(54) 发明名称
信号滤波模块的焊接工艺

简要
本发明有关一种信号滤波模块的焊接工艺，其是将滤波组件为置于卡线治具上的容腔内，并使滤波组件的滤波线头端分别通过容腔两侧的接地线槽及定位的第二理线槽，再插入卡槽中利用弹性夹具夹持定位，最后便可将卡线治具组装于回流焊底座上，且使回流焊底座上的二凸台分别伸入于卡线治具上对应的通孔内，并在线路板上的多个接点与滤波组件对应的导线焊接，焊接完成后，再将组装后的卡线治具及回流焊底座通过回流焊机热塑粘接焊后，完成信号滤波模块的焊接工艺。
1. 一种信号滤波模块的焊接工艺，包括有卡线治具、回流焊底座、滤波组件及线路板，并依照下列的步骤实施：
 (a) 将至少一个滤波组件的磁性线圈置于卡线治具上的容室内，并使磁性线圈上所绕设的导线头端分别通过容室二侧处的第一埋线槽及位于容室二外侧处的定位部的第二埋线槽后，再拉入于卡槽中利用弹性塞体来迫使于导线上形成夹持定位；滤波组件的磁性线圈置于卡线治具上的容室内后，利用插销横向穿入于容室内壁面处相对的插孔内，并由插销抵持于滤波组件上呈一定位；
 (b) 将各线路板分别置入于回流焊底座对接面上的至少二个凸台上呈一定位；
 (c) 将卡线治具组装于回流焊底座的对接面上结合定位，且二凸台分别伸入于卡线治具上对应的通孔内，使线路板位于滤波组件的导线下方处，并在线路板上的多个接点与滤波组件相对的导线需要焊接的部位涂布有焊料；
 (d) 将组装后的卡线治具及回流焊底座通过回流焊机使焊料熔化后，便可将线路板的接点与滤波组件的导线焊接处焊固形成电性连接。

2. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (a) 滤波组件定位于卡线治具上后，再将滤波组件的导线需要与线路板上的接点焊接处的绝缘层予以去除。

3. 如权利要求 2 所述信号滤波模块的焊接工艺，其中该滤波组件的导线焊接处是利用激光技术方式将绝缘层予以去除。

4. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (c) 线路板的多个接点上先利用刷涂加工方式形成有焊料，再利用喷涂式喷锡炉以喷涂加工方式将滤波组件的导线在已去除绝缘层后的金属线形成焊料。

5. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (c) 先利用喷涂加工方式将导线已去除绝缘层后的金属线形成有焊料，再利用刷涂加工方式在线路板的接点焊接部位涂布焊料。

6. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (c) 线路板上的多个接点或滤波组件相对的导线焊接的部位为利用刷涂、喷涂、浸涂或点胶涂布加工方式形成有焊料。

7. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (d) 回流焊机为通过远红外线辐射将热能传递至卡线治具及回流焊底座内部使焊料熔化。

8. 如权利要求 1 所述信号滤波模块的焊接工艺，其中该步骤 (d) 线路板上的多个接点与滤波组件相对的导线焊接形成电性连接后，再将滤波组件的导线多处的部分去除，且滤波组件及线路板自卡线治具与回流焊底座内部取出后，便完成信号滤波模块的焊接工艺。
信号滤波模块的焊接工艺

技术领域
[0001] 本发明是一种信号滤波模块的焊接工艺，尤指滤波组件可通过卡线或焊点、回流焊底座与线路板组装定位，并利用回流焊方式焊接为一体，以有效节省制造上所耗费的工时与成本，且可确保制造质量与良率。

背景技术
[0002] 现今计算机科技的快速发展，而桌面计算机或笔记本电脑已普遍的存在于社会上的各个角落，其计算机发展趋势亦朝运算功能强、速度快及体积小的方向迈进，由于网络通讯业的技术正在迅速蓬勃发展中，并将人们生活、学习、工作与休闲带入另一有别以往的新境界，让人们与网络之间接触更热且密不可分。
[0003] 再者，随着计算机或笔记本电脑的发展趋势，使计算机内部的连接器亦随之大幅缩小，但连接器于计算机小型化，即需考虑其电磁效应所产生之信号干扰问题，而一般多会影响连接器的噪声干扰的原因大致上可分为二大部分，其一为来自连接器周围之电磁波干扰，其二为连接器内部所生的干扰，且因一般 RJ45 连接器大多被使用于数字通信，便有厂商于网络连接器内部设置有滤波模块来解决上述之缺点，即可将网络连接器所接收的外部网络信号进行滤波的动作，并保留实际有用之信号，以使网络信号传输至外部控制电路接口，再转换成为串行式资料传输信号后，便可在资料处理系统内进行信号处理。
[0004] 然而，现有滤波模块为包括有线路板及滤波组件，当滤波组件与线路板焊接时，是先将滤波组件于磁导体上所绕设的导线头端的绝缘层在锡炉中去除，并使导线头端抵贴在电路板上对应导电片后，再利用加热焊接枪按压于导线头端一定时间，即可通过焊锡将导线头端焊接于线路板的接点上形成电性连接，此种利用手工焊接方式不仅较为繁琐、质量控制不易，且焊接过程中亦会产生有耗费工时、无法有效缩短加工时间以及人工成本高昂的问题，尤其是在模块化大量生产上，其整体所耗费的工作与成本更将大幅提高，再因本发明工艺未加以有效解决。

