PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

G09G 1/16 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/46781

10 August 2000 (10.08.00)

(21) International Application Number: PCT/US00/03165

(22) International Filing Date: 4 February 2000 (04.02.00)

(30) Priority Data:

09/246,040 5 February 1999 (05.02.99) uUS
09/263,612 5 March 1999 (05.03.99) uUs
09/369,053 4 August 1999 (04.08.99) us
(71) Applicant (for all designated States except US): XSIDES

CORPORATION [US/US]; Suite 1600, 821 Second Avenue,
Seattle, WA 98104-1504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NASON, D., David
[US/US]; Suite 1600, 821 Second Avenue, Seattle, WA
98104-1504 (US). O’'ROURKE, Thomas, C. [US/US]; Suite
1600, 821 Second Avenue, Seattle, WA 98104-1504 (US).
CAMPBELL, Scott [US/US]; Suite 1600, 821 Second
Avenue, Seattle, WA 98104-1504 (US). EASTON, John
[US/US]; Suite 1600, 821 Second Avenue, Seattle, WA
98104-1504 (US). KAAN, Carson [US/US]; Suite 1600, 821
Second Avenue, Seattle, WA 98104-1504 (US). BROOKS,
Phillip [US/US]; Suite 1600, 821 Second Avenue, Seattle,
WA 98104-1504 (US).

(74) Agents: BIERMAN, Ellen, M. et al.; Seed Intellectual Property
Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle,
WA 98104-7092 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, 8D, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: ALTERNATE DISPLAY CONTENT CONTROLLER
(57) Abstract

An alternate display content controller provides a

680 PIXEL WIDTH

technique for controlling a video display separately from T
and in addition to the content displayed on the operat-
ing system monitor. Where the display is a computer
monitor, the alternate display content controller interacts
with the computer utility operating system and hardware
drivers to control allocation of display space and create
and control one or more parallel graphical user inter-
faces adjacent the operating system desktop. An alter-
nate display content controller may be incorporated in
either hardware or software. As software, an alternate
display content controller may be an application running
on the computer operating system, or may include an
operating system kernel of varying complexity ranging
from dependent on the utility operating system for hard-
ware system services to a parallel system independent
of the utility operating system and capable of support-
ing dedicated applications. The alternate display content
controller may also include content and operating soft-
ware delivered over the internet or any other LAN. The
alternate display content controller may also be included

520 PIXELS HEIGHT

in a television decoder/settop box to permit two or more -
parallel graphical user interfaces to be displayed simul-
taneously.

? K G 2C 2C >C OC >2C O O:_,
1
Ny J=_]
O ‘\ML COMPUTER O
] § %
) (i
) iE
[IE
2
LISARTI O] . OCICT o53 Al g
30 640 PIXELS WIDTH\\- 31 '

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazit

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Iretand

Israel

Iceland

Traly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
T
UA
uG
us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/46781 PCT/US00/03165

ALTERNATE DISPLAY CONTENT CONTROLLER

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to user interface displays and, in particular, the use of one or more

parallel user interfaces separate from the standard user interface display.

2. Description of the Prior Art

There was a time when the most popular operating system for personal computers (DOS)
did not include a graphical user interface. Any company could create a "menu" or "shell" which
would be the first program launched upon starting the computer and which would present options
to the user for launching and managing various applications. Although graphics programming
was difficult in the DOS environment, some companies even created graphical user interfaces

that could then launch other programs.

Microsoft Corporation of Redmond, Washington, introduced such a graphical user
interface for launching applications which it called "Windows". The first three versions of
Windows were merely applications which ran under DOS and could be one of numerous items to
be selected from a previously running shell or menu which might be offered by a company other
than Microsoft. This continued to allow other companies to offer primary user interface

programs to users without the user going through a Microsoft controlled user interface.

Howeyver, with the introduction by Microsoft of Windows 95™, the initial loading of the
operating system presents a Microsoft-developed graphical user interface (GUI) at the outset,
which occupies the entire screen display. This operating system created GUI is commonly
known as a “desktop”. As with its previous operating system products, Microsoft arranged with
manufacturers of the standard computer hardware to include this operating system with each
computer sold. Microsoft's OEM licensing restrictions prevent vendors from altering, obscuring,
or preceding the Microsoft desktop display. The Windows environment also presumes its

ownership of the entire display and is designed in ways that assume that it can write to any

10

15

20

25

WO 00/46781 PCT/US00/03165

screen location at any time. With Microsoft's domination of this market, it became impossible
for other software vendors to present an interface to users other than as a Microsoft style icon
within the Microsoft "desktop” consisting of the entire screen display. This prompted a need for
access to a user interface which could be presented outside of the standard computer screen

display and therefore independent of the dictates of Microsoft for items within its "desktop".

Standard personal computers use VGA or Super VGA or XGA video display systems.
These display systems operate in standardized graphics modes such as 640 x 480 pixels, 800 x
600 pixels, 1024 x 768 pixels, and 1280 x 1024 pixels. When one of these display modes is
selected, this is the entire area available for display. In the Microsoft Windows environment, the
user instructs the Windows operating system to select one of these standard display modes and
the Windows operating system then presents all of the applications and their icons within the
selected display area. There is no way at present to cause the Windows "desktop” to use less
than the entire display area and still function as intended and allow another program from
another vendor to control the remainder. What is needed is the ability to designate a portion of
video memory a separate from the Windows desktop, and to make sure that Windows functions

normally but at the same time cannot obstruct anything subsequently allocated into that space
SUMMARY OF THE INVENTION

A first aspect of the present invention includes a technique for controlling allocation and
content of display space among one or more user interfaces, operating systems or applications
permitting an application or parallel graphical user interface (GUI) to operate outside the
desktop, the area designated for display of the operating system interface and it’s associated
applications. In a first aspect, a computer operating under the control of any utility operating
system such as Microsoft Windows™, Linux, Apple O/S or Unix may have the allocation of
visible display controlled by the present invention. The operating system desktop may be scaled
and/or moved to a specific area of the display permitting a parallel GUI to operate in the open
area. The present invention may be an application operating under the primary or utility
operating system or it may be combined with an operating system kernel to control the display

and content in the parallel display.

10

15

20

25

30

WO 00/46781 PCT/US00/03165

Another aspect of the present invention includes a technique provided for adding and
using a parallel graphical user interface adjacent to the standard user graphical display interface,
for example in the border beyond the standard screen display area. Conventional video systems,
such as VGA, SVGA and XGA video systems, include a defined border surrounding the display
area. The original purpose of this border was to allow adequate time for the horizontal and
vertical retrace of the electron gun in a cathode ray tube display. However, with the advent of
LCD displays and as retrace speeds have increased in modern monitors, it is now possible to
present a user interface display in this border. The border which can be controlled as a user
interface is a portion of what is known as the "overscan". This invention is a method for
presenting one or more additional or secondary user interfaces, for example, in the overscan area

surrounding the conventional user interface display often called the desktop.

When the electron gun in a CRT retraces to the left of the screen or the top of the screen,
it requires a significant amount of time relative to the presentation of a scanned line of data.
During the retrace, the electron gun is turned off ("blanked"). If the blanking time required for
the retrace is equal to the amount of time available, there is no usable overscan. However,
modern monitors have become much faster in their retrace speeds, leaving a significant amount
of time when the electron gun need not be blanked, allowing a displayable border. In the prior
art, although the border is usually "black" (the gun is turned off), it is well known how to specify
that the border shall be given any one of six colors. Standard BIOS allows a specification of this
color. The desired color is simply specified in one of the registers for the video controller.
Typically no data for this color is stored in the buffer of video memory for the display. This
invention establishes an additional video buffer for the border and allows this buffer to be written
with display data like the regular display buffer. The additional video buffer is often present but
unused in the graphics systems of most computers because video memory is usually
implemented in sizes that are powers of 2 e.g. “512K”, whereas standard desktop dimensions are
not “e.g. 640x480=300K”. The display area is thereby expanded, on one or more edges, to
provide a visible area previously invisible. The pixels within this newly visible area of the
display are made accessible to programs through an application programming interface (API)
component of this invention. A program incorporating a parallel graphical user interface may be

displayed in the previously blanked area of the display, functionally increasing the accessible

10

15

20

25

WO 00/46781 PCT/US00/03165

area of the display without hardware modification. In other cases the desktop may be increased

or decreased to non-standard sizes.

A further aspect of the present invention includes a method for displaying an image on a
video display system in an area outside of the primary display area generated by the video
display system. Two dimensions define the standard display area, each specifying a number of
pixels. Selecting a video “mode” specifies these dimensions. The method is accomplished by
adjusting parameters for the video display system to increase the number of pixels in at least one
dimension of the display system. The number of pixels which is added is less than or equal to
the difference between the number of pixels specified in the video mode and a maximum number
of pixels which the video display system can effectively display. Any such difference is defined
here as the overscan area. Thus, the overscan area may be the difference between the current
desktop video mode and the display capability of the display device or more specifically, any
portion of video memory unused when the operating system is in a given screen dimension.
Because all interface displays are created by writing a desired image to a buffer or memory for
the video display, the method requires allocating additional video display memory for the
increased pixels. The image written to such memory is then displayed by the system alongside

the original display area.

In a still further aspect of the present invention, only the vertical dimension is increased
and the overscan user interface is presented above or below the primary display area.
Alternatively, the horizontal dimension may be increased and the overscan user interface
displayed to the right or the left of the primary display area. Similarly, the interface image may

be displayed on any or all of the four sides of the primary display area.

In another still further aspect of the present invention, a parallel GUI is provided that
includes access to existing search engines and browsers. In another embodiment, the parallel
GUI includes a search engine and/or browser. A search engine and/or browser using the present
invention may be opened in either the overscan space or a space within or over the operating

system display.

WO 00/46781 PCT/US00/03165

These and other features and advantages of this invention will become further apparent
from the detailed description and accompanying figures that follow. In the figures and
description, numerals indicate the various features of the invention, like numerals referring to

like features throughout both the drawings and the description.

5 BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a first embodiment of the present invention.
Fig. 2 is a block diagram of a second embodiment of the present invention.

Fig. 3 is a diagram of a standard display with an overscan user interface on all four

borders of the display.
10 Fig. 4 is a block diagram of the basic components of the present invention.

Fig. 5 is a diagram of a cursor or pointer within the overscan user interface and the

hotspot above it within the standard display.

Fig. 6 is a diagram of the usable border within the vertical overscan and the horizontal

overscan surrounding the standard display.

