CONTAINER FOR TOBACCO MATERIAL

Inventors: Hans Dierken, Amelinghausen (DE); Kai Burfeind, Agathenburg (DE); Wolfgang Denker, Hamburg (DE); Angela Lützenberg, Hamburg (DE); Uwe Nittel, Radbruch (DE); Wolfgang Benz, Stemware/Barsbuettel (DE); Rolf Hoefig, Rinteln (DE); Frank Schuster, Hamburg (DE)

Correspondence Address:
GREENBLUM & BERNSTEIN, P.L.C.
1950 ROLAND CLARKE PLACE
RESTON, VA 20191 (US)

Assignee: HAUNI PRIMARY GmbH., Schwarzenbek (DE)

Appl. No.: 11/403,951
Filed: Apr. 14, 2006

Related U.S. Application Data
Continuation of application No. PCT/EP04/10286, filed on Sep. 15, 2004.

Foreign Application Priority Data
Oct. 16, 2003 (DE).......................... 103 48 717.4
Mar. 19, 2004 (DE)....................... 10 2004 014 031.6

Publication Classification
B65D 85/10 (2006.01)
B65D 85/12 (2006.01)
A24F 15/00 (2006.01)

U.S. Cl. .. 206/242

ABSTRACT

Container of the tobacco-processing industry for tobacco material and process for storing containers and weighing tobacco material held in container. The container includes a lid surface and a base surface. The lid surface is smaller than the base surface, and at least one of the lid surface and the base surface is closable. The instant abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
CONTAINER FOR TOBACCO MATERIAL
CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a container of the tobacco-processing industry for tobacco material with a lid surface and a base surface and to the use of a container of the above-mentioned type.

[0004] 2. Discussion of Background Information

[0005] In the tobacco-processing industry tobacco material, e.g., cut tobacco, tobacco sheets, raw tobacco, tobacco ribs, expanded tobacco, fermented tobacco is collected in containers and transported to machines for further processing or tobacco preparation and/or is stored. For further processing the containers with the tobacco material are overturned or tipped over. Hereby it happens that the containers are not emptied completely and thus valuable tobacco material remains in the containers.

[0006] Furthermore, a cuboid-shaped container for tobacco matter is known in the prior art according to U.S. Pat. No. 3,953,959.

SUMMARY OF THE INVENTION

[0007] Accordingly, the present invention improves a container for the tobacco-processing industry.

[0008] The present invention provides a container of the tobacco-processing industry for tobacco material with a lid surface and a base surface. The container is further developed in that the lid surface is smaller than the base surface, such that the lid surface and/or the base surface can be closed. The invention is based on the concept that a container filled with tobacco material is emptied downwardly by opening the base surface. In this manner, the container may be placed on another container and eliminated from the opened position. Through the property of nestability of the containers, a stack of empty containers is reduced to a package of small size with a plurality of containers. In order to stack the containers into one another it is sufficient for the container to be opened at least on one side, i.e., at the base. It is not necessary to open the lid and the base at the same time for the container to be nestable.

[0009] It is further advantageous if the lid surface and/or the base surface feature a closing device and/or a seal, so that the tobacco matter is stored in the container in a lasting manner for a certain period of time. The closing device prevents a container from opening unintentionally during transport. The seal renders possible a reliable closing of the lid and/or the container base.

[0010] In particular, the base surface features a foot part, so that the container is easy to handle for transport and for placing the container down.

[0011] In order to transport the container, for instance, by a fork lift, it is advantageously provided that it is possible to run an object under the foot part. In a further advantageous embodiment of the invention the foot part is provided with casters, so that the container can be wheeled and pushed.

[0012] It results in improved handling if the lid for the lid surface and/or the base for the base surface are made of several parts. For example, the lid can be made of four lid parts. In this regard, each lid part is attached to one side of a four-sided or rectangular lid surface.

[0013] Advantageously, a gripping device and/or spacing elements are provided on the container, so that the container is suitable for an automatic or semi-automatic handling.

