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The present invention provides for the updating of both the instructions in a branch prediction cache (54) and instructions
recently provided to an instruction pipeline from the cache (54) when an instruction being executed attempts to change such in-
structions ("Store-Into-Instruction-Stream”). The branch prediction cache (BPC) (54) includes a tag (27) identifying the address
of instructions causing a branch, a record of the target address which was branched to on the last occurrence of each branch in-
struction, and a copy of the first several instructions beginning at this target address (90). A separate instruction cache (30) is pro-
vided for normal execution of instructions, and all of the instructions written into the branch prediction cache from the system
bus must also be stored in the instruction cache. The instruction cache monitors the system bus for attempts to write to the add-
ress of an instruction contained in the instruction cache. Upon such a detection, that entry in the instruction cache (30) is invali-
dated, and the corresponding entry in the branch prediction cache (54) is invalidated. A subsequent attempt to use an instruction
in the branch prediction cache (54) which has been invalidated will detect that it is not valid, and will instead go to main memory
to fetch the instruction, where it has been modified.
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METHOD AND APPARATUS FOR
STORE-INTO-INSTRUCTION-STREAM DETECTION AND
MAINTAINING BRANCH PREDICTION CACHE CONSISTENCY

Related applications filed concurrently
herewith are entitled "Two-Level Branch Prediction
Cache", "Integrated Single-Structure Branch Prediction
cache", and "Integrated Instruction Queue and Branch

Target Cache".

BACKGROUND OF THE INVENTION

The present invention relates to branch
prediction caches, and in particular to methods and
apparatus for handling the modification of an instruction
in the branch prediction cache or already provided to an
instruction pipeline by an instruction farther along the
pipeline.

As computer designers have designed
increasingly higher performance implementations of
various computer architectures, a number of classes of
techniques have been developed to achieve these increases
in performance. Broadly speaking, many of these
techniques can be categorized as forms of pipelining,
caching, and hardware parallelism. Some of these
techniques are generally applicable to and effective in
the implementation of most types of computer
architectures, while others are most appropriate in the
context of speeding up the implementations of Complex
Instruction Set Computers (CISC).

The purpose of creating a high-performance
implementation of a CISC architecture system is to
achieve the appearance of each instruction having a
processing time of one or a few processor/clock cycles.
However, such timing typically is only approximated. One
of the principal reasons for not achieving a one-cycle
processing time is the existence of various types of
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dependencies between neighboring instructions. The
dependencies may result in the occurrence of processing
delays.

One critical area in the achievement of a one-
cycle processing time is in the handling of control
dependencies, i.e. branch-type instructions. In the
context of a CISC architecture implementation these
instructions tend to be difficult insofar as being able
to quickly calculate or otherwise determine the target
address of a branch, to quickly resolve the proper path
of subsequent instruction processing in the case of
conditional branches, and in all cases to then quickly
restart the fetching of instructions at the new address.
Pipeline processing delays result when these operations
cannot be performed quickly.

To minimize the actual impact of these delays
on processing throughput, various types of prediction and
caching techniques are available.” The purpose of a
designer in applying these various types of techniques is
to always accurately predict the information to be
produced by the above operations, i.e. branch target
address, conditional branch direction, and the first one
or more instructions at the branch target address. The
percentage success rates of these prediction techniques
then reduce the effective delay penalties incurred by the
above three operations in corresponding amounts.

Generally speaking, existing techniques are
based on the retention or caching of information from the
prior processing of branch instructions. When a branch
instruction is encountered again, and information from
previous processing of this instruction is still to be
found in the prediction cache structure, the cached
information is then used to make an "intelligent" dynamic
prediction for the current occurrence of the branch.

When no such information is to be found in the prediction
cache structure, either a "dumber" static prediction must



10

15

20

25

30

35

WO 91/13401

PCT/US91/00831

3

‘be made, or normal processing, with the attendant

possibility of incurring delays, must be performed.

Existing high-performance CISC designs use
forms of cache structures to hold various combinations of
information with the intention of predicting one or more
of the three types of information mentioned above. 1In an
aggressive all-encompassing design each entry holds: a
record of the actual target address associated with the
last occurrence of the branch; a copy of the first
several instructions at this target address; and, in the
case of conditional branches, a history record of the
direction taken by each of the past couple of branch
occurrences.

In parallel with the fetching and/or decoding
of a branch instruction, the instruction is also looked
up in the branch prediction cache. Generally, this look-
up is based on the fetch address of the branch or on a
closely related address. As the instruction is being
decoded, the branch history information is used to
predict the direction of conditional branches. The
history information determines whether subsequent
instruction processing should continue with the
instructions sequentially following the branch, or with
the sequence of instructions starting at the target
address.

Whether the branch is conditional or
unconditional, if processing is to continue with the
target instruction stream, then the processing of
successive instructions proceed without delay using the
branch target instructions from the cache. At the same
time, fetching of further non-cached instructions is
immediately initiated using the predicted branch target
address, plus an appropriate increment.

While this branch prediction design offers the
possibility of fast, efficient processing of the
predicted branches, the possibility of processing a
branch instruction based on erroneous information is
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introduced. In general, handling mispredicted aspects of
processing a branch must be an integral part of the
overall central processing unit (CPU) design.

There are subtler issues stemming from the
nature of the implemented architecture. In the case of
many CISC architectures, one part of a program may modify
other parts. These modified program parts are then
executed. The result is that the modified image of these
instructions, instead of the original image, is then
executed.

For some CISC architectures which allow
programs to modify itself, this type of programming
practice has become an established practice within a
significant portion of the existing software base.
Consequently, to maintain backward software
compatibility, new CPU implementations often must not
only implement the direct semantics of the architecture's
instruction set, but also maintain the appearances of
this expected secondary semantic behavior. In the case
of higher performance implementations this can become a
significant, and potentially difficult, requirement to
satisfy.

When cache-based dynamic branch prediction is
incorporated into the design difficulties with high-
performance arise. It is possible that the target
address of a branch instruction, which might otherwise be
a constant value for that instruction instance in memory,
may be modified by what is normally an instruction that
writes data to memory. Or, for that matter, the branch
instruction opcode may be changed to that of a different
type of branch instruction or to that of a non-branch
type of instruction.

Further, even if none of the bytes of a branch
instruction itself are modified, one of the target
instructions may be modified. To the extent that these
instructions are fetched from main memory after any such
modification has taken affect, there is no problem. But

s
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if, for example, a copy of the modified instruction is
held in a branch prediction cache such as described
above, and is fetched from there instead of main memory,
then a consistency problem exists.

For both branch and target instruction
modifications, the design of a branch prediction cache
and associated control circuitry must maintain a
sufficient degree of consistency to ensure proper
processing of instructions. The maintenance of
consistency must encompass not only conventional
data/instruction cache consistency, but also consistency
with respect to memory store instructions modifying other
instructions which are executed shortly thereafter.

The consistency problem is essentially similar
to that encountered with more conventional
data/instruction cache structures used in high-
performance CPU designs. Data writes by the CPU must be
appropriately reflected in the state and/or contents of
any affected cache entries. But the scope of the problem
is more general than this. When other devices within the
system, such as Direct Memory Address (DMA) devices or
CPU's, modify main memory, the issue of cache/main memory
consistency again arises. For a branch prediction cache
these other devices are additional sources or causes of
inconsistencies which must also be covered.

In extreme "store-into-instruction-stream"
cases. such as a modifying instruction immediately
folle 72d by a branch and then a modified target
instruction, this can be difficult. Particularly for
highly pipelined, high-performance CPU designs,
implementing this can prove to be expensive in terms of
additional hardware circuitry, complex to design, and/or
forcing compromise in the overall performance attainable
by the design.

Pipelining, particularly the deep pipelining
that is common in high-performance implementations of
CISC architectures, results in large instruction

PCT/US91/00831
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processing latencies and high degrees of overlap between
the processing of successive instructions. Access of a
branch prediction cache and usage of the resultant
prediction information and target instructions generally
occurs early in such pipelines. Execution of memory
writes by instructions storing to memory, on the other
hand, generally takes place late in such pipelines.

