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METHODS AND SYSTEMS OF
FUNCTION-SPECIFIC TRACING

BACKGROUND

[0001] This application is related to co-pending non-pro-
visional U.S. patent application 13/, entitled “Meth-
ods and Systems of Distributed Tracing,” filed Jan. 28, 2013,
and U.S. patent application 13/___,  entitled “Methods
and Systems of Generating a Billing Feed of a Distributed
Network, filed Jan. 28, 2013.

[0002] The present disclosure relates generally to tools for
program development, and more particularly to systems and
methods for function-specific tracing of programs.

[0003] Tracing can be one of the most important tools for
program development and debugging. Typically, a debugger
allows for execution of an application to be observed,
recorded and used to identify particular problems with the
application. Drawbacks of typical methods and programs for
debugging include the speed of executing the debugging,
and barriers to access program. Another drawback is that
typical methods and programs for debugging output too
much information. By way of example, the typical debug-
ger/tracer traces the path of execution through a program.
The problem is that most of any typical program includes the
libraries, interfaces, and runtimes needed to run the program.
Thus, tracking down (or at least identifying) errors in other
parts of the program may be difficult. Unfortunately, most
debuggers present all of the information at a user, including
information about parts of a program that a programmer did
not write.

[0004] A conventional approach to debugging is to place
breakpoints in the code around the pieces or portions of code
that are of interest, and then step through the code part by
part until you get through the desired portion is reached. This
approach, however, is time-consuming and it doesn’t solve
the problem as debugging of the undesired portions of code
still occurs.

[0005] What is desired is a system and method for pro-
viding function-specific tracing that allows for the scope and
depth of tracing to be controlled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1a is a simplified diagram of a system.
[0007] FIG. 15 is a schematic view illustrating a simplified
view of a cloud computing system.

[0008] FIG. 2 is a schematic view illustrating an informa-
tion processing system as used in various embodiments.
[0009] FIG. 3 shows a process for instantiating and
launching a tracer according to various embodiments.
[0010] FIG. 4 is a method for function-specific tracing
according to one or more embodiments.

[0011] FIG. 5 is a method directed to dynamic runtime
specific support for function-specific tracing.

[0012] FIG. 6 is a method directed to bytecode runtime for
function-specific tracing.

[0013] FIG. 7 illustrates a call flow graph that may be
constructed by observing the message flows.

[0014] FIG. 8 is a method directed to machine code
runtime for function-specific tracing.

[0015] FIG. 9 is a graphical representation of patching the
memory allocator for a function.

[0016] FIG. 10 illustrates a block diagram of a function-
specific tracing system.
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DETAILED DESCRIPTION

[0017] The following disclosure has reference to tracing
and debugging programs and applications, and in particular
function-specific tracing. In one embodiment, function-spe-
cific tracing can allow for one or more individual functions
of a program or application to be traced and debugged on a
function-by-function basis, without modifying the code or
pre-arranging the functions to be traced. According to
another embodiment, the scope of function tracing is
dynamically limited. As such, debugging and tracing can
yield only desired information, in comparison. According to
another embodiment, tracing is performed in a less invasive
fashion and over less of the overall codebase such that the
speed of the trace program is closer to normal execution
speed. In certain embodiments, function-specific tracing is
performed in a distributed computing environment.

[0018] FIG. 1A illustrates a simplified diagram of a dis-
tributed application 100 that can for which various embodi-
ments of distributed tracing systems and methods may be
implemented. It should be appreciated that application 100
is provided merely as an example and that other suitable
distributed applications, middleware, or computing systems
can benefit from distributed tracing and/or debugging capa-
bilities described herein. According to one embodiment,
application 100 is a cloud service.

[0019] According to one embodiment, application 100
includes tracing service 105 configured to provide function-
specific tracing of one or more programs, applications
systems or distributed applications. As will be described in
more detail below, per-function tracing can provide visibility
into the performance, into the causes of errors or bugs, and
increase reliability of an application. By way of example,
tracing service 105 can observe messages within the dis-
tributed application across queues and from particular com-
ponents of the application. As depicted in FIG. 1A, tracing
service 105 interfaces with message service 110 of applica-
tion 100. Message service 110 connects various subsystems
of the application 100, and message service 110 is config-
ured to pass messages relative to one or more elements of
system 100.