[0014] The container preferably features ventilation holes, so that tobacco material can be stored long-term in the container, since a favorable climate or a favorable atmosphere for the tobacco material is achieved in the container by the ventilation holes.

[0015] According to a preferred embodiment of the invention it is suggested that the container is made of plastic, and, in particular, of polyethylene or polypropylene.

[0016] In particular the insides of the container feature smooth surfaces, so that tobacco material does not adhere to the inside of the container when a container is emptied.

[0017] According to the invention, the above-described container is used for the transport and/or storage of tobacco material in the tobacco-processing industry. In order to avoid repetitions, explicit reference is made to the above-described container according to the invention.

[0018] Further, the invention is directed to a container of the tobacco-processing industry for holding tobacco matter which is further developed in that the container includes a weighing device for recording the weight of the tobacco material held in the container.

[0019] It is rendered possible by the weighing device according to the invention to, e.g., monitor and measure long-term the mass of the tobacco matter held, since the tobacco matter held, e.g., tobacco leaves, can feature a different water content through the treatment in the various stations of tobacco preparation. Thus, the container is particularly suited for the storage and transport of tobacco matter or tobacco material in tobacco preparation. For
fermenting tobacco leaves or with other processes, for instance, substances and/or steam are introduced into the containers for treating the tobacco material held. The weight of the tobacco matter thus increases or changes. The weighing device integrated into the container serves to make it possible to ascertain these changes. With the tobacco container according to the invention, change processes of the tobacco matter held in the container can thus be ascertained in a simple manner or the mass of an added substance such as, e.g., steam can be measured.

[0021] Since it can occur that the containers according to the invention are not set down or aligned horizontally, a position recording device is provided for the position, in particular the inclination, of the container, so that deviations from the horizontal standard position of a container can be identified. Otherwise, a sloping deviation from the horizontal alignment of the container or the weighing device is bound to result in falsifications or measurement errors.

[0022] In particular an analysis unit for determining the weight of the tobacco matter is provided for this purpose.

[0023] In order to prevent the deviations of the container inclination from the horizontal standard position from having any effect on the weighing result, it is suggested according to a preferred embodiment of the invention that the weight of the tobacco matter can be determined depending on the recorded position, in particular the inclination, of the container, so that inclination-dependent errors of the container can be compensated for during the weight measurement.

[0024] In an alternative embodiment a reference weighing device is provided to ascertain the inclination-dependent errors in the weighing result of the tobacco matter held in the container.

[0025] In order to compensate for the inclination-dependent errors in the weighing result, it is suggested according to the invention that the weight of the tobacco matter can be determined depending on the measurements of a reference weighing device, so that the inclination of the scales or of the container does not have any influence on the weight determination of the tobacco matter. Furthermore, temperature-dependent parameters of the weight determination or of the measurements are taken into account if the weight of the tobacco matter can be determined depending on the temperature measured by at least one temperature sensor. For this purpose, at least one temperature sensor is arranged on or in the container, which sensor is preferably also connected to an analysis unit according to the invention.

[0026] In addition, it is favorable if the weighing device is arranged in the base part and/or the feet of the container.

[0027] Preferably the weighing device is embodied or formed by pressure sensors and/or load cells and/or coil springs.

[0028] Preferably the weighing device and/or the analysis unit feature a display field, so that the result of a weight measurement is displayed to the operating personnel.

[0029] According to a preferred further development of the invention it is suggested that the measurement data of the weighing device and/or the reference weighing device and/or the position recording device and/or the analysis unit can be transmitted to an external analysis device, in particular in a non-contact manner. Thus it is rendered possible to record and analyze the measurement data outside the container in a central recording device.

[0030] The invention is directed to using a weighing device in a container of the tobacco-processing industry for recording the weight of a tobacco matter held in the container. Advantageous embodiments of the weighing device used and the container have been described previously, so that express reference is made to the above statements to prevent repetitions.

[0031] The present invention is directed to a container of the tobacco-processing industry for tobacco material. The container includes a lid surface and a base surface. The lid surface is smaller than the base surface, and at least one of the lid surface and the base surface is closable.

