WO 02/089486 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

)\

o e~
AR
(i8] U5~

7 November 2002 (07.11.2002) PCT

T T OO OO

(10) International Publication Number

WO 02/089486 A2

(51) International Patent Classification”: HO4N 7/24

(21) International Application Number: PCT/CA02/00641

(22) International Filing Date: 1 May 2002 (01.05.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
2,345,878 1 May 2001 (01.05.2001) CA

(71) Applicant (for all designated States except US): DES-
TINY SOFTWARE PRODUCTIONS INC. [CA/CA];
950-555 West Hastings Street, Vancouver, British Colum-
bia V6B 4N6 (CA).

(72) Inventors; and
(75) Inventors/Applicants (for US only): VESTERGAARD,
Steve [CA/CA]; 6330 Chatham Street, West Vancouver,

74

@8n

34

British Columbia V7IW 2E2 (CA). TSUE, Che-Wai
(William) [CA/CA]; 1398 El Camino Drive, Coquitlam,
British Columbia V3E 2W6 (CA).

Agents: LEDWELL, Kent, M. et al.; Gowling Lafleur
Henderson LLP, 160 Elgin Street, Suite 2600, Ottawa, On-
tario K1P 1C3 (CA).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Titlee METHOD AND SYSTEM FOR VIDEO COMPRESSION AND DISTRIBUTION

(START)

\

DIGITALLY SAMPLING A
VIDEO SIGNAL

20

\

SETTING VALUES OF: QUALITY |
(Q), AND TARGET BIT RATE (TBR)

Y

ADJUSTING THE VALUE OF Q, SOTHATTHE | 24
BIT RATE OF A GIVEN VIDEO FRAME IS |—"
MAXIMIZED, BUT DOES NOT EXCEED TBR

\

COMPRESSING THE VIDEO /26
FRAME IN ACCORDANCE WITH Q

Y

(DONE)

(57) Abstract: Use of the Internet is widespread,
particularly using dial-up modems. However, there
is currently no method of compressing high quality
video content that optimises the quality for a given,
available bandwidth. As well, there is no method for
compressing video content for that can be decompressed
on a computing device with minimal processing power.
Typical video compression/decompression systems
require a software application or browser plugin on
the end user’s computer because their decompression
requires a great deal of processing. The invention
provides a method and system in which video data can
be decompressed in real time, in a Java environment, so
executable video applets can be posted on Web sites, and
be universally accessible. This end users do not have
to download, configure and upgrade multiple software
applications or plugins.

wO 02/089486 A2 NI 0000 0 A O

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, For two-letter codes and other abbreviations, refer to the "Guid-
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent ance Notes on Codes and Abbreviations" appearing at the begin-
(BE, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW, ML, MR, ning of each regular issue of the PCT Gazette.

NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 02/089486 PCT/CA02/00641

-1 -

Method and System for Video Compression and Distribution

The present invention relates generally to communications, and more
specifically, to a method and system for compressing high quality video content for
transfer over communication networks, and subsequently decompressing it on a

computing device with minimal processing power.

Background of the Invention

Over the last two decades, tremendous advances have been made in the
availability and capability of communication networks and devices. Hard-wired
telephone systems have evolved to include wireless telephone and pager networks
based on satellite, cellular, wireless local loop, line of sight and other wireless
technologies. Data communication networks such as the Internet, Wide Area
Networks (WANSs) and Local Area Networks (LANs) have also become widespread,
and support many different devices including personal and laptop computers,
personal digital assistants (PDAs) and television set top boxes. There are also
devices and networks which operate in both telephony and data environments,
combining technologies of various types.

These telephony and data networks are generally converging to a model in
which data are transferred in multiple packets of digital symbols. These data
packets may travel independently of one another both in terms of the routings they
take, and the time they take to travel from the originator to the destination. This
model has proven to be very successful and is the basis, for example, of the
protocols used in the Internet.

An area of particular interest is the communication of video content between
devices and over networks. Communicating high quality video content requires a
great deal of bandwidth over the network that is transferring the content.

Full-motion video is essentially a sequence of still images that are replaced
so fast that a human perceives them to be in continuous and smooth motion - 60
images per second being considered high quality and 20 images per-second
generally being accepted as the lower limit of continuous-motion. However, even a
relatively poor quality image requires a great deal of bandwidth to view; for example
a video sequence that has dimensions of 200 x 200 pixels, with 24 bits of colour

resolution, at a rate of 10 frames per second, will require 9.6 megabits per second

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-2-

(MBPS) of data. Thus, it is clearly desirable to compress video data which is to be

stored or transmitted.

