Title: FREEZE DRYING CHAMBER WITH EXTERNAL ANTENNA

Abstract: Device for treatment of materials by freeze drying, comprising a housing (2) having first walls (9,15) that define a drying chamber (3) that is equipped for the accommodation of the material for drying and destined for carrying out the freeze drying process, and a controller assembly (40) for the evaluation of process parameters during the freeze drying process, wherein the controller assembly comprises a controller antenna (41) for high frequency electromagnetic wireless communication with measuring transponders (23) arranged within the drying chamber (3), which controller antenna (41) is placed outside the drying chamber (3).
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
FREEZE DRYING CHAMBER WITH EXTERNAL ANTENNA

BACKGROUND OF THE INVENTION

The invention relates to device for treatment of materials by freeze drying, comprising a housing having walls that define a drying chamber that is equipped for the accommodation of the material for drying and intended for carrying out the drying process, and a controller assembly for the monitoring and evaluation of process parameters during the freeze drying process.

Such devices are already known. An example of such known device comprises an electronic controller having an antenna inside the housing for wireless communication with measuring transponders that are placed into some sample vials. The antenna may form a surface for the accumulation of contamination, whereby special attention is needed during cleaning to comply with the very high sterility standards for the drying chamber. The cleaning and sterilisation process may require the use of aggressive sterilants and high temperatures which may damage the antenna. Moreover, in a sterile environment only non-toxic materials are permitted and, as a result, the antenna may not be optimised for the communication with the measuring transponders.

It is an object of the invention to provide a device for treatment of materials by freeze drying, having a controller assembly for the monitoring and evaluation of process parameters that can comply with high sterility standards.

SUMMARY OF THE INVENTION

The invention provides a device for treatment of materials by freeze drying, comprising a housing having first walls that define a drying chamber that is equipped for the accommodation of the material for drying and intended for carrying out the freeze drying process, and a controller assembly for the monitoring and evaluation of process parameters during the freeze drying process, wherein the controller assembly includes a controller antenna for high frequency electromagnetic wireless communication with measuring transponders.
arranged within the drying chamber, which controller antenna is located outside of the drying chamber.

In the device according to the invention, the antenna of the controller assembly is located outside of the drying chamber, whereby accumulation of contamination on the antenna does not affect the inside sterility of the drying chamber. The device with this controller assembly can therefore comply with high sterility standards.

The controller antenna can be protected against mechanical harm if the housing has second walls that define an antenna chamber in which the controller antenna is confined.

Interference by surrounding electromagnetic sources can be reduced if the drying chamber is screened off electromagnetically to the greatest possible extent from an outer area of the device, wherein at least one first wall of the housing comprises an opening near the controller antenna for pass-through of the high frequency electromagnetic wireless communication between the controller antenna and the transponders.

In an alternative manner, or in addition thereto the antenna chamber at the side facing away from the drying chamber is screened off electromagnetically to the greatest possible extent from an outer area of the device.

In one embodiment the controller antenna is arranged in front of the opening in order to enable wireless communication with the measuring transponders over a relatively short distance, preferably when the antenna and the transponders are arranged substantially face to face or in line sight.

In a compact embodiment the antenna chamber is adjacent to the first wall with the opening.

The drying chamber can be fully closed off from its environment if the device comprises a cover for the opening, which cover enables or permits the high frequency electromagnetic radiation used for the wireless communication to pass through it. In this manner the cover can form part of the first walls, and be sterilized together therewith.

The cover particularly enables the pass-through of high frequency
wireless communication if the cover is made of glass or borosilicate. Other materials can be used for the cover, provided that the electrical conductance is low and that the (ferro) magnetic properties can be neglected.

In one embodiment the cover comprises a plate that extends parallel to the opening.

The cover can easily be replaced if the device comprises a holder that confines the cover around the opening, wherein the holder preferably comprises a ring-shaped flexible gasket made of a chemically inert, non-toxic and stable material, that is press fitted between the cover and the first wall. In one embodiment thereof the ring-shaped flexible gasket is made of a silicone rubber. Silicone rubber is suitable to be applied in a sterile environment, as it withstands high temperatures that are applied during the sterilization. Moreover, the chemical inertness is a prerequisite to achieve the sterile process conditions required for freeze drying pharmaceutical substances.

In the event that the screened off drying chamber forms a Faraday cage, the high frequency electromagnetic radiation can pass through the opening with acceptable loss of signal if the opening has a main diameter that is typically substantially at least half of the wavelength of the applicable electromagnetic high frequency wireless communication.

In one embodiment thereof the antenna is designed for wireless communication using frequencies of approximately 2.4 GHz, wherein the opening has a main diameter of typically at least 0.062 m.

The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which:

Figure 1 shows a cross section of a freeze dryer according to the
invention; and

Figure 2 shows the controller section of the freeze dryer shown in
figure 1.

