ggaaaagact	ctgaagtatc	aggaagtaat	agtcttgact	taaaacatgt	tacatatttg	1560
agagtttctg	gaagaaagga	atcccttaaa	catggctgtg	gcaaacactt	cagaatgagt	1620
tcacaccact	atgactacaa	gaaatatggg	aaggggctca	gacacatgat	tgggggcttc	1680
agcctacatc	agagaattca	tagtggactg	aaagggaaca	aaaaggacgt	gtgtggaaaa	1740
gacttcagcc	ttagctctca	tcaccaacgt	gggcagagtc	ttcacacagt	gggagtgtca	1800
tttaagtgca	gtgactgtgg	aaggactttc	agtcatagct	cccatcttgc	gtatcatcag	1860
agacttcaca	ctcaagagaa	agcatttaaa	tgtagggtgt	gtgggaaagc	cttccggtgg	1920
agttccaact	gtgcgcggca	tgagaaaatt	cacactggag	tgaagcctta	taaatgcgat	1980
ttatgtgaga	aagctttccg	acgcctgtca	gcctaccgtc	tgcaccgaga	aacccatgct	2040
aagaagaaat	ttcttgaatt	gaatcagtat	agggcagctc	tcacctacag	ctcagggttt	2100
gatcatcatt	tgggagacca	aagtggggag	aaactctttg	actgcagcca	gtgcaggaaa	2160
tccttccact	gtaagtcata	tgttcttgaa	catcaaagga	ttcacaccca	ggagaagccc	2220
tataaatgta	ccaaatgtag	gaaaaccttt	agatggagat	caaactttac	tcgtcatatg	2280
aggttgcatg	aggaggaaaa	attctacaaa	caagatgaat	gtcgtgaagg	cttcaggcaa	2340
-			-			

tctcctgact	gcagtcagcc	ccagggtgct	cccgctgtgg	agaaaacatt	tctgtgtcag	2400
cagtgtggga	aaacttttac	tagaaagaaa	actctcgttg	accaccagag	aattcacaca	2460
ggtgagaaac	cttaccagtg	tagcgattgt	gggaaggact	ttgcctatag	gtcagccttt	2520
attgttcata	agaagaagca	tgccatgaaa	agaaaacctg	agggcgggcc	atcttttagt	2580
caggacacag	tgttccaggt	tcctcagagc	agtcactcca	aagaggagcc	ctacaaatgc	2640
agccagtgtg	gcaaggcctt	ccgcaatcac	tcattcctcc	tcatccatca	gagagttcac	2700
actggagaga	agccatataa	gtgcagggag	tgtgggaaag	ccttcagatg	gagttccaat	2760
ctctaccgac	atcagaggat	tcactctctt	caaaaacagt	atgattgcca	tgaaagtgaa	2820
aagactccaa	atgtggagcc	aaaaatcctc	actggtgaga	aacgtttttg	gtgtcaagaa	2880
tgtgggaaaa	cctttacacg	taaaagaacc	cttttagatc	ataagggaat	acacagtgga	2940
gagaagcgct	ataaatgtaa	tctatgtggg	aaatcttatg	atagaaacta	tegeettgtt	3000
aaccatcaga	ggatccactc	tacagagaga	cctttcaaat	gtcagtggtg	tgggaaagag	3060
ttcattggga	gacataccct	ttccagtcac	cagaggaaac	acaccagagc	agcacaggct	3120
gaacgtagcc	cgcctgcacg	gtcttcctct	caggacacaa	agttgagatt	acagaagcta	3180
aaaccaagtg	aagagatgcc	cctcgaagac	tgcaaagaag	cttgcagcca	gagctccagg	3240
ctcactggac	tccaggacat	aagcattggg	aaaaagtgcc	acaaatgcag	catatgtggg	3300
aaaactttta	acaagagttc	acaactcatt	agccacaaga	gatttcatac	tcgagagagg	3360
cccttcaaat	gcagcaagtg	tggaaagacc	ttcaggtggt	cttcgaacct	ggctcggcat	3420
atgaaaaacc	atattagaga	ttagcctggg	acctgacagt	gacagtgggg	gtgggttctc	3480
agtcccctgc	tagagaaccc	ttaattatag	gcattgtgga	gtaactttga	taaagggccc	3540
agccctttct	gttttggaag	ctagtgacag	aatcccaagg	atttgaaagc	tcggggagtc	3600
cccagcctgc	ctgctaggat	gtgacgctgg	ggaagtgcag	caccatgtcc	tttggagccc	3660
ttctggagac	teeggeeeet	aggagtggcc	tctgcaccat	agcctgcggc	tcccctattc	3720
aggtctcctt	ccacaactct	gaagagagag	accactgccc	tttgtggttg	gacagaatat	3780
ctgtggcatc	atgggctatg	gctgctggaa	aggggccagt	gggatcctag	atttgtcttc	3840
aagtttggcc	tgtggccatg	cctattctgt	tgactttaaa	agcagcagca	tcaagaactc	3900
ctagccttcc	caaatgcccc	ctggggagtt	ctggctgggg	cttcagcctt	cctggctggc	3960
ttttggatat	ctgctagggg	gttagagtgg	teteagegge	aggtggagga	gagcaggatg	4020
ctgggctcaa	gegettggeg	tgtggatctc	taccagtacc	ctgttgccat	ccccatccca	4080
caggcctgca	taggcagcag	cggtccatct	gtttaacaga	aatgtgctga	gcactcccat	4140
acaccaggeg	ctggtgtgtt	tgccagagac	ccagcaggga	ccagaacaga	tgaaaatcct	4200
gccatcttgg	atctttacag	atgacaaaca	aatgggatac	gcagtattct	ggatggtgat	4260
gtgtgtagtg	gacaaagtga	atcagagaag	agcagaggga	gtgctggatt	gggagatcag	4320
tcgtgatttt	agatagtctg	gtcagggagg	gcctcaactg	agaaggtgaa	atgtgagcaa	4380
agacgtgaag	gaagccaggg	aggtagcagg	tagctctcta	gggagagttg	caggcagagg	4440
agattgggtc	ttgactggtg	teeteaggaa	ggaagcccct	gggatggagt	gcagggagcc	4500
agctggaagg	gaaggagagg	ggccagggag	gccacaggcc	cggccatatg	agcatcatgg	4560
gtcattacgg	gggcttgagc	tggctcagag	ggaggcaggg	agcttttgga	caattttgag	4620

ttgaggagtg	atgtggtttg	aatctgaatt	atattttata	agggttaacc	acagatccaa	4680
ggactcagta	aaagggtgaa	aggcttctca	tgcagttagc	cttgctgcca	gttcccataa	4740
atcagactcc	tccccactcc	gtttctgaat	tttctatagg	atcctcggcc	tcagcagata	4800
taaacgctta	ccattgttgt	gttcatgtct	ctagcccctg	cacactgcag	gcccctctca	4860
gcttcacata	cccctctcca	tgtatgagat	ctggtgctag	caatcagatt	caacccgaag	4920
gaacaagtgc	atgtgcctgc	tgctctcagg	agaaaaggca	gcctgttctg	ggaggagctc	4980
cctcactggc	ccacccactt	gtgttgaagc	aaaaagcaag	aatcaattac	ttaaaggcaa	5040
aggagtgata	ttgctaaagc	atgtgagtaa	tcattgcttc	tgattattga	agaggtcaga	5100
ttatgaatga	aaggataaaa	tgttttaata	gtagagcagt	gtcctgacta	taggggcccg	5160
ttcatggagc	tggtcatttc	ttgaaatgag	aagaaaccaa	cctggaagat	gtctttttca	5220
gtagagtatg	gaataatctt	acctgctctg	gattgccatg	agcaggtgaa	aatgaaggct	5280
ctgatattgt	gtggtggtgt	cacaggatgg	tgggggcggg	gcagaagtct	cctgttggtg	5340
ttctgatgcc	tgttcagctt	tgtcctcagg	aaggtttggt	catcttggtt	ctgccatcct	5400
cttgccttcc	tacggcagca	gctgttcatg	gcactgaaga	tgtcccttca	ctgtcccaaa	5460
actggcacta	gaagtggctg	ggcagggggg	ccagagtcat	aggaagggtc	ttggagtcat	5520
cagatctggg	ttccaggcat	ggtgtgcctt	ttcttggcag	gattgatctt	gagcaagtca	5580
atgaacctct	gcatcaattt	ccttatgtgt	gaagttagag	tgcttggctg	tgctacctga	5640
ttcctgagat	tggtgaaaga	gggcttggtt	taccaaggct	ctccatcagg	tggttgacct	5700
ctaggaccag	ggccctctca	gaggtgcagc	ttccatgtca	gttggtgttg	taaccatgga	5760
aaagtccctt	tccaatcaaa	cttttagcac	ccctttcccc	ccatctctgc	tccctttgcc	5820
acaggatacc	ttgtaaagtt	cctgccccag	tatagggata	tttttactgt	cttttttatt	5880
ttttgagaca	gggttgccca	gggtggagtg	cagtggcagg	atcacagett	actgcagcct	5940
tgacctccca	ggctcaggtc	ccatctgagc	ctcccgagta	gctggggcta	caggtgtgtg	6000
ccaccctgcc	agctaatttt	ttatattttt	ttgtagagac	aaaactttta	tttttttc	6060
ccatgttgct	catgctggtc	tcaaactcct	gggctcaagc	aatccaccca	cctctgcctc	6120
ccaaagtgct	gggattacag	gcgtgagcca	ctgtgcctga	cctgtcattt	ttatagaatg	6180
aaatgtgctt	atttctaaac	attctaatca	aattttaaaa	tgtgcaaaga	atgaagtgaa	6240
aaactgaatt	tttttttt	tttgatacgg	agtctcactc	tgttacccag	gctagagtgc	6300
agtggcgcga	tctccgctca	ctgcaagctc	tgcctcctgg	gctcacacca	ttctcctgcc	6360
tcagcctcct	cagtagctgg	gactacaagt	gcctgccacc	acgcctgggt	tatttttat	6420
atttttagta	gagacggggt	ttcactgtgt	tagccaggat	ggtctcgatc	tccaggatgg	6480
tctcgatctc	caggatggtc	tcgatctcct	gacgtcgtga	tccacccgcc	teggeeteee	6540
aaaatgctgg	gattacaggt	gtgagccact	gtgcccggcc	aaaagaacag	aaattatttt	6600
atcctgaagt	aagctgttta	tatttgggat	tatactgaac	ctatttgtcc	aataacctga	6660
gttttcaaat	aattttagtt	ctataagtac	tataattata	taaatattaa	tgaattcaga	6720
ttagctgaaa	ggaaaaaaag	tagaagcctg	actacttggt	gctaactact	aaagattttg	6780
gcagaatcaa	tgttggattt	ggctttcctg	tcccttcccc	atgccagccc	cccagagtgt	6840
			gtgccacacc			6900
5 5-		33		3	- 3	

tcttcattct	tcaaggcctg	accttgtctg	acccttgtgc	ctctaaaccc	gtggccccac	6960
ctctcttggt	tcctatgtca	ggtgatgttt	gtgtttttgg	ttatgcccat	ctccatagcc	7020
agaccaagca	ctctggaagc	cagggttggg	tgcttattta	tctgtttgcc	atgcagaaaa	7080
tatcttgcac	aaaattacct	ctgttaagga	atctgaagct	gaatttagtt	tggctgagtc	7140
agggttgggt	tttttttaag	gggctgtggg	gtgaaatgtt	gactggaagc	cacccacaaa	7200
cacacacctg	ctggttagga	acccggctgt	gggtggttct	gagctgtttg	gcttcagttg	7260
acagtttctg	attgccctga	gcaccaggtc	tcatcttgca	tctcatcctg	gcctggagaa	7320
cattcagttt	ccttccaacc	cttcccacct	ttcccccact	cccttggagg	aactgaagtt	7380
ggggttgagg	agagccagat	ggctggagtg	ggtatttgaa	ggtctttctg	tcacctgttc	7440
agtgtggtct	gccccacccc	tgctgaccaa	gactgactga	aatgtaaaat	aatacagacc	7500
atctcacact	cagaaagctg	gcacattttt	gaaagcccaa	gtgtgggtaa	gtgcgtggaa	7560
caacgataat	tcacactgct	ttatgagtag	aaattgtgag	aaatattgtg	ccaggcaatt	7620
tgcaaaatct	tggaaggttg	tgtgcactta	accacccagc	aactactcct	ggatgcatcc	7680
tagagaagtg	ccatgtgaac	agagaatgat	tttaagactt	cactgaagta	ttgtttaggt	7740
agcaagattg	ggaaaagcct	gcatttcatc	agcagaagaa	tggataaata	aatgggttgt	7800
ttttggtcct	tggaaagtga	atatgaaaga	gttacgtctc	aacacagata	gatgaaaaat	7860
tatgctgaga	aagttggtga	agctacatac	aaggtaccct	tagtgtaaag	ttaagcatac	7920
tgtgtacctg	tgggcacgtt	acttcaactt	gtttttcact	ttttctgtaa	aatgggatag	7980
tagtggcaat	ctcacagggt	gattgtgggt	gggggggtgg	tcaatgaagt	aatgcatgta	8040
aaatgcttag	aatagtgtct	agcatgtaag	ccttgtggac	atatagaaag	tgttattgtt	8100
ttgcacagta	atctattttc	tgtggattca	aataatatga	aatgagtata	aaatcatgta	8160
ttggaacgat	gtgtgcaagt	caccattctg	ccttcctaag	gcaggagacc	tgatggattt	8220
ggggagggta	catggggcct	tcagttgtgt	tttctttgtt	tttttctaaa	aattgatgca	8280
gaggcatcac	aatgttaaga	tttttacagg	gtagtgtggt	gggtactttt	taactgtttg	8340
cttaaagtgt	ttcaaagtaa	aaatatttct	taagcatagt	ctctgacatc	ttatgacttt	8400
atagaaatcc	ctgccaggta	catgatgtta	cttagagtga	gccacctaat	ctttcaaggc	8460
ttccatttcc	tcacctgcaa	aaattgggag	tgtcagaggc	gtttgaacca	gagtgactcc	8520
atcttgaata	gggaactggg	taaaataagg	ctgagaccta	ctgggctgca	ttcccaggag	8580
gttaggcatt	ccaagtcatg	ggatgagata	ggaggtcagc	acaagataca	gtcataaaga	8640
ccttgccaat	aaaacagcat	gtggtaaaga	agccggtcaa	aaccaagatg	gcaatgaaag	8700
tgacctctgg	ttgtcctcac	tgctgtaatt	atactgtaat	tataatgcat	tagcatgcta	8760
acagacactc	ccaccagtgc	catgacagtt	tacaaacgcc	atggcaggcc	tggcacgatg	8820
gctcatgcct	gtaatcccag	cactttggga	ggccaaggcg	ggcggattat	gaggtcagga	8880
gattgagacc	agcctggcca	acatggtgaa	accctgtctc	tactaaaaaa	tacaaaaatt	8940
agctgggcat	ggtggcacgt	gcctgtaatc	ccagctactt	gagaggctga	ggcaggagaa	9000
tetetagate	ccgggagttg	gaggttgcag	tgagccaaga	tggtgccact	gcactccagc	9060
ctgggtgaca	gagcaagact	ctgtctcaaa	aaaaaaaaa	aaaaatgcca	tggcaacatc	9120
aggaagtaac	actatatggt	ctaaaaagga	gaggaaccct	cagttctggt	aattgctcac	9180
	33	33		- 55	-	

acctttcccg	ggaaacttat	gaataatcta	ccccttgttt	agcatataat	caataaataa	9240
ccataaaaat	aggcaaccag	cagcccttgg	ggctactctt	cctatggagt	agccattctg	9300
tatttcttta	ctttcttaat	attaactact	ttcactttgt	ggactcgccc	gaattctttt	9360
cttgagcaag	gtccaagaac	tetetettgg	ggactggatc	acgaccgctt	tctggtaaca	9420
ggagcaatac	aaatggctat	tagtaaacga	acgcttaagt	aactctagta	catctatgat	9480
gaaataccag	gccacagttt	ttttaaaaat	gaggatgttc	tctatatact	gacgcacagt	9540
caccaagaca	tgcactttat	aggaaattat	aagctcctcc	ttgcctaaat	ctccttaatt	9600
ttgcttaata	aataacaagt	gaagccagaa	gctgtaaact	cataatttta	atgaagaaat	9660
gggatccaga	agatggagat	gtttttcatt	ctactttatt	agatgaggaa	aaggagagta	9720
aatacttgta	tgccagctac	cacacctttt	aaagttaatg	ttaaccctgc	taagaacagc	9780
aaggagattt	tatatcagcc	aggttttagt	tgccagaaac	cacaccagtt	attttagcaa	9840
agaccttata	aagaagtgta	ctatatttaa	gtagctaaaa	aggcaagaag	aaaatgccaa	9900
ggtgtcttgg	aggtagcaac	tgctaagcag	ctgccacccc	aggactgggg	gagctagaat	9960
agagtetece	catgtttgac	gtttgtctgc	taatagcatt	caagctctcc	ccctcagttt	10020
gcctggatct	ggacaagctg	ataagaaagc	ccagccactt	cctctttgcg	tcagagggga	10080
agttcaaact	gtgcaaaccc	tgactgtcaa	atgcactgag	ctctcataac	cacaacaaaa	10140
accagagcca	cttgttcgtc	ctttcactga	agcccaacag	actggcgtgg	gtgcccgctt	10200
tgctttccct	agaaggcctc	atgtgagtag	taaacttttt	cataacctca	aaaaaaaaa	10260
aaaa						10264
<210> SEO 3	ID NO 18					