Techniques are known for compressing video content to minimize the
demands on the network resources, but these techniques have two fundamental
problems:

1. they place large computational demands on the devices performing the
decompression, so they must be implemented by dedicated media players or
browser plugins on the computer playing the content. This causes logistical
problems in the distribution of media files; and

2. they apply a certain set of compression techniques to the input content
without regard for the bandwidth of the channel that is to carry the content.
The most commonly used video compression standard is the MPEG - 1

standard (MPEG for Moving Pictures Experts Group), though there are other formats

including the AVI, Real, and Quicktime formats. Other less common and proprietary
formats are also known. These and similar techniques generally use a software
player which exists as an independent software application on the receiver's
personal computer, or as a plugin to an Internet browser. Either way, the
decompression software must be compatible with the end user's operating system
and software platform, and the format of the video file being downloaded. Thus, the
end user must obtain the correct software and configure it appropriately for his
computer, making periodic upgrades as required. These downloading and
configuration tasks can be slow and frustrating, which presents a barrier to access
even if the software is available to the end user at no cost.

As there is no single format which has emerged as an industry standard, an
end user must perform this exercise for multiple plugins and software applications.
Clearly, it is impractical to expect end users to maintain a large number of such
formats on their computer. Therefore, a Web site that includes such video content
could not be universally accessible.

The MPEG formats are the most commonly used video compression formats,
but they are very resource intensive. The original objective of MPEG-1, for example,
was to deliver video and video at a data rate of 1.86 megabits per second (MBPS).
More advanced video compression techniques such as MPEG-4 and MPEG-7 offer
better compression ratios but require much more computation in compression and/or
decompression to provide higher quality (MPEG-4 was designed to work in low to
high bitrate range).

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-3-

MPEG videos which require very little bandwidth could be generated simply
by limiting the dimensions of the display, or the resolution of the video content being
supplied. However, the end user will still require a fully function MPEG player on his
personal computer to view the content. Thus, the MPEG player must have the
capacity to process the very high bandwidth signals that are part of the MPEG
standards.

These very high bandwidth signals require a great deal of complex
processing on the end user's computer. In order to decompress MPEG files quickly
enough to appear in real time, executable machine code must therefore be used to
view MPEG files. This explains why MPEG players are invariably provided as
dedicated software applications on the end user's computer or other device: this is
the only way they can process the data quickly enough to provide real-time video
decompression.

As noted above, the second main problem with the current video
compression and decompression software is that there is no optimisation of the data
stream for the resources available. Although many compression/decompression
systems will allow the user to set certain parameters, such as the maximum
bandwidth required to transmit the resulting video file, they do not take into account
the original data being compressed and dynamically adjust the compression
techniques being use.

As a result, given a fixed set of parameters, low quality video content will be
compressed using the same techniques as high quality original video content, when
in fact, it may be possible to compress the low quality video content to fit the
available bandwidth without any loss in quality. Overall, quality therefore suffers.

There is therefore a need for a video compression and decompression
system which provides high quality reproduction, optimised for the bandwidth
available, without placing excessive processing demands on the end user's

computer.

Summary of the Invention
It is therefore an object of the invention to provide a method and system
which obviates or mitigates at least one of the disadvantages described above.
One aspect of the invention is broadly defined as a method of compressing
video comprising the steps of: a method of compressing video comprising the steps

of: digitally sampling an video signal; setting the value of a quality parameter (Q) and

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-4-

the value of a targeted bit rate (TBR); calculating a predicted bit rate (PBR) for a
video frame of the video signal; responding to the PBR being greater than the TBR
by reducing the value of Q for the video frame; and compressing the video frame in

accordance with the value of the Q parameter.

Brief Description of the Drawings
These and other features of the invention will become more apparent from

the following description in which reference is made to the appended drawings in

which:

Figure 1 presents a flow chart of a method of compression in a broad embodiment
of the invention;

Figure 2 presents a block diagram of a system for compression, transfer and
decompression of video files in a preferred embodiment of the invention;

Figure 3 presents a flow chart of an overall method of handling video files and
generating executable Java applets in a preferred embodiment of the
invention,

Figures 4A, 4B and 4C present a flow chart of a method of video file compression in
a preferred embodiment of the invention; and

Figure 5 presents a flow chart of a method of video file decompression in a

preferred embodiment of the invention.

Description of the Invention

A methodology which addresses the objects outlined above, is presented as
a flow chart in Figure 1. This figure presents a method of compressing video data in
which the compression technique and quality parameters are modified dynamically
as compression proceeds, so that the quality is optimised in view of a fixed
bandwidth that the content is to traverse.