Consequently, actions such as fetching target
instructions from a branch prediction cache (BPC) can
easily occur before architecturally preceding memory
writes modifying such target instructions have actually
been performed. Such actions may even occur before the
store addresses have been generated, this being the
earliest point at which potential consistency problems
could be checked for and detected. The result is that
consistency must be maintained with respect to not only
the explicit contents of the branch prediction cache, but
also with respect to the implicit contents associated
with instructions currently being processed.

Insofar as these consistency issues apply to
target instructions fetched from the cache, they also
apply to instructions temporarily stored in and then
taken from instruction pre-fetch queues. As a transient
form of cache, a pre-fetch queue can lead to similar
inconsistencies.

Overall, the need to maintain branch prediction
cache and more general fetched instruction consistency,
with respect to cases of "store-into-instruction-streanm",
as well as with respect to more generic modifications of
main memory blocks, is a difficult problem.

SUMMARY OF THE INVENTION
The present invention provides for the updating
of both the instructions in a branch prediction cache and
instructions recently provided to an instruction pipeline
from the cache when an instruction being executed
attempts to change such instructions ("Store-Into-
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Instruction-Stream"). The branch prediction cache (BPC)
includes a tag identifying the address of instructions
causing a branch, a record of the target address which
was branched to on the last occurrence of each branch
instruction, and a copy of the first several instructions
beginning at this target address. A separate instruction
cache is provided for normal execution of instructions,
and all of the instructions written into the branch
prediction cache from the system bus must also be stored
in the instruction cache. The instruction cache monitors
the system bus for attempts to write to the address of an
instruction contained in the instruction cache. Upon
such a detection, that entry in the instruction cache is
invalidated, and the corresponding entry in the branch
prediction cache is invalidated. A subsequent attempt to
use an instruction in the branch prediction cache which
has been invalidated will detect that it is not valid,
and will instead go to main memory to fetch the
instruction, where it has been modified.

The present invention also provides for
invalidating an instruction already provided to an
instruction pipeline when that instruction is attempted
to be changed by an instruction currently being executed.
This is done by maintaining a copy of the target
instruction address of the branch after the target
instructions are provided to the instruction pipeline.
These instructions (if still present) are then
invalidated upon a detection of an attempt to write to
them in main memory, and an error signal is generated. A
control circuit for the instruction pipeline receives
this error signal, and flushes the instruction pipeline
of all instructions and results from the branch target
instruction onward, and restarts the instruction pipeline
at the branch target instruction. This stored group of
instructions is referred to as a pre-fetch queue.

The branch target cache contains the basic
hardware necessary for implementing the pre-fetch queue.
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One or more 24 byte portions of the branch target cache
are simply designated as being used for the pre-fetch
queue. These instructions can then be invalidated just
like any other instruction in the branch target cache.

For a fuller understanding of the nature and
advantages of the invention, reference should be made to
the ensuing detailed description taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of the computer
system incorporating the present invention;

Fig. 2 is a block diagram of the decoder block
of Fig. 1;

Fig. 3 is a block diagram of the front end
block of Fig. 2, showing the branch prediction cache of
the present invention;

Fig. 4 is a block diagram of the operation of
the instruction cache of the present invention;

Fig. 5 is a diagram showing the contents of the
branch prediction cache of the present invention;

Fig. 6 is a diagram of the consistency check
comparisons done in the present invention;

Fig. 7 is a block diagram of the branch
prediction cache according to the present invention;

Fig. 8 is a block diagram of the tag RAM of
Fig. 7:

Fig. 9 is a diagram of the target address RAM
of Fig. 7;

Fig. 10 is a block diagram of the branch target
instruction sequence RAM of Fig. 7;

Fig. 11 is a block diagram of the target
instruction valid and branch history memory of Fig. 7:

Fig. 12 is a diagram of the address selection
logic of Fig. 7;
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Fig. 13 is a diagram illustrating the pre-fetch
queue in the branch target instruction sequence RAM of
the present invention;

Fig. 14 is a flowchart of the operation of the
control circuit for monitoring the pre-fetch queue for
store-into instruction stream errors;

Fig. 15 is a diagram of the store-into-stream
detection logic; and

Fig. 16 is a diagram of the multiple
instruction streams resulting from multiple branches.

DESCRIPTION OF THE PREFERRED EMBODIMENT
The following System Overview and Pipeline

Control System Overview describe a pipeline system which
can be flushed and restarted when a branch error is

detected several cycles after the branch is taken. This
is a necessary element of aspects of the invention set

forth in Maintaining Branch Prediction Cache Consistency.

System Overview
Fig. 1 is a block diagram of a CPU 10

incorporating the present invention. The CPU is designed
to execute an instruction set compatible with that of the
Intel 80386, as described in the Intel 80386 Programmer's
Reference Manual published by Intel Corporation, Santa
Clara, California, 1986. Each block in the diagram
corresponds generally to a separate integrated circuit
chip or group of chips in a current embodiment.

An Instruction Decoder (DEC) 12 performs
instruction fetch, instruction decode, and pipeline
control. DEC 12 optionally interleaves instruction pre-
fetch of up to three simultaneous instruction streams.
DEC 12 contains a fully associative Branch Prediction
Cache (BPC) according to the present invention. The BPC
is an integrated structure which contains dynamic branch
history data, a physical branch target address, and a
branch target buffer for each cache entry. As branch
instructions are decoded, the BPC is consulted for

PCT/US91/00831
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information about that branch. Independent of the
direction predicted, branches are executed in a single
cycle and do not cause pipeline bubbles.

On each cycle, an instruction is selected from
one of the three instruction buffers or a branch target
buffer in the BPC. The instruction is decoded, assembled
into an internal 96-bit decoded instruction word,
referred to as a pseudo-op (p-op), and dispatched to the
various functional units. Instruction decode generally
proceeds at a single cycle rate. Each p-op issued by DEC
12 is given a tag which uniquely identifies each
instruction currently outstanding in the machine. Tags
are issued in increasing order, allowing easy
determination of relative age of any two outstanding
tags. Bus transactions between chips include the tag of
the originating instruction. Functional units pair up
instructions, addresses, and operands with these tags.

DEC 12 is also responsible for tracking the
status of outstanding instructions, pipeline control, and
for invoking exception processing when needed.

An address Preparation Unit (AP) 15 calculates
effective addresses, performs segment relocation, and
implements a demand paged nemory management system. It
contains a translation lookaside buffer (TLB).

An Integer Execution Unit (IEU) 17 performs
single cycle execution of most integer instructions. It
contains an 8 x 32 multiplier and accumulator array, as
well as microcode for multiply and divide instructions.
The pipeline control architecture allows the IEU to
perform parallel and/or out-of-order execution of integer
instructions.

A Numerics Processor (NP) 20 may optionally be
included in the CPU. It is a high performance
implementation of the IEEE floating point standard. The
NP is integrated into the pipeline and does not incur any
special overhead for the transfer of instructions and
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operands. Integer (IEU) and floating point (NP)
instructions execute concurrently.

A Memory and Cache Controller (MCC) 25 is
responsible for controlling the instruction and data
caches and implements the cache coherency protocol. The
MCC controls the interface to the System Bus, supporting
high speed single and block mode transfers between cache
and memory. The MCC also contains write reservation
tables for integer, floating point, and system writes,
and includes read after write short-circuit paths.

An Instruction Tag (ITAG) chip 27 contains the
tag RAM for an Instruction Cache (ICache) 30. The tag
RAM contains the address tag, a "valid" bit, and an
"Attention" bit for each line in the ICache. The
Attention bit indicates that the DEC chip may also have
data from this line cached in the BPC.

A Data Tag (DTAG) chip 32 contains the tag RAM
for a Data Cache (DCache) 35. The tag RAM contains the
address tag and line state bits for each line in the
DCache. The possible line states are Absent, Shared
Read, Owned Clean, and Owned Dirty, supporting a write
back multiprocessor cache coherency protocol (modified
write once). The tag RAM is dual ported to allow both
CPU and bus snooping cache look-ups in a single cycle.