<210> SEQ ID NO 18 <211> LENGTH: 1330 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 18

aaaaagaact gcttctctt	ctttccccct	ccaagttcct	agtggagggc	tgagtccagc	60
atcccagact cgtgtgact	a tataggcaag	catttgggga	cctacttcac	tttgataccc	120
tageetteag cageteaag	g tgttggcctt	tggataggag	gcttccaagt	agtaaagctc	180
cctgctctca gcaagccca	a caccatgggg	aagggagatg	tcttagaggc	agcaccaacc	240
accacageet accatteee	catggatgaa	tatggttatg	aggtgggcaa	ggccattggc	300
catggeteet atgggtegg	atatgaggct	ttctacacaa	agcagaaggt	tatggtggca	360
gtcaagatca tctcaaagaa	a gaaggeetet	gatgactatc	ttaacaagtt	cctgccccgt	420
gaaatacagg taatgaaag	cttgeggeae	aagtacctca	tcaacttcta	tcgggccatt	480
gagagcacat ctcgagtata	a catcattctg	gaactggctc	agggtggtga	tgtccttgaa	540
tggatccagc gctacgggg	c ctgctctgag	ccccttgctg	gcaagtggtt	ctcccagctg	600
accetgggca ttgcctace	gcacagcaag	agcatcgtgc	accgcctgat	gcccagcctt	660
tctgctgctg gtagggact	aaagttggag	aacctgttgc	tggacaagtg	ggagaatgtg	720
aagatatcag actttggct	tgccaagatg	gtgccttcta	accagcctgt	gggttgtagc	780
ccttcttacc gccaagtga	a ctgcttttcc	cacctcagcc	agacttactg	tggcagcttt	840
gcttacgctt gcccagaga	cttacgaggc	ttgccctaca	accettteet	gtctgacacc	900

tggagcatgg gcgtcatcct	ttacactcta	gtggtcgccc	atctgccctt	tgatgacacc	960	
aatotoaaaa agotgotaag	agagactcag	aaggaggtca	ctttcccagc	taaccatacc	1020	
atctcccagg agtgcaagaa	cctgatcctc	cagatgctac	gccaagccac	taagcgtgcc	1080	
accattctgg acatcatcaa	ggattcctgg	gtgctcaagt	tccagcctga	gcaacccacc	1140	
catgagatca ggctgcttga	ggccatgtgc	cagctccaca	acaccactaa	acagcaccaa	1200	
tccttgcaaa ttacgacctg	aaaatggctg	agggagggg	ctaagagagg	agcaaagcag	1260	
gaggtettgg getaaaaate	ttttttacca	aaaataaatc	taagtctgat	ttagtttcat	1320	
caaaaaaaa					1330	
<210> SEQ ID NO 19 <211> LENGTH: 2779 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 19						
ccggggaccg tttgtagtta	ggateegetg	tggcgtcctg	agtggagttt	gggaccccag	60	
ggagggaggg tgtgggcgtt	egggtecaga	ggagctgttt	agtatccaag	atgaatgaca	120	
gcctgtttgt cagtttggac	agacttttgc	tagaatttgt	cttccagtat	gagcaagaca	180	
taagtactaa agaagagato	attcaaagaa	ttaataaatg	ctgtgaagat	attaaggaaa	240	
acaaagtaac tatttgtagg	atacacgaaa	ctataaatgc	aacagatgag	gaaattgatc	300	
attactgtaa acatagtgag	gagattaaag	acaactgtag	aaactggaag	ccaacatgtg	360	
atgtttttcg taaacatgaa	gattatatgc	aggaccaatt	tactgtttat	caaggaactg	420	
ttgaaaaaga caaagaaatg	tatcatgatt	atatatgtca	gtataaagaa	gttttgaagc	480	
agtaccaact aaaatactca	gaaacaccct	tttcacgtga	atattatgag	aagaaaagag	540	
aacatgaaga aattcaaago	agagtgttgg	catgtactga	acaattaaaa	atgaatgaaa	600	
caatttttat gaaatttcga					660	
acattgttaa tttgagatgt					720	
aaagttcatc cgaattgaag	aaagaagtag	atgaaatgga	aatagaaatt	aattatttaa	780	
accagcagat atctaggcat					840	
acaaaaatac agaaaacaga	aaagaactga	aagaaagaat	ttttggaaaa	gatgagcatg	900	
tacttacatt gaataaaact					960	
tagtaagacc aataaagato	_				1020	
gttctgcgaa gcagtcaaag	_		_	_	1080	
agatatttaa tgactctgct					1140	
caagttcaca aaagtttato					1200	
atcagtggtc ggaaaaaggg					1260	
aagtaagaga atcaaaatgt	acttcacaag	ctatatatac	tgaacatttt	gggaagtcaa	1320	
tagaaaatga tagtgatgaa	gtagaagaga	gagctgagaa	ttttccacga	acgtctgaaa	1380	
ttcctatatt tttaggaact	cccaaagctg	tgaaagcacc	tgagtcattg	gagaaaataa	1440	
aattoootaa aaccooccoo	ı ttcgaaatta	acagaaatag	aaatgcagta	cctgaagttc	1500	
aaacagaaaa ggaatcccct	ggactttctt	ttcttatgag	ttatacttct	agatcacctg	1560	

gattgaattt	atttgattct	tctgtatttg	atacagaaat	ctcatcagat	cagtttaatg	1620	
aacattattc	tgcaagaaat	ctaaatcctc	tgtcatcaga	gcaagagatt	ggaaacttac	1680	
ttgagaagcc	agaaggagaa	gatggcttta	cattttcttt	tccatcagac	acttcaactc	1740	
atacatttgg	agctggaaaa	gatgatttta	gttttccatt	ttcatttgga	cagggtcaaa	1800	
attcaatacc	ttcttcttct	ttaaaaggtt	tttcatcttc	ctcacaaaat	acaacacagt	1860	
ttactttttt	ttgagctagt	cattaattcc	ttaaattatt	ttactgttct	gtgttcatga	1920	
gggcataaat	ttacattatt	gcttaaaaca	tgaagactgc	tttcttttat	tgattaaagc	1980	
agtaatgttt	acattatttg	attatattta	ttgaaatatt	gaaatactga	atattttggg	2040	
ttttgtgtgt	gctattaact	aatcattatt	tattttggtt	ttgattttgc	gagccgtggt	2100	
caggtagaac	ttttattaat	cttaatagaa	tttgatgctt	ttttcattac	tctttattta	2160	
aatattaagc	ctgcttctcc	ttggaaccta	aggtttttt	ctggaagtat	tgttggtact	2220	
ttgataagaa	caagaactgc	agtagtaact	ccagagttag	tgctgaagcg	tactttagct	2280	
actaaaaatt	tctattaaaa	ttattgggtt	tcacttctgc	ttcactatgt	agtatacaga	2340	
gtggtactgt	aataataatt	tcaaataatt	tatgttaata	acaaaatctg	tgttattttc	2400	
ttctaatata	acacatggta	caattctaat	tttatgagtt	atgctaatgc	tttcaatggc	2460	
taaaaattaa	atgtaaaggg	caagagtaat	ttctgaaaat	tggattgttg	tatcagtggt	2520	
gatcctgtta	atattcttt	ttgcttaaat	attttttgaa	gaacatttac	aattttgtct	2580	
ccttcaataa	caaaaatttc	ttctttatgt	tttgtgttca	gtatttgtca	attaattata	2640	
tagcttaagt	gaagatattt	aagatttgat	gaacttctgt	aaacattttg	ctcaatatca	2700	
ttgtattttg	tgctttgtaa	attagctgta	ctgagttacc	aagtaataaa	gggtttgact	2760	
ccaaaaaaaa	aaaaaaaaa					2779	
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	ΓH: 4144	sapiens					
<400> SEQUE	ENCE: 20						
ggaccggaag	tggaagtggt	cttccaaggc	ttttttgccg	ctggtgtcag	gagtattttc	60	
atattccaat	accgataaat	ctttgaggtt	tctgggtgtc	tctggggagc	ccctgggcca	120	
gattttcctc	tagactccag	cccatctctt	cagagcagct	ctgcttgagt	tcacagatga	180	
ctgccaagct	tcagacaccc	tacagaaaaa	gggttgagac	ccagtgtggc	catgccagct	240	
aattggacct	cacctcagaa	atcctcagcc	ctggctccag	aggatcatgg	cagctcctat	300	
gagtgttaac	cttgatgcct	gaaagaactg	gaaattatga	agatagattc	agaagtcaaa	360	
tatgttaact	aactgcattg	aagagtagaa	gaaaacaata	gcctaggatc	agtgtccttc	420	
agggatgtgg	ctatcgattt	cagcagagag	gaatggcggc	acctggaccc	ttctcagaga	480	
aacctgtacc	gggatgtgat	gctggagacc	tacagccacc	tgctctcagt	aggatatcaa	540	
gttcctgaag	cagaggtggt	catgttggag	caaggaaagg	aaccatgggc	actgcagggt	600	
gagaggccac	gtcagagctg	cccaggagag	aaattatggg	accataatca	atgtagaaaa	660	

720

atcctcagtt ataaacaagt atcctctcaa cctcaaaaaa tgtatcctgg ggagaaagct

tatgaatgcg ccaaatttga aaagatattc acccagaagt cacagctcaa agtacacctg

aaagttcttg	caggagaaaa	gctctatgta	tgcattgaat	gtgggaaggc	ttttgtacag	840
aagccagaat	ttattataca	ccagaaaacc	catatgagag	agaaaccctt	taaatgcaat	900
gaatgtggaa	aatccttttt	tcaagtgtcg	tccctcttca	ggcatcagag	aattcatacc	960
ggagagaaac	tctatgaatg	cagccagtgt	gggaaaggct	tctcttataa	ctcagatctc	1020
agtatacatg	agaaaattca	tactggagag	agacaccatg	aatgcactga	ctgtggcaaa	1080
gcattcacac	aaaagtccac	actcaagatg	catcagaaaa	tccatacagg	cgagagatcc	1140
tacatctgta	ttgaatgcgg	acaggccttc	atccagaaga	cccatttgat	tgcacaccga	1200
agaattcata	ctggagaaaa	accatatgag	tgcagtaact	gtggcaaatc	cttcatttcc	1260
aagtcacaac	ttcaggtaca	tcaacgtgtt	cacacaagag	tgaagcccta	tatatgtacc	1320
gaatatggga	aggtcttcag	caataattcc	aacctcgtta	cacataagaa	agttcaaagt	1380
agagagaaat	cttccatatg	tactgagtgt	gggaaggcct	ttacctacag	gtcagagttg	1440
attattcatc	agagaattca	cactggagag	aaaccttatg	aatgcagtga	ctgtgggaaa	1500
gccttcactc	agaagtcagc	actcacagtg	catcagagaa	ttcatacagg	agaaaaatcg	1560
tatatatgca	tgaaatgtgg	actggccttc	attcagaagg	cacacttgat	tgcacatcaa	1620
ataattcata	ctggagagaa	acctcataaa	tgtggtcact	gtgggaaatt	gtttacctcc	1680
aagtcgcaac	tccatgttca	taaacgaatt	cacacaggag	aaaagcccta	tatgtgcaat	1740
aaatgtggga	aggcattcac	caaccggtca	aatctcatta	cacatcagaa	aactcataca	1800
ggagagaaat	cttatatatg	ttccaaatgt	ggaaaggcct	tcacccagag	gtcagacttg	1860
attacacatc	agagaatcca	tactggggag	aagccttatg	aatgcaatac	ttgtggaaaa	1920
gccttcactc	agaagtcaca	cctcaatata	catcagaaaa	ttcacactgg	agagagacag	1980
tatgaatgcc	acgaatgtgg	gaaagccttc	aaccagaaat	caatactcat	tgttcatcag	2040
aaaattcata	caggagagaa	accctatgta	tgcactgagt	gtggaagagc	tttcatccgc	2100
aagtcaaact	ttattactca	tcaaagaatt	catactggag	agaagcctta	tgaatgcagt	2160
gactgtggga	agtcctttac	ctccaagtct	cagctcctgg	tgcatcagcc	agttcacaca	2220
ggagagaaac	cctatgtgtg	tgccgagtgc	gggaaggcct	ttagtggcag	gtcaaatctc	2280
agtaagcacc	agaaaactca	taccggagaa	aagccctaca	tttgttctga	atgtgggaag	2340
acctttcgac	agaagtcaga	gttgattaca	catcacagaa	ttcatactgg	agagaaacct	2400
tatgagtgca	gtgactgtgg	gaagtettte	actaaaaaat	cacageteca	agtgcatcag	2460
cgaattcaca	ctggagagaa	gccttacgtg	tgtgctgagt	gtgggaaggc	ctttactgac	2520
aggtccaatt	tgaataaaca	tcagacaaca	cacactggag	acaaacccta	caagtgtggc	2580
atctgtggga	aaggcttcgt	tcagaaatca	gtgttcagcg	tccatcagag	cagccacgct	2640
tgagagaaac	agtgtgagaa	aacccccctg	agggttgggt	ctgattgtac	actgttgcac	2700
gcatgcagca	gaaaaatatg	tatattattg	taaatagaaa	tgaccacagc	agaatgtcac	2760
acatggctgt	tctggagagg	gcctctgaga	aggcactgaa	tgaggcgagg	gacccttcct	2820
acattgtcac	catccccagt	aaaccttggg	tcattattca	tactgacaag	gaaccgagtc	2880
aatttggtga	ataggaaaag	ccttctcatg	aaaactacaa	tagaatactg	ttaccaaatt	2940
cttcctaaga	aagatcgtat	taagttaacg	ataatcctgt	ttactgtgga	ttaggtatag	3000
tgccaacaaa	ttgaatgata	aaacaacata	atacgtagtt	attttgatag	tgatgaatcc	3060

· · · · · · · · · · · · · · · · · · ·	
taagttatgt gagttgttcg ttgtggaaca cattgtgtaa cagactcctg ggtgtttttc	3120
tttctcattc gaatctacca cagttggtca tatccaaccc tcattcagta tttctatcaa	3180
gaaagagatg ctacaaaaaa aaaaagaaaa aacctttatg tatacagacg taaacctcag	3240
aatgtatgtt gagtccccac tgtcatctac caagacttgc acccccctca ttatctacca	3300
tgactgtete teageeteae gggeeeteag eaetttgtgt tttgaceece ageaeegtgt	3360
cttgtgaact cccatcacct tcaagaaagc ttccgaggta agaattttat ggtcatctgg	3420
gacaacttaa atctcccttc tgctgtcata gttcttccaa ctcagttgcc ttttttttt	3480
tttcgtactc atcactgact tgaagcttag tatctggctt ccttaaggat gtaactttca	3540
tgtaacagat taataactta tatgaaaacc aacacaacca tatgtttagg gctggaaagg	3600
gccatgacgc ctggccattt ttcctgtttt accttactct tatgtgtgtc acacttcatc	3660
aatteeggaa acagtttetg gagateteet eattacetet titacaatea eeteaeteea	3720
gcatggtgtc tgttacctct tcccacttgt gacaatgtct agtaaggtcc actctccatt	3780
ctgtgtgatg accaettatt acaaecetea gaatagggga cagtggtgtg ecceetgeaa	3840
tacaatggtt tetateteet gataetttta ttacaeetet ageaggatgt ettgtgatee	3900
tccttattga tttttccctc acgatgatga acaattatct cccgttactc acctagcagt	3960
atetaaetgt ceetaaeaca geatgtggga atgeeeteaa taeggtggat getgttaaet	4020
ttetteette eeeteaggea atggeggtga ettacaatga accataatgt eeacatttee	4080
caactgtatt ttggagcctc ttctgtcccc ttctttctag gaccccagtt aaaaaaaaaa	4140
aaaa	4144
<210> SEQ ID NO 21 <211> LENGTH: 1642 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 21	
acagagtagc tttgcaactg gctttgggga cttccgaaag ctaccagcac tgcactgtga	60
gacteteate eetgagetga atteatetga ttegaeggea agetttggtg agaacataga	120
tatatttctg aggaaaatgg actcagactt ctcacatgcc ttccagaagg aactcacctg	180
egteatetgt ttgaactace tggtagacce tgteaccate tgetgtggge acagettetg	240
taggccctgt ctctgccttt cgtgggagga agcccaaagt cctgcaaact gccctgcatg	300
cagggaacca tcaccgaaaa tggacttcaa aaccaatatt cttctgaaga atttagtgac	360
cattgccaga aaagccagtc tctggcaatt cctgagctct gagaaacaaa tatgtgggac	420
ccataggcaa acaaagaaga tgttctgtga catggacaag agtctcctct gcttgctgtg	480
ctccaactct caggagcacg gggctcacaa acaccatccc atcgaagagg cagctgagga	100
	540
acaccgggag aaactcttaa agcaaatgag gattttatgg aaaaagattc aagaaaatca	
acaccgggag aaactcttaa agcaaatgag gattttatgg aaaaagattc aagaaaatca gagaaatcta tatgaggagg gaagaacagc cttcctctgg aggggcaatg tggttttacg	540