[0020] System 100 may include one or more subsystems,
such as controllers 112 and services 117. System 100 may
include one or more controllers 112 for the application to be
employed in a distributed architecture, such as cloud com-
puting services. As depicted in FIG. 1A, controllers 112
include a compute controller 115a, a storage controller 1155,
auth controller 115¢, image service controller 1154 and
network controller 115e. Controllers 115 are described with
reference to a cloud computing architecture in FIG. 1. By
way of example, network controller 115a deals with host
machine network configurations and can perform operations
for allocating IP addresses, configuring VLLANs, implement-
ing security groups and configuring networks. Each of
controllers 112 may interface with one or more services. As
depicted in FIG. 1A, compute controller 115a interfaces
with compute pool 120a, storage controller 1155 may inter-
face with object store 1205, auth controller 115¢ may
interface with authentication/authorization controller 120c¢,
image service controller 1154 may interface with image
store 120d and network controller 115¢ may interface with
virtual networking devices 120e. Although controllers 115
and services 120 are with reference to an open architecture,
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it should be appreciated that the methods and systems for
tracing may be equally applied to other distributed applica-
tions.

[0021] Referring now to FIG. 1B, an external view of a
cloud computing system 130 is illustrated. Cloud computing
system 130 includes tracing service 105 and message service
110. According to one embodiment, tracing service 105 can
observe messages of cloud computing system 130 and
constructs a call flow graph within each service and between
services of the could computing system 130. According to
another embodiment, controllers and services of the cloud
computing system 130 may include tracing services to
transmit message traces in response to sending or receiving
of messages.

[0022] The cloud computing system 130 includes a user
device 132 connected to a network 134 such as, for example,
a Transport Control Protocol/Internet Protocol (TCP/IP)
network (e.g., the Internet.) The user device 132 is coupled
to the cloud computing system 130 via one or more service
endpoints 155. Depending on the type of cloud service
provided, these endpoints give varying amounts of control
relative to the provisioning of resources within the cloud
computing system 130. For example, SaaS endpoint 152a
typically only gives information and access relative to the
application running on the cloud storage system, and the
scaling and processing aspects of the cloud computing
system is obscured from the user. PaaS endpoint 1525
typically gives an abstract Application Programming Inter-
face (API) that allows developers to declaratively request or
command the backend storage, computation, and scaling
resources provided by the cloud, without giving exact con-
trol to the user. IaaS endpoint 152¢ typically provides the
ability to directly request the provisioning of resources, such
as computation units (typically virtual machines), software-
defined or software-controlled network elements like rout-
ers, switches, domain name servers, etc., file or object
storage facilities, authorization services, database services,
queue services and endpoints, etc. In addition, users inter-
acting with an IaaS cloud are typically able to provide virtual
machine images that have been customized for user-specific
functions. This allows the cloud computing system 130 to be
used for new, user-defined services without requiring spe-
cific support.

[0023] Itis important to recognize that the control allowed
via an laaS endpoint is not complete. Within the cloud
computing system 130 are one or more cloud controllers 135
(running what is sometimes called a “cloud operating sys-
tem”) that work on an even lower level, interacting with
physical machines, managing the contradictory demands of
the multi-tenant cloud computing system 130. In one
embodiment, these correspond to the controllers and ser-
vices discussed relative to FIG. 1a. The workings of the
cloud controllers 135 are typically not exposed outside of
the cloud computing system 130, even in an laaS context. In
one embodiment, the commands received through one of the
service endpoints 155 are then routed via one or more
internal networks 154. The internal network 154 couples the
different services to each other. The internal network 154
may encompass various protocols or services, including but
not limited to electrical, optical, or wireless connections at
the physical layer; Ethernet, Fiber channel, ATM, and
SONET at the MAC layer; TCP, UDP, ZeroMQ or other
services at the connection layer; and XMPP, HTTP, AMPQ,
STOMP, SMS, SMTP, SNMP, or other standards at the
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protocol layer. The internal network 154 is typically not
exposed outside the cloud computing system, except to the
extent that one or more virtual networks 156 are exposed
that control internal routing according to various rules. The
virtual networks 156 typically do not expose as much
complexity as may exist in the actual internal network 154;
but varying levels of granularity can be exposed to the
control of the user, particularly in laaS services.