Each functional unit chip is packaged in a
custom ceramic pin grid array (PGA) which contains power
and ground planes and associated decoupling capacitors.
Roughly 25% of the pins are dedicated to power and
ground. For 0.8 micron to 1.2 micron processes, I/0
delays are comparable to on-chip critical paths. Inter-
chip I/0 is incorporated into the pipeline, and thus does
not add to the machine cycle time. ICache 30 and DCache
35 use conventional static RAM's.

Communications between the various functional
units are carried out over a number of internal buses.
These include: a 64-bit IFETCH_DATA bus for instruction
fetches; a 96-bit P-OP bus for communicating issued p-ops

PCT/US91/00831
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to the APU, the IEU, and the NP; a 52-bit PADR bus for
communicating physical addresses; a 64~bit (32 bits in
each direction) data cache bus DIOBUS for data cache
transfers; a 32-bit bus DXBUS for inter-chip exchange; a
64-bit bus for cache/memory updates; and a number of
termination buses (AP_TERM, IEU_TERM, NP _TERM, and
MCC_TERM) from the functional units to DEC 12. Some of
these buses are full width and some (e.g. P-OP bus) are
half-width (time multiplexed). Interactions between
functional units are generally limited to well defined
transactions on the internal processor buses.

Pipeline Control System Overview

Pipeline control of the processor is
distributed across the functional units mentioned above.
No centralized scheduling or score boarding of the
pipeline is performed. DEC 12 does observe certain
overall resource constraints in the architecture and will
occasionally hold off on issuing a decoded instruction
which would violate resource limitations. Each
functional unit is responsible for scheduling its own
internal operations. Interlock checking is performed at
a local level.

In a deeply pipelined machine, exception
detection at various stages in the pipeline creates
significant control difficulties. Each stage must be
careful to hold off modification of state while any other
stage may yet detect an exception on a previous
instruction. Special purpose control logic is common,
and careful pipeline simulations must be performed.

The processor deals with this complexity using
a few techniques which are simple, general, and powerful.
DEC 12 issues decoded instructions and the functional
units process addresses and operands without regard for
the consequences of exceptions detected by other
functional units.
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DEC 12 is responsible for determining when
execution has proceeded beyond the point of an exception.
Using techniques described below, the DEC will restore
the state of the machine to the point immediately
preceding (fault exceptions) or following (trap
exceptions) the instruction causing the exception.

As noted above, each functional unit has a
termination bus back to DEC 12. Signals on these buses
indicate (by tag) when instructions have been completed
and what exceptions (if any) were detected by that unit.
The DEC uses this information to keep track of what
instructions are outstanding in the machine, to track
resource constraints, and to decide when exception
processing must be initiated.

In response to abnormal terminations, DEC 12
will back up the state of the machine to the point of the
exception, and begin issuing either a different
instruction stream or a sequence of micro-instructions to
invoke an exception handler. The processor uses one or
more of five general mechanisms to permit the machine to
be backed up to a particular state as part of DEC's
response to abnormal terminations. These are issuing
abort cycles, reassigning registers, using write
reservation tables, using history stacks, and functional
unit serialization.

Abort cycles are issued by DEC 12 when
instructions which have been issued by the DEC must be
flushed from the machine. During an abort cycle all
functional units are provided a tag which identifies the
boundary between instructions which should be allowed to
complete and instructions which must be purged from the
machine.

Register reassignment is used to restore the
state of the general register files and the segment
register file, flushing any modifications made for
instructions which must be aborted. The functional units
have more registers physically available than the

PCT/US91/00831
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instruction set specifies. DEC 12 maintains a set of
pointers which map the programmer visible (or virtual)
registers onto the physical registers. 1In assembling
decoded instructions, the DEC will substitute the
appropriate physical register numbers into the register
specification fields.

When a virtual register is to be modified, the
DEC will first allocate a new physical register, modify
the pointer set, and use the allocated register number as
a destination register. Following execution of the
instruction, the old physical register still contains the
original value of the virtual register, while the new
physical register contains the modified value of the
virtual register. To back out of the register
modification, the DEC must restore the pointer set to its
value prior to issue of the instruction.

As physical registers are freed up, they are
placed at the end of a free list which is sufficiently
long to guarantee that a physical register will not
appear at the head of the free list until after its
contents are no longer required. The DEC maintains a
history stack of pointer values, as is described below.

Write reservation tables are used in MCC 25 to
queue up data writes until it is known that the writes
will not have to be aborted. The MCC receives addresses
and operands on the internal data buses, matches them up
by tag, and waits for permission from the DEC to perform
the irreversible write.

History stacks are used for saving and
restoring miscellaneous machine state, such as the
register reassignment pointers, flags register, and
program counter.

For machine state which is rarely modified, the
cost of a history stack of values is not justified. For
these cases, the functional unit which is to perform the
modification (and only that unit) halts processing, and
the tag of the oldest outstanding instruction in the
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machine (as provided by the DEC) is examined on each
cycle to determine when all older instructions in the
machine have been successfully completed. At this point
there is no longer any need to preserve the old value of
the machine state and the functional unit makes an
irreversible change to the machine state.

" The distributed pipeline control scheme,
combined with the ability to back out of any state
modification, allows a number of performance
optimizations.

Each functional unit receives only operations
which actually require processing in that unit. This is
in contrast to conventional pipelines in which
instructions flow through all stages in the pipeline,
whether the stage has useful work to do or not.

Furthermore, each unit performs an operation as
soon as all input operands are available. When complete,
the result is passed to the next stage for further
processing, and the next operation in examined. A stage
only stops execution when it has nothing available for
execution.

This behavior allows out-of-order execution
between functional units. For a memory write which has
an address generate interlock, for example, the AP will
not be able to compute the memory address. The IEU,
however, is able to provide the data and does so
immediately, after which it continues on to the next
instruction. The AP's interlock does not need to create
a pipeline bubble in any other pipeline stage. Later on,
the IEU may be held up performing a multiply, or waiting
for a memory operand. At this time, the AP has a chance
to catch-up with the IEU.

From the viewpoint of a particular functional
unit, this isn't a complicated concept. The functional
unit makes a local decision, completely unaware that it
might cause instructions to be completed out-of-order.
The pipeline control mechanisms guarantee that any

PCT/US91/00831
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modifications made by an instruction executed out-of-
order can be purged. The functional unit makes no
special checks. _

Out-of-order execution between functional units
happens for free as a result of the distributed decision
making within the processor. Even within a functional
unit, instructions could be safely executed out of order.
IEU it provides an example of internal out of order
execution. The IEU examines the instruction at the head
of it's instruction queue to see if it is ready to
execute. If a data interlock prevents immediate
execution, the IEU will examine the next younger
instruction to see if it is ready to execute. This
process can continue until an instruction is found which
can execute. The IEU will only pay a data interlock
penalty if there is no instruction available which is
ready to execute.

. Note that even if the IEU pays an interlock
penalty, that doesn't mean that the processor as a whole
loses a cycle. The IEU may have been running ahead of
other functional units at the time. Even if the IEU
falls behind, it may be able to catch-up later when an
instruction is issued which does not require the IEU.
Finally, the penalty cycle may be overlapped with a
penalty cycle from AP 15, allowing two penalties to count
as only a single lost cycle.

A special case of a functional unit choosing to
execute instructions out-of-order is parallel execution
of instructions within the functional unit. 1In
particular, this concept is applied to instructions which
take multiple cycles. Parallel execution of other single
cycle instructions allows the multi-cycle instruction to
have an effective throughput of one cycle.

DCache misses would normally stop the pipeline
for a full cache miss penalty. To the extent that the
functional units can continue to find operations that can
be executed without the cache data, the cache miss
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penalty is reduced. The same is true for misses in the
AP chip's TLB. These cases are different from the others
in that the number of penalty cycles is usually fairly
high, making it difficult to fully overlap them with

useful work.

Pseudo-0p Tracking and Issue Control
Fig. 2 shows the front end 50, back end 52 and

decoder 54 of DEC 12 of Fig. 1.