780

840

ggcacagatg atcaggaatg agtataggaa gctgcatccg gttctccata aggaagaaaa acaacattta gagagctga acaaggaata ccaaggagtt tttcagcaac tccagagaag

ttgggtcaaa atggatcaaa agagtaaaca cttgaaagaa atgtatcagg aactaatgga

aatgtgtcat aaaccagatg tggagctgct ccaggatttg ggagacatcg tggcaaggag

tgagtccgtg ct	gctgcaca	tgccccagcc	tgtgaatcca	gagctcactg	caggacccat	960	
cactggactg gt	gtacaggc	tcaaccgctt	ccgagtggaa	atttccttcc	attttgaagt	1020	
aaccaatcac aa	tatcaggc	tctttgagga	tgtgagaagt	tggatgttta	gacgtggacc	1080	
tttgaattct ga	cagatetg	actattttgc	tgcatgggga	gccagggtct	tctcctttgg	1140	
gaaacactac tg	ıggagctgg	atgtggacaa	ctcttgtgac	tgggetetgg	gagtctgtaa	1200	
caactcctgg at	aaggaaga	atagcacaat	ggttaactct	gaggacatat	ttcttctttt	1260	
gtgtctgaag gt	ggataatc	atttcaatct	cttgaccacc	tecceagtgt	ttcctcacta	1320	
catagagaaa cc	tctgggcc	gggttggtgt	gtttcttgat	tttgaaagtg	gaagtgtgag	1380	
ttttttgaat gt	caccaaga	gttccctcat	atggagttac	ccagctggct	ccttaacttt	1440	
tcctgtcagg cc	tttcttt	acactggcca	cagatgatca	ggattaagaa	aacttactgt	1500	
ttgggaactc ca	tatacaag	ggagcccttc	actgttgata	caaagaaatc	atactgttca	1560	
ggcttttttg ta	ctttagtg	tcacttcatt	ttattgctat	taaataaaaa	atttgtaaaa	1620	
ggcaaaaaaa aa	aaaaaaaa	aa				1642	
<210> SEQ ID <211> LENGTH: <212> TYPE: D <213> ORGANIS	5030 NA M: Homo s	sapiens					
<400> SEQUENC	E: 22						
agtggagggg ag	ggggtaag	tgatagggta	ggggaggccc	tgggaaaggc	aggacctcga	60	
ggegeggeeg eg	ıcgaggtga	ccggagtcac	agttcccgca	ggcggcgaca	gcagagcgcc	120	
cactgcctcc ag	caggtaac	cggccgcggc	cgcgcggcgc	cggcccagcg	cgggcgtggg	180	
acgtggagac cc	ggaggagg	gcggcgggac	ccgggcgggg	aaaggcgcgg	cgtggcttgg	240	
ctcaggtgcg ct	tctcccac	ctggcagctc	gctcagggct	gtgggggcg	cctgtgaggg	300	
cggccccgcc tt	gcgggctg	gagattaata	ttaagattgg	aagtttgtgt	cttttgctgg	360	
atattggaaa tt	gaatgtaa	tggcaacaga	atttataaag	agttgctgtg	gaggatgttt	420	
ctatggtgaa ac	agaaaaac	acaacttttc	tgtggaaaga	gattttaaag	cagcagteee	480	
aaatagtcaa aa	tgctacta	tctctgtacc	tccattgact	tctgtttctg	taaagcctca	540	
gcttggctgt ac	tgaggatt	atttgctttc	caaattacca	tctgatggca	aagaagtacc	600	
atttgtggtg cc	caagttta	agttatctta	cattcaaccc	aggacacaag	aaactccttc	660	
acatctggaa ga	acttgaag	gatctgccag	agcatctttt	ggagatcgaa	aggtagaact	720	
ttccagttca tc	ccagcacg	gacctagcta	tgatgtgtat	aacccattct	atatgtatca	780	
gcacatttca cc	tgatttga	gtcgacgctt	tcctccccgt	tcagaagtga	cgagactgta	840	
tggatcggtt tg	ıtgatttaa	ggacgaacaa	acttcccggt	teceetggge	taagcaaatc	900	
tatgtttgat ct	tacaaact	catctcagcg	attcatccag	agacatgatt	cattgtccag	960	
tgtacccagt ag	ttcttctt	caaggaaaaa	ttctcagggg	agtaacagaa	gcctggatac	1020	
aattactcta tc	aggagatg	aaagggactt	tgggagactg	aatgtgaaat	tgttttataa	1080	
ttcttcagta ga	acagatct	ggatcacagt	tttacagtgc	agagatttaa	gttggccctc	1140	
tagttatgga ga	cactccta	ctgtttctat	aaaaggaata	cttacattgc	ccaaaccagt	1200	

gcatttcaaa tcttcagcca aggaaggttc caacgctatt gaatttatgg aaacgtttgt 1260

atttgctatt	aaacttcaaa	atctacaaac	tgtaagactt	gtatttaaga	ttcaaaccca	1320
gactcccagg	aagaaaacca	ttggagaatg	ctcaatgtca	ctcagaaccc	ttagcacaca	1380
ggaaatggat	tactctttgg	atataacacc	accttcaaaa	atttctgttt	gccatgcaga	1440
acttgaattg	gggacttgtt	ttcaagcagt	aaatagcaga	attcagttac	aaattcttga	1500
ggcacggtac	cttccaagct	catcaacacc	tctgactttg	agttttttcg	tgaaggtggg	1560
aatgtttagc	tcgggagagt	tgatttataa	gaaaaagaca	cgcttactga	aggcctccaa	1620
tggaagagtc	aagtggggag	agactatgat	ttttccactt	atacagagtg	aaaaagaaat	1680
tgtttttctc	attaagcttt	acagtcgaag	ctctgtaaga	agaaaacact	ttgtgggcca	1740
gatttggata	agtgaagaca	gtaataacat	tgaagcagtg	aaccagtgga	aagagacagt	1800
aataaatcca	gaaaaggttg	ttatcaggtg	gcacaaatta	aatccatctt	gaagacttca	1860
cacattaatt	tggtgaagaa	cttgacattc	ttttagaaga	cttatgattt	caatttgcta	1920
ccaatgagaa	gaggcaaatc	aacaaatttg	tcaatttatg	ggggctataa	ttatggtata	1980
taatgtatct	gatagaaaat	ttgataagaa	aatgtaatga	attttatcag	atatccaaag	2040
taaaggaaat	gttttaaaac	tgcaacaaga	gacacagaca	gtaaaatcaa	agtattatta	2100
ggatgactaa	ataaattata	aagtctgtga	gaatatcaac	catagatagt	tctttctata	2160
ttatgttttt	gcttttgtat	tttaagcttt	acttagatat	tcaaaacctg	gtatatcaag	2220
tctctgttag	tactattggc	atttagaaga	ctttaccatt	atttcagtgc	taggcattat	2280
tgattaggtc	ttggctccac	tgtttacctc	ttgctatgta	ttttctcccg	gtaaaaatga	2340
attgaaccat	ttcaactatt	ttctatattt	ggagaaagtt	tgtgccctgt	gttttataat	2400
ttttttaccc	ataagacatc	acattatccc	tttgtaagct	acttatctcc	aaaaaacttc	2460
agaaatagaa	aactacattt	tggcaggaat	aattgaaaac	accagaaggt	tgaagtttaa	2520
ttggaaaccc	agaatataca	tactttgctg	ttttcttccc	tcaaatattt	tactatttgt	2580
tttatttgga	gttaaaataa	gagtatcatc	catatggtcc	atcctaattc	acagaattaa	2640
atgagcttaa	atagaaaatt	cagtattta	tgataatcac	ttcgttttta	gtttttaaaa	2700
tttagattat	tctataattt	accgtgtttg	agtattttct	cattttttc	ataaccatac	2760
ctgattatac	tgtgtaacaa	atattttcta	ttgcagtttt	ctttccagta	cttattagaa	2820
ctcagtattt	ggaaataatt	tcagcttaat	tgaccataag	aactgtggcc	aaaaagaaca	2880
gttttttgga	gaggcagatg	acattatacc	tgattttaga	aaatctcact	ttatttttgc	2940
taataagtag	actaagtgct	ctgtgttctc	agtcttccct	ttttttctgc	ccccattctt	3000
actttgtccc	aggcatgcag	agaaagatgg	tgatatttta	ggccaggagt	ataccttgct	3060
ataacctaag	catgccttct	ttattccagc	tcctatgttc	tgtgtatatc	attaacattt	3120
tcccaaataa	acacttaatt	ctcttttccc	taggtgccat	ctcctcaagc	tacaaaatgt	3180
ccacatctta	tatccccttt	gcttctactg	ctctgatttt	gtggtaccag	tactctctgc	3240
cactgaacat	tttgaaatat	ttttgtttta	gatttgcaaa	aaatgacata	taggtcagta	3300
ctcacatgga	tttttaagat	aaatcacctg	tgtgataata	ttttgaatct	gagacgaata	3360
caacttttaa	aaattgtttt	taaaaataga	ctttttttt	tagagcagtt	gtaggttaac	3420
agaaaaattg	agaggaagat	agagatttcc	tttctcccct	gacaaagccc	tcaacagcct	3480
cccaggctat	cagtatcctg	caccacaatg	gtacatttgt	tacaatcaat	gaacctactc	3540
		J				

tgaaacatca	ttatcatcca	aagttcatgg	tttacattag	agtcccctct	tggtgttata	3600				
catgctagag	gacaaatata	tgatgatatg	tatgcatcat	tataatatag	tatagtttcg	3660				
ctgccctaaa	cateetetge	aaatgcaact	attttaatgg	gtaccaaaga	agtaaatgta	3720				
tttactggct	tttagataat	aaataacggg	ctttattgtt	tattttaaaa	gctacaattt	3780				
gttttagctg	gtttctctgt	tctattaatg	ctttgaattt	ccaaatttaa	tatatgtagt	3840				
catgcattta	acttaatatt	taattatttg	atttatttaa	ttttctatat	tcttacaatg	3900				
tatgtatgat	gtataattta	agggaaagct	atgacttctc	agtttcttag	aatcctaggt	3960				
aaataaaaca	ataaaaagaa	aacccttaca	tttaaaagag	ctttcaggta	cagaagtatt	4020				
gatacaacta	agatcctaaa	tgttttaatt	agtgtttact	taagcctttt	tcaggtgagg	4080				
aggtactaat	gctggttatt	tccttgaagc	tttatgtgga	cctataaata	aaaatccaat	4140				
ctcctgctaa	taggtatgca	tattgtgaga	aaaacgttag	gagctggtag	taaaaaatga	4200				
gattctatgc	caaaataact	tctcttcata	tttgcctagg	catttcttga	cctttaccca	4260				
cttacgcaag	gagaaggaaa	tcataatgat	gtcatgtgat	caaaggaaac	catggaaggg	4320				
ttcacgctga	tagctgatag	cttttacagt	gctcattcct	aacagtggat	ttacttgtaa	4380				
gctttcagat	caacacaaat	agctgcagcc	tgggttaaaa	tataacatca	ctatttggct	4440				
tttgttttgc	atgatttta	aaagcagtac	tcctagggaa	atggcctctg	aagtatatca	4500				
gtttcatctc	ttaccaagac	tgttaagaag	aaactagtgg	gattttgaac	aagttatata	4560				
attgtggtct	gaaaagaccc	taaactgaag	ttctgtttaa	atatagttac	atgaatttct	4620				
ctgatactaa	tgtactcaac	agccaggtat	aaactatatc	tcctagtaac	attttccatt	4680				
tttgtttaat	caaatacttg	cttatgaagg	atttcagaaa	tttgtaataa	atgtcagctt	4740				
ttgatagcat	agcagtaatt	gacatttcaa	aaatatatat	ttetttetgt	gtttggttgg	4800				
gtgtaatgag	gaaaatacct	gataaaatgt	ctgaagacac	tttctaatgt	tatcttggtg	4860				
cataagctgt	aatttttatt	caaaattaaa	tttcaaatgt	ttgcagtttt	ggctaaaaca	4920				
ttgagttgaa	agaattatga	aaagtgggcc	catatgaagt	accatgttca	ttttgaaata	4980				
tagatttaag	atttagaaat	atattaaaag	agttaatgga	gcctcctaaa		5030				
<210> SEQ ID NO 23 <211> LENGTH: 2164 <212> TYPE: DNA <213> ORGANISM: Homo sapiens										
<400> SEQUI		gagctactgc	ttaattaaat	aaaaaat ccc	agaagtgtgg	60				
		atttttcttg				120				
		cagggcagag				180				
		gggtgctcta				240				
		cggtgatggt				300				
gggatcactg	atgaagacgc	ttcatttgga	gaccttaaaa	gcattgctgg	aagggcttca	360				

tatgctgctt acacagaagg atcgccccag gaggtggaaa cttcaagtgc tggatttgcg

ggatgttgat gagaatttct gggccagatg gcctggagcc tgggccctgt cctgcttccc

agagaccatg agtaagaggc agacagcaga ggactgtcca aggatgggag agcaccagcc

420

480

540

cttaaaggtg	ttcatagaca	tctgcctcaa	ggaaataccc	caggatgaat	gcctgagata	600	
cctctttcag	tgggtttacc	aaaggagagg	tttagtacac	ctgtgctgta	gtaagctggt	660	
caattatcta	acgccgatta	aacatctcag	aaagtcattg	aaaataatat	acctgaatag	720	
tattcaacag	ctggaaattc	gcaacatgtc	ctggccacgt	ctgataagaa	agcttcgttg	780	
ttacctgaag	gagatgaaga	atcttcgcaa	actcgttttc	tccaggtgcc	atcattccat	840	
gtcagataat	gaactcgaag	gacggttagt	caccaaattc	agctctgtgt	tcctcaggct	900	
ggaacacctc	cagttgctta	aaataaaatt	gatcaccttc	ttcagtgggc	acctggaaca	960	
gctgatcagg	tgcctccaga	accccttgga	gaacttggaa	ttaacttatg	gctacctatt	1020	
ggaagaagac	atgaagtgtc	tctcccagta	cccaagcctc	ggttacctaa	agcatctgaa	1080	
tctcagctac	gtgctgctgt	tccgcatcag	tcttgaaccc	ctcggagctc	tgctagagaa	1140	
aattgctgcc	tctctcgaaa	ccctcatctt	ggagggctgt	cagatccact	actcccaact	1200	
cagtgccatc	ctgcctggcc	tgagccactg	ctcccagctc	accaccttct	actttggcag	1260	
aaattgtatg	tctatgggtg	ccctgaagga	cctgttgcgc	cacaccagtg	ggctgagcaa	1320	
gttaagcctg	gagacgtatc	ctgcccctga	ggagagtttg	aattccttgg	ttcgtgtcga	1380	
ttgggagatc	ttcgccctac	ttcgggctga	gctgatgtgt	acactgaggg	aagtcaggca	1440	
gcccaagagg	atcttcattg	gtcccacccc	ctgcccttcc	tgtggctcat	caccgtctga	1500	
ggaactggag	ctccatcttt	gctgctaggg	aaggegtgee	tagcggggta	gagaaatcca	1560	
aagttctctt	ccaggcactg	ggacactaaa	atctactatg	taggtgcaaa	ctatttttct	1620	
cttttcttat	ttatttcatt	ttttaataat	tccaaaattt	ttattaaaga	caatttgaga	1680	
cagggtttct	ctgtgttgct	ctgggatcct	cctgcctcag	ctgggcttat	gggatcctcc	1740	
tgcctcagct	tcctaaagtg	ctgggattac	tggcatgagt	gactgtgtcc	aggccacatg	1800	
caacttaaag	gaagcacagg	gaagtgctca	gtgtgaggga	aaaaaacata	acagcagggg	1860	
gcaaggctgg	aggaaaatgt	tgaggtgaca	tcaatgagaa	cttcagggac	ccgtgtccta	1920	
cagagtcgga	aagagaagct	aaagttctac	agtgatgaga	atgttatccc	tgcaaggatg	1980	
gttaccaagg	aatatcagaa	ataaagagca	cctgaatgaa	aacttttaac	ctgttgtagc	2040	
aatttatcca	ccagaaatat	ctagttattg	agttactgat	ggaaaaataa	tgaaatacta	2100	
ctttgtctgt	gattgagttt	cagctgtaga	acatcaaagc	aaccaaatag	aatttgatca	2160	
tttt						2164	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 1642	sapiens					
<400> SEQUE	ENCE: 24						
cctgaagcta	ctggttggtt	ccctgagagg	tcccagaact	ctgcaaagtg	agtccagcgc	60	
tgagattttt	cttgcagatc	catcaggatg	agcatccagg	ccccaccgag	actactggag	120	
ctggcggggc	agagcctgct	gagagaccag	gccttgtcca	tctctgccat	ggaggagctg	180	
cccagggtgc	tctatctccc	actcttcagg	gaggccttca	gcaggagaca	cttccagact	240	