This compression method is generally effected as follows:

1. first, by digitally sampling a video signal in some manner, at step 20; then

2. setting the value of a quality parameter (Q) and the value of a targeted bit
rate (TBR) at step 22;

3. adjusting the value of the Q parameter so that the bit rate for a video frame of

the video signal is maximized, but will not exceed the TBR at step 24; and
4. compressing the video frame in accordance with the value of the Q

parameter at step 28.

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-5.

The video content being compressed can take on any form, analogue or
digital. In most computer-based applications, the video content will already be in a
digital form, either the product of a digital camera or scanner, or the output of a piece
of digital imaging software. Thus, the step of digitally sampling the video signal at
step 20 may already have been performed by another component in the system,
rather than the core software.

The range and values of the quality parameter (Q) established at step 22, will
depend on the specifics of the software application itself. An example is provided in
the description of the preferred embodiment of the invention which follows, but
clearly, any suitable framework could be used.

Similar, the invention is not restricted by the value of the targeted bit rate
(TBR), or the manner in which it is established. Typically, the software operator will
generate several executable video packages which are optimized for different
downloading rates. As the bottleneck in the downloading process is generally the
"last mile" (i.e. the end user's connection to his Internet Service Provider), these
executable video packages would be optimised for the most common connection
systems, such as 56.6 kbps (kilobit per second) dial-up modems, and various DSL
(digital subscriber line) standards. Thus, the end user can select an executable
video package that his Internet connection can carry in real time. (Note that the TBR
is not the actual connection speed, but the bandwidth that a video package will not
be expected to exceed).

The step of adjusting the Q value to maximize the bit rate can also be
effected in a number of manners. As noted above, digital video is generally
implemented as a series of still images or frames. Thus, the data required for a
finite period of time can always be determined, regardless of whether the data are
compressed. The Q value could be determined by trail and error, extrapolated from
two or more test points, determined in a feed-forward manner or in a similar manner
which would be clear to one skilled in the art from the teachings herein.

Finally, the actual compression of the video frame could be effected in any
manner known in the art - most compression techniques allow the quality level to be
determined in a manner which would be compatible with the invention. A particularly
effective compression technique is described in the preferred embodiment
hereinafter.

As noted in the Background, it is desirable to generate video files which use

as much of the available bandwidth as allowable. Typical compression systems

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-6-

simply do not do this, but rather they allow the operator to set certain parameters
governing the compression techniques themselves, or fix the quality level. This
approach is misguided - by fixing the quality level, there is no certainty that the video
will be able to stream over a given channel, in real time. Similarly, by fixing the
compression technique without regard for the video data being fed into the software,
the quality will inevitably be sub-optimal and the bandwidth the output data will
require, will be unpredictable.

The method of the invention keeps the quality of the compressed video as
high as possible for the bandwidth that is available.. Thus, the compressed file or
files will use as much of the available bandwidth as possible, without exceeding its
capacity.

The preferred embodiment of the invention described hereinafter also
provides further advantages over the prior art.

Detailed Description of Preferred Embodiments of the Invention

The preferred embodiment of the invention is presented by means of the
block diagram in Figure 2, and the flow charts of Figures 3 through 5. Figure 2
identifies the relevant parties in a transaction of the preferred embodiment of the
invention, while the specific processing steps are presented in detail in Figures 3
through 5.

In the preferred embodiment, the invention is applied to an Internet and Web
site environment. The owner of a Web site (the "software operator") can purchase
the software of the invention, use it to compress video clips, and post those video
clips on his Web site. These compressed video clips are packaged as executable
Java applets, and are represented by an icon on the software operator's Web site.
When an end user clicks on the icon, the video file is streamed to the end user's
computer or similar device, and immediately begins to play.

In the preferred embodiment a compressed video clip actually consists of two
software components: an executable Java applet, and a data file containing the
compressed video content. This way, the executable Java applet can be
downloaded and begin executing, while the data can be “streamed” separately. This
allows the video content to be displayed as soon as sufficient data has been
received. If the two files were combined into one, then streaming could not be done
- one would have to wait for the entire file to download before it could be executed.

This process is described in greater detail hereinafter.

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-7-

Note that the Java applet and compressed video data files are frequently
referred to herein as a single file. This has been done in the interest of simplicity
only. ltis clearly preferable to implement the invention using separate files to take
advantage of the streaming process.

Figure 2 presents an exemplary layout of an Internet communications
system 30 in a preferred embodiment of the invention. Generally, the Internet 32 is
described as a system of routers interconnected by an Internet backbone network,
which allows two parties to communicate via whatever entities happen to be
interconnected at any particular time. However, it would be known to one skilled in
the art that the Internet 32 is far more complex, consisting of a vast interconnection
of computers, servers, routers, computer networks and public telecommunication
networks.

