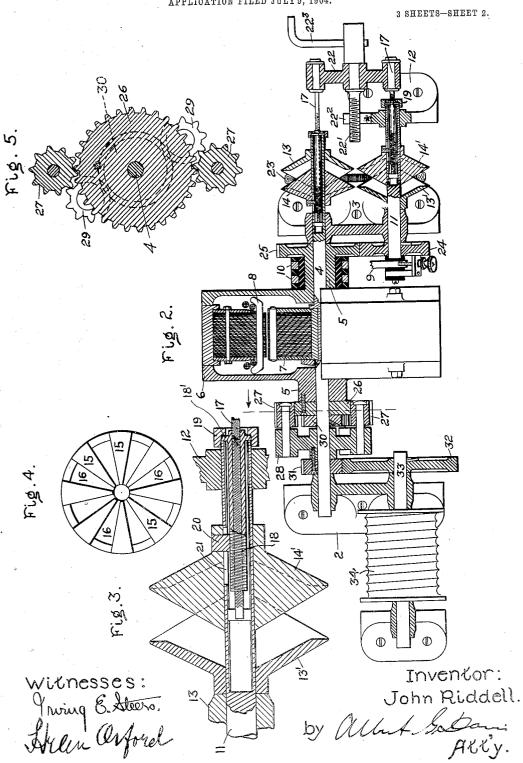
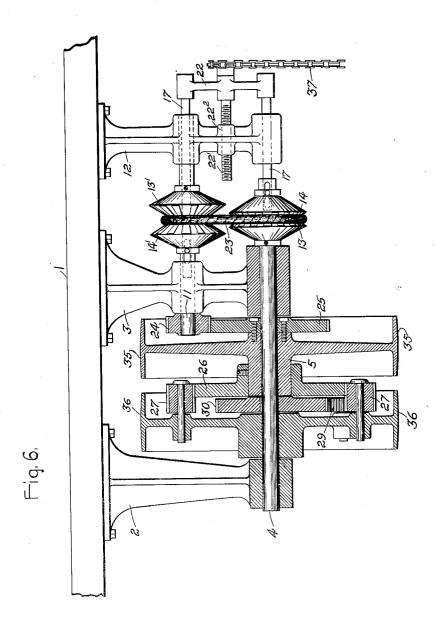

J. RIDDELL. SPEED CHANGING DEVICE. APPLICATION FILED JULY 9, 1904.


3 SHEETS-SHEET 1.

Witnesses: Jung E. Steers Helen Woord


Inventor: John Riddell. by ally.

J. RIDDELL.
SPEED CHANGING DEVICE.
APPLICATION FILED JULY 9, 1904.

J. RIDDELL. SPEED CHANGING DEVICE. APPLICATION FILED JULY 9, 1904.

3 SHEETS-SHEET 3.

WITNESSES: Juing E. Stews. Helen Oxford INVENTOR

John Riddell,

by Authorian
Atti

UNITED STATES PATENT OFFICE.

JOHN RIDDELL, OF SCHENECTADY, NEW YORK, ASSIGNOR TO GENERAL ELECTRIC COMPANY, A CORPORATION OF NEW YORK.

SPEED-CHANGING DEVICE.

No. 844,748.

Specification of Letters Patent.

Patented Feb. 19, 1907.

Application filed July 9, 1904. Serial No. 215,882.

To all whom it may concern:

Be it known that I, JOHN RIDDELL, a citizen of the United States, residing at Schenectady, county of Schenectady, State of New York, have invented certain new and useful Improvements in Speed-Changing Devices, of which the following is a specification.

This invention relates to variable-speedreversing mechanism for connecting a power to shaft or element with a driven shaft or element; and its object is to provide an efficient and simple piece of apparatus for this

The invention consists of two concentric 15 rotatable members, the outer or tubular one being preferably the power element, gearing connecting said members and comprising two pulleys of variable diameters connected by an endless belt, means for varying the 20 effective diameter of one pulley inversely as the other, and epicyclic gearing connecting both shafts with the driven element.