ctgacggtga tggtgcaggc ctggcctttc acctgcctcc ctctggtatc gctgatgaag

acgetteate tggageeatt gaaageattg etggaaggge tteatatget gettacaeag

300

aaggatcgcc ccaggaggtg gaaacttcaa gtgctggatt tgcgggatgt tgatgagaat	420
ttctgggcca gatggcctgg agcctgggcc ctgtcctgct tcccagaggc catgagtaag	480
aggcagacag cagaggactg tccaaggacg ggagagcacc agcccttaaa ggtgttcata	540
gacatotgcc tcaaggaaat accccaggat gaatgcctga gatacctctt ccagtgggtt	600
taccaaagga gaggtttagt acacctgtgc tgtagtaagc tggtcaatta tctaacgcca	660
attaaatatc tcagaaagtc attgaaaata atatacatta atagtattgg ggagctggaa	720
attcacaaca cgtgctggcc acatctgata agaaagcttt attgttacct gaaggagatg	780
aagactettt geaaactegt ttteteeagg tgeeateatt acaegteaga taatgaacte	840
gagggatggt tagtcaccag attcacctct gtgttcctca ggctggaaca cctccagttg	900
cttaaaataa aattgatcac cttcttcagt gggcacctgg aacagctgat caggtgcctc	960
cagaacccct tggagaactt ggaattaact tgtggcaacc tattagaaga ggacttgaag	1020
tgtctctccc agttcccaag cctcggttac ctaaagcatc tgaatctcag ctacgtgctg	1080
ctgttccgca tcagtcttga acccctagga gctctgctag agaaaattgc tgcctctctc	1140
gagacceteg tgttagaggg etgteagate cactactece aacteagtge cateetgeet	1200
ggcctgagct gctgctccca gctcaccacc ttctactttg gcagcaattg catgtctatt	1260
gacgccctga aggacctgct gcgccacacc agtgggctga gcaagttaag cctggagacg	1320
tatectgeec etgaggagag tttgaattee ttggttegtg teaattggga gatetteace	1380
ccacttcggg ctgagctgat gtgtacactg agggaattca ggcagcccaa gaggatcttc	1440
attggcccca ccccctgccc ttcctgtggc tcatcaccgt ctgaggaact ggagctccat	1500
ctttgctgct agggaaggcg tgcccagtgg ggtagagaaa tccaaagttc tcttccaggc	1560
acttggacac taaaatctac tatgtaggtg caaactattt ttctcttttc ttatttattt	1620
cattttttaa taattccaaa at	1642
<210> SEQ ID NO 25 <211> LENGTH: 4167 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 25	
accttegeca tatatacecg gggegetgeg etecaectgg eegeegeete eageecagea	60
cctgcggagg gagcgctgac catggctccc tggcctgaat tgggagatgc ccagcccaac	120
cccgataagt acctcgaagg ggccgcaggt cagcagccca ctgcccctga taaaagcaaa	180
gagaccaaca aaacagataa cactgaggca cctgtaacca agattgaact tctgccgtcc	240
tactccacgg ctacactgat agatgagccc actgaggtgg atgacccctg gaacctaccc	300
actetteagg acteggggat caagtggtea gagagagaea ceaaagggaa gattetetgt	360
ttcttccaag ggattgggag attgatttta cttctcggat ttctctactt tttcgtgtgc	420
tecetggata ttettagtag egeetteeag etggttggag gaaaaatgge aggacagtte	480
ttcagcaaca gctctattat gtccaaccct ttgttggggc tggtgatcgg ggtgctggtg	540
acceptetteg tecagagete caecacetea aceptecatee tteteageat egtetetet	600
	660

660

720

tcattgctca ctgttcgggc tgccatcccc attatcatgg gggccaacat tggaacgtca

atcaccaaca ctattgttgc gctcatgcag gtgggagatc ggagtgagtt cagaagagct

tttgcaggag	ccactgtcca	tgacttcttc	aactggctgt	ccgtgttggt	gctcttgccc	780
gtggaggtgg	ccacccatta	cctcgagatc	ataacccagc	ttatagtgga	gagcttccac	840
ttcaagaatg	gagaagatgc	cccagatctt	ctgaaagtca	tcactaagcc	cttcacaaag	900
ctcattgtcc	agctggataa	aaaagttatc	agccaaattg	caatgaacga	tgaaaaagcg	960
aaaaacaaga	gtcttgtcaa	gatttggtgc	aaaactttta	ccaacaagac	ccagattaac	1020
gtcactgttc	cctcgactgc	taactgcacc	tccccttccc	tctgttggac	ggatggcatc	1080
caaaactgga	ccatgaagaa	tgtgacctac	aaggagaaca	tcgccaaatg	ccagcatatc	1140
tttgtgaatt	tecacetece	ggatcttgct	gtgggcacca	tcttgctcat	actctccctg	1200
ctggtcctct	gtggttgcct	gatcatgatt	gtcaagatcc	tgggctctgt	gctcaagggg	1260
caggtcgcca	ctgtcatcaa	gaagaccatc	aacactgatt	tcccctttcc	ctttgcatgg	1320
ttgactggct	acctggccat	cctcgtcggg	gcaggcatga	ccttcatcgt	acagagcagc	1380
tctgtgttca	cgtcggcctt	gacccccctg	attggaatcg	gcgtgataac	cattgagagg	1440
gcttatccac	tcacgctggg	ctccaacatc	ggcaccacca	ccaccgccat	cctggccgcc	1500
ttagccagcc	ctggcaatgc	attgaggagt	tcactccaga	tegecetgtg	ccacttttc	1560
ttcaacatct	ccggcatctt	gctgtggtac	ccgatcccgt	tcactcgcct	gcccatccgc	1620
atggccaagg	ggctgggcaa	catctctgcc	aagtatcgct	ggttegeegt	cttctacctg	1680
atcatcttct	tetteetgat	cccgctgacg	gtgtttggcc	tetegetgge	cggctggcgg	1740
gtgctggttg	gtgtcggggt	tecegtegte	ttcatcatca	tcctggtact	gtgcctccga	1800
ctcctgcagt	ctcgctgccc	acgcgtcctg	ccgaagaaac	tccagaactg	gaacttcctg	1860
ccgctgtgga	tgegeteget	gaageeetgg	gatgccgtcg	tctccaagtt	caccggctgc	1920
ttccagatgc	getgetgetg	ctgctgccgc	gtgtgctgcc	gcgcgtgctg	cttgctgtgt	1980
ggctgcccca	agtgctgccg	ctgcagcaag	tgctgcgagg	acttggagga	ggcgcaggag	2040
gggcaggatg	tccctgtcaa	ggctcctgag	acctttgata	acataaccat	tagcagagag	2100
gctcagggtg	aggteeetge	ctcggactca	aagaccgaat	gcacggcctt	gtaggggacg	2160
ccccagattg	tcagggatgg	ggggatggtc	cttgagtttt	gcatgctctc	ctccctccca	2220
cttctgcacc	ctttcaccac	ctcgaggaga	tttgctcccc	attagcgaat	gaaattgatg	2280
cagtcctacc	taactcgatt	ccctttggct	tggtggtagg	cctgcagggc	acttttattc	2340
caacccctgg	tcactcagta	atcttttact	ccaggaaggc	acaggatggt	acctaaagag	2400
aattagagaa	tgaacctggc	gggacggatg	tctaatcctg	cgcctagctg	ggttggtcag	2460
tagaacctat	tttcagactc	aaaaaccatc	ttcagaaaga	aaaggcccag	ggaaggaatg	2520
tatgagaggc	tctcccagat	gaggaagtgt	actctctatg	actatcaagc	tcaggcctct	2580
ccctttttt	aaaccaaagt	ctggcaacca	agagcagcag	ctccatggcc	tccttgcccc	2640
agatcagcct	gggtcagggg	acatagtgtc	attgtttgga	aactgcagac	cacaaggtgt	2700
gggtctatcc	cacttcctag	tgctccccac	attccccatc	agggcttcct	cacgtggaca	2760
ggtgtgctag	tccaggcagt	tcacttgcag	tttccttgtc	ctcatgcttc	ggggatggga	2820
gccacgcctg	aactagagtt	caggctggat	acatgtgctc	acctgctgct	cttgtcttcc	2880
taagagacag	agagtggggc	agatggagga	gaagaaagtg	aggaatgagt	agcatagcat	2940
	gggccccaga					3000
J	5555		J	5 5		

-continued	
tgtggctaaa gtctaacgct cctctcttgg tcagataaca aaagccctcc ctgttggatc	3060
ttttgaaata aaacgtgcaa gttatccagg ctcgtagcct gcatgctgcc accttgaatc	3120
ccagggagta tetgeacetg gaatagetet ecaeceetet etgeeteett aetttetgtg	3180
caagatgact teetgggtta aetteettet tteeateeae eeaeeeaetg gaatetettt	3240
ccaaacattt ttccattttc ccacagatgg gctttgatta gctgtcctct ctccatgcct	3300
gcaaagctcc agatttttgg ggaaagctgt acccaactgg actgcccagt gaactgggat	3360
cattaagtac agtcgagcac acgtgtgtgc atgggtcaaa ggggtgtgtt ccttctcatc	3420
ctagatgcct tetetgtgcc ttccacagcc tcctgcctga ttacaccact gcccccgccc	3480
caccetcage cateceaatt etteetggee agtgegetee ageettatet aggaaaggag	3540
gagtgggtgt agccgtgcag caagattggg gcctccccca tcccagcttc tccaccatcc	3600
cagcaagtca ggatatcaga cagtcetece etgaceetee eeettgtaga tatcaattee	3660
caaacagagc caaatactct atatctatag tcacagccct gtacagcatt tttcataagt	3720
tatatagtaa atggtctgca tgatttgtgc ttctagtgct ctcatttgga aatgaggcag	3780
gcttcttcta tgaaatgtaa agaaagaaac cactttgtat attttgtaat accacctctg	3840
tggccatgcc tgccccgccc actctgtata tatgtaagtt aaacccgggc aggggctgtg	3900
gccgtctttg tactctggtg atttttaaaa attgaatctt tgtacttgca ttgattgtat	3960
aataattttg agaccaggtc tcgctgtgtt gctcaggctg gtctcaaact cctgagatca	4020
agcaatccgc ccacctcagc ctcccaaagt gctgagatca caggcgtgag ccaccaccag	4080
gcctgattgt aattttttt ttttttttt tactggttat gggaagggag aaataaaatc	4140
atcaaaccca aaaaaaaaa aaaaaaa	4167
<210> SEQ ID NO 26 <211> LENGTH: 2664 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 26	
agagecagee eggaggaget agaacettee eegeatttet tteageagee tgagteagag	60
gegggetgge etggegtage egeceageet egeggeteat geceegatet gecegaacet	120
tetecegggg teagegeege geegegeeae eeggetgagt eageeeggge gggegagagg	180
ctctcaactg ggcgggaagg tgcgggaagg tgcggaaagg ttcgcggaaag ttcgcggcgg	240
cgggggtcgg gtgaggcgca aaaggataaa aagcccgtgg aagcggagct gagcagatcc	300
gageeggget ggetgeagag aaacegeagg gagageetea etgetgageg eeeetegaeg	360
geggagegge ageageetee gtggeeteea geateegaea agaagettea geeatgeagg	420
ccccacggga gctcgcggtg ggcatcgacc tgggcaccac ctactcgtgc gtgggcgtgt	480
ttcagcaggg ccgcgtggag atcctggcca acgaccaggg caaccgcacc acgcccagct	540
acgtggcctt caccgacacc gagcggctgg tcggggacgc ggccaagagc caggcggccc	600
tgaaccccca caacaccgtg ttcgatgcca agcggctgat cgggcgcaag ttcgcggaca	660
ccacggtgca gtcggacatg aagcactggc ccttccgggt ggtgagcgag ggcggcaagc	720

780

840

ccaaggtgcg cgtatgctac cgcggggagg acaagacgtt ctaccccgag gagatctcgt

ccatggtgct gagcaagatg aaggagacgg ccgaggcgta cctgggccag cccgtgaagc

acgcagtgat	caccgtgccc	gcctatttca	atgactcgca	gcgccaggcc	accaaggacg	900
cgggggccat	cgcggggctc	aacgtgttgc	ggatcatcaa	tgagcccacg	gcagctgcca	960
tcgcctatgg	gctggaccgg	cggggcgcgg	gagagcgcaa	cgtgctcatt	tttgacctgg	1020
gtgggggcac	cttcgatgtg	teggttetet	ccattgacgc	tggtgtcttt	gaggtgaaag	1080
ccactgctgg	agatacccac	ctgggaggag	aggacttcga	caaccggctc	gtgaaccact	1140
tcatggaaga	attccggcgg	aagcatggga	aggacctgag	cgggaacaag	cgtgccctgc	1200
gcaggctgcg	cacageetgt	gagcgcgcca	agcgcaccct	gtcctccagc	acccaggcca	1260
ccctggagat	agactccctg	ttcgagggcg	tggacttcta	cacgtccatc	actcgtgccc	1320
gctttgagga	actgtgctca	gacctcttcc	gcagcaccct	ggagccggtg	gagaaggccc	1380
tgcgggatgc	caagctggac	aaggcccaga	ttcatgacgt	cgtcctggtg	gggggctcca	1440
ctcgcatccc	caaggtgcag	aagttgctgc	aggacttctt	caacggcaag	gagctgaaca	1500
agagcatcaa	ccctgatgag	gctgtggcct	atggggctgc	tgtgcaggcg	gccgtgttga	1560
tgggggacaa	atgtgagaaa	gtgcaggatc	tcctgctgct	ggatgtggct	cccctgtctc	1620
tggggctgga	gacagcaggt	ggggtgatga	ccacgctgat	ccagaggaac	gccactatcc	1680
ccaccaagca	gacccagact	ttcaccacct	actcggacaa	ccagcctggg	gtcttcatcc	1740
aggtgtatga	gggtgagagg	gccatgacca	aggacaacaa	cctgctgggg	cgttttgaac	1800
tcagtggcat	ccctcctgcc	ccacgtggag	tcccccagat	agaggtgacc	tttgacattg	1860
atgctaatgg	catcctgagc	gtgacagcca	ctgacaggag	cacaggtaag	gctaacaaga	1920
tcaccatcac	caatgacaag	ggccggctga	gcaaggagga	ggtggagagg	atggttcatg	1980
aagccgagca	gtacaaggct	gaggatgagg	cccagaggga	cagagtggct	gccaaaaact	2040
cgctggaggc	ccatgtcttc	catgtgaaag	gttctttgca	agaggaaagc	cttagggaca	2100
agattcccga	agaggacagg	cgcaaaatgc	aagacaagtg	tcgggaagtc	cttgcctggc	2160
tggagcacaa	ccagctggca	gagaaggagg	agtatgagca	tcagaagagg	gagctggagc	2220
aaatctgtcg	ccccatcttc	tccaggctct	atggggggcc	tggtgtccct	gggggcagca	2280
gttgtggcac	tcaagcccgc	cagggggacc	ccagcaccgg	ccccatcatt	gaggaggttg	2340
attgaatggc	ccttcgtgat	aagtcagctg	tgactgtcag	ggctatgcta	tgggccttct	2400
agactgtctt	ctatgatcct	gcccttcaga	gatgaacttt	ccctccaaag	ctagaacttt	2460
cttcccagga	taactgaagt	cttttgactt	tttgggggga	gggcggttca	tcctcttctg	2520
cttcaaataa	aaagtcatta	atttattaaa	acttgtgtgg	cactttaaca	ttgctttcac	2580
ctatattttg	tgtactttgt	tacttgcatg	tatgaatttt	gttatgtaaa	atatagttat	2640
agacctaaat	aaaaaaaaa	aaaa				2664