[0032] According to a feature of the invention, when the at least one closable lid surface and base surface is closed, the container is stackable, and when the at least one closable lid surface and base surface is open, the container is nestable.

[0033] In accordance with another feature of the instant invention, the at least one closable lid surface and the base surface can include at least one of a closing device and a seal.

[0034] Further, the base surface may include a foot part, and the foot part can be structured and arranged to allow an object to run under the foot part and/or the foot part may include casters.

[0035] According to still another feature, at least one of a lid for the lid surface and a base for the base surface can be composed of a plurality of parts.

[0036] The container may also include at least one of a gripping device and spacing elements and/or ventilation holes.

[0037] According to the invention, the container can be made of plastic, and preferably the plastic is composed of one of polyethylene or polypropylene.

[0038] In accordance with the present invention, inside surfaces can be smooth surfaces.

[0039] The invention is directed to a process for storing a number of the above-discussed containers. The process includes at least one of opening or closing the at least one closable lid surface and base surface, and placing the containers one atop the other container. When the at least one closable lid surface and base surfaces are closed, the containers are stacked on atop the other, and when the at least one lid surface and base surface are open, the containers are nested on atop the other.

[0040] The present invention is directed to a process for holding tobacco material in the above-identified container. The process includes opening the at least one closable lid surface and base surface, supplying the tobacco material into the container, and closing the at least one closable lid surface and base surface.

[0041] According to still another feature of the present invention, the container can further include a weighing device structured and arranged for recording a weight of the tobacco material held in the container.
Moreover, a position recording device can be structured and arranged to determine a position of the container, and the position recording device may include an inclination detector.

According to the invention, the weighing device may include an analysis unit structured and arranged to determine the weight of the tobacco material held in the container.

In accordance with another feature of the present invention, the weight of the tobacco material is determinable depending on the recorded position of the container. Further, the weight of the tobacco material can be determined depending on the inclination of the container.

According to still another feature of the instant invention, the container can include a reference weighing device, and the weight of the tobacco material is determinable depending on measurements of the reference weighing device.

The container can also include at least one temperature sensor structured and arranged to measure a temperature of the tobacco material. The weight of the tobacco material is determinable depending on the temperature measured by the at least one temperature sensor.

According to the instant invention, the base part may include a foot part, and the weighing device can be arranged in at least one of the base part and the foot part.

Further, the weighing device may include at least one of pressure sensors, load cells, and coil springs.

Still further, at least one of the weighing device and the analysis unit may include a display field.

In accordance with still another feature, measurement data of the tobacco material may be transmittable to an external analysis device. The measurement data can be collected by at least one of the weighing device, a reference weighing device, a position recording device, and an analysis unit, and the measurement data may be transmittable in a non-contact manner.

The present invention is directed to a process of determining characteristics of tobacco material held in a container of the tobacco-processing industry. The process includes recording a weight of a tobacco material held in the container.

According to a feature of the instant invention, the process can further include recording a position of the container, and the recorded position can be an inclination of the container.

The process may further include determining the weight of the tobacco material with an analysis unit.

In accordance with another feature of the invention, the process may include determining the weight of the tobacco material depending on the recorded position, and the determination of the weight of the tobacco material can depend on the recorded inclination of the container.

The process may further include determining the weight of the tobacco material depending on measurements of a reference weighing device.

According to the invention, the process can include measuring a temperature of the tobacco material and determining a weight of the tobacco material depending on the measured temperature.

In accordance with the invention, the container can include a base part having feet, and a weighing device, structured and arranged to record the weight of the tobacco material, may be located in one of the base part and the feet. The weighing device may include at least one of pressure sensors, load cells, and coil springs.

According to another feature of the instant invention, the analysis unit can be at least a part of a weighing device, and at least one of the weighing device and the analysis unit may include a display field.

In accordance with still yet another feature of the present invention, the process can include transmitting measurement data of the tobacco material to an external analysis device. Further, the measurement data can be collected by at least one of a weighing device, a reference weighing device, a position recording device, and an analysis unit, and the measurement data may be transmitted in a non-contact manner.

Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:

FIGS. 1a-1c illustrate a container according to the invention in three different views;

FIGS. 2a and 2b illustrate several containers in a stacked or stacked-into-one-another arrangement;

FIG. 3 illustrates a container in a cross-sectional view;

FIG. 4 illustrates a container according to the invention of the tobacco-processing industry in a diagrammatic cross-sectional view;

FIGS. 5a-5c respectively illustrate further possible embodiments of a weighing device in the base part of a container of the tobacco-processing industry;

FIG. 6 illustrates a diagrammatic perspective view of a container with inclination sensors; and

FIG. 7 illustrates a container according to the invention with a reference weighing device:

DETAILED DESCRIPTION OF THE PRESENT INVENTION

The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this
regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.

[0070] FIG. 1a shows a cross section through a container 10. Container 10 features inclined side walls 11 which are arranged inclined to the perpendicular line at a predetermined angle. Container 10 further features a lid 12 composed of two lid parts. The lid parts of lid 12 are arranged in a pivotable manner around hinges 13.

[0071] In an alternative embodiment, lid 12 and base 14 can be embodied as one part, so that lid 12 and base 14 are slid onto container 10 by a groove guideway. Alternatively it is possible to embody or form lid 12 as one part and to place it loosely onto the container.

[0072] The base area of container 10 is made of a base 14 with two tiltable base parts that are arranged in a pivotable manner around two laterally arranged hinges 15. Furthermore, base 14 features foot parts 16, so that container 10 can be set down on a level surface.

[0073] In order to reliably close the lid parts of lid 12 and the base parts of base 14, seals and/or closing devices are provided on lid 12 and on base 14, which seals and/or devices prevent an unintentional opening of lid 12 and of base 14.

[0074] Base 14 with foot part 16 is embodied such that it is possible to run an object under foot part 16, e.g., the fork of a fork lift. In a further development, foot parts 16 can furthermore feature casters integrated into foot parts 16. Container 10 can thus be moved on a level surface by pushing.

[0075] The volume of container 10 preferably amounts to about 1 m³.

[0076] FIG. 1b shows a longitudinal section through a container 10 according to the invention, whereby side walls 17 are also arranged inclined to the perpendicular line, so that overall the container 10 is shaped in a pyramidal or upwards tapering manner.

[0077] It is possible within the framework of the invention that lid 12 with its lid surface and base 14 with its base surface can assume any shape. This shape can be both round and polygonal. It is advantageous that the horizontal cross-sectional surfaces of container 10 according to the invention taper from base 14 to lid 12. Through this reversed funnel shape, tobacco matter can be reliably stored in container 10, whereby the tobacco matter is emptied through an opening of base 14. Thus, container 10 is completely emptied, i.e., no residual amount of tobacco matter remains in the container.

[0078] FIG. 1b further shows that foot parts 16 feature apertures 18 on the long side, so that gripping devices can be inserted laterally into apertures 18, which makes it possible to handle the container by a gripper or fork lift.

[0079] FIG. 1c displays a view of container 10 from below. It shows that the base parts of base 14 interlock with one another, so that a reliable closing of base 14 is thus achieved and container 10 is additionally reinforced.

[0080] FIGS. 2a and 2b display the further properties of container 10. FIG. 2a shows that container 10 according to the invention can be stacked in the closed state with other containers 10. In the closed state, several containers can be placed on top of one another, so that filled containers are made available for the further processing of tobacco material.

[0081] FIG. 2b displays the further advantageous property of container 10, since in the empty, i.e., opened state, several containers 10 can be stacked onto and into one another, i.e., they are nestable. In a stack of several empty containers 10, a large number of containers 10 is thus made available, which stack requires little space. In an alternative, stacked containers 10 are closed on the lid side.

[0082] Containers 10 are preferably made of plastic, in particular of polyethylene or polypropylene. It is, however, also possible for containers 10 to be made of wood or metal. In addition, the outsides of side walls 11 and 17 can feature contact or gripping elements, so that a better handling of container 10 is achieved. For easy cleaning of containers 10, the insides of side walls 11 and 17 are embodied smoothly.