15 Fig. 7 is an overview flow chart showing the operation of a preferred embodiment of the

present invention.
Fig. 8 is a flowchart of the sub-steps in Identify Display step 102 of Fig. 7.
Fig. 9 is a flowchart of the sub-steps of changing the display resolution step 114 of Fig. 7.
Fig. 10 is a flowchart of the sub-steps in the Paint the Display step 120 of Fig. 7.
20 Fig. 11 is a flowchart of the sub-steps of Enable Linear Addressing step 112 of Fig. 7.

Fig. 12 is a flowchart of the sub-steps of the Process Message Loop of Fig. 7.

10

15

20

WO 00/46781 PCT/US00/03165

Fig. 13 is a flowchart of the sub-steps of the Check Mouse and Keyboard Events step 184
in Fig. 12.

Fig. 14 is a flowchart of the sub-steps of the Change Emulation Resolution step 115 in
Fig. 7.

Fig. 15 is a diagram of a standard display of the prior art.

Fig. 16 is a diagram of a standard display with an overscan user interface in the bottom

overscan arca.

Fig. 17 is a diagram of a standard display including a desktop, an overscan user interface

in the bottom overscan area and a context sensitive browser on the side.

Fig. 18 is a diagram of a standard display with an overscan user interface in the bottom

and on the right overscan area.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

The present invention includes techniques for providing and using an additional user
interface, preferably a secondary graphical user interface or parallel GUI, to be present on the
display at least apparently simultaneously with the primary user interface, such as the

conventional desktop GUI.

Referring now to Fig.’s 1 and 2, in a preferred embodiment, programming mechanisms
and interfaces in a video display and control system such as computer system 7 or settop box 8
provide one or more parallel GUIs such as space 2C and/or space 4 in a display area such as
display area 1 or display area 9 by providing access and visibility to a portion of the display
otherwise ignored and/or inaccessible (hereinafter "overscan area"). Display areas such as
display area 1 or display area 9 may be created on any type of analog or digital display hardware

including but not limited to CRT, TFT, LCD and flat panel.

10

15

20

25

WO 00/46781 PCT/US00/03165

Alternate display content controller 6 interacts with the computer utility operating system
5B and hardware drivers 5C to control allocation of display space 1 and create and control one or
more parallel graphical user interfaces such as context sensitive network browser (CSNB) 2 and
internet pages 2A and 2B adjacent the operating system desktop 3. Alternate display content
controller 6 may be incorporated in either hardware or software. As software, an alternate
display content controller may be an application running on the computer operating system, or
may include an operating system kernel of varying complexity ranging from dependent on the
utility operating system for hardware system services to a parallel system independent of the
utility operating system and capable of supporting dedicated applications. The alternate display
content controller may also include content and operating software such as JAVA delivered over

the Internet I or any other LAN.

The alternate display content controller may also be included in a television
decoder/settop box such as box 8 to permit two or more parallel graphical user interfaces such as
pages 9A and 9B to be displayed simultaneously. The present invention may be compatible with
conventional television formats such as NTSC, PAL, PAL-C, SECAM and MESECAM. In this
configuration content and software may be delivered over any conventional delivery medium 10
including but not limited to over the air broadcast signals 10A, cable 10C, optical fiber, and

satellite 10B.
Fig.’s 1 and 2 will be referenced in more detail later in the application.

Fig. 15 shows a standard prior art display desktop generated by a Microsoft Windows
95T gperating system. Within the desktop 31 are the taskbar 32 and desktop icons 33.

In a preferred embodiment of the present invention, a graphical user interface image is
painted onto one or more of the sides of the overscan area as shown in Fig. 3. Fig. 3 is a
depiction of a Super VGA (SVGA) display with the addition of a graphical bar user interface
displayed in the overscan area. The overscan user interface bar 30 is defined to reside outside
the borders of the "desktop" display area 31. In Fig. 16, the display is modified to include a
graphical user interface 30 in a bar 20-pixels high below the bottom edge. In Fig. 3, the display

is modified to include a graphical user interface in four bars each 20-pixels high/wide outside

10

15

20

WO 00/46781 PCT/US00/03165

each of the four display edges: a bottom bar 30, a left side bar 34, a right side bar 36, and a top
bar 38.

The overscan interface may include, and is not limited to, buttons, menus, application
output controls (such as a "ticker window"), animations, and user input controls (such as edit
boxes). Because the overscan interface is not obscured by other applications running within the
standard desktop, the overscan interface may be constantly visible or it may toggle between
visible and invisible states based upon any of a number of programming parameters (including,

but not limited to, the state of the active window, the state of a toggle button, etc.).

Fig. 4 is a block diagram of the basic components of the present invention. Within the
software component S are the operating system 63 and one or more applications such as
application 61. Within the protected modes of modern systems, applications 61 do not have
direct access to the video or Graphics Drivers 64 or hardware components such as the video card
66 which contains the video chipset 66A, 66B and 66C. Abstraction layers such as Application
Interface (API) 60, and/or Direct API 62, provide limited access, often through the operating
system 63.

The invention provides a technique for painting and accessing an area of the computer
display not accessible, or used, in the operative desktop graphics modes. In the Microsoft
Windows environments (including Microsoft Window 95 and derivatives, and Microsoft
Windows NT 4.0 and derivatives) and other contemporary operating environments, the primary
display area "desktop" is usually assigned by the operating system to be one of a set of pre-
determined video "modes" such as those laid out in Tables 1 and 2 below, each of which is
predefined at a specific pixel resolution. Thus, the accessible area of the computer display may

not be modified except by selecting another of the available predefined modes.

TABLE 1: ROM BIOS video modes

Mode

Number | Resolution Mode Colors Buffer Segment
Type

00H 42x25 chars (320x350 pixels) 16 Alpha B800

WO 00/46781 PCT/US00/03165
00H 42x25 chars (320x350 pixels) 16 Alpha B800
00H 42x25 chars (320x400 pixels) 16 Alpha B800
00H 42x25 chars (320x400 pixels) 16 Alpha B800
01H 42x25 chars (320x200 pixels) 16 Alpha B800
01H 42x25 chars (320x350 pixels) 16 Alpha B800
01H 42x25 chars (320x400 pixels) 16 Alpha B800
01H 42x25 chars (320x400 pixels) 16 Alpha B800
02H 80x25 chars (640x200 pixels) 16 Alpha B800
02H 80x25 chars (640x350 pixels) 16 Alpha B800
02H 80x25 chars (640x400 pixels) 16 Alpha B800
02H 80x25 chars (640x400 pixels) 16 Alpha B800
03H 80x25 chars (640x200 pixels) 16 Alpha B800
03H 80x25 chars (640x350 pixels) 16 Alpha B800
03H 80x25 chars (640x400 pixels) 16 Alpha B800
03H 80x25 chars (720x400 pixels) 16 Alpha B800
04H 320x200 pixels 4 Graphics B800
05H 320x200 pixels 4 Graphics B800
06H 840X200 pixels 2 Graphics B800
07H 80x25 chars (720x350 pixels) 2 Alpha B000
07H 80x25 chars (720x400 pixels) 2 Alpha B000
ODH 320x200 pixels 16 Graphics A000
OEH 640x200 pixels 16 Graphics A000

WO 00/46781 PCT/US00/03165

OFH 640x350 pixels 4 Graphics A000
10H 640x350 pixels 4 Graphics A000
10H 640x350 pixels 16 Graphics A000
11H 640x480 pixels 2 Graphics A000
12H | 640x480 pixels 16 Graphics A000
13H 320x200 pixels 256 Graphics A000

TABLE 2: SVGA video modes defined in the VESA BIOS extension

Mode Resolution Mode Colors Buffer Type
Number

100H 640x480 pixels 256 Graphics
101H 640x480 pixels 256 Graphics
102H 800x600 pixels 16 Graphics
103H 800x600 pixels 256 Graphics
104H 1024x768 pixels 16 Graphics
105H 1024x768 pixels 256 Graphics
106H 1280x1024 pixels 16 Graphics
107H 1280x1024 pixels 256 Graphics
108H 80x60 chars 16 Alpha

10

WO 00/46781

PCT/US00/03165

132x25 chars

109H 16 Alpha

10AH 132x43 chars 16 Alpha

10BH 132x50 chars 16 Alpha

10CH 132x60 chars 16 Alpha

10DH 320x200 pixels 32,768 Graphics
10EH 320x200 pixels 65,536 Graphics
10FH 320x200 pixels 16,777,216 Graphics
110H 640x480 pixels 32,768 Graphics
111H 640x480 pixels 65,536 Graphics
112H 640x480 pixels 16,777,216 Graphics
113H 800x600 pixels 32,768 Graphics
114H 800x600 pixels 65,536 Graphics
115H 800x600 pixels 16,777,216 Graphics
116H 1024x788 pixels 32,768 Graphics
117H 1024x768 pixels 65,536 Graphics

-11~

10

WO 00/46781 PCT/US00/03165
118H 1024x768 pixels 16,777,216 Graphics
119H 1280x1024 pixels 32,768 Graphics
11AH 1280x1024 pixels 65,536 Graphics
11BH 1280x1024 pixels 16,777,216 Graphics

As shown in Fig. 6, a displayed image is "overscanned". That is, the displayed video

buffer data occupies less than the entire drivable screen size. The drivable screen size is

determined by the total amount of video memory and the operative video display characteristics.

The width of the usable overscan border depends on the amount of the horizontal overscan 52

reduced by the horizontal blanking 54 and the amount of the vertical overscan 53 reduced by the
vertical blanking 55.

In a first preferred embodiment, only a border at the bottom of the standard display area

is used. Consequently, only the vertical control parameters for the cathode ray tube (CRT)

controller, shown as Control Registers 6H, 16H, 11H, 10H, 12H and 15H in Fig. 4 need to be

adjusted. These parameters and others are shown in Table 3 below:

TABLE 3: Vertical timing parameters for CR programming.

Register | Name Description

6H Vertical Total Value = (total number of scan lines per frame) — 2
The high-order bits of this value are stored in the
overflow registers.

7H Overflow High-order bits from other CR registers.

10H Vertical Retrace Start Scan line at which vertical retrace starts.
The high-order bits of this value are stored in the
overflow registers.

11H Vertical Retrace End Only the low-order 4 bits of the actual Vertical

Retrace End value are stored.
(Bit 7 is set to 1 to write-protect registers 0 through

-12-

10

15

WO 00/46781 PCT/US00/03165

7.)

12H Vertical Display End Scan line at which display on the screen ends.
The high-order bits of this value are stored in the
overflow registers.