In the accompanying drawings, Figure 1 is a top plan view of one form of my variable-25 speed mechanism. Fig. 2 is a longitudinal section of the same. Fig. 3 is an enlarged section of one of the expanding pulleys. Fig. 4 is a face view of one portion of the same. Fig. 5 is an end elevation of the 30 epicyclic gearing, and Fig. 6 shows a modi-

fied form of the mechanism. On a suitable foundation 1 are secured

two pillow-blocks 2 and 3, in which is journaled a shaft 4. A sleeve 5 is rotatable on 35 the shaft and carries a circular concentric drum by which power is applied to said In Figs. 1 and 2 this drum is the rotatable field-magnet frame 6 of an electric motor whose armature 7 is secured to the 40 shaft 4. Current is conveyed to the fieldcoils 8 through the insulated brushes 9, suitably supported on the foundation and bearing on the collector-rings 10 on the sleeve 5, the motor shown being an induction-motor.

The shaft 4 projects beyond the pillow-block 3, and parallel with this part of it is a counter-shaft 11, journaled at one end in the pillow-block 3 and at the other end in a standard 12. Secured to each shaft is an ex-50 panding pulley, which is composed of two similar parts 13 14, 13' 14', one fixed to the shaft and the other movable lengthwise thereof. Each half of each pulley has a substantially conical face consisting of alter- to the shaft 4. The yoke also has a pinion

nating ribs 15 and slots 16, all radial to the 55 shaft, the ribs on each half fitting into the slots of the other. The result is that each pulley has a circumferential **V**-shaped groove. The depth of this groove, and consequently the effective diameter of the pulley, can be 60 varied by sliding the movable half of the pulley toward or away from the other half. The preferred means for accomplishing this consists in a screw 17 of long pitch, slidable lengthwise in a central longitudinal bore in 65 the shaft and splined therein, so that it rotates therewith. A lorg nut 18 engages with the rod and is provided at one end with a flarge 18', which is held against the end of the shaft by a union 19. The nut is, however, 70 freely rotatable in the bore of the shaft and can be thus rotated by a longitudinal move-ment of the rod 17. The outer surface of the nut is also cylindrical and is cut with screw-threads of fine pitch. A segment-nut 75 20 is secured to the hub of the movable half of the expanding pulley and projects through a longitudinal slot 21 in the shaft into engagement with the external screw-threads on the nut 18. It follows that a reciprocation 80 of the rod 17 with reference to the shaft will cause the nut 18 to rotate, and this in turn will traverse the segment-nut 20 along the slot 21 and effect an expansion or contraction of the pulley. At its outer end the rod 17 is 85 journaled in a cross-head 22, which can be reciprocated by any suitable device, such as a screw 22', meshing with a stationary nut 22² and having a handle 22³ for rotating it. In order that one pulley may be enlarged in 90 diameter while the other one is diminished, the right-hand half of one pulley and the left-hand half of the other are the movable portions.

The pulleys are connected by an endless 95 helt 23, preferably a triangular helt of peculiar construction, which forms the subject of a separate application. The counter-shaft 11 is geared to the sleeve by the spur-gears 24 25, the latter being preferably somewhat loc larger than the other. To the opposite end of the sleeve is secured the gear-wheel 26 which meshes with two long pinions 27, carried by a yoke 28, rotatably mounted on the shaft 4. The yoke also carries two other pitions 29, meshing with the long pirions 27 and also with a smaller spur-gear 30, secured

31 concentric with the shaft and meshing | with a spur-gear 32 on the driven shaftsuch, for example, as the shaft 33 of a hoist-

ing-drum 34.