[0083] FIG. 3 shows a further development of a container 10 in cross section. Between tiltable lids 12 and tiltable foot parts 16, seals 19 are respectively arranged in order to achieve a safe and tight closing of the lid surface and the base surface. In addition, foot parts 16 feature casters 21, so that container 10 can be moved.

[0084] Respectively a locking bar 22 is provided on lids 12 and foot parts 16 in order to reliably close lids 12 and foot parts 16 during transport.

[0085] On side walls 11, handles 24 are additionally mounted on the outside, which improves the handling of container 10. Furthermore, spacers 25 are provided below handles 24, which spacers prevent a jamming of containers 10 when containers 10 are nested. Side walls 11 of container 10 further feature ventilation holes 26 to provide a favorable atmosphere for the tobacco matter held.

[0086] FIG. 4 diagrammatically shows a container 10 of the tobacco-processing industry in a cross-sectional view. Container 10 features laterally inclined side walls 112, 114 and a lid 116. In addition, the container 10 features a base part 118 in the base area, which part is embodied as a double base.

[0087] The base part 118 features a bottom part 120 and a top part 122. The tobacco matter 30 held in container 10 is arranged on the top part 122. The inclination of side walls 112 and 114 produces less friction between tobacco matter 130 and the interior surfaces of side walls 112 and 114.

[0088] In base part 118, between base part 120 and top part 122, one or more load cells 124 are arranged, so that a weighing device is embodied by load cells 124. On account of the force exerted by the weight of the tobacco matter on top part 122, the weight of tobacco matter 130 is measured and determined by load cells 124. Top part 122 is connected to fixed bottom part 120 at the edge to side walls 112 and 114 via sealing membranes 126 and thus tightly closed. Top part 122 of base part 118 is thus sealed against the interior chamber of container 10.

[0089] Load cells 124 in double-walled base part 118 are connected on one end to bottom part 120 and on the other
end to top part 122. Preferably, several load cells 124 are arranged distributed evenly over the entire surface of base part 118.

[0090] FIG. 5c diagrammatically displays a further exemplary embodiment of a base part 118, whereby a liquid is introduced between top part 120 and part top 122, so that the weight acts on top part 122 and the weight measurement of tobacco matter 130 occurs via a pressure sensor 125 arranged laterally on base part 118.

[0091] Preferably, a liquid with a low thermal expansion coefficient is introduced between top part 122 and bottom part 120 to achieve a temperature independence of the weight measurement. In a further embodiment, the temperature of the liquid in base part 118 is recorded by a temperature sensor in order to thus achieve a temperature compensation of the weight measurement. In an alternative further development, base part 118 features a heating system to bring about a constant temperature of the introduced liquid.

[0092] In the exemplary embodiment displayed in FIG. 5b, base part 118 is composed of a simple base, whereby load cells 124 are arranged on the sides in the feet of container 10. Load cells 124 are hereby integrated into the feet of container 10 or on a pallet for container 10, whereby the pallet and container 10 form a structural unit.

[0093] FIG. 5c shows a base part 118 in cross section with two further embodiments of a weighing device for the container 10. Two coil springs 141 are arranged between top part 122 and bottom part 120. Left coil spring 141 is connected to an internal analysis unit 142. In addition, analysis unit 142 receives the measurement data of a temperature sensor 143 on the outside of container 10, which sensor measures the ambient temperature of container 10.

[0094] On the right-hand side of FIG. 5c, a coil spring 141 is connected to a transmitter 145 which transmits the recorded values of the compressive forces of the (right-hand) coil spring 141 in a non-contact manner to a receiver 146. Receiver 146 passes the received values on to an analysis unit 147. Analysis unit 147 features a display field 148, by which the identified weight of tobacco matter 130 is displayed.