15H Start Vertical Blank Scan line at which vertical blanking starts.
The high-order bits of this value are stored in the
overflow registers.

16H End Vertical Blank Scan line at which vertical blanking ends.
The high order bits of this value are stored in the
overflow registers.

59H- Linear Address Window | Linear address window position in 32-bit CPU

SAL Position address space.

In the standard 640x480 graphics mode, the nominal horizontal scan rate is 31.5 KHz

(31,500 times per second) with a vertical scan rate of 60 Hz (60 frames per second). So the

number of lines in one frame is 31,500/60, or 525. Because only 480 lines of data need to be

displayed, there are 525-480, or 45, lines available for vertical overscan. Leaving a more than

adequate margin for retrace, which requires only 2 lines worth of time, the preferred embodiment

uses 20 lines for the alternate display. Thus the additional 23 unused but available lines may be

used to increase the size of the operating system desktop to some non-standard size while still

allowing two lines for retrace, or may be left blank, or may be used for one or more additional

alternate parallel user interface displays.

The disclosed method of the preferred embodiment of the present invention is

accomplished by achieving three requirements:

(1)

2)

3)

to address and modify the visible resolution of the video display system such that

portions of the overscan area are visible as shown in Fig. 6,

to address and modify the video display contents for the visible portion of the

overscan area, and

to provide an application programming interface (API) or other mechanism to

allow applications to implement this functionality.

-13-

10

15

20

25

WO 00/46781 PCT/US00/03165

Fig. 7, and the additional details and sub-steps provided in Fig.’s 8-13, provides a flow
chart of an implementation of a preferred embodiment of the present invention meeting the
requirements described above. The environment of this implementation is a standard Microsoft
Windows 95™ operating environment, using Microsoft Visual C and Microsoft MASM for the
development platform. That is not to imply that this invention is limited in scope to that
environment or platform. The invention could be implemented within any graphical interface
environment, such as X-Windows, OSF Motif, Apple OS, a Java OS, and others in which similar
video standards (VGA, SVGA, XGA, 8514/A) are practiced. The reference books PC Video
Systems by Richard Wilton, published by Microsoft Press and Programmer's Guide to the EGA,
VGA, and Super VGA Cards by Richard F. Ferrano, published by Addison Wesley provide more

than adequate background information to implement this embodiment.

Referring now in particular to Fig. 7, upon initialization, at Identify Display Type step
102, the program attempts to determine the display type, and current location in memory used by
the display driver, in order to determine the size and locations of any display modifications to be

made, e.g. to the size and location of overscan area(s) to be used.

As described in further detail in Fig. 8, the program first queries the hardware registry in
Query Hardware Registry, step 131, to attempt to determine the registered display type. If
successful, the program then determines compatibility information in Display Type Supported,
step 135, to verify that the program supports that display type and determine memory allocation

information.

If the hardware registry information is unavailable, as determined in step 131, or the
display type determined in step 131 is unsupported as determined by step 104, the program may
use an alternate approach, shown as subroutine Query hardware, steps 135 in Fig. 8, to query the
BIOS, in step 134, and the video chipset 66, in step 136, for similar information as described

immediately below.

If the BIOS is to be accessed in step 134, physical memory is first allocated in Allocate
Physical Memory, step 132, and accessed using Microsoft’s DPMI (DOS Protected Mode
Interface) to map it to the linear memory address in which the BIOS resides in Use DPMI to

assign BIOS linear address to physical memory, step 133.

14

10

15

20

25

WO 00/46781 PCT/US00/03165

Thereafter, the program queries the BIOS in Read BIOS block, Search for VGA/XVA
type and manufacturer ID, step 134. If successful, the driver and chipset are then further queried

to determine the display type and memory location in Query driver/chipset for exact chipset, step
136.

If the compatibility information does not indicate a standard VGA, SVGA, XGA, or
8514/A signature, step 134, this routine returns a failure. If a known chipset manufacturer’s
identification is found, the driver and/or chipset may be queried with manufacturer-specific

routines, step 136, to identify and initialize, as necessary, the specific chipset.

If, at step 104, the program was unable to finally unable to identify the display type,
either because the registry query in step 131 or the hardware query in step 135 was unsuccessful,
the user may be prompted at Run in windowed mode, step 116, as to whether the program should
continue to run as a standard “application bar” or “toolbar”. The program may either exit or

proceed to run as a toolbar on the desktop.

Returning now to Fig. 8, if a supported display type is detected, the program then
determines the screen borders to be accessed in Identify borders to display in overscan, step 106,
based upon user preferences, and determines, as necessary, whether sufficient video memory
exists to make the necessary display changes. For example, if the screen is currently set to a
1024x768 resolution at 16 bits-per-pixel, and the program is to include four graphical interface
bars, one on each edge, with each bar 20 pixels deep, the program must check that video memory

is greater than 1.7MB (required number of bytes = Pixels Width * BitsPerPixel * PixelsHeight).

The controller registers 6H, 16H, 11H, 10H, 12H and 15H as shown in Fig. 4 and
detailed in Table 3, may be accessed through standard input/output ports, using standard inp/outp
functions. The CR registers 6H, 16H, 11H, 10H, 12H and 15H must first be unlocked, as
indicated in Unlock CRTC registers, step 108 in Fig. 7, to make them writeable. They are

unlocked by clearing bit 7 in controller register 11H.

Addressing of video memory, step 112, is accomplished through one of several means.
One is to use the standard VGA 64 Kb "hardware window", moving it along the video memory

buffer 67 (Fig. 4) in 64Kb increments as necessary. The preferred method is to enable linear

~-15-

10

15

20

25

WO 00/46781 PCT/US00/03165

addressing by querying the video chipset for the linear window position address, step 138 of Fig.
11. This 32-bit offset in memory allows the program to map the linear memory to a physical

address, steps 140 and 142 of Figure 11, that can be manipulated programmatically.

At this point the program can modify the size of the display, step 114 and Fig. 9, to
include the border areas. This routine first checks to determine whether or not the system is
running in “toolbar” mode, step 144, and, if so, returns true. If not, it then determines whether to
reset all registers and values to their original state, effectively returning the display to its original
appearance, step 152. The determination is based upon a number of parameters, such as whether
the current resolution, step 146, reflects a standard value or previous programmatic
manipulation, step 148. If a standard resolution is already set, the variables are reset to include
the specified border areas, step 150. The CR registers are adjusted, step 154, to modify the
scanned and blanked areas of the display. If the top or side areas are modified, existing video

memory is moved accordingly in step 162 of Fig. 10.

If any of the foregoing routines returns a failure, the program may prompt the user to
determine whether "emulation" mode, step 13, or windowed mode step 116 should be used or if

the program should exit at step 124.

In its simplest form, the invention can be treated as a technique for adding a secondary
GUI by reconfiguring the actual display mode to add a modified, non-standard GUI mode in
which the standard display size or resolution has been adjusted to include a secondary display in
addition to the primary display. For example, a standard 640x480 display is modified in
accordance with the present invention to become a larger display, one section of which
corresponds to the original 640x480 display while another section corresponds to a 640x25

secondary GUI display.

There are various techniques or mechanisms required for modifying the system to include
the secondary GUI, depending upon the requirements of the secondary GUI and upon the present

circumstances of the unmodified system.

In another embodiment of the present invention system resources are allocated for a

secondary GUI by fooling the video driver into going to larger resolution. This technique

-16-

10

15

20

25

WO 00/46781 PCT/US00/03165

automatically guarantees that enough space is kept clean, since the video driver allocates system
resources according to the resolution that the video driver believes it will be operating in. To
operate one or more secondary user interfaces in one or more areas of the screen it is necessary
to have the memory that was associated in video memory or in the frame buffer with that
location, contiguously below the primary surface free and available. By writing a series of small
applets specific to hardware known to have system resource allocation problems for a secondary
user interface, the secondary user interface application may run such applet whenever resolutions
will be switched, initializing the chip set pertinent to that particular applet. If the application
finds an applet pertinent to the current particular chip set it will be launched. The applet or
minidriver initializes itself, performs the necessary changes to the driver's video resolution
tables, forces a reenable, and sufficient space is subsequently available for one or more

secondary user interfaces.

When reenabled, the driver allocates video memory as needed for the primary display
according to the data on the UCCO resolution tables. Therefore, the modified values result in a
larger allocation. Once the driver has allocated memory necessary for the primary surface, the
driver will allow no outside access to the allocated memory. Thus by fooling the driver into
believing that it needs to allocate sufficient memory for a resolution exactly x bytes larger than
the current resolution where x is the size of one or more secondary user interfaces, the
application can be sure that no internal or external use of the allocated memory location can

conflict with the secondary user interface.

This method ensures that system resources will be allocated for one or more secondary
user interfaces by writing an applet that would address the video driver in such a way as to force
the video driver, on its next reenable, to allocate video memory sufficient for a resolution higher
than the actual operating system resolution. This may also be done by modifying each instance
of the advertised mode tables, and thus creating a screen size larger than the primary user

interface screen size.

This technique has an additional benefit of eliminating the need to prevent the driver
from actually shifting into the specified larger resolution, handing the primary user interface a

larger display surface resolution. The "hardware mode table," a variant of the aforementioned

-17-

10

15

20

25

WO 00/46781 PCT/US00/03165

video resolution tables, is not advertised and not accessible. Therefore, when the driver validates
the new resolution, checking against the hardware mode table, it will always fail and therefore
refuse to shift into that resolution. Because this technique modified the advertised video
resolution tables early enough in the driver's process, allocated memory was modified, and
memory addresses set before the failure in validate mode. Subsequently when the CRTCs are
modified, in step 114, the driver is reserving sufficient memory for one or more secondary user

interfaces and not making it available for any other process or purpose.

In yet another embodiment of the present invention, an enveloping driver is installed to
sit above the existing driver and shims itself in between the hardware abstraction layer and the
actual video driver in order to be able to handle all calls to the video driver and modify the driver
and the driver's tables in a much more generic fashion rather than in a chipset specific fashion.
The enveloping driver shims into the primary video driver, transparently passing calls back and
forth to the primary video driver. The enveloping driver finds the video resolution tables in the
primary video driver which may be in a number of locations within the driver. The enveloping
driver modifies the tables (for example, increasing 800 by 600 to 800 by 620). A 1024 by 768
table entry may become 1024 by 800.