The operation of the invention is as follows: When current is supplied to the motor, the armature and field-frame begin to revolve in opposite directions. The ratio of rotation is governed by the relative effective o sizes of the expanding pulleys. If their diameters are substantially the same as shown in the drawings, the armature will make several more rotations per minute than the field-frame, because of the difference in the 15 diameters of the spur-gears 24 25. By making the gears 30 and 26 of the same relative difference as the gears 24 25 the yoke 28 will remain stationary when the diameters of the expanding pulleys are the same, so that no 20 movement will be imparted to the hoistingdrum by the motor. If now one of the pulleys is enlarged and the other diminished in effective diameter, the effect of the epicyclic gearing will be to cause the yoke to revolve 25 in one direction or the other, depending on which one of the expanding pulleys is enlarged—that is to say, if the pulley 13 14 be enlarged, so that the counter-shaft is driven faster than the main shaft 4, and the speed of 30 the sleeve 5 and gear 26 is correspondingly increased then the yoke 28 will revolve in the same direction as said sleeve and gear, and vice versa. In other words, the yoke always revolves in the same direction with that one 35 of the two gears 26 and 30 having the faster peripheral speed; but since the travel of the yoke is measured on the circumference of that gear which moves the slower and since they differ in diameter it follows that the 40 angular movement of the yoke in one direction is greater than it is in the other for the

It will thus be seen that my invention pro-50 vides for reversing the direction of rotation of a driven shaft, for driving it at varying speeds in either direction and with a greater range of variation in one direction than in 55 the other, and for stopping it without stopping the driving-shaft or varying its speed. The invention is thus of peculiar advantage in machinery driven by an induction-motor whose greatest efficiency is developed when

same increment of change in size of the pul-

ley 13 14 from the medium size shown in the

drawings. This is a feature of especial im-

ing-drum 34, since the hoisting speeds and

power can be varied considerably, while the

lowering speeds do not need so much varia-

45 portance when the yoke is geared to a hoist-

60 running at full speed.

The mechanism employed for expanding and contracting the belt-pulleys is so designed that the wedging action of the belt which tends to force the halves of the pulleys 65 apart is sustained entirely by the shafts and not by the rods 17, one half being secured directly to the shaft and the other half exerting its thrust on the nut 18, whose flange is cou-

pled to the shaft by the union 19.

Fig. 6 shows the application of the invention to a pair of belt-pulleys 35 36, the former receiving power from any suitable source and the latter transmitting it to a machine. It will be seen that the pulley 35 takes the place of the field-frame 6 in Figs. 1 and 2 and 75that the pulley 36 acts on the yoke of the epicyclic gear. The pillow-blocks are inverted to serve as shaft-hangers, and the screw 22' may be rotated by a sprocket and chain 37, if too high to be easily reached.

What I claim as new, and desire to secure by Letters Patent of the United States, is-

80

1. In combination, a power-driven shaft, an oppositely power driven sleeve concentric therewith, means for regulating the relative 85 movements of said shaft and said sleeve gears connected respectively to said shaft and sleeve, and planetary gears operatively en-

gaging said gears.
2. In combination, a power-driven shaft, 90 an oppositely power driven sleeve concentric therewith, a counter-shaft positively geared to said sleeve, speed-changing means connecting said shafts, gears connected respectively to said power-shaft and sleeve, and 95 planetary gears operatively engaging said

3. The combination with a main shaft, of the armature of an induction-motor secured thereto, a sleeve concentric with said shaft 100 carrying the rotatable field-magnet of said induction-motor, a counter-shaft geared to said sleeve, inversely-expansible pulleys on the main shaft and counter-shaft, a beit connecting said pulleys, a rotatable driven element, 105 and epicyclic gearing connecting said element with the main shaft and the sleeve.

4. The combination with a main shaft, of the armature of an induction-motor secured thereto, a sleeve concentric with said shaft 110 and carrying the rotatable field magnet of said motor, a counter-shaft parallel with said sleeve, spur-gears connecting said sleeve and counter-shaft, the gear on the sleeve being the larger, expanding pulleys on said main 115 shaft and said counter-shaft, means for varying the effective diameters of said pulleys inversely, a belt connecting said pulleys, a driven element, and epicyclic gearing connecting said element and the main shaft and 120 sleeve and comprising two gears having the same ratio as the gears connecting the sleeve and the counter-shaft.

In witness whereof I have hereunto set my hand this 8th day of July, 1904.

JOHN RIDDELL.

Witnesses:

Benjamin B. Hull, HELEN ORFORD.