As each pseudo-op (p-op) is issued by DEC over
the Pseudo-Op Bus, it is queued by the appropriate
functional units (AP, IEU, NP). Each functional unit
then processes its p-op stream in a loosely coupled
manner with respect to other units, and signals a
termination to DEC as each p-op is completed. It is
DEC's responsibility to keep track of all outstanding p-
ops as they float around through the CPU; to
appropriately control the issue of p-ops so as to ensure
reliable operation (in the context of the CPU's tagging
scheme to control p-op, address, and data processing);
and to arbitrate over abnormal conditions signaled by
functional unit terminations, and then initiate
appropriate actions.

Inside DEC this is controlled by two loosely
coupled blocks called the decoder and the back end. The
former is responsible for decoding macro-instructions and
issuing all p-op sequences, while the back end then
handles the tasks summarized above. Another block inside
DEC, the front end, is responsible for fetching and
supplying instruction bytes to the decoder. As the
decoder issues a p-op it also passes along information
about the p-op to the back end. This is used to .dentify
the correct actions necessary to perform the above tasks.
Fig. 3 shows the DEC front end.

The back end, based on all the outstanding p-
ops, will control the issue of following p-ops by the
decoder so as to continuously satisfy a variety of




10

15

20

25

30

35

WO 91/13401 PCT/US91/60831

18

constraints which are required for correct, reliable CPU
operation. As terminations are received from each of the
functional units, the back end maintains the status of
each outstanding p-op. Some terminations are
"accumulated" until some future point in time. During
"normal" operation this tracking primarily influences the
issue of following p-ops. But, to the extent that
abnormalities are signaled by the functional units via
corresponding terminations, the back end resolves
multiple abnormal terminations of any given p-op, and
then initiates the appropriate response. This can
include sending an abort cycle out to all the other
functional units (including also MCC) so as to back up
the state of the CPU to some prior state of p-op
processing.

For the most part, the functional units are not
concerned with the status of outstanding p-ops, except
when an abort occurs. The primary exception to this is
MCC which needs to know when it is safe to actually
perform memory and I/O writes into the cache and/or out
to the rest of the system. In special cases AP and IEU
also need to know when it is safe to execute certain p-
ops. All these needs are satisfied by the back end
through the continual issue every clock cycle of
information over the Tag Status Bus which reflects the
current outstanding p-ops and signals aborts.

Maintaining Branch Prediction Cache Consistency

Fig. 3 shows front end 50 in more detail,
containing branch prediction cache 54 and control logic
and state machine 56. Control circuit 56 generates the
necessary control signals for the operation of branch
prediction cache 54.

Fig. 4 illustrates the operation of the
instruction cache 30 of Fig. 1. The instruction cache
memory array contains a number of lines, or entries, 60,
62, 64, etc. Each line contains a block of 32 bytes of a
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local copy of main memory data. Those 32 bytes may
contain several instructions. Each instruction can be of
arbitrary length (1 byte, 2 bytes, 3 bytes, etc.), and
may not be entirely contained in the 32 byte block. The
instruction cache is always loaded in contiguous 32 byte
blocks. This reduces the number of address bits
connected to the cache, and also tends to load the next
sequential instructions which are likely to be used. In
addition, the overhead required to reference main memory
is amortized over the entire 32 byte block.

The instruction cache is direct-mapped, with
each block of instructions having a designated line in
the instruction cache where it belongs. This designated
line is determined by the index bits 66 as illustrated in
Fig. 4. These index bits are a portion of the bits of
the instruction block addresses and are called the cache
line address. A number of blocks from main memory will
have the same index bits, and thus share the same line of
the instruction cache. Accordingly, only a single block
from each group of blocks having the same index can be in
the instruction cache at any one time. The appropriate
location in instruction cache memory array 68 for an
instruction block is determined by decoding the index
bits 66 with a decoder 70 and selecting the appropriate
line with one of select lines 72.

A record of which 32 byte block of instructions
is stored in a particular line in the instruction cache
is kept in a corresponding instruction tag RAM 27 shown
in Fig. 1. The address of the block which is actually
stored in the corresponding line is stored in instruction
tag RAM 27, and can later be compared to the address of
the instruction block for an instruction to be fetched to
determine if that instruction is indeed in the
corresponding line in instruction cache 30.

Branch prediction cache 54 of Fig. 3 is
illustrated in Fig. 5. To understand Fig. 5, it is best
to review what a branch instruction is. The instruction
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causing the change in control flow is called the "branch
instruction", and the address of this instruction is
called the branch instruction address. The branch
instruction may include within it the address of the
instruction to be branched to, which is called the branch
target instruction. The address of the branch target
instruction is the "target address". Alternately, a
formula for calculating the target address may be
included in the branch instruction. In addition, the
branch instruction may be a conditional branch. A
conditional branch causes a jump to a branch target
instruction only if a test set forth in the branch
instruction is met. If the condition is not met, then
the branch is not taken and sequential execution
continues.

Returning to Fig. 5, the branch prediction
cache contains a number of columns. A first column 74
contains a tag which identifies the cache contents for a
particular line. That tag is the branch instruction
address itself. A separate column 76 contains a valid
bit for each entry, indicating if the entry is valid.
Another column 78 contains the target address pointed to
by the branch instruction whose address is given in
column 74. At least the first byte of the actual branch
target instruction itself (possibly the entire
instruction), possibly along with sequentially occurring
instructions after the branch target instruction, up to
24 bytes total, is set forth in a column 80. Thus, the
first useful instruction in the 24 bytes is located at
the address pointed to by the target address of column
78. A column 82 contains valid bits for each of the.
instruction word blocks in column 80. Finally, a branch
history column 84 contains two bits indicating the
direction of the branch during the past executions of
that branch instruction. For example, the possible
arrangement of the two bits in column 4 could be as
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follows where the two chéices of the conditional branch

are A and B:

Bit Pattern Branch History
00 AA
01 AB
10 BA
11 BB

The present invention provides a set of
mechanisms for maintaining instruction consistency, both
for instructions resident in a branch prediction cache
and for instructions being processed within a CPU
pipeline, when a Store-Into-Instruction-Stream occurs.
The mechanisms involve minimal constraint or impact on
pipeline performance. This invention is able to handle
all inconsistency cases of interest.

The overall problem of maintaining consistency
can be broken down into two areas of concern of
increasing difficulty. (1) The simplest area involves
maintaining consistency between branch prediction cache
(BPC) target instructions and corresponding main memory
images. This maintenance is significant given the
presence of conventional instruction and data caches
within the CPU, as well as within other CPU's of a multi-
processor system. (2) The second, more difficult area
involves handling the relatively extreme case in which
the instruction being modified has been fetched before
the store address for the modification has been generated

by the CPU pipeline.

BPC and Main Memory Consistency

Many multi-processor systems utilize some form
of hardware cache consistency protocol based on
monitoring of common or global memory bus traffic by each
cache. While conceptually the BPC could be added as
another direct participant in such a scheme, in practice
there are disadvantages to this strategy, such as BPC
address look-up band-width limitations, or physical
design partitioning and packaging considerations. This

PCT/US91/00831
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invention extends the instruction cache consistency
protocol to also indirectly include the BPC.

There are two consistency checks:

1. Writes originating from the local CPU on
the bus in the middle of Fig. 1 - "internal writes".

2. Writes originating from some other CPU or
other bus master on the bus at the bottom of Fig. 1 -
"external writes".

Internal writes are performed without ITAG
assistance and match the entire 32 bit address
(truncating the 5 LSB's). External writes require ITAG
to reflect the line address (as described below with
reference to Figs. 6 and 9) to the BPC; only a line
address match is required. Line replacement is treated
like an external write. '

In essence, the BPC is maintained, insofar as
its caching of target instructions, as a strict subset of
the instruction cache for external writes. Instructions
are loaded into a BPC entry only when they are also
resident in the instruction cache; whenever copies of
instructions are removed from the instruction cache, any
associated copies in the BPC are also removed.

In one embodiment, the latter condition is
maintained by the use of "Attention" bits, one per
instruction cache line. The Attention bit of a cache
line is set when a copy of one or more instruction words
resident within that line are entered into a BPC entry.
Then, when such a cache line is invalidated or otherwise
modified, the set Attention bit signals the need to do a
BPC consistency check. While any associated instruction
copies may have already been replaced from the BPC, any
copies still resident are detected and immediately
invalidated.