发明内容
[0005] 发明人根据现有滤波组件工艺上的问题与缺点，乃搜集相关资料经由多方评估及考虑，方以从事于此行业的多年研发经验通过不断的试作与修改，始设计出此种信号滤波模块的焊接工艺发明专利诞生。
[0006] 本发明的主要目的在于滤波组件为置入于卡线或焊点上的容室内，并使磁性线圈上所绕设的导线头端分别通过容室二侧组的第一电极组及定位部的第二电极组后，再拉入卡槽中利用弹性塞体压缩夹持定位，而后便可将卡线或焊点使用于回流焊或焊点上，使回流焊底座于放置有线路板的导电台分别伸入卡线或焊点上对应之通孔，并在电路板上的多个接点与滤波组件相对的导线需焊接的部位涂布有焊料，再通过回流焊机使焊料熔化后，焊固形成电性连接，此种滤波组件可透过卡线或焊点、回流焊底座与电路板进行组装，并利用回流焊方式焊接为一体，不但可有效节省制造上所耗费的工时与成本，且可确保制造的
质量与良率。

本发明的次要目的乃在于滤波组件的磁性线圈为置入于卡线治具上的容室内后，
可利用插销横向穿入容室内壁面处相对的插孔内，并由插销抵持于滤波组件上呈一定位
以防止滤波组件产生偏移或晃动，其回流焊底座亦可在插销穿置方向上一体成型有多个阵
列状的回流焊底座，并配合卡线治具组装定位有多个滤波组件与线路板，而适用于大量生
产，整体制造成本更为低廉。

本发明的另一目的乃在于线路板上的多个接点与滤波组件相对的导线形成贴平，
便可在线路板的接点上利用刷涂加工方式涂布有焊料，亦可利用浸液式喷锡炉以喷涂加工
方式将滤波组件的导线已去除绝缘层后的金属线形成有焊料，使整体焊接的效果更为良
好。

本发明提供一种信号滤波模块的焊接工艺，包括有卡线治具、回流焊底座、滤波组件
及线路板，并依照下列的步骤实施：

(a) 将至少一个滤波组件的磁性线圈置入于卡线治具上的容室内，并使磁性线圈
上所绕设的导线前端分别通过容室二侧处的第一理线槽及位于容室二外侧处的定位部的
第二理线槽后，再拉入于卡槽中利用弹性塞体来锁紧于导线上形成夹持定位；

(b) 将各线路板分别置入于回流焊底座对置面上的至少二凸台上呈一定位；

(c) 将卡线治具组装于回流焊底座的对置面上结合定位，且二凸台分别伸入于卡
线治具上对应的通孔内，使线路板与滤波组件的导线下方方，并在各线路板上的多个接点
与滤波组件相对的导线需要焊接的部位涂布有焊料；

(d) 将组装后的卡线治具及回流焊底座通过回流焊机使焊料熔化后，便可将线路
板的接点与滤波组件的导线焊接处焊固形成电性连接。

附图说明

为达成上述目的及功效，本发明所采用的技术手段及其构造，兹绘图就本发明的
较佳实施例详加说明其特征与功能如下，其中：

图 1 是为本发明的制造流程图。

图 2 是为本发明滤波组件与卡线治具组装前的立体分解图。

图 3 是为本发明滤波组件与卡线治具组装中的立体分解图。

图 4 是为本发明线路板与回流焊底座组装中的立体分解图。

图 5 是为本发明滤波组件的导线与线路板的接点上涂布焊料的立体外观图。

图 6 是为本发明通过回流焊机时的示意图。

图 7 是为本发明较佳实施例的立体外观图。

具体实施方式

参阅图 1、2、3、4、5 所示，是分别为本发明的制造流程图、滤波组件与卡线治具
组装前的立体分解图、滤波组件与卡线治具组装中的立体分解图、线路板与回流焊底座组
装中的立体分解图及滤波组件的导线与线路板的接点上涂布焊料的立体外观图，由图中可
清楚看出，本发明为包括有卡线治具 1、回流焊底座 2、滤波组件 3 及线路板 4，故就本案的
主要构件及特征详述如后，其中：
[0023] 该卡线治具 1 上为形成有可收容至少一个滤波组件 3 的容室 11，并于容室 11 二外侧处皆设有可供弹性塞体 13 嵌入卡固的定位部 12，且容室 11 与定位部 12 之间分别纵向设有至少一个通孔 14，而容室 11 相对于通孔 14 的另一侧内壁面处则横向贯穿有相对的插孔 111，并于插孔 111 内穿设有插销 15。