Like the previously described embodiment, the primary driver cannot validate the new
resolution and therefore cannot actually change the display setting. As a result, the driver
allocated memory, allocated the cache space, determined memory address and moved cache and
offscreen buffers as necessary. So the primary driver never uses all the space allocated, and will

never draw in that space.

As stated earlier, the method of the present invention may include three primary steps,
finding or producing unused video memory, creating or expanding the overscan area, and putting

data in the overscan area.

The step of finding or producing the unused video memory requires a review of the
contents of the Controller Registers, the CR registers, used by VGA compatible chip sets or
graphic boards to identify where the overscan area, the blanking, the vertical and horizontal total

and the sinking should be set. The CR defines the desktop display, how its synched, where it's

18

10

15

20

25

WO 00/46781 PCT/US00/03165

laid out left and right, how much buffer area there would be on each side, where it would be
stored within the video memory area. A review of the contents of the CR data registers therefore

fully defines and allows one to control the potential location and size of the overscan area.

In order to accomplish the step of creating or expanding the overscan area, the CRs may
currently be used directly for systems with video display resolutions up to and including 1024
pixels in any dimension, that is, resolutions which can be defined in the generally accepted VGA
standards by 10 bits per register. To expand the overscan area, new data is written into the CR
using standard techniques such as the Inp and Outp, functions. A standard video port and MMIO
functions may also be used to modify the CRs.

At greater resolutions, 11 bits may be needed to properly define the resolution. There is
currently no standard way in which the 11" bit location is defined. Therefore, at a resolution
above 1280 by 1024, for example, an understanding about the video card itself, particularly how
the 11 bits representing the resolution are stored, is currently required and will be described

below in greater detail.

When expanding the overscan, it is important to make sure a previous overscan bar is not
already displayed, possibly from a previous crash or other unexpected problem. Either the
display must be immediately reset to the appropriate resolution defaults, or the CR queried to
determine if the total screen resolution as understood by the video card and drivers differs from
the screen resolution known by the operating system display interface. An overscan bar may
already be displayed if the total screen resolution is not equal to one of the standard VGA or
SVGA resolutions. In particular, if the total screen resolution is equal to a standard VGA/SVGA
resolution plus the area required for the overscan bar or is greater than the resolution reported by

the operating system display interface, the display is reset.

Once the display area or resolution as stored in the CR is determined, the resolution or
display area can be extended in several different ways. The overscan area can be added to the
bottom, the top, or the right of the current display area, and optionally, the display area can be
repositioned so that the overscan bar can remain centered in appearance. Alternatively. the

overscan area can be added anywhere and the original or desktop display area can be centered to

-19-

10

15

20

25

WO 00/46781 PCT/US00/03165

improve appearance. In any event, the height/width of the display area required for the overscan

bar is presented adjacent the desktop area stored in the CR and the combination is written into

the CR, overwriting the previous data.

The screen typically shows a quick flash as it is placed in a different mode, including the
desktop display area as well as a parallel GUI such as a display bar in the overscan area. As soon
as that change occurs, a black mask can be positioned over the new areas. The new menu data
can then be safely written on top of the black mask so that the user never sees memory

“garbage”.

There is typically a few seconds of load time during which a simple message can be

displayed, such as "Loading...", to avoid confusing the user.

There are a number of mechanisms by which this may be done. A set of class objects is

used, all derived from a common base class corresponding to the above described VGA-generic

technique.

The first mechanism is an implementation of the VGA-generic technique. Using this
mechanism, no information specific to a video-card is necessary, other than ensuring VGA
support. Using standard application programming interface (API) routines, primary and
secondary surfaces are allocated. The new display data in the CR is simply the physical address

at the start of the primary surface plus the number of pixels defined by the screen size.

Allocation of the primary surface will always be based on the entire screen display.
Given the linear address of the allocated primary surface, from which a physical address can be
derived, it can be extrapolated that the physical address of the location in video memory
immediately adjacent to the primary surface is represented by the sum of the number of bytes of
memory used to maintain the primary surface in memory plus the value of the physical address

of the primary surface.

Once the physical address of the primary surface is known, the size of the primary

surface as represented in video memory can be determined.

~-20-

10

15

20

25

WO 00/46781 PCT/US00/03165

For example, the system looks in the CRs for the resolution of the screen, 800 by 600, in
terms of number of bits per pixel, or bytes per pixel. Then any data stored in the CR
representing any horizontal synching space is added. This is the true scan line length. The scan

line length is a more accurate measurement of the width in a given resolution.

Next, the physical address of the allocated secondary surface is derived from its linear
address. In the case where the allocated secondary surface is, in fact, allocated in the memory
space contiguous to the primary surface (the value of the secondary surface physical address is
equal to the value of the primary surface physical address plus the size of the primary), the

secondary surface is determined to be the location in memory for the overscan display.

If, however, the above is not true and the secondary surface is not contiguous to the

primary surface, another approach mechanism is required.

To summarize, the first mechanism determines how much physical area to allocate for the
desktop allowing adjacent area for parallel GUI secondary space beyond that to display in the
overscan area. The newly allocated area will be the very first block of memory available. If this
block immediately follows the primary surface, the physical address will correspond to the value
associated with the physical address of the primary surface, plus the size of the primary surface.

If that is true, the memory blocks are contiguous, this VGA-generic mechanism can be used.

If this first, VGA-generic mechanism cannot be used, the video card and driver name and
version information retrieved from the hardware registry and BIOS, as described earlier, is used
in conjunction with a look-up table to determine the best alternatives among the remaining
mechanisms. The table includes a set of standards keyed to the list of driver names found in the
hardware registry. A class object specific to the video chipset is instantiated based, directly or

indirectly, on the VGA-generic object.

If the hardware look up does not result in a reliable match, a reliability, or confidence,
fudge factor may be used. For example, if the hardware look up determines that an XYZ-brand
device of some kind is being used, but the particular XYZ device named is not found in the look

up table, a generic model from that chipset manufacturer many often be usable. If no

-21~

10

15

20

25

WO 00/46781 PCT/US00/03165

information is available, the user may get a message indicating that the hardware is not supported
and that the program cannot run in the overscan area. The user may then be queried to determine
if the system should be operated in the “application-toolbar” mode, which basically runs with
exactly the same functionality but in a windowed environment within the desktop rather than in

the overscan area outside the desktop.

The next alternative mechanism uses surface overlays. The first step to this approach is
to determine if the system will support surface overlays. A call is made to the video driver to
determine what features are supported and what other factors are required. If surface overlays

are supported, for example, there may be a scaling factor required.

For example, a particular video card in a given machine, using 2 megabytes of video
RAM, might support unscaled surface overlays at 1024x768 at 8 bits per pixel, but not at
1024x768 at 16 bits per pixel because the bandwidth of the video card or the speed of the card,
coupled with the relatively small amount of video memory would not be sufficient to draw a full
width overlay. It is often horizontal scaling that is at issue, preventing the driver from drawing a
full width overlay. An overlay is literally an image that is drawn on top of the primary surface.
It is not a secondary surface, which is described above. Typically, the system sends its signal
from the video driver to the hardware such that it merges the two signals together, overlaying a

second signal on top of the first.

If a system can not support unscaled overlays, perhaps because of bandwidth issues or
memory issues, this mechanism is not desirable. It is not rejected, but becomes a lower priority
alternative. For example, if the scaling factor is below .1, then the normal bar can be drawn and
it will be clipped closer to the edge. If the scaling factor is more than 10%, another approach

mechanism is required

In the next set of alternative mechanisms, a secondary surface is allocated sufficient in
size to encompass the normal desktop display area plus the overscan area to be used for display
of the overscan bar or bars. Using these mechanisms, the allocated secondary surface does not
have to be located contiguous in memory to the primary surface. However, these approaches use

more video memory than the others.

-22-

10

15

20

25

WO 00/46781 PCT/US00/03165

The first step is to allocate a secondary surface sufficient in size to contain the video
display (the primary surface) plus the overscan area to be used. If the allocation fails, that means
that there is not enough video memory to accomplish the task and this set of mechanisms is
skipped and the next alternative tried. After the new block of memory is allocated, a timer of
very small granularity is used to execute a simple memory copy of in the contents of the primary
surface onto the appropriate location of this secondary surface. The timer executes the copy at

approximately 85 times per second.

Within this set of alternative mechanisms is a variant that uses the system page tables.
This mechanism queries the system page tables to determine the current GDI surface address,
that is, the physical address in the page table for the primary surface. A secondary surface is then
created large enough to hold all of what is in the video memory plus the memory required for the
overscan bar to be displayed. This surface address is then pushed into the system page table and

asserted as the GDI surface address.

Thereafter, when GDI reads from or writes to the primary surface through the driver, it
actually reads from or writes the new, larger surface. The overscan bar program can,
subsequently, modify the area of the surface not addressed by GDI. The original primary surface
can be de-allocated and the memory usage reclaimed. This mechanism, being more memory-
efficient than the previously described mechanism, is the preferred alternative. But the page
tables solution will not work correctly on a chipset that includes a coprocessor device. If the
initial device query reveals that the device does include a coprocessor, this variant mechanism

will not be attempted.

Other variations of the above-described mechanisms are accounted for in derived class
objects. For example, the VGA-generic mechanisms may vary when the video card requires
more than ten bits to represent the video resolution in the CR. Some instances may require 11
bits. Such registers typically do not use contiguous bytes, but use extension bits to designate the

address information for the higher order bits.

In this example, the eleventh bit is usually specified in an extended CR register and the

extended CR registers are usually chip specific.

-23-

10

15

20

25

WO 00/46781 PCT/US00/03165

Similarly, a variation of the surface overlay mechanism includes a scaling factor, as
described above. This alternative is handled in specific implementations through derived class

objects and may be the best solution in certain situations.

Another implementation of this technology uses a “hooking” mechanism as shown in Fig.
14. After the display driver is identified through the hardware fegistry or the BIOS, as described
above, certain programming interface entry points into the driver are hooked such as at step 117.
In other words, when the video system device interface, Windows GDI for example, calls those
entry points into the display driver, the program can take the opportunity to modify the

parameters being passed to the display driver, and/or to modify the values being returned from

the display driver.