In a second embodiment, the Attention bits are
not used. All instruction cache invalidations,
replacements, and other relevant modifications, result in
a BPC consistency check. The Attention bits reduce the
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amount of consistency check traffic between the
instruction cache and the BPC at the cost of additional
hardware.

The BPC of the invention contains a number of
entries, each associated with a previously encountered
branch. Within each entry is a predicted target address,
conditional branch direction history, and a portion of
one, or more of the first several target instructions.
The target address also identifies the first target
instruction byte cached within the entry.

To perform a BPC consistency check, the cache
line address is compared with all the target addresses
within the BPC. This consistency check is a fully
associative access. The target instructions associated
with any target addresses matching the address presented
to the BPC are then invalidated.

This check is complicated by the mismatch
between the aligned 32 byte line address being presented
to the BPC, and the somewhat arbitrary alignment of up to
24 bytes of target instruction data cached within each
BPC entry. While the 24 bytes are constrained to be a
block of one, two or three contiguous aligned 8 byte
blocks of instruction memory image, this block can span
up to two cache lines.

Consequently, to resolve this problem, a
modified form of the stored target address within each
entry is used for comparison purposes. First, the target
address is "truncated" on the least significant end to
aligned 32 byte resolution. 1In the case where the
associated cached target instruction data spans only one
aligned 32 byte block, this is sufficient. Second, to
handle the more general case of target instruction data
spanning into the next sequential 32 byte block, the
target address is incremented by 32 bytes (the length of
the entry) to give the cache line address spanning the
end of the entry. A truncated portion of this address is
stored and identifies the next 32 byte block.

PCT/US91/00831
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These two addresses identify the first and last
aligned 32 byte blocks of address space spanned by the
cached target instruction data of an entry. When only
one block is spanned, these two addresses will happen to
be identical. During a consistency check, a match with
either or both of these addresses results in invalidation
of the cached target instruction data of that entry.

A further modification is made in this
invention. When two blocks are spanned by target
instruction information of a BPC entry, they are
constrained to be in the same page of address space, i.e.
the same 4K byte block. When they are not, only the
target instruction data in the first block are actually
cached.

The same page space constraint guarantees that
the higher-order address bits (higher than the page
boundary bit) of the two target addresses within an entry
are identical. Consequently, only one set of high-order
address bits need be stored. The comparisons within each
BPC entry for a consistency check now become the
following: if the high-order address bits match and
either of the low order sets of address bits match, then
an invalidation is performed.

This is illustrated in Fig. 6. The target
address 90 has 20 higher order bits and 12 low order
bits. The 5 lowest order bits are truncated, since these
bits simply set forth the location within a particular 32
byte aligned block. By incrementing the target address
by 32 bytes, the address covering the end of the 24 byte
section is provided. To determine which 32 byte line
block this address falls within, the last 5 bits are
again truncated. Since the system requires that any 24
byte section which spans two 32 byte blocks must be
within the same page, the bits above the page boundary
bit can be ignored. This leaves a middle 7 bits which
are then written into a separate memory location 92. For
both 32 byte lines, it should be remembered that the
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instruction cache is indexed by 4 bits, with instruction
blocks which have the same index bits sharing the same

instruction cache line.
Since, for external writes, target instruction

data is only stored in the BPC if it is also in the
instruction cache, the higher order bits of the target
address which has index bits corresponding to the index
bits of an instruction cache line being invalidated will
necessarily be identical with the address of the
instruction block actually within that line in the
instruction cache. Accordingly, only the four index bits
need to be compared in order to determine which target
addresses correspond with that line of the instruction
cache.

Thus, for the consistency check comparison,
those four index bits are combined with the two 7 bit
version stored in memory elements 90 and 92. These are
then compared and comparators 94 and 96, respectively,
with the corresponding 11 bits of instruction address for
the instruction line being invalidated. Actually, the
implementation separately compares the four bits as shown
in more detail in Fig. 9, as described below.

Instruction Cache Miss

One potentially complicating issue arises in
connection with the cache replacement typically
associated with an instruction cache miss. While the

miss address is usually conveniently available, the
address of the instruction block being replaced out of
the cache may not be. It is this latter address which
needs to be presented to the BPC for a consistency check.
This problem is also dealt with using the index
bits and treating the operation like an external write.
By not including the bits more significant than the index
bits in the consistency check comparisons, the miss
address can be presented to the BPC in place of the
replaced address. Since any address having the identical
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index bits must be in the same line of the instruction
cache, and since anything in the BPC must also be in the
instruction cache, the instruction address being
overwritten is the only one which could be present in the
BPC. Accordingly, use of the index bits of the miss
address is guaranteed to catch only the correct address
in the.BPC.

Details of BPC

Figs. 7-12 show the BPC in more detail. Fig. 7
is a block diagram showing the various elements in BPC
152. The BPC comprises entries containing a relatively
large amount of prediction information. In the preferred
embodiment, this cache structure contains a full scope of
information to enable single branch execution, including:
the branch direction if the branch is conditional, the
branch target address and cached target instruction data.
More specifically, each cache line contains the target
address from when the branch instruction was last
executed; up to the first 24 bytes of sequential
instruction stream starting at the target address; and
two history bits recording the direction taken during
past'executions of the branch instruction.

To this end, BPC 152 includes the branch
address tag memory, called a program counter content
addressable memory (PcCAM) 170 with associated valid bit
(Vbit) memory 172. The target address memory is a branch
address cache/target CAM (BAC/TgtCAM) 175. The history
of past branch directions is in a branch history cache
(BHC) 177. A branch target cache (BTC) 180 contains the
target instruction data, with an associated target
instruction valid (TIV) memory 182 storing valid bits for
the instruction data in BTC 180. Each of the memory
arrays contains 36 lines and is directly accessed via
word select inputs (as opposed to encoded word address
inputs). Some of these sets of word selects for reading
and writing each line are generated by address selection
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logic 185 with associated multiplexer 188. Other word
selects are generated by the match outputs of PcCAM 170.
A Least Recently Used (LRU) logic block 181 has logic
which performs the function of selecting a BPC line to be
overwritten by a new block of instruction data.

¢civen the relatively limited size of this
cache, it is designed to support accesses in a highly
associative manner versus a direct-mapped or two/four-way
set associative manner. This look-up, to check whether
an entry currently exists in the cache for a branch about
to be processed, is typically performed using the address
of the branch instruction. For some pipeline designs, a
closely related address may instead need to be used.

In this context, the term fully associative
means that bits of the input address are compared with
potentially matching bits of all the entries in cache. A
hit is defined to have occurred when the input address
matches at least one stored address. The term direct
mapped means that some number of bits of the input
address are used to index into the memory, and the
remaining bits are stored in the memory. When the entry
is read out of the memory, the stored address bits are
compared with the corresponding bits in the input
address, and a hit is defined to have occurred when the
two agree. This entails a single comparison. 1In the
event that two branch instructions index to the same
entry (different PC's with the same set of index bits), a
direct mapped cache can only accommodate one, even if
there are other empty entries. The term two-way set
associative refers to a structure with two memory banks,
so that two entries are read out for a given index and
two comparisons are performed. This concept can be
expanded to more than two-way set associative.

In the preferred embodiment the address of the
first byte of the next instruction to be decoded is used
for the look-up in the BPC, and is done in parallel with
instruction fetch completion and start of instruction
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decode. This look-up is also done in a fully associative
manner which provides substantial performance improvement

relative to direct-mapped or two/four-way set-associative
access methods.

A cache tag for each entry, namely the
instruction address of the branch associated with the
entry, is stored in PcCAM 170. A cache look-up is
performed by accessing PcCAM 170 using the above next
instruction address, and then reading out the prediction
information from any, but at most one, entry for which
there was a tag match.

This greater associativity is with respect to
both cache look-ups and cache replacements, i.e. when
adding each entry to the cache a new entry to the cache
requires that some other (hopefully less beneficial)
entry be removed to make room. Through the greater
flexibility in choosing "old" entries to be replaced by
new entries, it is statistically possible to better
approximate the ideal of retaining prediction information
for the branches deemed most likely to be processed again
in the near future and the most often. In essence, full
associativity maximizes the prediction cache's hit rate
for a given cache size (in number of entries).