5 DETAILED DESCRIPTION OF THE DRAWINGS

With reference to figure 1, a freeze dryer 1 according to the
invention includes a drying housing 2 having walls 9, 15 that define a drying
chamber 3. The front wall of the drying housing 2 comprises a slot that can be
closed by a slot door (both not shown) to enable vials 10 to be loaded on and
unloaded from a horizontally extending shelf 4 within the drying chamber 3. The
vials 10 contain sterile pharmaceutical liquids to be dried by freeze drying. Each
vial 10 is provided with a ventilating closure 24 that allows ventilation of its
content during the drying process, and is pushed downwards into the vial 10
after the drying process is completed to fully close the vial 10.

The drying chamber 3 includes a number of shelves 4, each of
which can be raised and lowered within the drying chamber 3 using a loading
mechanism 14, which is known from the art. To load the shelves 4 with rows of
vials 10, the shelves 4 are initially collapsed in the lower portion of the drying
chamber 3 and the uppermost shelf is first moved into a loading position. After
this shelf 4 has been loaded, the loading mechanism 14 automatically raises the
loaded shelf 4 to enable the next shelf 4 to be moved to the loading position.
This moving sequence continues until the drying chamber 3 loading has been
completed. To unload the drying chamber 3, the loading sequence is reversed,
with the lowermost shelf 4 being unloaded first.

With reference to figures 1 and 2, one side wall 15 of the drying
housing 2 has a hole 8 which is fully covered with a plate 51 of borosilicate glass.
The circumferential edge of the plate 51 is confined between a holder 50 and the
side wall 15. A sealing ring or gasket 52, made of a material such as silicone
rubber has been press fitted between the plate 51 and the side wall 15. The
freeze dryer 1 is provided with an electronic controller 40 with an antenna 41
disposed on the outside of the drying housing 2. The controller 40 and the
antenna 41 are confined within an antenna housing 7 defining an antenna chamber 12 adjacent to the drying chamber 3.

The electronic controller 40 is configured for wireless communication with measuring transponders 23 that are placed in some sample vials 20 within the drying chamber 3. The sample vials 20 contain the same pharmaceutical liquids as the other vials 20, but are disposed off after the drying process. The communication with the measuring transponders 23 in the sample vials 20 enable accurate real time measurement of process parameters during the freeze drying process.

The measuring transponders 23 are non-mains borne, and do not have an internal energy supply such as a battery. The energy to operate the measuring transponders 23 is provided by electromagnetic waves radiated to the transponders 23 by the controller 40 via the controller antenna 41. The measuring transponders 23 each have their own exclusive operative band width, and the individual operative band widths are cascaded into a frequency band. The measuring transponders 23 comprise a sensor 22, for example a bimetallic element, having well specified electric properties related to a physical parameter to be measured, such as temperature or humidity. The sensor 22 is connected to an antenna 21 that may extend through the closure 24 as illustrated in this exemplary embodiment. When the electronic controller 40 emits an amount of electromagnetic energy via the controller antenna 41, the electromagnetic signal is transmitted through the opening 8 to a measuring transponder 23. In response, each transponder 23 generates an internal resonance frequency within its exclusive small operative band width, which resonance frequency is picked up by the antenna 41. As will be understood, the measured physical parameter can be derived from this resonance frequency. The transponders 23 operate on frequencies in the order of 2.4 GHz.

In this exemplary embodiment the drying housing 2 is supported by a condenser housing 5 having walls 15 that define a condenser chamber 6. A condenser unit 13 has been arranged within the condenser chamber 6. The drying chamber 3 opens to the condenser chamber 6. The combined condenser chamber 6 and drying chamber 5 can be closed off in an airtight manner from
the outer area of the freeze dryer 1. The walls 9, 15 of the drying housing 2 and
the condenser housing 5 are made of stainless steel in order to comply with the
very high hygienic and anti toxic standards for processing pharmaceutical
substances. The antenna housing 7 is also made of stainless steel, whereby the
drying chamber 3, the condenser chamber 6 and the antenna chamber form a
Faraday cage that is screened off electromagnetically to the greatest possible
extent from its surrounding area 80.

As the chambers 3, 6, 12 are screened off, the high frequency
electromagnetic radiation passing between the electronic controller 40 and the
measuring transponders 23 can only pass through the opening 8 in the side wall
15. In order to minimise the reduction of the signal, the optimal main size or
diameter D of the opening 8 is at least half of the wavelength of the
electromagnetic signal. This has been derived from the formula
\[S = 20 \log_{10} \left(\frac{W}{2D} \right) \]
wherein S is the rate of shielding in dB of a Faraday cage if
electromagnetic waves with wavelength W enters through an opening with main
dimension D such as length, width or diameter. The rate of shielding is estimated
at 0 dB when the main dimension D is half of the wavelength. As the
transponders 23 operate on frequencies in the order of 2.4 GHz, the wavelength
is 0.125 m, whereby the diameter of the opening 8 is at least 0.062 m.