By hooking the “ReEnable” function in the display driver, at step 117, the overscan bar

program can allocate screen area in different ways in step 119:

(1) In step-up mode, step 121, by intercepting a resolution change request and
identifying the next-higher supported screen resolution and passing that higher
resolution to the display driver, then, when the display driver acknowledges the
change, intercepting the returned value, which would reflect the new resolution,
and actually returning the original requested resolution instead. For example,
GDI requests a change from 640x480 resolution to 800x600 resolution; the
overscan program intercepts the request and modifies it to change the display
driver to the next supported resolution higher than 800x600, say 1024x768. The
display driver will change the screen resolution to 1024x768 and return that new
resolution. The overscan program intercepts the return and instead passes the
original request, 800x600, to GDI. The display driver has allocated and displays a
1024x768 area of memory. GDI and Windows will display the desktop in an
800x600 area of that display, leaving areas on the right and bottom edges of the

screen available to the overscan program.

(2) In shared mode, step 123, by intercepting only the return from the display driver
and modifying the value to change the operating system’s understanding of the

actual screen resolution. For example, GDI requests a change from 800x600

-24-~

10

15

20

25

WO 00/46781 PCT/US00/03165

resolution to 1024x768 resolution. The overscan program intercepts the returned
acknowledgment, subtracting 32 before passing the return on to GDI. The display
driver has allocated and displays a 1024x768 area of memory. GDI and Windows
will display the desktop in an 1024x736 area of that display, leaving an area on

the bottom edge of the screen available to the overscan bar program.
After hooking, the overscan bar program can display by:

(D using standard API calls to render the bar to an off-screen buffer, as described in
the next section, and then hooking the “BitBlt” function entry point into the
display driver in order to modify the offset and size parameters and subsequently

redirect the BitBlt to the area outside of that which the API believes is onscreen.

2) using mechanisms of primary and secondary surface addresses, described earlier,
the program determines the linear addresses for the off-desktop memory

location(s) left available to it, and can render directly to those memory locations.

Phase 2 of the invention begins by painting the new images into a standard off-screen
buffer, step 118, as is commonly used in the art, and making the contents visible, step 120, as
described in Fig. 10. If the program is in "toolbar" mode, step 156, the off-screen buffer is
painted into the standard window client space, step 166, and made visible, step 164, using
generic windowing-system routines. Otherwise, the linear window position address is mapped,
step 158, as described in Fig. 11 which has been previously explained. Once the linear memory
is mapped to a physical memory address, step 142, the contents of the off-screen display buffer
can be copied into the video buffer directly, step 154 of Fig. 10, or painted as to a secondary

surface.

The preferred embodiment application includes a standard application message loop, step
122, which processes system and user events. An example of a minimum functionality process
loop is in Fig. 12. Here the application handles a minimal set of system events, such as painting
requests, step 170, system resolution changes, step 172, and activation/deactivation, step 174.
Here, too, is where user events, such as key or mouse events, may be handled, step 184, detailed

in Fig. 13. System paint messages are handled by painting as appropriate into the off-screen

-25-

10

15

20

25

WO 00/46781 PCT/US00/03165

buffer, step 178, and painting the window or display buffer, step 180, as appropriate, as
described earlier in Fig. 10. System resolution messages are received whenever the system or
user changes the screen or color resolution. The programs reset all registers to the correct new
values, then change the display resolution, step 182, as earlier described in Fig. 9, to reflect the
new resolution modified. User messages are ignored when the program is not the active

application.

Fig. 13 describes a method of implementing user-input events. In this embodiment, there
are three alternative mechanisms used to implement cursor or mouse support so that the user has

a pointing device input tool within the overscan area user interface.

In the preferred mechanism, GDI’s "cliprect" is modified to encompass the overscan
bar’s display area. That keeps the operating system from clipping the cursor as it moves into the
overscan area. This change doesn't necessarily make the cursor visible or provide event

feedback to the application, but is the first step.

Some current Windows applications continually reset the cliprect. It is a standard
programming procedure to reset the cliprect after use or loss of input focus. Some applications
use the cliprect to constrain the mouse to a specific area as may be required by the active
application. Whenever the overscan display bar interface receives the input focus it reasserts the

cliprect, making it large enough for the mouse to travel down into the overscan space.

Once the cliprect has been expanded, the mouse can generate messages to the operating
system reflecting motion within the expansion area. GDI does not draw the cursor outside what
it understands to be its resolution, however, and does not pass “out-of-bounds” event messages
on to an application. The overscan program uses a VxD device driver, and related callback
function, to make hardware driver calls at ring zero to monitor the actual physical deltas, or
changes, in the mouse position and state. Every mouse position or state change is returned as an

event to the program which can graphically represent the position within the menu display bar.

An alternative mechanism avoids the need to expand the cliprect in order to avoid

conflict with a class of device drivers that use the cliprect to facilitate virtual display panning.

26

10

15

20

25

WO 00/46781 PCT/US00/03165

Querying the mouse input device directly the overscan program can determine "delta's", changes
in position and state. Whenever the cursor touches the very last row or column of pixels on the
standard display, it is constrained there by setting the cliprect to a rectangle comprised of only
that last row or column. A "virtual" cursor position is derived from the deltas available from the
input device. The actual cursor is hidden and a virtual cursor representation is explicitly
displayed at the virtual coordinates to provide accurate feedback to the user. If the virtual
coordinates move back onto the desktop from the overscan area, the cliprect is cleared, the

virtual representation removed, and the actual cursor restored onto the screen.

A third alternative mechanism creates a transparent window that overlaps the actual
Windows desktop display area by a predefined number of pixels, for example, two or four pixels.
If the mouse enters that small, transparent area, the program hides the cursor. A cursor image is
then displayed within the overscan bar area, at the same X-coordinate but at a Y-coordinate
correspondingly offset into the overscan area. If a two-pixel overlap area is used, this method
uses a granularity of two. Accordingly, this API-only approach provides only limited vertical
granularity. This alternative mechanism assures that all implementations will have some degree

of mouse-input support, even when cliprect and input device driver solutions fail.

Fig. 7 describes the cleanup mechanisms executed when the program is closed, step 124.
The display is reset to the original resolution, step 126, and the CR registers are reset to their

original values, step 128, and locked, step 130.

In another embodiment of the present invention, the launching or initiating of alternate
display content controller 6 may be modified and controlled. Alternate display content controller
6 may be launched as a service, as an application, or as a user application. As a service, alternate
display content controller 6 may be launched as a service within the registry of utility operating
system 5B. The first kind of application is launched in the Run section in the registry, and the
user application may be initiated from the Start Up Group within the Start button. Thus,
alternate display content controller 6 may be initiated any time from the first thing after graphics

mode is enabled to the very last thing initiated.

Launched as a service, alternate display content controller 6 may be visible shortly after

utility operating system 5B such as Windows actually addresses the display, and how soon after

-27~

10

15

20

25

WO 00/46781 PCT/US00/03165

depends on where alternate display content controller 6 is put it in the order of the things that
will be launched as services. It may be possible to put alternate display content controller 6 so
that it launches as essentially the first service and thus would launch almost at the same time as
the drivers, very, very shortly after the drivers are launched. Accordingly, it is possible to have
the screen change from text mode to graphics, draw the colored background, immediately re-
display with the overscan addressed and a parallel GUI such as CSNB 2 display the very close to
the same time as taskbar. Launched as a run-line application, alternate display content controller

6 may be visible in display space 1 shortly after icons appear.

NetSpace

Referring again to Fig. 1, in an alternate embodiment of the present invention, the
technique of controlling the allocation of display area 1 is used to open a context sensitive
network browser 2 (CSNB) adjacent but not interfering with operating system desktop 3 and/or
parallel graphical user interface 4. A display controller such as alternate display content
controller 6 may include CSNB 2 thus permitting the browser to create and control a space for
itself on display 1 which may not be overwritten by utility operating system 5B. The combined
controller/browser may be an application running on the computer operating system, or may
include an operating system kernel of varying complexity ranging from dependent on the utility
operating system for hardware system services to a parallel system independent of the utility
operating system and capable of supporting dedicated applications. The alternate display content
controller/browser may also include content and operating software such as JAVA delivered over
the Internet I or any other LAN. There may also be more than one context sensitive network
browser and more than one parallel graphical user interface in addition to the operating system

desktop.

Context sensitive interface such as network browser 2 may respond to movement and
placement of cursor 1C controlled by a pointing device such as mouse 1M anywhere on display
area 1. The generation and control of a cursor across two or more parallel graphical user
interfaces was described previously. The location of cursor 1C will trigger CSNB 2 to retrieve

appropriate and related network pages such as web page 2A. CSNB 2 may store the last X

-28-

10

15

20

25

WO 00/46781 PCT/US00/03165

number of CSNB enabled network addresses for display offline. In a currently preferred
embodiment of the present invention, X is ten pages. If a user is examining a saved CSNB

enabled page offline, a mouse click on the page or a link on the page will initiate the users dial-

up sequence and establish an online connection.

In an alternate embodiment, alternate display content controller 6 may include a browser
or search engine. In an alternate embodiment of the present invention, space 2C may include an
edit input box 2D. Edit input box 2D may include conventional functionality’s such as edit,
copy, paste, etc.. A user may enter a URL into edit input box 2D using any conventional input
device and then select a button to launch or initiate alternate display content controller 6 as a
browser. This may be accomplished by using objects and or drivers from utility operating system
5B. Initiating alternate display content controller 6 as a browser would include a simple window
to display the URL as a live HTML document with all conventional functionality. By
implementing alternate display content controller 6 as a little applet that uses that DLL, it may
slide on, or slide off. Thus initiating alternate display content controller 6 as a browser is like a

window into the Internet.

Secondly, a user may enter any text into edit input box 2D using any conventional input
device and then select a button to launch or initiate alternate display content controller 6 as a
search engine. By entering a search string and selecting "search" and enter any string and click
on "search" and pass that to any number from one to whatever or existing search engines, and
subsequently have the search string acted on by one or more selected search engines and or by
alternate display content controller 6 as a search engine. Resulting in multiple different windows
appearing in some sort of stacked or cascaded or tiled format, with the different searches within

them.

Using alternate display content controller 6 as a search engine or browser, the results or

HTML document may be displayed in any overscan area or on the desktop.

Referring now to Fig 17, a context sensitive network browser such as CSNB 13 may also
include a suite of tools such as tools 14 that may or may not have fixed locations on the browser

space. Such tools may include but are not limited to e-mail, chat, buddy lists and voice. As

-20~

10

15

20

25

WO 00/46781 PCT/US00/03165

shown, spaces such as desktop 14A, web page 14B, secondary GUI 14C and browser 13 may be

arranged in any convenient manner.

The following describes the hooking mechanism used with xSides on a Intel 80386 (or
greater) processor. This description of the Intel processor operations are simplified for clarity.
This hooking mechanism is expected to work on most if not all compatible processors currently

available.