[0024] In one or more embodiments, it is useful to include
various processing or routing nodes in the network layers
154 and 156, such as proxy/gateway 150. Other types of
processing or routing nodes may include switches, routers,
switch fabrics, caches, format modifiers, or correlators.
These processing and routing nodes may or may not be
visible to the outside. It is typical that one level of processing
or routing nodes is internal only, coupled to the internal
network 154, whereas other types of network services may
be defined by or accessible to users, and show up in one or
more virtual networks 156. Either of the internal network
154 or the virtual networks 156 may be encrypted or
authenticated according to the protocols and services
described below.

[0025] In various embodiments, one or more parts of the
cloud computing system 130 is disposed on a single host.
Accordingly, some of the “network” layers 154 and 156 may
be composed of an internal call graph, inter-process com-
munication (IPC), or a shared memory communication
system.

[0026] Once a communication passes from the endpoints
via a network layer 154 or 156, as well as possibly via one
or more switches or processing devices 150, it is received by
one or more applicable cloud controllers 135. The cloud
controllers 135 are responsible for interpreting the message
and coordinating the performance of the necessary corre-
sponding services, returning a response if necessary.
Although the cloud controllers 135 may provide services
directly, more typically the cloud controllers 135 are in
operative contact with the service resources 140 necessary to
provide the corresponding services. For example, it is pos-
sible for different services to be provided at different levels
of abstraction. For example, a service 140a may be a
“compute” service that will work at an IaaS level, allowing
the creation and control of user-defined virtual computing
resources. In addition to the services discussed relative to
FIG. 1a, a cloud computing system 130 may provide a
declarative storage API, a SaaS-level Queue service 140c, a
DNS service 140d, or a Database service 140e, or other
application services without exposing any of the underlying
scaling or computational resources. Other services are con-
templated as discussed in detail below.

[0027] In various embodiments, various cloud computing
services or the cloud computing system itself may require a
message passing system. The message routing service 110 is
available to address this need, but it is not a required part of
the system architecture in at least one embodiment. In one
embodiment, the message routing service is used to transfer
messages from one component to another without explicitly
linking the state of the two components. Note that this
message routing service 110 may or may not be available for
user-addressable systems; in one preferred embodiment,
there is a separation between storage for cloud service state
and for user data, including user service state.

[0028] In various embodiments, various cloud computing
services or the cloud computing system itself may require a
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persistent storage for system state. The data store 125 is
available to address this need, but it is not a required part of
the system architecture in at least one embodiment. In one
embodiment, various aspects of system state are saved in
redundant databases on various hosts or as special files in an
object storage service. In a second embodiment, a relational
database service is used to store system state. In a third
embodiment, a column, graph, or document-oriented data-
base is used. Note that this persistent storage may or may not
be available for user-addressable systems; in one preferred
embodiment, there is a separation between storage for cloud
service state and for user data, including user service state.
[0029] In various embodiments, it is useful for the cloud
computing system 130 to have a system controller 145. In
one embodiment, the system controller 145 is similar to the
cloud computing controllers 135, except that it is used to
control or direct operations at the level of the cloud com-
puting system 130 rather than at the level of an individual
service.

[0030] For clarity of discussion above, only one user
device 132 has been illustrated as connected to the cloud
computing system 130, and the discussion generally referred
to receiving a communication from outside the cloud com-
puting system, routing it to a cloud controller 135, and
coordinating processing of the message via a service 130,
the infrastructure described is also equally available for
sending out messages. These messages may be sent out as
replies to previous communications, or they may be inter-
nally sourced. Routing messages from a particular service
130 to a user device 132 is accomplished in the same manner
as receiving a message from user device 132 to a service
130, just in reverse. The precise manner of receiving,
processing, responding, and sending messages is described
below with reference to the various discussed service
embodiments. One of skill in the art will recognize, how-
ever, that a plurality of user devices 132 may, and typically
will, be connected to the cloud computing system 130 and
that each element or set of elements within the cloud
computing system is replicable as necessary. Further, the
cloud computing system 130, whether or not it has one
endpoint or multiple endpoints, is expected to encompass
embodiments including public clouds, private clouds, hybrid
clouds, and multi-vendor clouds.