[0095] FIG. 6 shows in a perspective representation a container 10 featuring respectively an inclination sensor 128.1 and 128.2 on inclined side walls 114 and 115, with which the inclination of container 10 is measured in the x-z plane. By inclination sensor 128.1, the inclination of base part 118 is measured in the z-direction, whereas inclination sensor 128.2 measures the inclination of the base part 118 in the x-direction. The inclination sensors 128.1 and 128.2 render possible, e.g., a position recording device of container 10.

[0096] By inclination sensors 128.1 and 128.2, the inclination of base part 118 and its position with regard to the horizontal x-z plane is determined so that the weight measurement of the tobacco matter held in container 10 is corrected on the basis of the ascertained inclination. Inclination sensors 128.1 and 128.2 can be embodied or formed, e.g. by a pendulum, whereby the angular position of the pendulum is measured via a sensor. On the basis of the measured rotational angle of the pendulum, the weight measured by a weighing device is subsequently corrected.

[0097] FIG. 7 displays a further embodiment of a container 10 in a cross-sectional view, whereby container 10, in contrast to the container shown in FIG. 4, additionally features a reference load cell 127 arranged on bottom part 120 of base part 18. Load cell 127 is provided with a predetermined reference weight, so that the exact weight of tobacco matter 130 is determined by reference load cell 125 if container 10 or base part 118 is not aligned horizontally. On the basis of the weight measurements of tobacco matter 130 by load cells 124 and the simultaneous measurement of reference load cell 127, the weight of tobacco matter 130 can be identified precisely, even if the base part 118 is obliquely positioned to the horizontal, since the weight measurements of load cells 124 can be related to the measurement of reference load cell 127.

[0098] An analysis unit not shown here is provided for analyzing the measured and recorded measurement data of the weighing devices and the inclination sensors or the reference load cell, by which unit the exact weight of tobacco matter 130 held is determined. In addition, this analysis device features a display with which the measured weight of tobacco matter 130 is displayed. In an alternative embodiment the recorded measurement data are transmitted in a wireless, i.e., non-contact manner to an external analysis device, so that the weight of the tobacco matter is determined by the external analysis unit.

[0099] It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to exemplary embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

LIST OF REFERENCE NUMBERS
[0100] 10 Container
[0101] 11 Side wall
[0102] 12 Lid
[0103] 13 Hinge
[0104] 14 Base
[0105] 15 Hinge
[0106] 16 Foot part
[0107] 17 Side wall
[0108] 18 Aperture
[0109] 19 Seal
[0110] 21 Caster
[0111] 22 Locking bar
24 Handle
25 Spacer
26 Ventilation hole
112 Side wall
114 Side wall
115 Side wall
116 Lid
118 Base part
120 Bottom part
122 Top part
124 Load cell
125 Pressure sensor
126 Membrane
127 Reference load cell
128.1 Inclination sensor
128.2 Inclination sensor
130 Tobacco matter
141 Coil spring
142 Analysis unit
143 Temperature sensor
145 Transmitter
146 Receiver
147 Analysis unit
148 Display field