Interrupt Descriptor Table

The interrupt descriptor table (IDT) associates each interrupt with a descriptor for the
instructions that service the associated event. For example, when a software interrupt (INT 3) is
generated (and interrupts are enabled), the Intel processor will suspend what it was currently
doing, look up in the IDT for the appropriate entry (or interrupt vector) for the address of the
code to execute to service this interrupt. The code is known as the Interrupt Service Routine
(ISR). It will start executing the ISR. When a Return From Interrupt instruction (IRET) is

executed by the ISR, the processor will resume what is was doing prior to the interrupt.

Debug Registers

The Intel 80386 microprocessor provides a set of system registers that are normally used
for debugging purposes. The are technically referred to as Debug Registers. These registers
allow control over execution of code as well as access over data. The Debug Registers are used
in conjunction with exception code. There are four addresses registers (i. e. Four different

locations of code and/or data) (DRO, DR1, DR2, and DR3).

There is a control register (DR7) that can be programmed to selectively enable the
address registers. In addition, DR7 is used to control the type of access to a memory location
that will generate an interrupt. For example, an exception can be raised for reading and or

writing a specific memory location or executing a memory location (i. e. Code execution).

-30-

10

15

20

25

WO 00/46781 PCT/US00/03165

Finally, there is a status register (DR6) that is used to detect and determine the debug
exception, (i. e. What address register generated the exception). When enabled and the data

criterion is met, the x86 processor generates an Interrupt 1 (INT 1).

How this mechanism is used

The xSides implementation must first set up the IDT to point our ISR to process INT 1
interrupts. Next, the address of the code that you want to hook (or the memory location of data,
as in this case) is programmed into one of the address registers and the appropriate bits within
the control register are set. When the x86 processor executes this instruction (or touches the
memory location of data), the processor generates an INT 1. The processor will then invoke the
Interrupt 1 ISR (as described above.) At this point, the ISR can do almost any kind of processor,
code or data manipulation. When complete, the ISR executes an IRET instruction and the
processor starts execution after the point of the INT 1 occurrence. Note that the interrupt code

has no knowledge of the interruption.

This mechanism is expected to move the memory address used on some video systems
for cache or hardware cursor. This should allow us to push the percentage of systems that
support “overscan” mode to around 90% (in that this mechanism should work on approximately

that number of machines).

Alternative embodiments

1. Utilizing the VESA BIOS Extensions (VBE) in place of the CRT Controller registers (Fig.

5) to determine the linear window position address, step 138, as necessary.

2. Utilizing API's (application programming interfaces) 62 capable of direct driver and/or
hardware manipulation, such as Microsoft's DirectX and/or DirectDraw, in place of the

CRT Controller registers and/or direct access to the display buffer.

3. Utilizing API's (applications programming interfaces) 62, such as Microsoft's DirectX
and/or DirectDraw, capable of direct driver and/or hardware manipulation, to create a
second virtual display surface on the primary display with the same purpose, to display a

separate and unobscured graphical user interface.

...31_

WO 00/46781 PCT/US00/03165

4. Utilizing modifications in the video subsystem of the operating system 63 in place of the

CRT Controller registers and/or DirectX access to the display buffer.

5. Utilizing modifications in the video subsystem of the operating system 63 to create a
second virtual display surface on the primary display with the same purpose, to display a

separate and unobscured graphical user interface.

6. Building this functionality into the actual video drivers 64 and/or mini-drivers. Microsoft
Windows provides support for virtual device drivers, VxDs, which could also directly
interface with the hardware and drivers. These could also include an API to provide

applications with an interface to the modified display.

7. Incorporating the same functionality, with or without the VGA registers, into the BIOS and

providing an API to allow applications an interface to the modified display.

8. Incorporating the same functionality into hardware devices, such as monitor itself, with

hardware and/or software interfaces to the CPU.

9. This technique may be used to control the desktop (i.e. Windows) to easily enable the
desktop to operate in virtually any non-standard size limited only by the capability of the
display hardware. This may be in combination with parallel graphical user interface
displays or exclusively to maximize the primary operating system desktop display area.

This may not require any modification to the operating system.

In overview, the visual display area is conventionally defined by the values maintained in
the CRTC registers on the chip and available to the driver. The normally displayed area is
defined by VGA standards, and subsequently by SVGA standards, to be a preset number of
modes, each mode including a particular display resolution which specifies the area of the

display in which the desktop can be displayed.

The desktop can only be displayed in this area because Windows does not directly
read/write the video memory, rather it uses programming interface calls to the video driver. And
the video driver simply reads/writes using an address that happens to be in video memory. So

the value this mechanism needs to realize is the value the video card and driver assert is available

-32-

10

15

20

25

WO 00/46781 PCT/US00/03165

for painting. This value is queried from the registers, modified by specific amounts and rewritten
to the card. Subsequently, the present invention changes the area of writable visible display

space without informing the operating system’s display interface of the change

This invention doesn't necessary change the CRTCs to add just to the bottom. Preferably
the top is also moved up a little. This keeps the displayed interfaces centered within the drivable
display area. For example, rather than just add thirty-two scan lines to the bottom, the top of the

display area is moved up by sixteen lines.

Nor does this invention depend solely upon the ability to change the CRTCs to modify
the visible display area. Alternative mechanisms define other methods of creating and accessing
visible areas of the screen that are outside the dimensions of the desktop accessed by the

operating system’s display interface.

From a consideration of the specifications, drawings, and claims, other embodiments and

variations of the invention will be apparent to one skilled in the art of computer science.

In particular, the secondary GUI may be positioned in areas not normally considered the
conventional overscan area. For example, the secondary GUI may be positioned in a small
square exactly in the center of the normal display in order to provide a service required by the
particular system and application. In fact, the techniques of reading and rewriting screen display
information can be used within the scope of the invention to maintain the primary GUI
information, or portions of it, in an additional memory and selectively on a timed, computed,
interactive, or any or other basis, replace a portion of the primary GUI with the secondary GUI

such as a pop-up, window, or any other display space.

As a simple example, a security system may require the ability to display information to a
user without regard to the status of the computer system and/or require the user to make a
selection, such as call for help by clicking on "911?". The present invention could provide a
video display buffer in which a portion of the primary GUI interface was continuously recorded

and displayed in a secondary GUI for example in the center of the screen. Under non-emergency

-33-

10

15

20

WO 00/46781 PCT/US00/03165

conditions, the secondary GUI would then be effectively invisible in that the User would not

notice anything except the primary GUI.

Under the appropriate emergency conditions, an alarm monitor could cause the secondary
GUI to present the "911?" to the user by overwriting the copy of the primary display stored in the
secondary GUI memory. Alternatively, a database of photographs may be stored and one
recalled in response to an incoming phone call in which caller ID identified a phone number

associated with a database photo entry.

In general, the present invention may provide one or more secondary user interfaces
which may be useful whenever it is more convenient or desirable to control a portion of the total
display, either outside the primary display in an unused area such as overscan or even in a
portion of the primary GUI directly or by time division multiplexing, directly by communication
with the video memory, or by bypassing at least a portion of the video memory to create a new
video memory. In other words, the present invention may provide one or more secondary user
interfaces outside of the control of the system, such as the operating system, which controls the

primary GUI.

Additional user interfaces may be used for a variety of different purposes. For example,
a secondary user interface may be used to provide simultaneous access to the Internet, full
motion video, and a conference channel. A secondary user interface may be dedicated to a local
network or multiple secondary user interfaces may provide simultaneous access and data for one

or more networks to which a particular computer may be connected.

Having now described the invention in accordance with the requirements of the patent
statutes, those skilled in this art will understand how to make changes and modifications in the
present invention to meet their specific requirements or conditions. Such changes and

modifications may be made without departing from the scope and spirit of the invention.

34

O &0 3 N W B W N

e e e T e T — YO S Gy VO W
o] O n O ph W N =D

WO 00/46781 PCT/US00/03165

CLAIMS

1. A method for enabling the display of an image on a
display area of a television video display system in conjunction with the display
of a separately controlled user interface of the television that occupies a portion
of the display area, the video display system having a video display memory,
comprising:

increasing the displayable area of the video display system to
include a new display area portion by adjusting the parameters of the video
display system, thereby enlarging the display area;

locating additional video display memory to correspond to the
new display area portion, thereby creating an increased amount of video
display memory that is addressable;

allocating the enlarged display area between the separately
controlled television user interface and the image;

writing the image to the increased video display memory in
accordance with the allocation of the enlarged display area; and

transferring the video display memory contents to the video
display system so that the separately controlled user interface is displayed in

conjunction with the image.

2. The method of claim 1 wherein the enabling of the display
of the image is performed by computer software located in a television settop

box.

3. The method of claim 2 wherein the computer software is a

portion of the resident operating system of the television settop box.

4. The method of claim 2 wherein the computer software
includes a portion of an operating system separate from the resident operating

system of the television settop box.

-35-

BOWON =

AN AW

[U—

WO 00/46781 PCT/US00/03165

5. The method of claim 1 wherein the enabling of the display
of the image is performed by computer hardware in conjunction with a

television settop box.

6. The method of claim 1 wherein the allocation of the
enlarged display area decreases the total area available to the separately

controlled user interface.

7. The method of claim 1 wherein the allocation of the
enlarged display area allocates a part of the new display area portion to the

separately controlled user interface.

8. The method of claim 1 wherein the image is displayed on a
part of the display area portion allocated to the separately controlled user
interface so that at least a portion of the image appears to continuously

overwrite the user interface display while the image is displayed.

9. The method of claim 1, the television having a
communications channel to an information source, the method further
comprising:

receiving data from the information source; and

writing the received data as part of writing the image to the

increased video display memory.
10. The method of claim 9, further comprising translating the

received data into a conventional television format before writing the received
data.

-36-

O 0 9 N i R W N

L e e e e T e S S Sy WOU Y
0 NN AN R WD = O

WO 00/46781 PCT/US00/03165

I1. A system for enabling the display of an image on a display
area of a television video display system having memory, the television having
a separately controlled user interface that occupies a portion of the display area,
comprising:

display controller that

increases the displayable area of the video display system
to include a new display area portion by adjusting the parameters of the video
display system, thereby enlarging the display area;

locates additional memory to correspond to the new
display area portion, thereby creating an increased amount of memory that is
addressable;

allocates the enlarged display area between the separately
controlled television user interface and the image;

writes the image to the increased memory in accordance
with the allocation of the enlarged display area; and

transfers the increased memory contents to the video
display system so that the separately controlled user interface is displayed in

conjunction with the image.