[0031] Each of the user device 132, the cloud computing
system 130, the endpoints 152, the cloud controllers 135 and
the cloud services 140 typically include a respective infor-
mation processing system, a subsystem, or a part of a
subsystem for executing processes and performing opera-
tions (e.g., processing or communicating information). An
information processing system is an electronic device
capable of processing, executing or otherwise handling
information, such as a computer. FIG. 2 shows an informa-
tion processing system 210 that is representative of one of,
or a portion of, the information processing systems
described above.

[0032] Referring now to FIG. 2, information processing
system 210 as shown is representative of one of, or a portion
of, the information processing systems described above.
Diagram 200 of FIG. 2 shows an information processing
system 210 configured to host one or more virtual machines,
coupled to a network 205. The network 205 could be one or
both of the networks 154 and 156 described above. An
information processing system is an electronic device
capable of processing, executing or otherwise handling
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information. Examples of information processing systems
include a server computer, a personal computer (e.g., a
desktop computer or a portable computer such as, for
example, a laptop computer), a handheld computer, and/or a
variety of other information handling systems known in the
art. The information processing system 210 shown is rep-
resentative of, one of, or a portion of, the information
processing systems described above.

[0033] The information processing system 210 may
include any or all of the following: (a) a processor 212 for
executing and otherwise processing instructions, (b) one or
more network interfaces 214 (e.g., circuitry) for communi-
cating between the processor 212 and other devices, those
other devices possibly located across the network 205; (c) a
memory device 216 (e.g., FLASH memory, a random access
memory (RAM) device or a read-only memory (ROM)
device for storing information (e.g., instructions executed by
processor 212 and data operated upon by processor 212 in
response to such instructions)). In some embodiments, the
information processing system 210 may also include a
separate computer-readable medium 218 operably coupled
to the processor 212 for storing information and instructions
as described further below.

[0034] Inone embodiment, there is more than one network
interface 214, so that the multiple network interfaces can be
used to separately route management, production, and other
traffic. In one exemplary embodiment, an information pro-
cessing system has a “management” interface at 1 GB/s, a
“production” interface at 10 GB/s, and may have additional
interfaces for channel bonding, high availability, or perfor-
mance. An information processing device configured as a
processing or routing node may also have an additional
interface dedicated to public Internet traffic, and specific
circuitry or resources necessary to act as a VLAN trunk.
[0035] In some embodiments, the information processing
system 210 may include a plurality of input/output devices
220a-r which are operably coupled to the processor 212, for
inputting or outputting information, such as a display device
220a, a print device 2205, or other electronic circuitry
220c¢-n for performing other operations of the information
processing system 210 known in the art.

[0036] With reference to the computer-readable media,
including both memory device 216 and secondary computer-
readable medium 218, the computer-readable media and the
processor 212 are structurally and functionally interrelated
with one another as described below in further detail, and
information processing system of the illustrative embodi-
ment is structurally and functionally interrelated with a
respective computer-readable medium similar to the manner
in which the processor 212 is structurally and functionally
interrelated with the computer-readable media 216 and 218.
As discussed above, the computer-readable media is imple-
mented using a hard disk drive, a memory device, and/or a
variety of other computer-readable media known in the art,
and when including functional descriptive material, data
structures are created that define structural and functional
interrelationships between such data structures and the com-
puter-readable media (and other aspects of the system 200).
Such interrelationships permit the data structures’ function-
ality to be realized. For example, in one embodiment the
processor 212 reads (e.g., accesses or copies) such func-
tional descriptive material from the network interface 214,
the computer-readable media 218 onto the memory device
216 of the information processing system 210, and the
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information processing system 210 (more particularly, the
processor 212) performs its operations, as described else-
where herein, in response to such material stored in the
memory device of the information processing system 210. In
addition to reading such functional descriptive material from
the computer-readable medium 218, the processor 212 is
capable of reading such functional descriptive material from
(or through) the network 105. In one embodiment, the
information processing system 210 includes at least one type
of computer-readable media that is non-transitory. For
explanatory purposes below, singular forms such as “com-
puter-readable medium,” “memory,” and “disk” are used,
but it is intended that these may refer to all or any portion
of the computer-readable media available in or to a particu-
lar information processing system 210, without limiting
them to a specific location or implementation.