[0024] 再者，卡线治具 1 位于容室 11 二侧处与通孔 14 之间皆削设有呈间隔排列状的多个第一理线槽 112，并于定位部 12 二对应于第一理线槽 112 处皆削设有多个第二理线槽 121，且定位部 12 位于第二理线槽 121 二侧边处朝外形成有贯穿至卡线治具 1 外部且呈间隔排列状的多个卡槽 122，而弹性塞体 13 的基部 131 侧边缘处侧朝外形成有可嵌卡于卡槽 122 内的多个隔板 132。

[0025] 该回流焊底座 2 上为具有一对接面 21，并于对接面 21 周边处凸设有多个限位部 211，且各限位部 211 与对接面 21 之间形成可供卡线治具 1 定位的对接空间 20，而回流焊底座 2 的对接面 21 上对应于通孔 14 处则凸设有至少二个凸台 22，且各凸台 22 上凹设有可供线路板 4 定位的容槽 221。

[0026] 该滤波组件 3 为具有磁性线圈 31，并于磁导体 31 上皆绕设有具头端 321 的多个导线 32。

[0027] 该线路板 4 一侧或二侧表面上设有呈间隔排列状的多个接点 41 及电路布线。

[0028] 当利用本发明信号滤波模块的焊接工艺时，是依照下列步骤实施：

[0029] 步骤 101：将至少一个滤波组件 3 的磁性线圈 31 置入于卡线治具 1 上的容室 11 内，并使磁性线圈 31 上所绕设的导线 32 头端 321 分别通过容室 11 二侧处的第一理线槽 112 及位于容室 11 二外侧处的定位部 12 的第二理线槽 121 后，再拉入于卡槽 122 中利用弹性塞体 13 使紧持于导线 32 上形成夹持定位。

[0030] 步骤 102：将各线路板 4 分别置于回流焊底座 2 对接面 21 上的至少二个凸台 22 上呈一一定位。

[0031] 步骤 103：将卡线治具 1 组装于回流焊底座 2 的对接面 21 上结合定位，且二凸台 22 分别伸入于卡线治具 1 上对应的通孔 14 内，使线路板 4 位于滤波组件 3 的导线 32 下方处，并在线路板 4 上的多个接点 41 与滤波组件 3 对应的导线 32 需要焊接的部位涂布有焊料 5。

[0032] 步骤 104：将组装后的卡线治具 1 及回流焊底座 2 通过回流焊机 6（如图 6 所示）使焊料 5 熔化后，便可将线路板 4 的接点 41 与滤波组件 3 的导线 32 焊接处焊固形成电性连接。

[0033] 由上述的实施步骤可清楚得知，上述的构件于制造时，其实施步骤是先将滤波组件 3 的磁性线圈 31 为置入于卡线治具 1 上的容室 11 内，并使磁性线圈 31 上所绕设的导线 32 的二头端 321 分别通过容室 11 二侧处的第一理线槽 112 及位于容室 11 二外侧处的定位部 12 的第二理线槽 121 后，再拉入于卡槽 122 中，而弹性塞体 13 基部 131 侧边缘处的多个隔板 132 则各别嵌入于定位部 12 上对应的卡槽 122 内，并利用隔板 132 抵持于导线 32 上来迫紧于卡槽 122 内壁面处形成夹持定位，此时，便可将插销 15 为横向穿入且位于容室 11 内壁面处对应的插孔 111 内，并利用插销 15 及持于滤波组件 3 上呈一定位，以防止滤波组件 3 产生偏移或晃动的情况发生，或者是可先将插销 15 穿入于容室 11 内壁面处的插孔 111 内，并利用插销 15 及持于滤波组件 3 上后，再将磁性线圈 31 上的导线 32 二头
端 321 分别通过第一埋线槽 112 及第二埋线槽 121 后，再拉入于卡槽 122 中利用弹性塞体
13 各别嵌入于定位部 12 上对应的卡槽 122 内来迫紧于导线 32 上形成夹持定位。