12. The system of claim 11 wherein the display controller is

computer software located in a television settop box.

13. The system of claim 12 wherein the display controller
computer software is a portion of the resident operating system of the television

settop box.
14. The system of claim 12 wherein the display controller

computer software includes a portion of an operating system separate from the

resident operating system of the television settop box.

-37-

S W NN =

AW N

N W BAWN e

WO 00/46781 PCT/US00/03165

15. The system of claim 11 wherein the display controller is

computer hardware that performs in conjunction with a television settop box.

16. The system of claim 11 wherein, when the display
controller allocates the enlarged display area, it decreases the total area

available to the separately controlled user interface.

17. The system of claim 11 wherein, when the display
controller allocates the enlarged display area, it allocates a part of the new

display area portion to the separately controlled user interface.

18. The system of claim 11 wherein the image is displayed on
a part of the display area portion allocated to the separately controlled user
interface so that at least a portion of the image appears to continuously

overwrite the user interface display while the image is displayed.

19. The system of claim 11, the television having a
communications channel to an information source, wherein the display
controller, in response to receiving data from the information source, writes the

received data as part of writing the image to the increased memory.

20. The system of claim 19, wherein the display controller
translates the received data into a conventional television format before writing

the received data.

21. A method for enabling the display of an image on a video
display system in an area outside of a display area controlled by a computer
operating system, the computer operating system presenting a user interface
that occupies a portion of the display area, comprising:

increasing the displayable area of the video display system to

include a new display area portion by adjusting the parameters of the video
-38-

10
11
12
13
14
15
16
17
18
19

BHOOWND =

[um—y

e U S

WO 00/46781 PCT/US00/03165

display system to increase the number of displayable pixels in at least one
dimension of said display area, thereby enlarging the display area;

locating additional video display memory té correspond to the
new display area portion, thereby creating an increased amount of video
display memory that is addressable;

allocating the enlarged display area between the operating system
user interface and the image;

writing the image to the increased video display memory in
accordance with the allocation of the enlarged display area; and

transferring the increased video display memory contents to the
video display system so that the image is displayed in conjunction with the
operating system user interface, wherein the method is performed by one of a

service of the operating system and an application program.

22. The method of claim 21, wherein, when the method is
performed as a service of the operating system, the image appears to be
displayed as part of the operating system initialization of the video display

system.

23. The method of claim 21, wherein, when the method is
performed by launching an application program, the image appears on the

enlarged display area when the application program is launched.

24. The method of claim 21, wherein the adjusting of
parameters of the video display system is performed by function calls to the

driver software for the video display system.

25. The method of claim 21, further comprising allocating the
enlarged display area between the computer operating system user interface and
the image, such that the portion of the display area occupied by the user

interface is decreased.

-39-

B W N e B W NN =

D R W

O 0 I N W R W =

e e T
W N = O

WO 00/46781 PCT/US00/03165

26. The method of claim 21, wherein the image is displayed
on a part of the display area portion allocated to the user interface so that at
least a part of the image appears to continuously overwrite the user interface

display while the image is displayed.

27. The method of claim 21 wherein at least a portion of the
image is written to the additional video memory such that the portion of the
image is displayed along with the operating system user interface in a manner
that prohibits the operating system user interface from overwriting the portion

of the image.

28. The method of claim 21 wherein the increasing of the
displayable area of the video display system to include a new display area
portion by adjusting the parameters of the video display system operates by
changing the resolution of the video display system and reducing the resolution

available to the operating system user interface.

29. A system for enabling the display of an image on a video
display system in an area outside of a display area controlled by a computer
operating system, the video display system having memory, the computer
operating system presenting a user interface that occupies a portion of the
display area, comprising:

display controller having

display adjustment facility that increases the displayable
area of the video display system to include a new display area portion by
adjusting the parameters of the video display system to increase the number of
displayable pixels in at least one dimension of said display area, thereby
enlarging the display area;

memory locator that locates additional memory to
correspond to the new display area portion, thereby creating an increased

amount of memory that is addressable;
-40-

15
16
17
18
19
20
21
22
23

AW

J—t

WD =

WO 00/46781 PCT/US00/03165

display area allocation facility that allocates the enlarged
display area between the operating system user interface and the image; and
display transfer mechanism that writes the image to the
increased memory in accordance with the allocation of the enlarged display
area and transfers the increased memory contents to the video display system
so that the image is displayed in conjunction with the operating system user
interface;
wherein the display controller is invoked as one of a service of

the operating system and an application program.

30. The system of claim 29, wherein, when the display
controller is invoked as a service of the operating system, the image appears to
be displayed as part of the operating system initialization of the video display

system.

31. The system of claim 29, wherein, when the display
controller is invoked by launching an application program, the image appears

on the enlarged display area when the application program is launched.

32. The system of claim 29, wherein the display adjustment
facility adjusts the parameters of the video display system by performing

function calls to the driver software for the video display system.

33. The system of claim 29 wherein the display area allocation
facility allocates the enlarged display area such that the portion of the display

area occupied by the user interface is decreased.

34. The system of claim 29, wherein the image is displayed on
a part of the display area portion allocated to the user interface so that at least a
part of the image appears to continuously overwrite the user interface display

while the image is displayed.

-41-

B VS R N R W R W

O 0 3 N AW

e e)
N = O

AN W R WD =

WO 00/46781 PCT/US00/03165

35. The system of claim 29 wherein the display transfer
mechanism writes at least a portion of the image to the additional video
memory such that the portion of the image is displayed along with the operating
system user interface in a manner that prohibits the operating system user

interface from overwriting the portion of the image.

36. The system of claim 29 wherein the display adjustment
facility increases the displayable area of the video display system to include a
new display area portion by changing the resolution of the video display system

and reducing the resolution available to the operating system user interface.

37. A method in a computer system for enlarging a display
area of a video display system, comprising:

locating additional video display memory to correspond to a new
display area portion;

determining whether the located memory is associated with
another video display system function;

when it is determined that the located memory is associated with
the another video display system function, moving the use of the located
memory by modifying an interrupt descriptor table to capture attempts to access
the located memory by the another video display system function and to
substitute a different portion of memory for use by the another function so that

the located memory corresponds to the new display area portion.

38. A computer system for enlarging a display area of a video
display system having memory, the computer system having an interrupt
descriptor table, comprising:

display controller that

locates additional memory to correspond to a new display

area portion;

-42-

10
11
12
13
14

O &0 3 O Wn AW N

e e e e T e T o S GO
O 0 9 N AW NN - O

WO 00/46781 PCT/US00/03165

determines whether the located memory is associated with
another video display system function; and

when it is determined that the located memory is
associated with the another video display system function, moves the use of the
located memory by modifying the interrupt descriptor table to capture attempts
to access the located memory by the another video display system function and
to substitute a different portion of memory for use by the another function so

that the located memory corresponds to the new display area portion.

39. A method in a computer system for enabling the display of
data on a video display system in an area outside of a display area controlled by
a computer operating system, the computer operating system presenting a user
interface that occupies a portion of the display area, the data generated from a
network associated with the computer system, comprising:

increasing the displayable area of the video display system to
include a new display area portion by adjusting the parameters of the video
display system to increase the number of displayable pixels in at least one
dimension of said display area, thereby enlarging the display area;

allocating the enlarged display area between the operating system
user interface and the network generated data;

locating additional video display memory to correspond to the
new display area portion, thereby creating an increased amount of video
display memory that is addressable;

writing the data generated from the network to the increased
video display memory allocated to the network generated data; and

transferring the increased video display memory contents to the
video display system so that the data is displayed along with the operating

system user interface.

40. The method of claim 39 wherein an online connection to
the network is reestablished automatically when the displayed data is accessed

in a manner that indicates that the data is to be updated from the network.
-43-

O 0 NN N v R W

O 00 N N s W -

wn K W N e

WO 00/46781 PCT/US00/03165

41. The method of claim 39 wherein the displayed data is a

web page from the Internet.

42. The method of claim 39 wherein the displayed network
generated data includes an input field associated with a search engine, further
comprising:

receiving a network search request that has been entered into the
input field,

sending the received search request to the search engine;

receiving search results from the search engine; and

displaying the search results on the display area allocated for the

network generated data.

43. The method of claim 39 wherein the displayed data
includes an input field further comprising:

receiving an address of additional network data entered into the
input field,

sending the received address over the network to retrieve the
additional data;

receiving the additional data; and

displaying the received data on the display area allocated for the

network generated data.

44. The method of claim 39 wherein at least a portion of the
network generated data is written to the additional video memory such that the
portion of data is displayed along with the operating system user interface in a
manner that prohibits the operating system user interface from overwriting the

portion of data.

45. The method of claim 39 wherein the increasing of the

displayable area of the video display system to include a new display area

-44-

O 00 3 N N B W e

BN DN = e e e e e e ped ped e
— O O 0 NN W R W= o

S W)

WO 00/46781 PCT/US00/03165

portion by adjusting the parameters of the video display system operates by
changing the resolution of the video display system and reducing the resolution

available to the operating system user interface.

46. A computer system for enabling the display of data on a
video display system in an area outside of a display area controlled by a
computer operating system, the video display system having an associated
memory, the computer operating system presenting a user interface that
occupies a portion of the display area, the data generated from a network
associated with the computer system, comprising:

display resolution adjuster that increases the displayable area of
the video display system to include a new display area portion by adjusting the
parameters of the video display system to increase the number of displayable
pixels in at least one dimension of said display area, thereby enlarging the
display area;

display allocation facility that allocates the enlarged display area
between the operating system user interface and the network generated data;

memory locator that locates additional memory to correspond to
the new display area portion, thereby creating an increased amount of memory
that is addressable; and

display transfer facility that writes the data generated from the
network to the increased memory allocated to the network generated data and
transfers the increased memory contents to the video display system so that the
network generated data is displayed along with the operating system user

interface.

47. The system of claim 46 wherein an online connection to
the network is reestablished automatically when the displayed network
generated data is accessed in a manner that indicates that the data is to be

updated from the network.

-45-

[S—
O 0 3 N R W e S O 0 NN N W R W e

[S—y
[ws)

wm AW N =

WO 00/46781 PCT/US00/03165

48. The system of claim 46 wherein the displayed network

generated data is a web page from the Internet.

49. The system of claim 46 wherein the displayed network
generated data includes an input field associated with a search engine, the
system further comprising:

network search facility that

receives a network search request that has been entered
into the input field;

sends the received search request to the search engine;

receives search results from the search engine; and

displays the search results on the display area allocated for

the network generated data.