An instruction buffer 153 (shown in Fig. 3) is
used for temporarily holding instruction bytes before
they are aligned and provided to the instruction
register.

The circuitry will now be described with
additional reference to a series of logic schematics.
Each logic schematic for one of the memories shows the
circuitry for one line in that memory. Since there are
36 lines, in BPC 152, the circuitry shown for a given
memory is repeated 36 times for that memory.

Fig. 8 is a logic schematic of PcCAM 170 and
associated Vbit memory 172. PcCAM 170 is a RAM/CAM array
holding the instruction address of the branch for which
each cache entry is storing prediction information. Each
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line in PcCAM 170 includes a 32-bit RAM word 190 and a
CAM comparator 192. Each line in Vbit memory 172 holds a
valid bit indicating the overall validity of the line,
and is implemented as a latch 195. The CAM address input
may be the address of the first byte of the next
instruction to be decoded, and is compared with the
contents of RAM word 190. In the event of equality, the
camMatch2 line for that entry is asserted, as qualified
by a true output from Vbit latch 195.

The nature of PcCAM 170 supports fully
associative BPC lookups and replacements. The CamMatch2
signal from each line is output for use by the other BPC
components, while the RAM aspect of the array applies
only to writing instruction addresses into the PcCAM.

Fig. 9 is a logic schematic of BAC/TgtCAM 175.
The BAC/TgtCAM is a mixed RAM/CAM array holding the
target address from the most recent execution. Each line
includes a 39-bit RAM word 200, a 16-bit CAM, a
comparator 207, a 4-bit CAM comparator 202, a pair of 7-
bit CAM comparators 203 and 205, and associated logic.

Of the 39 bits, 32 bits are the target address of the
branch, the other 7 bits are additional target address
information, as will be described below. The full 32-bit
target address is made available for readout if the
particular BAC/TgtCAM line is selected, as determined by
CamMatch2 from PcCAM 170 via mux 188.

The CAM segments of BAC/TgtCAM are used to
detect memory stores by instructions currently being
processed within the CPU pipeline or external writes or
replacements. Since these instructions possibly modify
target instruction bytes, it is necessary to invalidate
the BPC entry in order to maintain proper coherency
between target instruction bytes in the BTC and their
image in main memory (actually in the ICache).

ICache RAM chip 30 contains 64 kilobytes,
organized as 32-byte lines, and is thus characterized by
an 11-bit address (the five low order bits may be
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ignored). The ITAG RAM contains the high order 16 bits.
The 27-bit address ChkAddr of a line being written in the
ICache is communicated to the CamAddrl input of the
BAC/TgtCAM. However, the BTC entry could straddle a line
boundary, and so may be characterized by two line
addresses. Thus, two target addresses (which may be the
same) need to be stored and checked. In fact, the high
order 16 bits need not be checked for an external write,
because the BPC is constrained to have only entries which
are in the ICache for external writes. All variations of
the upper 16 bits of instruction addresses which have the
same 11 bits below must share the same ICache line so
only 11 bits of each address need to be checked, as
described earlier in connection with Fig. 6. Two 11 bit
addresses in the BPC are checked, covering the possibly
two lines which could be spanned by a 24 byte BTC entry.
By requiring that the two lines be in the same 4-kilobyte
page (i.e., that the BTC entry not straddle a page
boundary), the 4 most significant bits of the second 11
bit address will be the same as for the first 11 bit
address, and can be ignored. To save space, the 7 bits
of the second address are added to the same physical RAM
word containing the 32 bit BAC address. CAM comparators
203 and 205 compare the two 7-bit fields of the RAM line
with the corresponding 7 bits of ChkAddr on the CAMAddri
input while CAM comparator 202 compares the 4-bit field
in the RAM line with the corresponding 4 bits of ChkAddr.
A match is defined to have occurred on a
particular line if the 4 bits of the 27-bit ChkAddr match
the 4 bits of the RAM line (as detected by comparator
202), the 7 bits of the ChkAddr match either 7-bit field
of the RAM line (as detected by comparators 203 and 205)
and the external write line is enabled or (for internal
writes) the 16 bit field of ChkAddr matches the 16 bit
field of the RAM line (as detected by comparator 207).
If a match occurs (more than one can occur since more
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than one BTC entry can be affected by a write in a given
line), the corresponding BPC entries are invalidated.

The 32 bit branch target address can be read
out through driver 204 on data bus rdBACData.

Fig. 10 is a logic schematic of BTC 180. Each
BTC slice comprises a 192-bit RAM word, implemented as
three 64-bit RAM words (8 bytes) 220a, 220b, and 220c.
Depending on the instruction length and alignment, the
BTC possibly holds the first few instructions at the
target address of the branch (in this case, up to the
first 24 bytes of aligned target instruction data). 1In
the context of the preferred embodiment, in which a CISC
architecture possessing variable byte length instructions
is implemented, the BTC cache caches the target
instruction stream image as found in main memory. As an
alternative, the first one or several target instructions
could be cached in an alternate, possibly decoded,
representation that may be more suitable for other CPU
implementations.

Each 64 bit output is provided through drivers
218a, 218b and 218c, with each RAM word output forming a
64 bit portion of 192 bit rdData output bus. The read
select signal for a particular one of the 36 lines is
provided through an AND gate 216. The write select
signals are provided through a series of AND gates 214,
212 and 210. _

Fig. 11 is a logic schematic of TIV 182 and BHC
177. Each line of TIV 182 includes latches 225a, 225b,
and 225c, each holding a valid bit corresponding to eight
of the 24 instruction bytes within the BTC line. Each
line of BHC 177 is a 2 bit RAM 127.

Fig. 12 is a logic schematic of address select
circuitry 185. Four pairs of latches designated IL1l, FL1
through IL4, FL4 are provided. The first latch (IL) in
each pair stores a pointer to an entry in the branch
prediction cache. Four sets are provided to track
multiple branches. The second latch (FL) in each pair is
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provided to point to a pre-fetch instruction queue which
may be associated with each branch. _

One input to each of the IL latches is provided
through multiplexers 240, 242, 244 and 246 from the PcCaAM
match line 248. Inputs to the FL latches are provided

through a 36 bit input bus 252. The outputs of both the
IL and the FL latches are provided to a multiplexing

network 256.

The circuit of Fig. 12 provides a flexible
approach to producing a number of control signal outputs
from the multiplexing network 256, as discussed below.
For example, a PcCAM match will provide a 1 bit on one of
the 36 bit lines, with all the rest being zero. This
could be written into IL latch 1, for instance, so that a
single bit in latch IL1 is enabled. The output could
then be provided to multiplexing network 256 to activate
the appropriate control lines for that entry.

Integrated BPC Data Paths
In the context of a highly pipelined

architecture, it is desirable to be able to perform
several operations on the BPC at one time. For example,
typical operations would be accessing the BPC on every
cycle. It might be desired to store target bytes in the
BTC, to invalidate an entry, or to update the history
bits. As will be described in detail below, address
select logic 185, PcCAM 170, and BAC/TgtCAM 175 provide
various select and enable signals to control reading,
writing, setting and clearing of addresses, instructions,
and valid bits. The integrated BPC structure allows any
number of these operations to be performed in the same
cycle for different entries without contention of
competing elements.
1. Read an Entire BPC Entry on a PcCAM Match

A first access path, used to access the BPC
entry, is invoked by communicating a 32-bit DecodePC
signal to the CamAddr2 input of PcCAM 170. If a match
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occurs, a single bit of the 36-bit CamMatch2 output 248
is asserted, and is communicated to read select inputs on
the other memory elements, namely BAC 175, BHC 177, BTC
180, and TIV 182 via mux 188. The result is that the
corresponding entries, constituting the entire BPC entry,
are read out of respective data outputs of the memory

elements.