<210> SEQ ID NO 27

<211> LENGTH: 2163

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27

ctaatcttcc agttgccccc tattgacttt aaaccaaagc tttgattcat gaccactggg 60 atccagccag cgggggattt cttttcctga tggactgtac ccaggatctc acatttgctt 120 aagcagctcc cacaattggg ttcttataaa aggacacgga agagacaagc tcagtttct

ctgaaggaga	aggactgcac	ttagaactgc	attttggcga	cctctgaaat	tcagtactgc	240
agtgaatgag	cttctgatct	tgaggtgaac	ttaacaaaat	tatttttgga	aaaatcgttg	300
tgggaaccat	taaaagaact	ccaggaaaca	tgaattctgg	aatcttacag	gtctttcagg	360
gggaactcat	ctgccccctg	tgcatgaact	acttcataga	cccggtcacc	atagactgtg	420
ggcacagctt	ttgcaggcct	tgtttctacc	tcaactggca	agacatccca	tttcttgtcc	480
agtgctctga	atgcacaaag	tcaaccgagc	agataaacct	caaaaccaac	attcatttga	540
agaagatggc	ttctcttgcc	agaaaagtca	gtetetgget	attcctgagc	tctgaggagc	600
aaatgtgtgg	cactcacagg	gagacaaaga	agatattctg	tgaagtggac	aggagcctgc	660
tctgtttgct	gtgctccagc	tctcaggagc	accggtatca	cagacaccgt	cccattgagt	720
gggctgctga	ggaacaccgg	gagaagcttt	tacagaaaat	gcagtctttg	tgggaaaaag	780
cttgtgaaaa	tcacagaaac	ctgaatgtgg	aaaccaccag	aaccagatgc	tggaaggatt	840
atgtgaattt	aaggctagaa	gcaattagag	ctgagtatca	gaagatgcct	gcatttcatc	900
atgaagaaga	aaaacataat	ttggagatgc	tgaaaaagaa	ggggaaagaa	atttttcatc	960
gacttcattt	aagtaaagcc	aaaatggctc	ataggatgga	gattttaaga	ggaatgtatg	1020
aggagctgaa	cgaaatgtgc	cataaaccag	atgtggagct	acttcaggct	tttggagaca	1080
tattacacag	gagtgagtcc	gtgctgctgc	acatgcccca	gcctctgaat	ccagagetea	1140
gtgcagggcc	catcactgga	ctgagggaca	ggctcaacca	attccgagtg	catattactc	1200
tgcatcatga	agaagccaac	aatgatatct	ttctgtatga	aattttgaga	agcatgtgta	1260
ttggatgtga	ccatcaagat	gtaccctatt	tcactgcaac	acctagaagt	tttcttgcat	1320
ggggtgttca	gactttcacc	tcgggcaaat	attactggga	ggtccatgta	ggggactcct	1380
ggaattgggc	ttttggtgtc	tgtaatatgt	atcggaaaga	gaagaatcag	aatgagaaga	1440
tagatggaaa	ggcgggactc	tttcttcttg	ggtgtgttaa	gaatgacatt	caatgcagtc	1500
tctttaccac	ctccccactt	atgctgcaat	atatcccaaa	acctaccagc	cgagtaggat	1560
tattcctgga	ttgtgaggct	aagactgtga	gctttgttga	tgttaatcaa	agctccctaa	1620
tatacaccat	ccctaattgc	tctttctcac	ctcctctcag	gcctatcttt	tgctgtattc	1680
acttctgacc	agagacaaat	cagaaatgtg	ttcacatgct	gtgggaaccc	ctttatccca	1740
ggaagtcctc	ttccttgtgc	cttaacatac	aggacaaata	ggctctattt	tatgtcttga	1800
attgccttct	aatgttatca	aaactcattt	attgtgttac	tattaaatat	gctgaaaacg	1860
ctaaaagtat	acgtattggt	tctttattaa	ataatttttg	aaaaatcatt	attcatgatc	1920
atggcataca	gtatattctc	tttttttct	ttatttatga	ctgtcactga	gtgaaataat	1980
agatgacaga	catgtctgaa	tgaagtaaaa	atcaatggaa	gacagtcggg	atcttttgct	2040
tcatgcaaaa	aacttggagt	gaagtctcaa	tgataactgg	gaaatgtttt	tcttcctctt	2100
tatctaacta	tattacactt	atccatcagg	tttcattgta	ttaatctatc	ctttgaggta	2160
ata						2163

<210> SEQ ID NO 28 <211> LENGTH: 2160 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28

acccacagca	ctcattcctg	aagctactgg	ttggttccct	gagaggtccc	agaactctgc	60
gaagtgagtc	cagegetgag	attttccttg	cagatctatc	aggatgagca	tccaggcccc	120
acccagacta	ctggagctgg	cagggcagag	cctgctgaga	gaccaggcct	tgtccatctc	180
tgccatggag	gagetgeeca	gggtgctcta	tctcccactc	ttcatggagg	ccttcagcag	240
gagacacttc	cagactctga	cggtgatggt	tcaggcctgg	cccttcacct	gcctccctct	300
gggatcactg	atgaagacgc	ttcatttgga	gaccttaaaa	gcattgctgg	aagggcttca	360
tatgctgctt	acacagaagg	atcgccccag	gaggtggaaa	cttcaagtgc	tggatttgcg	420
ggatgttgac	gagaatttct	gggccagatg	gcctggagcc	tgggccctgt	cctgcttccc	480
agagaccacg	agtaagaggc	agacagcaga	ggactgtcca	aggatgggag	agcaccagcc	540
cttaaaggtg	ttcatagaca	tctgcctcaa	ggaaataccc	caggatgaat	gcctgagata	600
cctcttccag	tgggtttacc	aaaggagagg	tttagtacac	ctgtgctgta	gtaagctggt	660
caattatcta	acgccgatta	aatatctcag	aaagtcattg	aaaataatat	acctgaatag	720
tattcaagag	ctggaaattc	gcaacatgtc	ctggccacgt	ctgataagaa	agcttcgttg	780
ttacctgaag	gagatgaaga	atcttcgcaa	actcgttttc	tccaggtgcc	atcattacac	840
gtcagataat	gaactccaag	gacggttagt	tgccaaattc	agctctgtgt	tcctcaggct	900
ggaacacctt	cagttgctta	aaataaaatt	gatcaccttc	ttcagtgggc	acctggaaca	960
gctgatcagg	tgcctccaga	accccttgga	gaacttggaa	ttaacttatg	gctacctatt	1020
ggaagaagac	atgaagtgtc	tctcccagta	cccaagcctc	ggttacctaa	agcatctgaa	1080
tctcagctac	gtgctgctgt	tccgcatcag	tcttgaaccc	ctcggagctc	tgctggagaa	1140
aattgctgcc	tctctcaaaa	ccctcatctt	ggagggctgt	cagatccact	actcccaact	1200
cagtgccatc	ctgcctgccc	tgagccggtg	ctcccagctc	accaccttct	actttggcag	1260
aaattgcatg	tctattgacg	ccctgaagga	cctgctgcgc	cacaccagtg	ggctgagcaa	1320
gttaagcctg	gagacgtatc	ctgcccctga	ggagagtttg	aattccttgg	ttcgtgtcaa	1380
ttgggagatc	ttcaccccac	ttcgggctga	gctgatgtgt	acactgaggg	aagtcaggca	1440
gcccaagagg	atcttcattg	gccccacccc	ctgcccttcc	tgtggctcat	caccgtctga	1500
ggaactggag	ctccatcttt	gctgctaggg	aaggcgtgcc	cagtggggta	gagaaatcca	1560
aagttctctt	ccaggcactt	ggacactaaa	atctactatg	tgggtgcaaa	ctatttttct	1620
cttttcttat	ttatttcatt	ttttaataat	tccaaaattt	ttattaaaga	caatttgaga	1680
cagggtttcg	ctgtgttgct	ccagctggtc	tcaaactgct	gggcttatgg	gatcctcctg	1740
cctcagcttc	ctaaagtgct	gggattactg	gcatgagtga	ctgtgtccag	gccacatgca	1800
acttaaagga	agcacaggca	agtgttcagt	gtgagggaaa	aaacataaca	gcagggggca	1860
aggttggagg	aaaatgttga	ggtgacatca	gtgagaactt	cagggacccg	tgtcctagag	1920
tcggaaagag	aagctaaagt	tctacagtga	tgagactgtt	atccctgcaa	ggatggttac	1980
caaggaatat	cagcaataaa	gagcacctga	atgaaaactt	ttaacctgtt	gtgcaattta	2040
tccatcagaa	atctctagtt	atcgagttac	ggatggaaaa	ataacgaaat	actaatttgt	2100
ctgtgattga	gtttcagttg	tagaacatca	aagcaaccaa	ataaaaatta	gatcattttg	2160

<210> SEQ ID NO 29 <211> LENGTH: 5937

<212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 29 tgcaggtaac aagggcaaca gcctgagcat ctcagagccc agaggcagag cgttagccga 60 ttgcttccag catcatctgg ggcacagtgg ggtcttggtt cctcaatggg cctgagtgga 120 tctaactctg cgaagttaga tcccaacagc catcacagtt tgcagacaat gtcattaaga ccatccagat aacttcctaa ctccagtttt gtgcccacca agcatccttc tgatttcaaa 240 ttggcctcgc atgccatgtg caactgggag agagtgtgtg gacagaaatg gggccaattg actatttccc ttggctgtca tatttttcat taataaacta actctccagc cacaaataca cactcagaat gcctcttgct actccagatc ctccattcac tgtgaaggca atcatgggga 420 ttatqaattc catctcccaq qtqtqqatta aactqcatqc caqqqqaqqt ttctqtqqtt 480 ccaatctacc ccgcttagta catcagggct caacaggatc aggtcaaagc tggaaggatc 540 ctgagagccc acagaaataa tgactcctgt gctgaggttc acaggagtag cactggggtc 600 660 tqtqaattct tqqcaaaaat tcaqaaaacc taaqqqaatc catqcattaq ctqataatqa qqccatacaq actaactaaa qcatcaqcca cctcattaaa ctqqqaaqct taatactqtt 720 tttattgcac aatcatttct aaatgtcttt tattaataaa attggggaaa tgaatttgtt 780 attetttaat aagtgeagtg tgtttagetg acaaaatttt tacaaagatg gggateaatg 840 ggttgcaaga atactaaaag atgttcttgt tctgcagggt tggaagcccc taagccacca 900 tgcactaccc atcattttac aaaagaagga gaaactgagg aacaaagaaa cacatatttt 960 ccctcaagct tcagattccc tttaaactct taggatatcc cataaccccc tgtagcttat 1020 ggcagctaga ttcatgacag acaatctctc tagagtcaat ttggtttttc tcttaactca 1080 ctcaagcctc tgggaatgaa aggtctagcc cttgaaggct acttttggta gaagacgagg 1140 ttcagtatta aaaaggagga cagaggatgg aaaagaacac aactacatca atagtttctc 1200 cacattattt gatgttcaga acagtcccat gaagaagata taatattccc tttctacaga 1260 ccaaaaaatt aatatttgga gaggtagaaa gaccacccaa gggaacacat atttagacgg 1320 aaagcccagt totgtotagt gtttaagtoo tggcccatto agctactotg ototgtaact 1380 atcacccatt tcagcaccgc ggacagaggc agagccctca gtcttccctg taggtgggat 1440 ggaggcagag ggtggtaaga tgggtgctaa gtcccaggga agatatgtat ccaccaaagt 1500 gcctgaatga tgagagggaa gtcagagcta aggaaggaca catcatggac atctctttac 1560 atgtgtatca aattgcgttc tgtttagaac cattttctag cctcccacca aggacgtaaa caggacaagc actgtcatct gtaaagtgcc actcccagac tgccacccag agttcataaa 1680 aggctcagat gaatcaatag gtgggaaagt tatctggaat ttataaaaaat tcactgttaa ggagacgact atcacagaca aaccccaaaa tcagcggttt aacacaatag acattttttc 1800 tgacttgtgt aaagccccag acagggatcg ctgcctgtca aaaggcctga ctggcacttg tettgaggca cactetggtg cecaggeece ttgeteettg ttgetetgee acctetgaag 1920 tggcttctaa ggtcactgta tttatctgtg tcaagacaga ggaaaaaatc atgaataaat 1980 aaacccaggg agatttgtat gagccaagcc tgaaattggc acacatcact ttggctcata 2040 cgtggaggac tgggagtgca gaaagatgag gaaatgggtc ttactgaaca cagaaccaca 2100 gaactctgtc tccctcctct ccaaagctga gaaattgcca caatcagaaa gtgtgattcc 2160

catctgagag	tttaagagca	ggaatagatt	aaagacaaat	catgtaaaat	accttgactc	2220
ctagacttgc	cgaagcattc	agcctgagcc	atctttacat	gtggataatc	ttggatttcc	2280
caactgggct	tettgeacae	tccatggtag	aacgtcagag	gaaattttt	tcaagcaaga	2340
gctgttagat	catgagattc	cccagaaaga	tacagataca	ggtatatgtc	atattactgg	2400
agattctaat	tcagctacct	tcacaggcct	gggaatgtgt	ttttgacaca	ggggcattag	2460
gattgtttca	gctgcaagtg	acagaagtct	agctcacacg	gtcttaagca	agaaaggaaa	2520
tgtattgatt	cctataagtg	caccaggatc	tagatacact	gtcaggcaca	gctggatgca	2580
gactccaaca	gtctcattgg	gatacccacc	ctctcctccc	atctctgacc	atcccaggtg	2640
gctcccttca	tgggtcaaag	tggccaccag	aagctccaga	tacatctttt	tatcaacagc	2700
cccaggagaa	cttctcttc	tcagtaaaat	cccacaaggt	attttttggc	actaattgtc	2760
ttggcttggt	cccattctta	tccctgaacc	aaccactgtg	accaaaaacg	tggtattctc	2820
tgattatcca	agcctgattc	acgageceae	ccatgagtct	gatatgaggt	ccagtccata	2880
caatctacac	aagctaggtc	tggggcatgg	tggtgcccca	aggacagctg	gggtgccttt	2940
cctagaagaa	agggggcagg	gaatgggtgc	tggaccagca	tcagcagcag	aattcttagg	3000
cactagactg	tggggggctc	agagaggcat	gggagccctg	aggtccccac	aaggtgtggg	3060
atagtettte	agaccttcag	ggggggtctc	tgctcactaa	cctgctcaaa	gcaccctggc	3120
ccacaccgtg	ggcagctgga	aggtgccagt	ccactgaaca	tgtgtgattg	gcatgaatct	3180
cctgctttcc	tttgtcagaa	ggctaggagt	ggatttgacc	cgtttactca	gaccctctca	3240
gtggccctgc	tcccacaggc	tcaccccagc	agggcccagt	gcttggctgc	caatgacgcc	3300
aaggatatta	gctgacagtg	acttaaaaca	ggggttcatg	acctcagggt	aaccgaggaa	3360
cccctgaatc	tgaattcatc	agtctgtgta	tatgaatgtg	agtgcctctc	ctttccccac	3420
aggaaaaaat	ctacaacttt	catcaaatta	ctcagggaga	ctttattcta	aagagactga	3480
aaacgaccaa	catcaatttt	gactcctatg	ggcatctgta	aatagcttca	aggttttaag	3540
gtgaaatgtc	atgtaccaaa	atacacattc	tggagaagca	ggaagctaca	gaccaacttg	3600
agatgaaagt	ctcatatcaa	tgttttccca	agtgtgctcc	ttggaataca	ggttgacatg	3660
atatgatgcc	cagcaaggga	aacaaaacat	attcatgttc	aaattagttg	gggaaatgct	3720
ggactaaata	aggtttgatg	ggattctttt	ttctgcagga	cttctcagaa	ggggctagag	3780
taggcaaagt	ttcccagatt	tacctaataa	aagcattgtt	tctgtgggag	tttcatttgt	3840
tattacatgt	ttcctgaatg	cagattcata	gactatcctt	tggggaaccc	tegteeteae	3900
gggatgtatg	ttcatggtgg	tgtcttcgag	tttgtgccct	tgtgaagcat	tctggcagca	3960
agcgtctgaa	cacttccaaa	agggggcgat	atttaggaga	aatcgctcag	cctgaattag	4020
aacaaatgca	gctgctggtg	tctcttggtg	cctgggagcc	ctagagtgtc	agagggagga	4080
gcgtgcacac	tggaaccagc	agcctggtgc	tgcgtctcag	ctctgtcgct	aactggctat	4140
gcacctctgg	gcatggcact	taacccttct	gagececage	ccgccatctg	taaaaagggc	4200
ttgatgtgag	gattgaatga	gatcatgcag	ggaacacaat	gtctggcact	tggaagcgtc	4260
caccataaag	agccaaggca	gtagatggcc	cagctgggtt	tgttccaggc	agagtttacc	4320
ctctgccctg	gaggetecag	gaaatgctgc	cacgtggctc	ctattgcctt	aaccacatcc	4380
gacctgttcc	tgacagctcc	ccacatctcc	agctcctttg	ctggtgctcc	aggcacctcc	4440