[0037] The information processing system 210 includes a
hypervisor 230. The hypervisor 230 may be implemented in
software, as a subsidiary information processing system, or
in a tailored electrical circuit or as software instructions to
be used in conjunction with a processor to create a hardware-
software combination that implements the specific function-
ality described herein. To the extent that software is used to
implement the hypervisor, it may include software that is
stored on a computer-readable medium, including the com-
puter-readable medium 218. The hypervisor may be
included logically “below” a host operating system, as a host
itself, as part of a larger host operating system, or as a
program or process running “above” or “on top of” a host
operating system. Examples of hypervisors include Xen-
server, KVM, VMware, Microsoft’s Hyper-V, and emulation
programs such as QEMU.

[0038] The hypervisor 230 includes the functionality to
add, remove, and modify a number of logical containers
232a-n associated with the hypervisor. Zero, one, or many of
the logical containers 232a-r contain associated operating
environments 234a-n. The logical containers 232a-r can
implement various interfaces depending upon the desired
characteristics of the operating environment. In one embodi-
ment, a logical container 232 implements a hardware-like
interface, such that the associated operating environment
234 appears to be running on or within an information
processing system such as the information processing sys-
tem 210. For example, one embodiment of a logical con-
tainer 234 could implement an interface resembling an x86,
x86-64, ARM, or other computer instruction set with appro-
priate RAM, busses, disks, and network devices. A corre-
sponding operating environment 234 for this embodiment
could be an operating system such as Microsoft Windows,
Linux, Linux-Android, or Mac OS X. In another embodi-
ment, a logical container 232 implements an operating
system-like interface, such that the associated operating
environment 234 appears to be running on or within an
operating system. For example one embodiment of this type
of logical container 232 could appear to be a Microsoft
Windows, Linux, or Mac OS X operating system. Another
possible operating system includes an Android operating
system, which includes significant runtime functionality on
top of a lower-level kernel. A corresponding operating
environment 234 could enforce separation between users
and processes such that each process or group of processes
appeared to have sole access to the resources of the oper-
ating system. In a third environment, a logical container 232
implements a software-defined interface, such a language
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runtime or logical process that the associated operating
environment 234 can use to run and interact with its envi-
ronment. For example one embodiment of this type of
logical container 232 could appear to be a Java, Dalvik, Lua,
Python, or other language virtual machine. A corresponding
operating environment 234 would use the built-in threading,
processing, and code loading capabilities to load and run
code. Adding, removing, or modifying a logical container
232 may or may not also involve adding, removing, or
modifying an associated operating environment 234. For
ease of explanation below, these operating environments
will be described in terms of an embodiment as “Virtual
Machines,” or “VMs,” but this is simply one implementation
among the options listed above.

[0039] In one or more embodiments, a VM has one or
more virtual network interfaces 236. How the virtual net-
work interface is exposed to the operating environment
depends upon the implementation of the operating environ-
ment. In an operating environment that mimics a hardware
computer, the virtual network interface 236 appears as one
or more virtual, network interface cards. In an operating
environment that appears as an operating system, the virtual
network interface 236 appears as a virtual character device
or socket. In an operating environment that appears as a
language runtime, the virtual network interface appears as a
socket, queue, message service, or other appropriate con-
struct. The virtual network interfaces (VNIs) 236 may be
associated with a virtual switch (Vswitch) at either the
hypervisor or container level. The VNI 236 logically couples
the operating environment 234 to the network, and allows
the VMs to send and receive network traffic. In one embodi-
ment, the physical network interface card 214 is also
coupled to one or more VMs through a Vswitch.