【0034】而滤波组件 3 稳定的定位于卡线治具 1 上后，可利用激光技术方式来将滤波组件
3 拉直的导线 32 需要与线路板 4 上的接点 41 焊接处的绝缘层予以去除，不仅剥离速度
相当的快且精度高，此时，便可将各线路板 4 为分别置放于回流焊底座 2 对接面 21
上的至少二个凸台 22 上的容置槽 221 内呈一定位，而使线路板 4 上的多个接点 41 露出于
凸台 22 外部。

【0035】续将卡线治具 1 由上向下组装于回流焊底座 2 的对接面 21 上，并利用对接面
21 周边处的多个限位部 211 的导引与限位作用，使卡线治具 1 稳定安放于回流焊底座 2
的对接空间 20 内结合定位，且二凸台 22 分别插入且位于卡线治具 1 上对应的通孔 14
内，同时使凸台 22 上的线路板 4 位于滤波组件 3 的导线 32 下方处，以供线路板 4 上的多个
接点 41 与滤波组件 3 相对应的导线 32 形成贴平，而后便可在线路板 4 的接点 41 与滤
波组件 3 的导线 32 需要焊接的部位涂布有焊料 5 (如锡膏、锡球、导电胶等)，其线路
板 4 的多个接点 41 上可先利用刷涂加工方式形成有焊料 5，再进一步利用锂液式锡锡炉
以喷涂加工方式将滤波组件 3 的导线 32 在已去除绝缘层后的金属线 (图中未示出)
上形成有焊料 5 仅为一种较佳的实施状态，但于实际应用时，亦可先利用喷涂加工方式将
导线 32 已去除绝缘层后的金属线形成有焊料 5，再利用刷涂加工方式在电路板 4 的接点
41 焊接部位涂布有焊料 5，也可仅在线路板 4 的接点 41 或滤波组件 3 的导线 32 上利
用浸涂、点胶等涂布加工方式形成有焊料 5，以利于后续回流焊焊接作业。

【0036】请搭配参阅图 6、图 7 所示，是分别为本发明通过回流焊机时的示意图及较佳实施
例的立体外观图，由图中可清楚看出，其中该回流焊机 6 的机台 61 内部设有输送轨道 62
及多个远红外线加热器 63，并将组装后的卡线治具 1 及回流焊底座 2 置放于输送轨道 62
上，即可通过输送轨道 62 进行输送通过远红外线加热器 63，当远红外线加热器 63 于通电
产生高热光时，可通过远红外线 (IR) 辐射将热能传递至卡线治具 1 及回流焊底座 2 内部
来对线路板 4 进行加热使焊料 5 熔化，且待组装后的卡线治具 1 及回流焊底座 2 输送至外
部，焊料 5 快速冷却固化后，便可将线路板 4 的接点 41 与滤波组件 3 的导线 32 焊接
处予以焊固形成电性连接，再将滤波组件 3 的导线 32 多余的部分进行切断去除而保留实际
有用的线段，且使滤波组件 3 及线路板 4 自卡线治具 1 与回流焊底座 2 内部取出后即为成
品，此种滤波组件 3 通过卡线治具 1、回流焊底座 2 与线路板 4 进行组装结合定位，并利用
回流焊方式焊接成为一体，不但可有效节省制造上耗费的工时与成本，且可确保制造的质
量与良率，其回流焊底座 2 亦可在插槽 15 穿置方向上一体成型有多个阵列状的回流焊底座
2，并配合卡线治具 1 组装定位有多组滤波组件 3 与线路板 4，而适用于大量生产，整体制造
成本更为低廉，便完成信号滤波模块的焊接工艺。

【0037】上述详细说明为针对本发明一种较佳的可行实施例说明而己，惟该实施例并非用
以限定本发明的申请专利范围，凡其它未脱离本发明所揭示的技术精神下所完成的均等变
化与修饰变更，均应包含于本发明所涵盖的权利要求范围内。

【0038】综上所述，本发明信号滤波模块的焊接工艺确实能达到其功效及目的，故本发明
诚为一实用性优异的发明，实符合发明专利的申请条件，故依法提出申请。
将至少一个滤波组件所具的磁性线圈置于卡线治具上的容室内，并使磁性体上所绕设的导线头端分别通过容室二侧处的第一理线槽及位于容室二外侧处的定位部的第二理线槽后，再拉入于卡槽中利用弹性塞体来迫紧于导线上形成夹持定位

将各线路板分别置入于回流焊底座对接面上的至少二个凸台上呈一一定位

将卡线治具组装于回流焊底座对接面上结合定位，且二凸台分别伸入于卡线治具上对应的通孔内，使线路板位于滤波组件的导线下方处，并在线路板上的多个接点与滤波组件相对的导线需要焊接的部位涂布有焊料

将组装后的卡线治具及回流焊底座通过回流焊机使焊料融化后，便可将线路板的接点与滤波组件的导线焊接处焊固形成电性连接

图 1
图 6