aaacgtggcg	agcccctctc	ccctgccctc	ttgtggcagc	tgacctggca	ggagtgggac	4500
caagacatcc	aaggcagctc	ctttccacct	gcatgggcac	tttcctcagg	acateettge	4560
ccctggcacc	accttgggcc	agcaagccac	atggaaatgg	atgcagaggc	accactgttt	4620
gctgacaatt	atacactgtc	cttaaggtca	cccttggcga	tctgtcacca	ggagcagaca	4680
aacccacacc	tcaaccatcc	catcagagct	tgtttctatc	tgcatctgtc	atcgctgatc	4740
gcatttgaat	gggtttagtc	tctattttaa	ataaaagatt	tatgccttag	ctgtcagagc	4800
ctgcctttat	ttgaaaattt	aatcttgttt	ctaggagtct	agattaactt	attagattta	4860
ggcgtccctc	gtgggtctct	gagagaggag	gagtagattc	tectecetge	attcggccct	4920
gcacacccga	cagtgagagc	caagagctgg	atgggcttct	ccatccagca	cgcccaggct	4980
ggacagaggc	ccccaactca	ggcaactttg	tcgggtaacc	gtgtgtccag	ggagtgcttt	5040
cttgcacgct	ccgtctccgg	gccagcttcc	aggacctgtg	ctcactgcaa	gggacaccca	5100
tegageegge	cctttctcag	aggttttggg	gaggetteag	gaaggacccc	cagtgggggc	5160
ccagcttgtc	aacatgggct	gtgccaagga	gttctgagtt	tccttcaggt	ctgtattgta	5220
tcttccaccc	cctcagagct	ccctccctac	tgcttagacc	acacgaagct	gtggggctgt	5280
gggcagccag	ttcacttccc	tgaccttgtc	tgcaggtgga	gacagtggca	gtgcccctcc	5340
cgggctgctg	cgtcactcag	tgtaaaagca	gggaggcact	ggagagetge	tgtctgcaag	5400
tttgttgcta	cttcaaaagg	tgcaggtggg	ccctcacctc	ctttagaggt	gaggatgagc	5460
tacccaaagt	gaaaaggagc	ttctcagcgt	cgcaatggag	tcacggccag	gctgcccaca	5520
ccagccgtcc	ggacctgcac	cagtgccacg	gggtctgccc	catcttctct	teceteteet	5580
teceetetee	ctctctccc	ctgtctcttt	ctcctctctc	catgctattg	actgaatgtt	5640
tgaattccct	gcaaatgcat	tcctaacccc	caatgtgact	gtgtttggag	acagggtctt	5700
taggaggtaa	ctgaggttaa	atgaggttgt	aaagatgggg	ccctgaaccg	atgggactgg	5760
ggtccttatg	agaagaggaa	aaggggtccc	tccccatgga	gggacgacca	cagcgaggca	5820
gcagccgccc	acacgccaga	gaaggggact	cagagggaag	ccttgcttca	ccggcacctt	5880
gatcttgact	cctagcctcc	agaattgtga	taaataaatt	tctgttgctt	aagcccc	5937
<210> SEQ : <211> LENG <212> TYPE <213> ORGAL	ΓH: 2364	sapiens				
<400> SEQUI	ENCE: 30					
ctgctgaaaa	agcagaaaga	gattaccagc	cacagacggg	tcatgagcgc	ggtattactg	60
ctggccctcc	tggggttcat	cctcccactg	ccaggagtgc	aggegetget	ctgccagttt	120
gggacagttc	agcatgtgtg	gaaggtgtcc	gacctgcccc	ggcaatggac	ccctaagaac	180
accagetgeg	acageggett	ggggtgccag	gacacgttga	tgctcattga	gageggaeee	240
caagtgagcc	tggtgctctc	caagggctgc	acggaggcca	aggaccagga	geceegegte	300
actgagcacc	ggatgggccc	cggcctctcc	ctgatctcct	acaccttcgt	gtgccgccag	360
gaggacttct	gcaacaacct	cgttaactcc	ctcccgcttt	gggccccaca	gcccccagca	420

gacccaggat ccttgaggtg cccagtctgc ttgtctatgg aaggctgtct ggaggggaca

acagaagaga tetgececaa ggggaceaca caetgttatg atggeeteet caggeteagg

480

540

ggaggaggca	tcttctccaa	tctgagagtc	cagggatgca	tgccccagcc	agtttgcaac	600
ctgctcaatg	ggacacagga	aattgggccc	gtgggtatga	ctgagaactg	cgatatgaaa	660
gattttctga	cctgtcatcg	ggggaccacc	attatgacac	acggaaactt	ggctcaagaa	720
cccactgatt	ggaccacatc	gaataccgag	atgtgcgagg	tggggcaggt	gtgtcaggag	780
acgctgctgc	tcctagatgt	aggactcaca	tcaaccctgg	tggggacaaa	aggctgcagc	840
actgttgggg	ctcaaaattc	ccagaagacc	accatccact	cagcccctcc	tggggtgctt	900
gtggcctcct	atacccactt	ctgctcctcg	gacctgtgca	atagtgccag	cagcagcagc	960
gttctgctga	actccctccc	tcctcaagct	gcccctgtcc	caggagaccg	gcagtgtcct	1020
acctgtgtgc	agccccttgg	aacctgttca	agtggctccc	cccgaatgac	ctgccccagg	1080
ggcgccactc	attgttatga	tgggtacatt	catctctcag	gaggtgggct	gtccaccaaa	1140
atgagcattc	agggctgcgt	ggcccaacct	tccagcttct	tgttgaacca	caccagacaa	1200
atcgggatct	tctctgcgcg	tgagaagcgt	gatgtgcagc	ctcctgcctc	tcagcatgag	1260
ggaggtgggg	ctgagggcct	ggagtctctc	acttgggggg	tggggctggc	actggcccca	1320
gcgctgtggt	ggggagtggt	ttgcccttcc	tgctaactct	attaccccca	cgattcttca	1380
ccgctgctga	ccacccacac	tcaacctccc	tctgacctca	taacctaatg	gccttggaca	1440
ccagattctt	tcccattctg	tccatgaatc	atcttcccca	cacacaatca	ttcatatcta	1500
ctcacctaac	agcaacactg	gggagagcct	ggagcatccg	gacttgccct	atgggagagg	1560
ggacgctgga	ggagtggctg	catgtatctg	ataatacaga	ccctgtcctt	tctcccagtg	1620
ctgggatttc	tccatgtgag	ggggcagcag	gacacccagg	gatctagcgt	gggggaggag	1680
aggagcctaa	tgagaaaatg	accatctaaa	gcctgccctt	cattggtctg	gttcacgtct	1740
ccaaaccagc	ttggatggta	gcagagactt	cagggtgctc	cagccaaacg	tatttgggca	1800
tcaccatgac	ctgggagggg	aagatgcact	gagacgtatg	aggcttccag	cctagcagcc	1860
agggccctag	cacaaacagg	aggctcgccc	catctgagca	actgcaggag	aggttagtac	1920
agtcatgcat	tgcttaacga	cagggacgtg	tcgttagaaa	tgtgtcgtta	ggtgatttta	1980
tgaccatagg	aacattgtag	cgtgcactta	caccaaccca	gatggtacag	cccaatacac	2040
acccaggatg	gacgctagag	tcgactgctc	ctaggctaca	agcctgcagt	gcatgttatg	2100
gtgtgaatac	tgcaggcaat	cttaacacca	cggcaagtat	ttgtgcatct	acacacatct	2160
aaacatagaa	aaggtacagc	ataaatacac	tattgtcatc	tcagcagacc	accgttctat	2220
acgcaattcg	tcgctgaccc	aaacgttgct	atgtagcatc	tgcgtatcgt	gggataattg	2280
acatgagggc	ttgagagaac	tccagaaaaa	aatgggttag	cattttccca	gagctgttat	2340
cattgggtct	ctcttaccac	cata				2364
<210> SEQ 3						

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 31

atgcgcagac cgaggcaggg aggcggggt gcgggaggct ccgcggctgc gcgggcgcgt 60 gctggtggcc tcggcggagg ctcagtcccg gcccgcgccc gcggcgcccc cgctgcggcc 120 cgagcggcct ggctgcggga tctgtgcgca cggatggcgc ggccgccccg gcagcacccg

ggggtetggg egtegetget cetgetgeta etgaegggge	ccgccgcctg	cgcagccagc	240
cccgcggacg acggtgcggg cccggggggc cggggacccc	ggggacgcgc	gcgggggac	300
acgggcgccg acgaggcggt gccgcgccac gactcctcct	acggcacctt	cgcgggggag	360
ttctacgacc tgcgctacct gtcggaggag ggttacccct	tccctactgc	tcctcctgtg	420
gatccatttg ccaaaatcaa agtggacgac tgtggaaaaa	ctaagggatg	ctttagatat	480
ggcaaaccag gctgtaatgc agagacctgt gactatttcc	tcagctaccg	gatgataggg	540
gctgatgtag aatttgagct gagtgcagac acagatggtt	gggtagcagt	tggattctct	600
tcagacaaga aaatgggtgg tgatgatgtc atggcctgcg	tccatgatga	caatggcagg	660
gtccgcatac agcacttcta taatgtaggc cagtgggcaa	aggagattca	gagaaaccct	720
gccagagatg aagaaggagt ttttgagaac aatcgcgtca	cctgcagatt	taaacgccct	780
gtgaatgttc ccagagatga aacaattgtt gatctgcatt	tgagttggta	ttatctgttt	840
gcttggggtc cagccattca gggctctatc actcgacatg	atatagactc	accgccggct	900
tcagagcgtg ttgtcagtat ttacaagtat gaagacattt	ttatgccatc	agctgcctat	960
caaaccttet catetecatt ttgtttgett etgattgttg	ctctgacctt	ctacctattg	1020
atgggaaccc cctaaccaca gctgcagggc caacagatta	catggattgg	gaagtcttta	1080
gtataaatat atttttaaa gaatatccag tataatttta	gcttcaatta	tttaagaaaa	1140
aaaacctcat ataatttcag ctttttggaa gaaagaacaa	gcttctttt		1189
<210> SEQ ID NO 32 <211> LENGTH: 1272 <212> TYPE: DNA <213> ORGANISM: Homo sapiens			
<400 SEQUENCE: 32			
<400> SEQUENCE: 32	ccagagggg	tagggaggt	60
gcaaaaccgt gagctggatt tataatcgcc ctataaagct			60
gcaaaaccgt gagctggatt tataatcgcc ctataaagct	gagcaacggc	ctcgtgattt	120
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctcccact ctgcccccgc	gagcaacggc	ctcgtgattt	120 180
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc	gagcaacggc ctaccccgga gagagggaac	ctcgtgattt gccgtgcagc tagcgagaac	120 180 240
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg	gagcaacggc ctaccccgga gagagggaac tcagggccga	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga	120 180 240 300
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctcccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagag gaaaggcggg agtgcccggc	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga agagccgagg	120 180 240 300 360
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagaa gaaaggcggg agtgcccggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga agagccgagg cgggacgacc	120 180 240 300
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagag gaaaggcggg agtgcccggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc	ctegtgattt geegtgeage tagegagaae geegagegga agageegaee egggaegaee	120 180 240 300 360 420
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagag gaaaggcggg agtgcccggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccacaacg tacgatacct	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc	ctegtgattt geegtgeage tagegagaae geegagegaa agageegagg egggaegaee gggaegaee	120 180 240 300 360 420
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagaag gaaaggcggg agtgcccgggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct cccaatacca ctaacctgcg ccccacaacg tacgatacct tgcaccagaa aactggggct caagatctgc ggcttcttgac	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga agagccgacg cgggacgacc gggagcgac ggcccatgga cagcctggaa	120 180 240 300 360 420 480
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagag gaaaggcggg agtgcccggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct cccaatacca ctaacctgcg ccccacaacg tacgatacct tgcaccagaa aactggggct caagatctgc ggcttcttgc	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa cctccaagaa	ctegtgattt geegtgeage tagegagega geegagegae egggaegaee gggaegaee ggeecatgga eageetggaa eageetggaa	120 180 240 300 360 420 480 540
gcaaaaccgt gagctggatt tataatcgcc ctataaagctgcagaagagagac cccgccgctc cgccgactag ctgccccggccccgcccc	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa cctccaagaa agactgactt	ctcgtgattt gccgtgcagc tagcgagcaga gccgagcgga agagccgacg cgggacgacc gggagcgac ggcccatgga cagcctggaa cctgctttcc ctctaatctg	120 180 240 300 360 420 480 540 600
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagaa gaaaggcggg agtgcccggg tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct cccaatacca ctaacctgcg ccccacaacg tacgatacct tgcaccagaa aactggggct caagatctgc ggcttcttgc gagaagagtc gccttgtgag tgccttcaag gagaggcaat tgtgaaaaca gcgaccggga tgcccgcttc cggcgcacag ttttgctagag atctgcttcc ggctaagaac ggtgaggagg	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa cctccaagaa agactgactt aaaccgtgca	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga agagccgagc cgggacgacc gggagcgac ggccatgga cagcctggaa cctgcttcc ctctaatctg attcctcctg	120 180 240 300 360 420 480 540 600 660 720 780
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcccggc tcgctgggcg ctgtgcagag gaaaggcggg agtgcccggc tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct cccaatacca ctaacctgcg ccccacaacg tacgatacct tgcaccagaa aactggggct caagatctgc ggcttcttgc gagaagagtc gccttgtgag tgccttcaag gagaggcaat tgtgaaaaca gcgaccggga tgcccgcttc cggcgcacag tttgctagag atctgcttcc ggctaagaac ggtgaggagc gaagtggtgg acatactcct caactatgtc cgcaagacat	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa cctccaagaa agactgactt aaaccgtgca ttgatcgctc	ctegtgattt geegtgeage tagegagaae geegagegaa agageegaee gggaegaee ggeeatgga cageetggaa cageetggaa cetgetttee ctetaatetg atteeteetg	120 180 240 300 360 420 480 540 660 720 780 840
gcaaaaccgt gagctggatt tataatcgcc ctataaagct gcagaggagc cccgccgctc cgccgactag ctgcccccgc ccccgccgat ccggtccccg cctccccact ctgcccccgc cgcctctccg aatctctctc ttctcctggc gctcgcgtgc gaggaagcag ctggaggtga cgccgggcag attacgcctg tcgctgggcg ctgtgcagaa gaaaggcggg agtgcccggg tggcctgttt ctgcgccgga ccagtcgagg actctggaca gagctgatgg cgtcttcgac cccatcttcg tccgcaacct cccaatacca ctaacctgcg ccccacaacg tacgatacct tgcaccagaa aactggggct caagatctgc ggcttcttgc gagaagagtc gccttgtgag tgccttcaag gagaggcaat tgtgaaaaca gcgaccggga tgcccgcttc cggcgcacag ttttgctagag atctgcttcc ggctaagaac ggtgaggagg	gagcaacggc ctaccccgga gagagggaac tcagggccga tcgctgtcgc gtagaggccc cctcgaacgc ggtgcggcgt aaaggaccaa cctccaagaa agactgactt aaaccgtgca ttgatcgctcaa	ctcgtgattt gccgtgcagc tagcgagaac gccgagcgga agagccgacg cgggacgacc gggacgacc ggcccatgga cagcctggaa cctgcttcc ctctaatctg attcctcctg caccaaggtg cttggagctc	120 180 240 300 360 420 480 540 600 660 720 780