During the freeze drying process, the controller 40 emits
electromagnetic waves to the measuring transponders 23. To measure the
process parameters being detected at a point in time during the freeze drying
process, a frequency sweep is executed, whereby the frequency of the
electromagnetic waves is increased while different resonance frequencies of the
measuring transponders are picked up. These resonance frequencies are
converted to the process parameters measured in the sample vials 20 at
different locations within the drying chamber 3. As the controller antenna 41 is
placed outside the drying chamber 3, it does not affect the freeze drying process
inside the drying chamber 3.
1. Device for treatment of materials by freeze drying, comprising a housing having first walls that define a drying chamber that is equipped for the accommodation of the material for drying and destined for carrying out the freeze drying process, and a controller assembly for the monitoring and evaluation of process parameters during the freeze drying process, wherein the controller assembly includes a controller antenna for high frequency electromagnetic wireless communication with measuring transponders arranged within the drying chamber, which controller antenna is located outside of the drying chamber.

2. Device according to claim 1, wherein the housing has second walls that define an antenna chamber in which the controller antenna is confined.

3. Device according to claim 2, wherein the antenna chamber at the side facing away from the drying chamber is screened off electromagnetically to the greatest possible extent from an outer area of the device.

4. Device according to any one of the preceding claims, wherein the drying chamber is screened off electromagnetically to the greatest possible extent from an outer area of the device, wherein at least one first wall of the housing comprises an opening near the controller antenna for pass-through of the high frequency electromagnetic wireless communication between the controller antenna and the transponders.

5. Device according to claim 4, wherein the controller antenna is arranged in front of the opening.

6. Device according to claim 2 or 3 and 4 or 5, wherein the antenna chamber is adjacent to the first wall with the opening.

7. Device according to any one of claims 4-6, comprising a cover for the opening, which cover enables or permits the passage of the high frequency electromagnetic radiation used for the wireless communication.

8. Device according to claim 7, wherein the cover is made of glass or borosilicate.

9. Device according to claim 7 or 8, wherein the cover comprises a plate that extends parallel to the opening.
10. Device according to any one of claims 7-9, comprising a holder that confines the cover around the opening.

11. Device according to claim 10, wherein the holder comprises a ring-shaped flexible gasket made of a chemically inert, non-toxic and stable material that is press fitted between the cover and the first wall.

12. Device according to claim 11, wherein the ring-shaped flexible gasket is made of a silicone rubber.

13. Device according to any one of claims 4-12, wherein the opening has a main diameter that is typically substantially at least half of the wavelength of the applicable electromagnetic high frequency wireless communication.

14. Device according to claim 13, wherein the antenna is designed for wireless communication using frequencies of approximately 2.4 GHz, wherein the opening has a main diameter of typically at least 0.062 m.

15. Device provided with one or more of the characterising features described in the accompanying description and/or shown in the accompanying drawings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F26B5/06

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F26B GOIK

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 10 2005 018015 B3 (MIELE & CIE [DE]) 27 April 2006 (2006-04-27) paragraphs [0012], [0013], [0018]; figures -----</td>
<td>1-9</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 2007/116371 A (TORINO POLITECNICO [IT]; UNIV CLAUDE BERNARD LYON [FR]; BARRESI ANTOINE) 18 October 2007 (2007-10-18) page 5, paragraph 2; figure 1 -----</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search 14 January 2009

Date of mailing of the international search report 21/01/2009

Name and mailing address of the ISA/Authorized officer
European Patent Office, P B 5818 Patentlaan 2 NL- 2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Silvis, Henk
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 687 866 A (WIESHEU WIWA GMBH [DE]) WIESHEU GMBH [DE]) 20 December 1995 (1995-12-20) column 6, line 35 - column 7, line 6; figure 2</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>JP 01 084088 A (ULVAC CORP; KANTO ISHI PHARMA CO LTD) 29 March 1989 (1989-03-29) abstract</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006/092885 A (ADVANSENSE CORP [JP]; SHIMOJI MORITERU [JP]) 8 September 2006 (2006-09-08) abstract; figures 1,2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DE 10 2004 007526 A (OETJEN GEORG-WILHELM [DE]) 1 September 2005 (2005-09-01)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 475 024 A (TATEDA KOICHI [JP]) 2 October 1984 (1984-10-02)</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 102006019641 A1</td>
<td>02-11-2006</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006111226 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008210685 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4421373 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 687866 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2133615 T3</td>
</tr>
<tr>
<td>JP 1084088 A</td>
<td>29-03-1989</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2006092885 A</td>
<td>08-09-2006</td>
<td>JP 3709416 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007331757 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005080894 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007524066 T</td>
</tr>
<tr>
<td>US 4475024 A</td>
<td>02-10-1984</td>
<td>JP 54134479 A</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)