2. Write to PcCAM

A second access path, used to clear an old
entry and start a new entry, is invoked by writing a 36
bit word, with all 0's except for a single bit, which has
a 1, into one of the latches of Fig. 12 through input 248
and multiplexers 240, 242, 244, and 246. The desired 32-
bit address to be stored is provided to the WrData input
of PcCAM 170 (see Fig. 7). The output 258 of multiplexer
network 256 is selected to assert signals at the WrSel2
input of PcCAM 170, and the Clearza input of Vbit memory
172. This enables writing a new entry into the PcCAMN,
and clears the valid bit, pending acquisition of the
target bytes. The same latch is used as a pointer for
the BTC write, BAC write and BHC, V and TIV writes for
that entry.

One latch pair in address select logic 185 is a
working latch pair which is no* being used to track a
particular branch at that time. The use of four sets of
latches allows three instruction streams to be kept
active (the original stream and two branches), while the
fourth pair of latches is used for working purposes such
as writing to PcCAM. The output of each FL latch, which
is written to through address input 252, is also coupled
back through the multiplexers 24G-246 so that it can be
written into the IL latch as desired.

In practice, the FL is loaded for access (2), a
write to PcCAM. It remains unchanged throughout (3)-(6)
style accesses below if there is a hit. If there is a
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miss and an entry is created, then the FL is reloaded to

point to a new queue. Accesses (3)-(6) may then occur.
Similarly, IL is loaded when there is a hit

with the PcCAM output. It is then used for accesses (3)-

(6).

3. Write to BTC

A third access path is used to £ill in the BTC.
The line is pointed to by the latch pointing to the PcCaM
portion of the line. Three 8-byte select signals are
provided to the WrEnx2 input of BTC 180. A single 8 byte
block to be stored for the selected entry is provided to
the WrData inputs on BTC 180. This allows part of a BTC
entry to be written as multiplexer network 256 output 260
asserts select signals at inputs to the WrSel2 input of
BTC 180.

4. Write to BAC

A fourth access path is used to write 39 bits
of target address to the WrData inputs of BAC/TgtCAM 175
when the target address is available.

5. Write to BHC, V and TIV

For a fifth access path, a valid data bit is
provided to the WrData input of Vbit memory 172, 3 bits
are provided to TIV 182 and 2 bits of history
information are provided to the WrData inputs of BHC 177.
This allows completion of the BPC entry as output 262 of
multiplexer network 256 is selected.

6. Read BTC and BAC

A sixth data path is invoked by referencing one
of the IL or FL latches as output 264 of multiplexing
network 256. A select signal is also provided to
multiplexer 188. This allows a given BTC and BAC line to
be read out independently of any CAM hit from PcCAM 170.
The entire BTC entry can be read, or one or more of the
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three double-words in the BTC entry can be read. This
provides flexibility that allows certain otherwise unused
BTC entries to be used for other purposes (such as
instruction queues) and be controlled independently.

7. Consistency Check of BAC
A seventh access path is invoked by

communicating ICache address information to the CAMAddr
input of BAC/TgtCAM 175 for an external write to the
ICache. As mentioned above, the CAM portion of
BAC/TgtCAM 175 performs the function of maintaining
consistency between the target instruction bytes in BTC
180 and corresponding bytes in main memory (actually in
the instruction cache). A match causes assertion of the
appropriate CamMatchl output line 266, and clears the
corresponding Vbit entry.

8. Invalidate All 36 BPC Entries

An eighth access path is invoked by asserting a
signal at the ClearAll2 input 268 of Vbit 172. This can
be carried out in a manner independent of other ongoing
operations, and in some sense supercedes them all,
because it invalidates all the BPC entries.

Already Fetched Instruction Consistency
while all of the above fully handles general

consistency issues between the BPC, other caches, and
main memory, there remain consistency issues stemming
from cases of "store-into-instruction-stream" of an
already fetched instruction by the program being
executed. In these cases it is entirely possible for a
program to modify an instruction and shortly thereafter
execute the modified instruction, while in reality, due
to the general nature of pipelined CPU designs, this
instruction is fetched before the modification actually

takes place.

PCT/US91/00831
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As the addresses for data writes to memory are
generated, they are each immediately looked up in the
instruction cache and the BPC. If a hit occurs in the
instruction cache, the relevant cache entry or line is
invalidated so that all future fetches to this line will
result in cache misses. The resultant fetch from main
memory is then subject to the standard cache consistency
protocol and so is guaranteed to eventually obtain the
correct values.

In parallel, each store address is presented to
the BPC for a consistency check access for an internal
write. In the same manner as described earlier, any
matches with BPC entries result in invalidation of the
associated cached target instructions. This not only
eliminates any BPC inconsistencies, but also maintains
the BPC target instruction cache as a subset of the
instruction cache.

The potentially most difficult part of dealing
with store-into-stream is handling the relatively extreme
cases in which the modified instruction has been fetched
before the store address is generated within the CPU
pipeline. In a worse case scenario, the due-to-be-~
modified instruction immediately and sequentially follows
the modifying instruction. In a less extreme case, there
may be an intervening branch instruction with the due-to-
be-modified instruction as its target.

The former case is a significant problem for
CPU designs with even limited degrees of pipelining or
instruction processing overlap. As a result, in the
context of many architectures, it is accepted by
programmers that this is an unreliable manner in which to
do store-into=-stream.

On the other hand, the latter relatively
extreme case is often taken to be reliable. Further, the
BPC and the usage of full or aggressive branch prediction
greatly exaggerate the degree of the problem by
accelerating branch and subsequent instruction
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processir-. The present invention enables this-type of
case to be simple to handle, even with the effects of the
BPC. In the present invention all store-into-stream
cases with an intervening branch are properly handled in
addition to cases in which there is sufficient distance
between sequential modifying and modified instructions so
that the above consistency mechanisms can come into play.

The basis for this is the concept of
instruction (fetch and execution) streams where such a
stream consists of the sequential series of instructions
starting with the target of a branch and ending with
another branch to a new stream. The fetching and
processing of instructions down a new stream is naturally
conditional until the initiating branch instruction and
all preceding instructions have been sufficiently
processed to determine that there are no processing
exceptions or faults associated with these instructions
and that prediction of the branch was correct in all
respects. If some "problem" is detected, then pipeline
processing must be appropriately restarted. In the case
of a mispredicted branch this would involve partial or
complete reprocessing of the branch and flushing of all
following instructions from the pipeline.

The present invention extends this to
effectively include detection of a store into the stream
initiated by a branch as another reason for restarting
pipeline processing of that branch. The key point is
that the following instructions are then refetched and
will now reliably reflect any modifications by
instructions preceding the branch. To be reliable, this
also requires that branch processing must remain
restartable until all preceding stores have been
generated, i.e. addresses generated and checked against
the BPC.

The present invention further provides an easy,
efficient mechanism for detecting stores into a stream
based on the integration of the CPU's instruction pre-
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fetch queues into the BPC. 1In essence, the target
instruction cache portions a small number of BPC lines
which are used as pre-fetch queues, one per currently
outstanding instruction stream. During such times the
BPC lines are marked invalid so as not to be confused
with actual valid BPC entries.

This invention takes advantage of the
consistency check logic associated with each BPC line
and, thus, with each pre-fetch queue. The "target
address" values stored in a BPC line serving as a queue
are set to correspond to the first two blocks of
instructions within the associated stream. As long as
the instructions fetched down this stream fall within the
first two consecutive or aligned 32 byte blocks and are
also within the same page, stores to these instructions
can be directly detected. Note that this also covers
instructions within the stream which are already being
processed within the CPU pipeline, since fetching them
does not erase them from the BPC.

When a match occurs between a store address and
the target addresses associated with a queue, the queue
is flushed, i.e., all the instruction double words are
invalidated as for a normal BPC entry, the CPU pipeline
flushed, and instruction processing is restarted from the
branch. Note that this checking is only performed
against the pre-fetch queues associated with the branch
instructions which follow the instruction generating the
store address being checked. This includes ignoring
matches within the queue associated with the instruction
stream containing the store instruction.

The only complication with this method for
detecting "difficult" store-into-stream cases is when
instruction fetching into a queue is about to overflow
the first two 32 byte blocks covered by the store
detection hardware. Until all stores preceding the
branch which initiated this stream have been generated
and checked against the BPC, both real entries and the



10

15

20

25

30

35

WO 91/13401

PCT/US91/00831

39

queues, this cannot be allowed. The consistency check
logic can only cover the first two aligned 32 byte blocks
of fetched instructions.