50. The system of claim 46 wherein the displayed network
generated data includes an input field, the system further comprising:
network browse facility that
receives an address of additional network data that has
been entered into the input field;
sends the received address over the network to retrieve the
additional network data;
receives the additional data; and
displays the received data on the display area allocated for

the network generated data.

51. The system of claim 46 wherein the display transfer
facility writes at least a portion of the network generated data to the additional
memory such that the portion of data is displayed along with the operating
system user interface in a manner that prohibits the operating system user

interface from overwriting the portion of data.

-46-

WO 00/46781 PCT/US00/03165

52. The system of claim 46 wherein the display resolution
adjuster increases the displayable area of the video display system to include a
new display area portion by changing the resolution of the video display system

and by reducing the resolution available to the operating system user interface.

-47-

WO 00/46781 PCT/US00/03165
1/15

(0
T
7 I :
I '
A
5CCTcD 3« /‘/ : 19 !
[o] [ooooo0] [00] ! Sosicast |
t 1
! A
! 4
‘/ l i
Nk : !
‘ R ! !
: g ' l
: ! saeMs |
L s I 0l
2 ! \
b ’ | I
! |]
| '
I \
I 1
| Cable l
I |

WO 00/46781

520 PIXELS HEIGHT

FIG. 3

PCT/US00/03165

2/15

680 PIXEL WIDTH

ICIC ST OO O ST ST

: .
) 0
O = 36\0_
O MY COMPUTER O
O J4 O
))
))
{)
3
DSTART/DDEH:I \\ CILTCT 953 av) |
oN T T) .
N30 640 PIXELS WIDTH ~— 31 !

480 PIXEL HEIGHT

WO 00/46781 3/15 PCT/US00/03165

FIG. 4

S wepiicamons| 0 HARE

 APPUICATION | 62
INTERFACE (4PI)

60~ DIRECT API | | OPERATING SYSTEM

64
GRAPHICS DRIVERS |~

66
HARDWARE e

CRT CONTROL REGISTERS
-6 (VERTICAL TOTAL)

- 16H (VERTICAL BLANKING END)
~11H (VERTICAL RETRACE END)
~10H (VERTICAL RETRACE START)
~15H (VERTICAL BLANKING START)
~ 124 (VERTICAL DISPLAY END)

VIDEO CHIP

1

MICROPROCESSOR
/
65 ‘| §

MEMORY MEMORY

’

665

/

VA 4

L DAC EXTERNAL VIDEO
e SOURCE

66C

DISPLAY 1+

PCT/US00/03165

WO 00/46781

4/15

G ‘94

P —— ey

NVOSYA0 wv.\bb £ INIDINVIG TYI11HIA

NVISHHO
3 INDINVTE
WINOZI wlg% WINOZINOH
INDINVTE NVISYIN0
WINOZIYOH WINOZIHOH
75
INDINVIE TOLLEH NVoSa0 THorLen
Fos s
of
’

PCT/US00/03165

WO 00/46781

5/15

IDENTIFY DISPLAY TYPE | FAIL

<FIG.8>
- 102

104
NO

113

USE
EMULATION

SUPPORTED
?

YES

IDENTIFY BORDERS T0 |~ 106
DISPLAY IN OVERSCAN

UNLOCK | FalLED
CRIC REGISTERS
v ™~ 108
ENABLE LINEAR
ADDRESSING |-FAILED
<FIG. 11>
™~ 112
CHANGE DISPLAY | -
RESoLUTION |FAILED
<FIG. 9>
- 114

MODE
?

CHANGE
EMULATION RES.
<FIG. 14>

YES

116

RUN IN
WINDOWED MODE
?

FIG. /

NO

LOOP EXIT

PROCESS
MESSAGE
LOOP
<FIG. 12>

PAINT THE DISPLAY

ExIr

CHANGE DISPLAY
RESOLUTION
<FIG. 9>

126

RESET CRIC REGISTERS
10 orIcina. state V18

PAINT IMAGE(S) TO
OFFSCREEN DC BUFFER

130
RELOCK REGISTERS e

2904

PCT/US00/03165

WO 00/46781 6/15
IDENTIFY
DISPLAY
TYPE
102
N / ________ e
: 132
QUERY HARDWARE | F | | aLtocaTe prrsicat]
REGISTRY | MEMORY QUERY
; | HARDWARE
4 : 135
131 i
l
|
{
| USE DPMI TO 133
| Assien Bros | T
\" | LINEAR ADDRESS T0
| | PHYSICAL MEMORY
l
|
|
|
|
{
| 134
| Rep sios gLock |
| | SEARCH FOR | FAIL, RETURN FALSE
| VGA/XGA TYPE AND
|| MANUFACTURER 1D
1
|
i
i
QUERY DRIVER/CHIPSET 136
FOR e
EXACT CHIPSET
|
E
|
; RETURN TRUE/FALSE
;

WO 00/46781

CHANGE
DISPLAY WINDOWED MODE
RESOLUTION :
114
RUNNING IN
EMUILATION MODE
IDENTIFY CURRENT
RESOLUTION
CURRENT
YES RESOLUTION

RUNNING IN

PCT/US00/03165

YES, RETURN TRUE

YES, RETURN TRUE

/

FAIL, RETURN FALSE

146

148

NO

RESET VARIABLES TO
INCLUDE SPECIFIED
BORDER AREAS

SVGA STANDARD
?

RESET VARIABLES TO

|~ 190 152~ SVGA STANDARD
VALUES
MODIFY CRIC REGISTERS
VALUES T0_INCREMENT | — 154

VERT DISPLAY END
START VERT BLANK
VERT RETRACE START
VERT RETRACE END
VERT TOTAL

l
RETURN TRUE

WO 00/46781

8/15 PCT/US00/03165

FG. 11

112

READ CRIC REGISTERS 138
FOR LINEAR winpow V™~
POSITION ADDRESS

ALLOCATE PHYsIcaL | _— 140
MEMORY

USE DPMI TO 142
ASSIGN VIDEO |~
LINEAR ADDRESS. TO
PHYSICAL MEMORY

RETURN

e)

i [}

|

! PAINT THE |

| DISPLAY |

! 120 |

; = AFIG. 10

{]

; 164 5

s £

! MAKE MAIN WinDow |

\ | ADDRESS VIDEO DISPLAY £ |

| VISIBLE !

| <FIG. 11> !

; 166 1

s A

L | MOVE PHYSICAL MEMORY COPY OFFSCREEN | 1

' | CONTENTS AS NECESSARY DC BUFFER T0 !

! 10 MAKE ROOM FOR MAIN WiNpow pc| !

| OFFSCREEN DC CONTENTS |

5 "\ 162 RETURN 5

i I

;' COPY BYTES FROM i

; OFFSCREEN DC INTO ;

! PHYSICAL MEMORY !

| - 154 i

| RETURN L EMABLE

S B Y LINEAR
ADDRESSING

PCT/US00/03165
WO 00/46781 9/15

FIG. 12

MESSAGE PROCESS LOOP
USER INTERFACE
122

168
GENERIC K
APPLICATION

| i
| |
: i
|
| |
! MESSAGE LOOP i
5 E
| |
} }
| UPDATE PAINT THE DISPLAY |
| OFFSCREEN I 105 |
| 0C BUFFER < !
| < |
8 I
:: 78 160 LooP | |
1 |
5 SYSTEM CHANGE DISPLAY f
| RESOLUTION RESOLUTION |
| CHANGE <FIG 9> |
: ? OR i
; <FIG 14> i
I‘ 1
| N |
| ACTIVE 162 |
| APPLICATION !
i ? |
. }
f i
| 184 |
l }
| 1
5 CHECK MOUSE AND i
| KEYBOARD EVENTS i
| <FIG 13> |
:' E
|
| i
g |

PCT/US00/03165
781
WO 00/4678 10/15

FIG. 13

CHECK MOUSE
AND KEYBOARD
EVENTS

RUNNING IN YES, RETURN

WINDOWED-
MODE
?

NO

|
I
1
|
1
|
!
|
]
]
I
|
]
|
|
!
|
|
|
|
CREATE MOUSE~EVENT 3
188~ | CAPTURE AREA AT EACH |
BORDERED EDGE OF !
SCREEN 5
|

:

1

|

f

|

|

|

{

|

|

1

|

|

1

|

|

|

|

:

I

|

|

|

|

|

|

i

|

|

|

|

|

|

(OVERLAP EDGE BY 2)

900 PaINT CuRSOR
(USES STANDARD API)

792\ CAPIURE MOUSE AND
KEYBOARD EVENT(S)

RETURN

WO 00/46781

11/15

PCT/US00/03165

CHANGE
EMULATION _NO
RESOLUTION
2
RESET
70
ORIG
HOOKS
2 INITIALLZED P
? HOOKS
EXIT
117 (HOOK
~d ENABLE
HOOKS REENABLE
ENABLEDISPLAYSETTINGS
11g DISABLE
N DETERMINE 5{ TBLT
NEW GpI anp | €te)
123 121 SCRRES
\ 125
SCR%Z{;R{—D orig SIEP UP. STEP_DOWN
GDIRES = orig—(BAR) SCRRES = NEXT SCRRES = orig
HEIGHT GDIRES = ORIG GDIRES = prev

RESET
DISPLAY
10
SCRRES
AND
RESET
GDI
0
GDIRES

ENABLE
REENABLE
BITBLT

WO 00/46781 PCT/US00/03165
12/15

FIG. 15

PRIOR ART

640 PIXEL WIDTH

1

MY COMPUTER

/DSTARﬂ DHOTEO CILFCT 9:53 AM] |

480 PIXEL HEIGHT

WO 00/46781

500 PIXELS HEIGHT

13/15

PCT/US00/03165

- 640 PIXEL WIDTH ,
ﬁ-r :
/ 33
MY COMPUTER
=
)
N
™
3
S
\ .
LISTaRT] 3D TFO] \ C1LP0 9:53 AM
i OO ST K
\30 N 31 20 PIXELS HE[GHT-)

WO 00/46781 PCT/US00/03165
14/15

=

S -
NN o

5 R
SESIINHINY:

A A S 0 o
A A A S N Py I
b2 3 e R e R R L LR LR L L & R AR SRR AR AL

AR

ear 2343 acconas it n
Factte Mot Bedl e 1353

: T/US00/03165
WO 00/46781 15/15 PC

B3]

EENPNAT

AN
2SSUIRRRY

ARSI RG NG
AR

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