ggggttcgca caggtcatcc tcgatttttc aaccagctct ccactggatt ggatattatt 1020

-continued		
ggcctagctg gagaatggct gacatcaacg gccaatacca acatgccatc agacatgagg	1080	
gagtgttggt tgctacggtg atggggctca gagcagaacc aaagcatgat tgtgacctcc	1140	
agaggtgatg gtaactgcac acatggtttc caagggtctt cctcctaaat ttccaggggc	1200	
ctcccaagga aaatggacat attctttttg gaaataaaat acttctacca acataaaaaa	1260	
aaaaaaaaa aa	1272	
<210> SEQ ID NO 33 <211> LENGTH: 2621 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 33		
cettttttgg cetegaegge ggeaacceag ceteceteet aacgeeetee geetttggga	60	
ccaaccaggg gagctcaagt tagtagcagc caaggagagg cgctgccttg ccaagactaa	120	
aaagggaggg gagaagagag gaaaaaagca agaatccccc acccctctcc cgggcggagg	180	
gggcgggaag agcgcgtcct ggccaagccg agtagtgtct tccactcggt gcgtctctct	240	
aggageegeg egggaaggat getggteege aggggegege gegeagggee eaggatgeeg	300	
cggggctgga ccgcgctttg cttgctgagt ttgctgcctt ctgggttcat gagtcttgac	360	
aacaacggta ctgctacccc agagttacct acccagggaa cattttcaaa tgtttctaca	420	
aatgtateet accaagaaac tacaacacet agtaceettg gaagtaceag eetgcaeeet	480	
gtgtctcaac atggcaatga ggccacaaca aacatcacag aaacgacagt caaattcaca	540	
tctacctctg tgataacctc agtttatgga aacacaaact cttctgtcca gtcacagacc	600	
totgtaatca gcacagtgtt caccacccca gccaacgttt caactccaga gacaaccttg	660	
aageetagee tgteacetgg aaatgtttea gaeettteaa eeactageae tageettgea	720	
acatetecca etaaaceeta tacateatet teteetatee taagtgacat caaggeagaa	780	
atcaaatgtt caggcatcag agaagtgaaa ttgactcagg gcatctgcct ggagcaaaat	840	
aagacctcca gctgtgcgga gtttaagaag gacaggggag agggcctggc ccgagtgctg	900	
tgtggggagg agcaggctga tgctgatgct ggggcccagg tatgctccct gctccttgcc	960	
cagtetgagg tgaggeetea gtgtetaetg etggtettgg ecaacagaac agaaatttee	1020	
agcaaactcc aacttatgaa aaagcaccaa tctgacctga aaaagctggg gatcctagat	1080	
ttcactgagc aagatgttgc aagccaccag agctattccc aaaagaccct gattgcactg	1140	
gtcacctcgg gagccctgct ggctgtcttg ggcatcactg gctatttcct gatgaatcgc	1200	
cgcagctgga gccccacagg agaaaggctg ggcgaagacc cttattacac ggaaaacggt	1260	
ggaggccagg gctatagctc aggacctggg acctcccctg aggctcaggg aaaggccagt	1320	
gtgaaccgag gggctcagga aaacgggacc ggccaggcca	1380	
gcaagacaac acgtggtggc tgataccgaa ttgtgactcg gctaggtggg gcaaggctgg	1440	
gcagtgtccg agagagcacc cctctctgca tctgaccacg tgctaccccc atgctggagg	1500	
tgacatetet taegeecaae eetteeecae tgeacacaee teagaggetg ttettgggge	1560	
cotacacott gaggaggggc aggtaaactc otgtoottta cacattoggc toootggagc	1620	
cagactotgg tottotttgg gtaaacgtgt gaoggggaa agocaaggto tggagaagot	1680	
	1000	

cccaggaaca atcgatggcc ttgcagcact cacacaggac cccttcccc tacccctcc 1740

	Concinued	
tototgoogo aatacaggaa cooccaggg	g aaagatgage ttttetagge tacaatttte	c 1800
teccaggaag etttgatttt tacegttte	tecetgtatt ttetttetet aetttgagga	a 1860
aaccaaagta accttttgca cctgctctc	: tgtaatgata tagccagaaa aacgtgttgc	1920
cttgaaccac ttccctcatc tctcctcca	a gacactgtgg acttggtcac cagctcctco	1980
cttgttctct aagttccact gagctccat	g tgccccctct accatttgca gagtcctgca	a 2040
cagttttctg gctggagcct agaacaggc	c teccaagttt taggacaaac ageteagtte	2100
tagtetetet ggggeeacae agaaactet	tttgggetee ttttteteee tetggatea	a 2160
agtaggcagg accatgggac caggtcttg	g agetgageet eteacetgta etetteegaa	a 2220
aaatcctctt cctctgaggc tggatcctag	g cettateete tgateteeat ggetteetee	2280
teceteetge egacteetgg gttgagetg	tgcctcagtc ccccaacaga tgcttttctç	2340
tetetgeete ceteaceetg ageceette	ttgctctgca cccccatatg gtcatagccc	2400
agatcagete etaaceetta teaceagete	g cetettetgt gggtgaeeea ggteettgtt	2460
tgctgttgat ttctttccag aggggttgag	g cagggateet ggttteaatg aeggttggaa	a 2520
atagaaattt ccagagaaga gagtattgg	g tagatatttt ttctgaatac aaagtgatgt	2580
gtttaaatac tgcaattaaa gtgatactg	a aacacaaaaa a	2621
<210> SEQ ID NO 34 <211> LENGTH: 1816 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 34		
ggcgaccacg gtgtcttcaa aagccccgt	agggttggct teetggggee ggaeegaetç	9 60
	agggttggct teetggggee ggaeegaetg	•
tgggtcagtt tgcaccagcg ctctggaato		g 120
tgggtcagtt tgcaccagcg ctctggaatc	gagttacgcg cgaaagggca gagtttctgg	g 120 : 180
tgggtcagtt tgcaccagcg ctctggaatc aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggc	gagttacgcg cgaaagggca gagtttctgg	g 120 180 2 240
tgggtcagtt tgcaccagcg ctctggaatc aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcd ggagtcgtgc gcagggggcg gggcttcgg	g gagttacgcg cgaaagggca gagtttctgggggggtctcagaa ggcccccggc agggccgctt	g 120 E 180 E 240 A 300
tgggtcagtt tgcaccagcg ctctggaatc aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggc ggagtcgtgc gcagggggg gggcttcggg cctgcgcttc gggggtggag tcggagcgg	g gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt c ctccagggac ctgcgcaggc gcgtgtgggc g aaggagccac agagaggcg gggcgtagga	120 180 2 240 4 300 4 360
tgggtcagtt tgcaccagcg ctctggaatcaggaaaccgc agcctctcaa ccgctgaccgggggggaact gaccacgcgc cagtcaggcgggagtcgggcgcttcggggagacgcgggggggg	g gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt c ctccagggac ctgcgcaggc gcgtgtgggc g aaggagccac agagagggcg gggcgtagga g gcggcggcgg tcatgcggga cgcggatgca	120 180 2 240 4 300 3 360 2 420
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc gcaggggggg gggcttcggg cctgcgcttc gggggtggag tcggagcggg gacgcaggcg gaggcgctga cggcggggag gtggacacag ccgcagctcc ggccggtgg	g gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtgggg g aaggagccac agagagggcg gggcgtagga g gcggcggcgg tcatgcggga cgcgggggg ggccggggtg gccacagctg ccgcgggggg	120 180 2 240 3 300 3 360 2 420 2 480
tgggtcagtt tgcaccagcg ctctggaatcaggaaaccgc agcctctcaa ccgctgaccagggggaact gaccacggc cagtcaggcgggagtcgggggggggg	e gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtgggc g aaggagccac agagagggcg gggcgtagga g gcggcggggg tcatgcggga cgcgggggga g ggccggggtg gccacagctg ccgcggggga a gctcccccag cgcacgcgc aggtccggga	120 180 2 240 3 300 3 360 2 420 2 480
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacggc cagtcaggc ggagtcgtgc gcaggggggg gggcttcgg cctgcgcttc gggggtggag tcggagcgga gacgcaggcg gaggcgctga cggcggggag gtggacacag ccgcagctcc ggccggtgga agagacgccg cgtctgcggc caggggggac gtgcctttcc cgacccctt ggaggcgga	g gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtgggc g aaggagccac agagagggcg gggcgtagga g gcggcggcgg tcatgcggga cgcgggatgca g gcccggggtg gccacagctg ccgcggggga a gctcccccag cgcacacact caccctcaga	120 180 2 240 3 300 3 360 2 420 2 480 2 540
tgggtcagtt tgcaccagcg ctctggaatcaggaaaccgc agcctctcaa ccgctgaccggggagact gaccacggcg cagtcagggggggggg	e gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggcgctt c ctccagggac ctgcgcaggc gcgtgtgggc g aaggagccac agagagggcg gggcgtagga g gcggcggggt ccatggcgga cgcgggggg a gctcccccag cgcacagctg ccgcggggga a cgaatgcggc cgcacatatt caccctcaga a atcgcccatg ggtccctggc accagatgca	120 180 240 300 360 420 480 2540 660
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc gcagggggggggggggggggggggggggg	e gagttacgeg egaaagggea gagtttetgeggggggggggggggg	120 180 240 300 360 420 480 540 600 660
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc gcagggggggggg	gagttacgcg cgaaagggca gagtttctgg gagtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtgggc gaaggagccac agagagggcg gggcgtagga gaggcggggg tcatgcggga cgcggggggg ggccggggtg gccacagctg ccgcgggggg gctcccccag cgcacatatt caccctcagg acgaatgcggc cgcacatatt caccctcagg acgacccatg ggtccctggc accagatgcc cccacagtga gtggcaggat cctggtcgtc ccgaatttccg tcatcaactt tcttgaccag	120 180 240 300 360 420 480 2540 2660 2720 780
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc ggagtcgtgc gagggggggggg	e gagttacgeg egaaagggea gagtttetgeg g ggteteagaa ggeeceegge agggeegett e etecagggae etgegeagge gegtgtggge g aaggageeae agagagggeg gggegtagga g geggeggegg teatgegga egegggggg g geeceegggg geeaeagetg eegeggggg a geteeceeag egeaegege aggteeggg a egaatgegge egeaeatatt eacceteage a ategeeeatg ggteeetgge accagatge e eteaeagtga gtggeaggat eetggtegte e egaattteeg teateaaett tettgaeeag e tttgggeeee eegttteeeg etaageetgg	120 180 240 300 360 420 480 2540 660 660 720 780 840
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc gagggggggggg	g gagttacgcg cgaaagggca gagtttctgg g ggtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtgggg g aaggagccac agagagggcg gggcgtagga g gcgcgggggg tcatgcggga cgcggggggg a gctccccag cgcacagctg ccgcgggggg a cgaatgcggc cgcacatatt caccctcaga a tcgcccatg ggtccctggc accagatgca cctcacagtga gtggcaggat cctggtcgta ccgaatttccg tcatcaactt tcttgaccaa cttttgggcccc ccgtttcccg ctaagcctga ccgctccttg taggcagtgc gtccatcctt	120 180 240 300 360 420 480 540 600 660 720 780 840 900
tgggtcagtt tgcaccagcg ctctggaate aggaaaccgc agcctctcaa ccgctgaccg ggcgggaact gaccacgcgc cagtcaggcg ggagtcgtgc gcagggggggggg	gagttacgcg cgaaagggca gagtttctgg gagtctcagaa ggcccccggc agggccgctt cctccagggac ctgcgcaggc gcgtgtggga gaaggagcac agagagggcg gggcgtagga gggcgggggg tcatgcggga cgcgggggga ggccggggtg gccacagctg ccgcggggga gctcccccag cgcacatatt caccctcaga acgaatgcggc cgcacatatt caccctcaga cctcacagtga gtggcaggat cctggtcgta cctcacagtga gtggcaggat cctggtcgta cctacagtga gtggcaggat cctggtcgta ccgaatttccg tcatcaactt tcttgaccaa ccttttgggcccc ccgtttcccg ctaagcctga ccgcgcgga gggcctcatg ttttatctga	120 180 240 300 360 420 480 2540 2660 720 780 840 900 960

agaattcaga tattcaagga gtacaaggaa attgaagaca atttaggaaa tggaagaaaa 1080 tgaaaatcaa ttgggttctg tcattcagga ttaactactg tcaacatttt ggaatacttc 1140

ctcagtttta cagttgcact t	tacatagtaa	atgtgtaact	gtaatataca	ccacataata	1200
tttgcaagtt tagtgttaaa t	ttttttcct	gatttttaaa	tctaacatga	gcttttttcc	1260
tctaacgatc agtgaagaaa g	gtgctggggc	aattgactag	tgtctggggc	aaggagttgg	1320
ctccctggaa aatacagtgt o	ctccagcctt	agggctcttt	tatagattct	atcagatttt	1380
ctgagagtga aaaggaagag g	gtacaactgc	tttattctc	agaaaacaag	gaaatggttt	1440
gatecttttg agtettgett t	tgaagatgtg	ctgtgtggga	ccagagcagc	tcttaactgt	1500
aggettgttt ceetetatgg a	aggcaacaaa	caccattctg	ggcaccctgg	ccagtgctgc	1560
ctaggtgaac atgagettet o	ctatcctggt	gggtggggac	agctgctagt	ccctgtcctg	1620
cttgcacact ggagttaccg t	ttcatcctct	cctgctgggg	tgatggcctt	ccctggtctt	1680
gggtagette eteacaegee t	tgtgctcacc	agtagtcgta	gtccgctgca	cactggaacg	1740
ggageetetg tggatateea g	gggttettte	cctgtgcagc	tctcttctct	ctggttctcc	1800
gccctgcaaa ctccag					1816
<210> SEQ ID NO 35 <211> LENGTH: 773 <212> TYPE: DNA <213> ORGANISM: Homo sa	apiens				
<400> SEQUENCE: 35					
gtggggtcag caagagaaac t	tctacggcta	tgggagagcc	tgcgttcacc	tcttttccga	60
gcccacctgt tctggggaag	ctcaaaagaa	acatgatgcc	ctgggcttta	cagaagaaac	120
gagaaatcca catggccaag (gcccatcgga	gacgagctgc	gaggtctgct	ctccccatga	180
gactcaccag ctgcatcttc	cggaggccgg	tgacaaggat	caggtctcat	cctgacaacc	240
aggtcagacg cagaaaaggg ç	gacgagcacc	tggagaagcc	gcagcaactc	tgcgcctacc	300
ggagactgca ggccctgcag	ccctgcagca	gccaaggaga	aggttcaagt	ccactgcatt	360
tggagagcgt cttaagtatc (cttgcaccgg	ggacggccgg	tgaatctctg	gacagagetg	420
gtgctgagcg tgtgcgcatc	ccgcttgagc	ccacccctgg	gcggtttcca	gctgtggcag	480
gggggccaac cccaggaatg g					540
ctcctgcaga tatccggaga (600
aggeettgea ggeagaeagg					660
cagtectggg cttteggtee (720
cacacttttc ccttccccac o	cagttcttta	ataaaagtat	ttgaaaggca	aca	773
<210> SEQ ID NO 36 <211> LENGTH: 773 <212> TYPE: DNA <213> ORGANISM: Homo sa	apiens				
<400> SEQUENCE: 36					
gtggggtcag caagagaaac t	tctacggcta	tgggagagcc	tgcgttcacc	tetttteega	60
gcccacctgt tctggggaag o	ctcaaaagaa	acatgatgcc	ctgggcttta	cagaagaaac	120
gagaaatcca catggccaag g	gcccatcgga	gacgagctgc	gaggtctgct	ctccccatga	180
gactcaccag ctgcatcttc					240
	_				