What is claimed is:
1. A container of the tobacco-processing industry for tobacco material, comprising:
 a lid surface; and
 a base surface,
 wherein the lid surface is smaller than the base surface, and at least one of the lid surface and the base surface is closable.
2. The container in accordance with claim 1, wherein, when the at least one closable lid surface and base surface is closed, the container is stackable, and
 wherein, when the at least one closable lid surface and base surface are open, the container is nestable.
3. The container in accordance with claim 1, wherein the at least one closable lid surface and base surface comprises at least one of a closing device and a seal.
4. The container in accordance with claim 1, wherein the base surface comprises a foot part.
5. The container in accordance with claim 4, wherein the foot part is structured and arranged to allow an object to run under the foot part.
6. The container in accordance with claim 4, wherein the foot part comprises casters.
7. The container in accordance with claim 1, wherein at least one of a lid for the lid surface and a base for the base surface are composed of a plurality of parts.
8. The container in accordance with claim 1, further comprising at least one of a gripping device and spacing elements.
9. The container in accordance with claim 1, further comprising ventilation holes.
10. The container in accordance with claim 1, wherein the container is made of plastic.
11. The container in accordance with claim 10, wherein the plastic is composed of one of polyethylene or polypropylene.
12. The container in accordance with claim 1, wherein inside surfaces comprise smooth surfaces.
13. A process for storing a number of the containers in accordance with claim 1, the process comprising:
 at least one of opening or closing the at least one closable lid surface and base surface; and
 placing the containers atop the other container,
 wherein, when the at least one closable lid surface and base surfaces are closed, the containers are stacked atop the other, and when the at least one lid surface and base surface are open, the containers are nested atop the other.
14. A process for holding tobacco material in the container in accordance with claim 1, the process comprising:
 opening the at least one closable lid surface and base surface;
 supplying the tobacco material into the container, and
 closing the at least one closable lid surface and base surface.
15. The container in accordance with claim 1, further comprising a weighing device structured and arranged for recording a weight of the tobacco material held in the container.
16. The container in accordance with claim 15, further comprising a position recording device structured and arranged to determine a position of the container.
17. The container in accordance with claim 16, wherein the position recording device comprises an inclination detector.
18. The container in accordance with claim 15, wherein the weighing device comprises an analysis unit structured and arranged to determine the weight of the tobacco material held in the container.
19. The container in accordance with claim 15, wherein the weight of the tobacco material is determinable depending on the recorded position of the container.
20. The container in accordance with claim 15, wherein the weight of the tobacco material is determinable depending on the inclination of the container.
21. The container in accordance with claim 15, further comprising a reference weighing device.
22. The container in accordance with claim 21, wherein the weight of the tobacco material is determinable depending on measurements of the reference weighing device.
23. The container in accordance with claim 15, further comprising at least one temperature sensor structured and arranged to measure a temperature of the tobacco material, wherein the weight of the tobacco material is determinable depending on the temperature measured by the at least one temperature sensor.
24. The container in accordance with claim 15, wherein the base part comprises a foot part, and the weighing device is arranged in at least one of the base part and the foot part.

25. The container in accordance with claim 15, wherein the weighing device comprises at least one of pressure sensors, load cells, and coil springs.

26. The container in accordance with claim 18, wherein at least one of the weighing device and the analysis unit include a display field.

27. The container in accordance with claim 15, wherein measurement data of the tobacco material is transmittable to an external analysis device.

28. The container in accordance with claim 27, wherein the measurement data is collected by at least one of the weighing device, a reference weighing device, a position recording device, and an analysis unit, and the measurement data is transmittable in a non-contact manner.

29. A process of determining characteristics of tobacco material held in a container of the tobacco-processing industry, comprising:

 recording a weight of a tobacco material held in the container.

30. The process in accordance with claim 29, further comprising recording a position of the container.

31. The process in accordance with claim 30, wherein the recorded position is an inclination of the container.

32. The process in accordance with claim 29, further comprising determining the weight of the tobacco material with an analysis unit.

33. The process in accordance with claim 30, further comprising determining the weight of the tobacco material depending on the recorded position.

34. The process in accordance with claim 31, wherein the determination of the weight of the tobacco material depends on the recorded inclination of the container.

35. The process in accordance with claim 29, further comprising determining the weight of the tobacco material depending on measurements of a reference weighing device.

36. The process in accordance with claim 29, further comprising:

 measuring a temperature of the tobacco material; and

 determining a weight of the tobacco material depending on the measured temperature.

37. The process in accordance with claim 29, wherein the container includes a base part having feet, and a weighing device, structured and arranged to record the weight of the tobacco material, is located in one of the base part and the feet.

38. The process in accordance with claim 37, wherein the weighing device comprises at least one of pressure sensors, load cells, and coil springs.

39. The process in accordance with claim 32, wherein the analysis unit comprises at least a part of a weighing device, and at least one of the weighing device and the analysis unit include a display field.

40. The process in accordance with claim 29, further comprising transmitting measurement data of the tobacco material to an external analysis device.

41. The process in accordance with claim 40, wherein the measurement data is collected by at least one of a weighing device, a reference weighing device, a position recording device, and an analysis unit, and the measurement data is transmitted in a non-contact manner.

* * * * *