[0040] In one or more embodiments, each VM includes
identification data for use naming, interacting, or referring to
the VM. This can include the Media Access Control (MAC)
address, the Internet Protocol (IP) address, and one or more
unambiguous names or identifiers.

[0041] In one or more embodiments, a “volume” is a
detachable block storage device. In some embodiments, a
particular volume can only be attached to one instance at a
time, whereas in other embodiments a volume works like a
Storage Area Network (SAN) so that it can be concurrently
accessed by multiple devices. Volumes can be attached to
either a particular information processing device or a par-
ticular virtual machine, so they are or appear to be local to
that machine. Further, a volume attached to one information
processing device or VM can be exported over the network
to share access with other instances using common file
sharing protocols. In other embodiments, there are areas of
storage declared to be “local storage.” Typically a local
storage volume will be storage from the information pro-
cessing device shared with or exposed to one or more
operating environments on the information processing
device. Local storage is guaranteed to exist only for the
duration of the operating environment; recreating the oper-
ating environment may or may not remove or erase any local
storage associated with that operating environment.

[0042] Having described an example of a distributed
application, various embodiments of methods and systems
for function-specific tracing will now be described with
references to FIGS. 3-10. Various embodiments of the
methods and systems disclosed herein may permit tracing of
one or more functions in a program to a desired depth of the
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program. In addition, a tracer may output one or more of a
function call list, and call stack for tracing and debugging
the program while yielding only information based on a
trace profile. A function list and/or call stack may advanta-
geously show how the program may flow through and be
processed by various functions, procedures, methods, or
other applicable units of software routines. In various
embodiments, such a call stack is constructed at least in part
by tracing function calls and returns, processes, software
components, virtual machines, physical machines, software
services, and network boundaries, from receiving of requests
(e.g., an entry of a call to the API) all the way down to where
work as performed (e.g., at worker units or other back-end
processes) and back, as further described herein.

[0043] Inthis regard, various embodiments of the methods
and systems may construct a call flow graph (may also be
referred herein as a call tree) by observing request and
response messages between various components of a pro-
gram or application, such as a distributed application. A call
flow graph is used to capture and represent causal relation-
ships between processing activities of various components.
That is, a call flow graph may encode how a processing
activity of one or more components may be caused or
triggered by a processing activity of one or more other
components.

[0044] Turning now to FIG. 3, a diagram showing one
embodiment of the process of instantiating and launching a
tracer is shown. In FIG. 3, components may each represent
a logical unit of processing. In one embodiment, tracer 320
is configured to interface with compute controller 325,
wherein compute controller 325 is configured for running a
target program. At time 301, a user calls tracer 320 with at
least two arguments: the target program and trace profile
615. According to one embodiment, the target program is an
unmodified release version of code, although the program
may have one or more supporting files associated with it. At
step 302 the user creates a trace profile to include a listing
of which functions to trace and to what depth the functions
should be followed in the program. Trace profile 315 is
captured in a configuration (e.g., config) file or passed as
part of calling tracer 320 (e.g., passed on the command line).
At step 303, the tracer identifies the traced functions based
on the description in the trace profile 315.

[0045] At step 304, tracer 320 patched the target program.
In one embodiment, tracer 320 monkey-patches the target
program to call into a tracer-provided routine at the entrance
and exit of each traced function. Tracer 320 modifies the
arguments (e.g., args) list to remove the references to tracer
320 and invokes the main function 330 of the target pro-
gram. When a to-be traced function is called by calling
function 335 of controller 325 and step 306, function inter-
cepts 340 intercept the function call for traced function 345,
and the call goes to a trace helper 350 at step 307. Trace
helper 350 observes the state of the program, the arguments
that were passed in, etc., and records those. The traced
function can have different levels of scrutiny applied; it can
run with all interactions observed and recorded, or it can just
run and observe entrance: exit values. When the traced
function is finished executing, the intercepts 640 fix the call
stack as if the trace function had never run.

[0046] In certain embodiments, recording the state of the
program will occur in another process so as to not slow the
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main program more than necessary. For example, as shown
in step 308 of FIG. 1, remote trace facility 355 is configured
to record function calls.