aggtcagacg cagaaaaggg gacgagcacc tggagaagcc gcagcaactc tgcgcctacc

ggagactgca	ggccctgcag	ccctgcagca	gccaaggaga	aggttcaagt	ccactgcatt	360	
tggagagcgt	cttaagtatc	cttgcaccgg	ggacggccgg	tgaatctctg	gacagggctg	420	
gtgctgagcg	tgtgcgcagc	ccgcttgagc	ccacccctgg	gcggtttcca	gctgtggcag	480	
gggggccaac	cccaggaatg	ggttgtcagc	teccacegee	cctctctggc	caattggtga	540	
ctcctgcaga	tatccggaga	caggccagga	gggtgaagaa	agccagggag	agactggcca	600	
aggccttgca	ggcagacagg	ctggccaggc	aggcagaaat	gctgacatgt	agatgaagcg	660	
cagtcctggg	ctttcggtcc	ctttctttta	atgcccatcc	tcattcctac	tctgaattgt	720	
cacacttttc	ccttccccac	cagttcttta	ataaaagtat	ttgaaaggca	aca	773	
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	ΓH: 1583	sapiens					
<400> SEQUI	ENCE: 37						
ctcctgggcc	tctcaaagtc	tgageceege	teegetgatg	cctgtctgca	gaatccgcac	60	
caaccagcac	catgcccatg	actctggggt	actgggacat	ccgtgggctg	gcccacgcca	120	
teegettget	cctggaatac	acagactcaa	gctatgtgga	aaagaagtac	acgctggggg	180	
acgctcctga	ctatgacaga	agccagtggc	tgaatgaaaa	attcaagctg	ggcctggact	240	
ttcccaatct	gccctacttg	attgatgggg	ctcacaagat	cacccagagc	aatgccatcc	300	
tgcgctacat	tgcccgcaag	cacaacctgt	gtggggagac	agaagaggag	aagattcgtg	360	
tggacatttt	ggagaaccag	gttatggata	accacatgga	gctggtcaga	ctgtgctatg	420	
acccagattt	tgagaaactg	aagccaaaat	acttggagga	actccctgaa	aagctaaagc	480	
tctactcaga	gtttctgggg	aagcggccat	ggtttgcagg	agacaagatc	acctttgtgg	540	
atttccttgc	ctatgatgtc	cttgacatga	agcgtatatt	tgagcccaag	tgcttggacg	600	
ccttcctaaa	cttgaaggac	ttcatctccc	gctttgaggg	tttgaagaag	atctctgcct	660	
acatgaagtc	cagccaattc	ctccgaggtc	ttttgtttgg	aaagtcagct	acatggaaca	720	
gcaaataggg	cccagtgatg	ccagaagatg	ggagggagga	gccaaccttg	ctgcctgcga	780	
ccctggagga	cagcctgact	ccctggacct	gccttcttcc	tttttccttc	tttctactct	840	
cttctcttcc	ccaaggcctc	attggcttcc	tttcttctaa	catcatccct	ccccgcatcg	900	
aggetettta	aagcttcagc	tecceactgt	cctccatcaa	agteceeete	ctaacgtctt	960	
cctttccctg	cactaacgcc	aacctgactg	cttttcctgt	cagtgctttt	ctcttctttg	1020	
agaagccaga	ctgatctctg	agctccctag	cactgtcctc	aaagaccatc	tgtatgccct	1080	
getecetttg	ctgggtccct	accccagctc	cgtgtgatgc	ccagtaaagc	ctgaaccatg	1140	
cctgccatgt	cttgtcttat	tecetgagge	tecettgaet	caggactgtg	ctcgaattgt	1200	
gggtggtttt	ttgtcttctg	ttgtccacag	ccagagctta	gtggatgggt	gtgtgtgtgt	1260	
gtgtgttggg	ggtggtgatc	aggcaggttc	ataaatttcc	ttggtcattt	ctgccctcta	1320	
gccacatccc	tetgtteete	actgtgggga	ttactacaga	aaggtgctct	gtgccaagtt	1380	
cctcactcat	tegegeteet	gtaggccgtc	tagaactggc	atggttcaaa	gaggggctag	1440	
gctgatgggg	aagggggctg	agcagctccc	aggcagactg	ccttctttca	ccctgtcctg	1500	
atagacttcc	ctgatctaga	tatccttcgt	catgacactt	ctcaataaaa	cgtatcccac	1560	

cgtattgtaa aaaaaaaaaa aaa	1583
<210> SEQ ID NO 38 <211> LENGTH: 1862 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 38	
acccaaagtc ttcaagcctg gagtteetge ttggttette etgaggtetg agcacettet	60
agactacatc cagatetgtt tteeetgeag atteatgaag atgageatee ggactecace	120
cagactectg gagettgeag ggeggageet getgagggae caagetttgg ceatgteeae	180
cctggaggag ctgcccacag aacttttccc cccactgttc atggaggcct tcagcaggag	240
acgetgtgag geeetgaage tgatggtgea ggeetggeee tteegeegee teeetetgag	300
gcctctgata aagatgcctt gtctggaggc cttccaagct gtgctcgatg ggcttgatgc	360
actgettace caaggggtte gteecaggag gtggaaacte caagtgetgg atttacagga	420
tgtctgtgag aacttctgga tggtttggtc tgaagctatg gcccatgggt gcttcctcaa	480
tgccaagagg aacaaaaaac cagtgcagga ctgtccaagg atgagaggac ggcagccctt	540
gactgtgttc gtagaacttt ggctcaagaa caggactctg gatgaatacc tcacctacct	600
ccttctatgg gtcaagcaga ggaaagattt actacacctg tgctgtaaga agctgaaaat	660
tttgggaatg cccttccgca atatcagaag catcctgaaa atggtgaacc tagactgtat	720
ccaggaggtg gaagtgaatt gcaagtgggt actgcccatc ctgacacagt ttaccccata	780
cctgggccac atgaggaatc ttcagaagct cgttctctcc cacatggatg tctctcgcta	840
cgtttcccca gagcagaaga aggagattgt tacccagttc accactcagt tcctcaagct	900
gcgctgcctc caaaagcttt atatgaactc tgtttctttc ctcgaaggcc acctggacca	960
gctgctcagc tgtctgaaga cctcgttaaa agtcctcaca ataactaact gtgtgctttt	1020
ggaatcagac ttgaagcatc tatcccagtg cccgagtatc agtcaactaa agaccctgga	1080
cctgagtggc atcagactga ccaattatag tcttgtgcct ctccaaattc tcctagaaaa	1140
agttgcagcc accettgagt acctggattt agatgactgt ggcatcatag actcccaagt	1200
caacgccatc ctgcctgccc tgagccgctg ctttgagctc aacaccttca gcttctgtgg	1260
aaatcccatc tgcatggcca ccctggagaa cctgctgagc cacacaatca tactcaaaaa	1320
cttatgtgtg gagctgtatc ctgccccccg agagagttat ggtgctgatg gtactctctg	1380
ctggagcaga tttgctcaaa ttagggctga gctgatgaac agagtgaggg acttaaggca	1440
ccccaagagg atcttgttct gtactgacta ctgccctgac tgtggcaaca ggtcatttta	1500
tgacctggag gcagatcaat actgctgttg aatgcctgcc tatttggatg ggtatgtcaa	1560
acgctttctt ctggacactt ggaaactaaa acctaggtct taggtacatc ctaaagggag	1620
cacagaaccc atcatttcac acataggctc tgaaagtggg aaaggaaagc tgatcaagca	1680
ggggccggac ttgggggaaa tgttgccatg gattcgatgg gactttgggg acctgtgtcc	1740
tgtagattcg aaaatgggaa tctgaatgtc tagagtggaa ttcaggcttg agaatacatg	1800
agggagttac tcttgcatgg atggttgtaa agaaacaatc agaaataaag gaaaactgag	1860
ca	1862
	1002

<210> SEQ ID NO 39

-continued

<211> LENGTH: 1855 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 39 acccaaagtc ttcaagcctg gagttcctgc ttggttcttc ctgaggactg agcaccttct 60 agactacatc cagatctgtt ttccctgcag attcgtgaag atgagcatcc ggactccacc 120 cagactcctg gagcttgcag ggcggagcct gctgagggac caagccttgg ccatgtccac 180 cctggaggag ctgcccacag aacttttccc cccactgttc atggaggcct tcagcaggag acgetgtgag geeetgaage tgatggtgea ggeetggeee tteegeegee teeetetgag geetetgata aagatgeett gtetggagge etteeaaget gtgetegatg ggetggatge actgcttacc caaggggttc atcccaggag gtggaaactt caagtgctgg atttacagga 420 tqtctqtqaq aacttctqqa tqqtttqqtc tqaaqctatq qcccatqqqt qcttcctcaa 480 tgccaagagg aacaaaaaac cagtgcagga ctgtccaagg atgagaggac agcagccctt 540 600 qactgtqttc qtaqaacttt qqctcaaqaa caqqactctq qatqaatacc tcacctqcct ccttctatgg gtcaagcaga ggaaagattt actacacctg tgctgtaaga agctgaaaat 660 tttqqqaatq cccttccqca atatcaqaaq catcctqaaa atqqtqaacc taqactqtat 720 ccaggaggtg gaagtgaatt gcaagtgggt actgcccatc ctgacacagt ttaccccata 780 cctgggccac atgaggaatc ttcagaagct cgttctctcc cacatggatg tctctcgcta 840 cgtttcccca gagcagaaga aggagattgt tacccagttc accactcagt tcctcaagct 900 gtgctgcctc caaaagcttt ctatgaactc tgtttctttc ctcgaaggcc acctggacca 960 gctgctcagc tgtctgaaga cctcgttaaa ggtcctcaca ataactaact gtgtgctttt 1020 ggaatcagac ttgaagcatc tatcccagtg cccgagtatc agtcaactaa agaccctgga 1080 cctgagtggc atcagactga ccaattacag tcttgtgcct ctccaaattc tcctagaaaa 1140 agttgcagcc accettgagt acctggattt agatgactgt ggcatcatag actcccaagt 1200 caacgccatc ctgcctgccc tgagccgctg ctttgagctc aacaccttca gcttctgtgg 1260 aaatcccatc tccatggcca ccctggagaa cctgctgagc cacacaatca tactcaaaaa 1320 1380 cttatgcgtg gagctgtatc ctgccccccg ggagagttat gatgctgatg gtactctctg ctggagcaga tttgctcaaa ttagggctga gctgatgaag agagtgaggg acttaaggca 1440 ccccaagagg atcttgttct gtactgactg ctgccctgac tgtggcaaca ggtcatttta 1500 tgacctggag gcagatcaat gctgctgttg aatgcctgcc tatttgggtg gatatgtcaa acqctttctt ctqqacactt qqaaactaaa acctaqqtct taqqtacatc ctataqqqaq 1620 1680 ggggcaggac ttgggggaag tgttgccatg gattcgatgg gactttgggg acctgtgtcc 1740 tgtagagtgg aaaatgggaa tttgaatgtc tagagtggag gcttgagaat acttgaggga gttactcttg gatgcatggt tgtaaagaaa caatcagaaa taaaggaaaa ctgag 1855

<210> SEQ ID NO 40

<211> LENGTH: 1648

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 40

gcagggaatg agctcctgat	cttggggagt	acttaaaaga	attttttctt	ggaagaatta	60	
ctgcaggaaa cattcataga	accttgggaa	acatgaattc	tggaatcttg	caagtcttcc	120	
agagggcact cacctgtccc	atctgcatga	actacttcct	agacccagtc	accatagact	180	
gtgggcacag cttttgccgg	ccctgtttgt	acctcaactg	gcaagacacg	gcagttcttg	240	
ctcagtgctc tgaatgcaag	aagacaacgc	ggcagagaaa	cctcaacact	gacatttgtt	300	
tgaagaacat ggctttcatt	gccagaaaag	ccagcctccg	gcaattcctt	agctctgagg	360	
agcaaatatg tgggatgcac	agagagacaa	agaagatgtt	ctgtgaagtg	gacaagagcc	420	
tgctctgttt gccgtgctcc	aactctcagg	agcaccggaa	tcacatacac	tgtcccattg	480	
agtgggctgc tgaggaacgc	cgggaggagc	tcctaaaaaa	aatgcagtct	ttatgggaaa	540	
aagcttgtga aaatctcaga	aatctgaaca	tggaaaccac	aagaaccaga	tgctggaagg	600	
attatgtgag tttaaggata	gaagcaatca	gagctgaata	tcagaagatg	cctgcatttc	660	
tccatgaaga agagcaacat	cacttggaaa	ggctgcgaaa	ggagggcgag	gacattttc	720	
agcaactcaa tgaaagcaaa	gccagaatgg	aacattccag	ggagctttta	agaggaatgt	780	
atgaggatct gaagcaaatg	tgccataaag	cagatgtgga	gctactccag	gcttttggag	840	
acatattaca caggtatgag	tctctgctgc	tgcaagtgtc	tgagcctgtg	aatccagagc	900	
tcagtgcagg gcccatcact	ggactgctgg	acagcctcag	tggattcaga	gttgatttta	960	
ctctgcagcc tgaaagagcc	aatagtcata	tcttcctgtg	tggagatttg	agaagcatga	1020	
atgttggatg tgaccctcaa	gatgatcccg	atatcactgg	aaaatctgaa	tgttttcttg	1080	
tatggggggc tcaggctttc	acatctggca	aatattattg	ggaggttcat	atgggggact	1140	
cttggaattg ggcttttggt	gtctgtaaca	attattggaa	agagaagaga	cagaatgaca	1200	
agatagatgg agaggaggga	ctctttcttc	ttggatgtgt	taaggaggac	actcactgca	1260	
gtctctttac cacctcccca	cttgtggtgc	aatatgttcc	aagacctacc	agcacagtag	1320	
gattattcct ggattgtgaa	ggtagaaccg	tgagctttgt	tgatgttgat	caaagttccc	1380	
tgatatacac catccccaat	tgctccttct	cacctcctct	caggcctatc	ttttgctgta	1440	
gtcacttctg accagagaaa	agtcagaaat	gtgcctgtat	gctctgggaa	cctgtttatc	1500	
ccagaaagcc ctctttttcg	cacctcatca	aacagaacaa	ataagttata	tttaatgtct	1560	
ttagttgcat tctaatgtca	tcaaaactca	tttatagtgt	ttctattaaa	tatggtgaaa	1620	
acattaaaaa aaaaaaaaaa	aaaaaaaa				1648	
<210> SEQ ID NO 41 <211> LENGTH: 1617 <212> TYPE: DNA <213> ORGANISM: Homo s	apiens					
<400> SEQUENCE: 41						
ccacccccc ccccaccac	caccaccacc	accaccccgc	cggccggccc	caggcctcga	60	
cgccctgggt cccttccggg	gtggggcggg	ctgtcccagg	ggggctcacc	gccattcatg	120	
aaggggtgga geetgeetge	ctgtgggcct	ttacaagggc	ggctggctgg	ctggctggct	180	
gtccgggcag gcctcctggc					240	

agecegeegg cetetetetg ecegegteeg teegtgaaat teeggeeggg geteaeegeg

atggccctcc cgacaccctc ggacagcacc ctccccgcgg aagcccgggg acgaggacgg

300

360

cgacggagac	tcgtttggac	cccgagccaa	agcgaggccc	tgcgagcctg	ctttgagcgg	420	
aacccgtacc	cgggcatcgc	caccagagaa	cggctggccc	aggccatcgg	cattccggag	480	
cccagggtcc	agatttggtt	tcagaatgag	aggtcacgcc	agctgaggca	gcaccggcgg	540	
gaatctcggc	cctggcccgg	gagacgcggc	ccgccagaag	gccggcgaaa	geggaeegee	600	
gtcaccggat	cccagaccgc	cctgctcctc	cgagcctttg	agaaggatcg	ctttccaggc	660	
atcgccgccc	gggaggagct	ggccagagag	acgggcctcc	cggagtccag	gattcagatc	720	
tggtttcaga	atcgaagggc	caggcacccg	ggacagggtg	gcagggcgcc	cgcgcaggca	780	
ggcggcctgt	gcagcgcggc	ccccggcggg	ggtcaccctg	ctccctcgtg	ggtcgccttc	840	
gcccacaccg	gcgcgtgggg	aacggggctt	cccgcacccc	acgtgccctg	egegeetggg	900	
gctctcccac	agggggcttt	cgtgagccag	gcagcgaggg	ccgcccccgc	gctgcagccc	960	
agccaggccg	cgccggcaga	gggggtctcc	caacctgccc	cggcgcgcgg	ggatttcgcc	1020	
tacgccgccc	cggctcctcc	ggacggggcg	ctctcccacc	ctcaggctcc	teggtggeet	1080	
ccgcacccgg	gcaaaagccg	ggaggaccgg	gacccgcagc	gcgacggcct	gccgggcccc	1140	
tgcgcggtgg	cacageetgg	gcccgctcaa	geggggeege	agggccaagg	ggtgcttgcg	1200	
ccacccacgt	cccaggggag	tccgtggtgg	ggctggggcc	ggggtcccca	ggtcgccggg	1260	
gcggcgtggg	aaccccaagc	cggggcagct	ccacctcccc	agcccgcgcc	cccggacgcc	1320	
teegeeteeg	cgcggcaggg	gcagatgcaa	ggcatcccgg	cgccctccca	ggcgctccag	1380	
gagccggcgc	cctggtctgc	actcccctgc	ggcctgctgc	tggatgagct	cctggcgagc	1440	
ccggagtttc	tgcagcaggc	gcaacctctc	ctagaaacgg	aggccccggg	ggagctggag	1500	
gcctcggaag	aggccgcctc	gctggaagca	cccctcagcg	aggaagaata	ccgggctctg	1560	
ctggaggagc	tttaggacgc	ggggttggga	cggggtcggg	tggttcgggg	cagggcg	1617	

1.-21. (canceled)

- **22**. A method of treating Facioscapulohumeral muscular dystrophy (FSHD) in a subject, the method comprising administering to the subject one or more inhibitory nucleic acids targeting one or more of SLC34A2, TRIM49, TRIM43, CD177, NAAA, HSPA6, TC2N, or CD34.
- 23. A method of treating FSHD in a subject, the method comprising administering to the subject two or more inhibi-
- tory nucleic acids targeting two or more of SLC34A2, TRIM49, TRIM43, PRAMEF1, CD177, NAAA, HSPA6, TC2N, or CD34.
- **24**. The method of claim **22** or **23**, wherein the inhibitory nucleic acid is a double-stranded RNA, siRNA, shRNA, or antisense oligonucleotide.
- 25. The method of claim 24, wherein the antisense oligonucleotide is a morpholino oligonucleotide.

* * * *