For this invention a straightforward approach
is taken. As long as the branch which initiated a stream
remains outstanding, i.e., restartable, fetching of only
the first two 32 byte aligned blocks of the stream is
allowed. Further fetching is inhibited, if necessary,
until the branch has been safely completed. Given the
extent of fetching possible before this need occurs, the
impact on CPU pipeline performance will generally be
minimal.

From an overall perspective, this invention
provides for handling "difficult" store-into-stream cases
as a simple extension of the mechanisms for maintaining
BPC consistency and for supporting full branch prediction
and conditional execution of subsequent predicted target
instructions. Based on the close association between
each instruction stream, the branch which initiated the
stream, and the BPC entry or pre-fetch queue supporting
fetching down that stream, only modest incremental
changes or additions are needed.

The pre-fetch instruction queue is preferably
implemented using one of the 36 lines of BTC 180 as shown
in Fig. 13. Control state machine 56, shown in Fig. 3,
keeps track of which of the 36 lines is the instruction
queue. In fact, three lines are used for three queues in
the preferred embodiment. In the event a conditional
branch is encountered in one queue, that queue is
retained while a separate queue for the predicted branch
is set up and used. In case the predicted branch turns
out to be a mispredicted direction, instruction execution
can return to the first queue without having to rewrite
it into the BTC. A third queue is provided in case there
is a further conditional branch during execution of the
second queue. This could result in 3 possible
outstanding streams as shown in Fig. 16.
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Each queue contains three 8 byte blocks of
instructions. The instruction words are provided in
order on a 192 bit instruction bus 270 to instruction
buffer 153. The words are then aligned by aligner 272
and are provided to instruction register 274 with the
instruction aligned to start at the beginning of register
274. The instructions are then provided through an
instruction pipeline 276, with each instruction being
tagged and tracked as discussed earlier.

Fetching down a queue wraps around and
overwrites the three 8 byte blocks irrespective.of the
processing of the fetched instructions. An 8 byte block
is free for overwriting (via a newly fetched block) as
soon as the decoder has completely decoded all
instructions contained in the block.

However, if a branch is found in a stream, and
it is predicted taken, then no further 8 byte blocks will
be freed (consumed) in that stream until the branch is
completed and found to be not taken. Thus, during the
processing of the branch the queue is "frozen". If the
branch found in the stream is not taken, then no such
restriction exists; the 8 byte block containing the
branch may be overwritten before the branch is completed.

A store-into-instruction-stream does not depend
on the queue being frozen - the target is refetched.

Fig. 15 shows the logic for detecting a store-
into-stream for an instruction queue. For each line in
the BPC, the bit output of the 8 latches IL1l, FL1-Il4,
FL4 of Fig. 12 are provided to one of OR gates 280. The
output of an OR gate 280 will indicate that a line is
"out" for pointing to a branch target instruction or a
queue of instructions following the branch target
instruction. The "out" output of each OR gate is
provided to an AND gate 282. The other input of the AND
gate is the BAC match output for that line. A match
output indicates that line has been invalidated as being
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written over in the instruction cache. If the match
output is asserted for a line which is "out", the output
of the corresponding AND gate 282 will be asserted as an
input to an OR gate 284 and will produce a signal on line
278 indicating an attempt to store-into-stream, i.e.,
write over a pre-fetched target instruction.

Fig. 14 is a flowchart of the tests performed
by control state machine 56 to detect and handle a Store-
Into-Instruction-Stream where the instruction is in the
pre-fetch queue. The control state machine could
implement the flowchart of Fig. 14 in logic or in
microcode. The particular manner of implementation is
not necessary for an understanding of the invention and
would be apparent to one of skill in the art given the
disclosure herein.

As shown in Fig. 14, an instruction is fetched
from the pre-fetch queue (step A) and processed through
the instruction register 182 and instruction pipeline 184
as shown in Fig. 13. Control state machine 56 monitors
for any store-into-stream detect signal (step B). If
there is none, the control state machine looks to see if
the next instruction would be covered by the address in
BAC/Tgt CAM 175 (step C). If it would be, it is fetched,
otherwise, the state machine waits until the branch is
completed to do further fetches (step D).

If there is a store-into-stream detect, it
could be any of several queues if there have been
multiple branches. Since it is not known which
instruction in the queue has been changed, all
outstanding queues are assumed to be invalid, including
instructions already fetched, and the instruction
pipeline is flushed from the first (oldest) branch
instruction onward (step E). The target instruction o
the oldest branch is then refetched (step F). Since at
this point, the valid bit for the target instruction of
the branch instruction will have been set to invalid,
this refetch will have to go to main memory or the

PCT/US91/00831
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instruction cache to obtain the target instruction and
the sequentially following instructions, which will pick
up the modified instruction.

As will be understood by those familiar with
the art, the present invention may be embodied in other
specific forms without departing from the spirit or
essential characteristics. For example, the pre-fetch
queue need not be located in the BTC. Additional
hardware could be used to indicate which branch was the
subject of a store-into-stream, instead of flushing all
outstanding branch targets. Accordingly, the disclosure
of the preferred embodiment of the invention is intended
to be illustrative, but not limiting, of the scope of the
invention which is set forth in the following claims.
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WHAT IS CIAIMED IS:

RARY " x T BN _L_SERL_L__JL e

1. An apparatus comprising:

a system bus;

an instruction cache, coupled to said
system bus, including validity bits for indicating
whether an entry is valid and means for setting a
validity bit for an entry to an invalid state upon
detection of a store signal on said system bus for
an address matching said entry;

a branch prediction cache including, for
each entry, a branch instruction address, a branch
target address, a branch target instruction data and
a validity bit;

means for comparing an address of an
instruction cache entry to said branch target

addresses;
means for setting a validity bit for a

branéh prediction cache entry to invalid when the
branch target address matches the address of an
instruction cache entry with a validity bit in an
invalid state; and

control means for writing instructions
into said branch prediction cache only if said
instructions are also written into said instruction
cache;

such that a store-into-stream will be
detected by both said instruction cache and said
branch prediction cache and will result in the
invalidation of any corresponding entry.

2. The apparatus of claim 1 wherein said
instruction cache further includes an attention bit for
each entry, said attention bit being set by said control
means only when said entry is also written into said
branch prediction cache, said control means causing said
branch target addresses to be compared to said
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instruction cache entry address when said instruction
cache entry has its validity bits set to an invalid state
and said attention bit is set.

3. The apparatus of claim 1 wherein said
instruction cache is direct-mapped and said branch
prediction cache is fully associative.

4. The apparatus of claim 3 wherein index
bits of an instruction address are used to map into said
instruction cache, and bits more significant than said
index bits are not compared to said branch target
addresses.

5. The apparatus of claim 1 wherein each line
of said branch prediction cache includes a plurality of
branch target instructions immediately following said
branch instruction to form a set of instruction bytes,
said set of instruction bytes being aligned differently
than a line of said instruction cache, and further
comprising means for storing at least a portion of an end
address of said set and comparing said portion of said
end address to a portion of an address of an instruction
cache entry.

6. The apparatus of claim 5 further
comprising control means for ensuring that all the
addresses of said set of instructions are within the same
page of memory, said second means for being operable to
not compare bits more significant than a page boundary
bit for said instruction set and address.

7. The apparatus of claim 1 wherein said
means for comparing does not compare bits more
significant than index bits of said instruction cache.
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8. The apparatus of claim 3 further
comprising means for comparing the index bits of an
address for an instruction block being written into said

 instruction cache to said branch target addresses and
invalidating any branch prediction cache entry having a

match.

9. An apparatus comprising:

an instruction pipeline for overlapping
execution of a plurality of sequential instructions;

a pre-fetch queue for holding a plurality
of instructions to be executed and validity bits for
said instructions;

means for detecting a store to an address
for a given instruction and in said pre-fetch queue
and generating a store-into-stream signal; and

control means for flushing and restarting
said instruction pipeline when said store-into-
stream signal is detected from at least said given

instruction onward.

10. The apparatus of claim 9 wherein said
pre-fetch queue is located in a branch prediction cache.
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