[0047] At step 309, the target program returns, and the
tracer returns at step 310.

[0048] Turning now to FIG. 4, a flowchart of a function-
specific tracing method 400 is illustrated, in accordance with
an embodiment of the disclosure. In one example, all or part
of function-specific tracing method 400 is performed to trace
and/or debug a program, such as a distributed application as
described above with respect to FIGS. 1-2.

[0049] Method 400 is initiated at block 405 by generating
a trace profile (e.g., trace profile 315) identifying one or
more functions of a target program. The trace profile may
identify one or more functions to trace and the depth of
tracing. In one embodiment, the trace profile is a configu-
ration file. In other embodiments, the trace profile is passed
as part of calling the tracer. The trace profile may be created
by a user to identify specific functions of a program for
tracing.

[0050] At block 410, the trace profile and the target
program are loaded into a controller or processor for debug-
ging or tracing the target program. In one embodiment, the
target program is an unmodified version of code for the
program.

[0051] Traced functions in the target program can be
identified at block 415 based on the trace profile. In one
embodiment, traced functions are identified based on a
description for each function to be traced in the trace profile.
In certain embodiments, traced programs are described by
the function call and/or one or more metaprogramming
abstractions, such as decorators. As will be described herein,
the function descriptions are generally based on the lan-
guage runtime. For example, function tracing may be based
on one or more of a dynamic runtime, bytecode runtime,
machine code runtime and runtime in general.

[0052] According to another embodiment, a traced func-
tion is declared via its import or function access path, and
identified internally the same way. In other certain embodi-
ments, a traced function is declared using a binary-relative
address, and identification of a traced function is based on a
binary-relative address.

[0053] At block 420, the target program is patched to call
a trace parameter for one or more functions, wherein traced
functions are declared at runtime. In one embodiment,
patching may include patching the target program to call into
a tracer routine at the entrance and exit of each function.
According to another embodiment, patching may include
wrapping a traced function with a decorator. A decorator can
be a function that expects another function as a parameter.
By wrapping a function with a decorator, each time the
original function is called, the decorated function will be
called instead. As such, when calling a function returned by
the decorator, the wrapper is called and arguments for the
program are passed to the wrapper and in turn may be passed
to the decorated function. Decorators may be employed by
one or more embodiments, including implementations writ-
ten supporting first class functions, such as implementations
in Python, Ruby, Clojure, or Scheme, for example. One
advantage of wrapping functions with a decorator is that
functions may be traced without requiring the code of the
program to be modified. By way of example, not modifying
the program code may mean that the program does not have
to be modified, but the way in which the program is executed
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at runtime is modified. In that fashion, development and
testing of a program is more efficient without requiring
program or testing breaks to be inserted into code during
development. In addition, decorators may be employed to
extend the behavior of a function from an external library or
to debug the function.

[0054] At block 425, function calls for traced functions of
the application are observed. In one embodiment, observing
a traced function includes tracing bytecode before execu-
tion, and wherein function calls are inserted into the target
program based on bytecode manipulation. Observing may
include identifying traced functions by one or more of a
trace profile by way of output files for debugging, tracing a
symbolic call stack, and launching a rebase to call into a
trace library. Observing may include recording arguments
passed by traced functions based on the depth of tracing for
each traced function. When patching at block 420 includes
wrapping each function with a decorator, observing includes
observing a decorated function. Observing may also include
recording entrance and exit values of observed functions.
[0055] Based on method 400 of FIG. 4, one or more
functions of a program are traced and/or debugged at
runtime. Method 400 may also include outputting one or
more of a list of the function calls for each traced function
and call stack of traced function calls.

[0056] According to another embodiment, function-spe-
cific tracing is implemented across different types of run-
times, with different integration techniques. By way of
example, function-specific tracing may tie into the function
call architecture of a language. As such, certain details are
expected to be different between runtimes. According to one
embodiment, function-specific tracing may apply to one or
more of dynamic runtimes, static bytecode runtimes, and
machine code runtimes. It should be appreciate that imple-
mentation of identifying target programs, patching, call
interception and stack fixing will require runtime-specific
support.

[0057] Referring now to FIG. 5, a flowchart of a function-
specific tracing method 500 is illustrated, in accordance with
an embodiment of the disclosure. All or part of function-
specific tracing method 500 may be performed to trace
and/or debug a program, such as a distributed application as
described above with respect to FIGS. 1-2.

[0058] Method 500 is directed to dynamic runtime specific
support. As such, the functions for tracing may be observed
directly in the source code. Although not shown in FIG. 5,
method 500 may include generating a trace profile and
loading a trace profile and target program may into a
controller or processor, as described above with reference to
blocks 405 and 410. In another embodiment, a parser or
import statement is modified to modify the code to inject the
appropriate tracer hooks.

[0059] Method 500 may include declaring trace functions
via their path (e.g., module.submodule.function) at block
505. The target functions may be wrapped with a decorator
at block 510 when a target function is imported or when they
are first encountered at runtime.

[0060] At block 515, the decorated function is called
instead of the traced function. The program call stack may
be observed at block 520. The call stack is mutable from the
machine-code and consists of a stack of frame objects, the
frames including the tracer functions can be removed.
[0061] Referring now to FIG. 6, a flowchart of a function-
specific tracing method 500 is illustrated, in accordance with
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an embodiment of the disclosure. All or part of function-
specific tracing method 600 may be performed to trace
and/or debug a program, such as a distributed application as
described above with respect to FIGS. 1-2.

[0062] Method 600 is directed to bytecode runtime of the
function-specific tracing. As such, the functions for tracing
are inspected directly from source code. Although not shown
in FIG. 6, method 600 may include generating a trace profile
and loading a trace profile and target program may into a
controller or processor, as described above with reference to
blocks 405 and 410.

[0063] Method 600 may include declaring trace functions
via their path (e.g., module.submodule.function) at block
605. The bytecode may contain metadata to identify func-
tions to be traced. At block 610, the bytecode is traced before
execution and the calls are inserted using a bytecode
manipulation utility, using a function similar to that used for
aspect-oriented programming dependency injection.

[0064] At block 615, the bytecode is sent to the injected
function, not the original function. The program call stack is
observed at block 620. FIG. 7 depicts a graphical represen-
tation of a call stack, in Java for example.

[0065] Referring now to FIG. 7, a graphical presentation is
depicted for a call stack 1000 for a Java™ program. Accord-
ing to one embodiment, the call stack of the running Java
program is modeled by three interfaces: Frame 715 encap-
sulates the data stored in a single stack frame, such as the
operand stack and local variables; Frame Source 710 encap-
sulates the allocation and layout of Frames, controlling such
things as the argument-passing mechanism; and Context
705, which encapsulates the storage and management of the
call stack as well as the locking logic required by synchro-
nized methods. The call stack can be modified to “remove”
the calls from the stack by adjusting the frame source
attribute and the capacity attribute. None of the stack
addresses will need to be manipulated, as the information
will still be there on the stack until it is garbage-collected,
but it will simply be “skipped over.”

[0066] Referring now to FIG. 8, a flowchart of a function-
specific tracing method 500 is illustrated, in accordance with
an embodiment of the disclosure. All or part of function-
specific tracing method 800 is performed to trace and/or
debug a program, such as a distributed application as
described above with respect to FIGS. 1-2.

[0067] Method 800 is directed to machine code runtimes.
With machine code runtimes, most of the metadata associ-
ated with original code has been stripped away in the
compilation process. As such, the addition of some loadable
metadata helpers can expose the same sort of information as
other types of architectures described herein. Although not
shown in FIG. 8, method 800 may include generating a trace
profile and loading a trace profile and target program may
into a controller or processor, as described above with
reference to blocks 405 and 410.

[0068] In one embodiment, method 800 may include
declaring trace function locations using a binary-relative
address at block 805. In another embodiment, a second
executable produced by the same program code is included
alongside the target executable, wherein the second execut-
able includes debugging metadata. The second executable is
implemented in one or more formats such as DWAREF, stabs
or .DBG. The functions may then be identified via the trace
profile are located in the debugging output files. In yet
another embodiment, bytecode runtime is implemented if