End users 34 may access the Internet 32 in a number of manners including
modulating and demodulating data signals over a telephone line using audio
frequencies, which requires a modem and connection to the Public Switched
Telephone Network, which in turn connects to the Internet 32 via an Internet Service
Provider 36. Another manner of connection is the use of set top boxes or cable
modems which modulate and demodulate data onto high frequencies which pass
over existing telephone or television cable networks and are connected directly to the
Internet 32 via Hi-Speed Internet Service Providers. Generally, these high frequency
signals are transmitted outside the frequencies of existing services passing over
these telephone or television cable networks.

An end user 34 may also obtain access to the Internet 32, using a digital
cellular telephone, pager, or personal digital assistant.

Internet Service Providers (ISPs) 36 or Internet Access Providers (IAPs), are
companies that provide access to the Internet. ISPs 36 are considered by some to
be distinguished from IAPs in that they also provide content and services to their
subscribers, but in the context of this disclosure the distinction is irrelevant. For a
monthly fee, ISPs 36 generally provider end users 34 with the necéssary software,
user name, password and physical access. Equipped with a telephone line modem,
cable modem or set top box, one can then log on to the Internet 32 and browse the
World Wide Web, and send and receive e-mail.

Web servers 38, 40 are computers which provide text, graphic or multimedia
content, or software applications, to other parties over the Internet 32. In the

discussion of the invention which follows hereinafter, the software operator 42 will

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-8-

obtain software from the compressor/decompressor software server 38, and the
operator's Web site 40 will provide executable, compressed video files and other
content to the end users 34.

Of course, the invention may be applied to almost any communication
network known in the art, and may be applied to a system of several different
networks working together. Such networks could include: wireless networks such as
cellular telephone networks, the public switched telephone network, cable television
networks, the Internet, ATM networks, frame relay networks, local area networks
(LANs) and wide area networks (WANSs).

Compression

As explained above, the owner of a Web site simply obtains a copy of the
encoding software electronically, and uses it to generate executable video applets.
These video applets can then be included with any Web page, linked to it using a
graphic icon. End users 34 who visit these Web pages download and execute the
video applets by clicking on these icons.

In the preferred embodiment of the invention "asymmetric" compression and
decompression is used, that is, only simple computations need to be performed
during decompression on the end user's device, while more complex processing may
be performed during compression. The power and speed of the processing during
compression is not limiting because it need not be performed in real time, unlike the
decompression.

The preferred embodiment of the routine for generating compressed video
files is presented in the flow charts of Figures 3 and '4. Figure 3 focuses on the
handling of the original video data, and how the executable Java applet is generated,
while Figure 4 presents the details of the compression routine itself.

The routine begins at step 130 of Figure 3, where, in response to the
compression software being launched, the algorithm seeks out the video data file
that is to be compressed. The targeted file or files may be communicated to the
compression software using any technique known in the art, including dragging files
to an icon or identifying the file or files in a command line.

The software operator will now be queried to provide the available data rate
that the compressed video is intended for, and the quality level that is desired, at
step 132. It may also be desirable to query the software operator for other data,

such as the name of the file, where it is to be stored, who generated it and other

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-9-

such details. The software operator will generally choose a targeted bit rate that
corresponds to commonly available bit rates that prospective end users may have.
For example, the most common dial up modems have bit rates of 56.6 kbps (kilo bits
per second), while common data rates for DSL (digital subscriber line) connections
include 128, 256, 300 and 500 kbps. The software operator would therefore enter
one of these values and identify the file as such, so that this targeted bit rate can be
posted on the Web site along with the compressed file.

The quality level is adjusted automatically by the program, so the software
operator can set a high value so that the algorithm attempts to maximize the quality
at all times. The default setting will also be to the highest level for the TBR.

Next, the algorithm will consider each frame of the targeted file successively
at step 134, and perform the compression routine of Figure 4 on that frame, at step
136. As noted above, all digital video data can ultimately be described as a series of
individual frames which are successively displayed to the end user.

While the invention will typically be applied to frames of digital RGB data
(Red Green Blue data is a standard format for digital video data) in MPEG format, it
may also be applied to other input formats. The handling of the RGB MPEG data will
be described in greater detail with respect to Figure 4.

Once all of the frames have been compressed, the routine will have
generated a Java-based executable, compressed video file which may be stored on
the Web server or other storage device at step 140. The Java-based executable,
compressed video file may now be accessed from the Internet simply by placing an

icon on a Web page, which is linked to stored Java code on the server (at step 142).

The details of the compression routine will now be described with respect to
the flow chart of Figure 5.

As noted at steps 134 and 136 above, each frame of the input video data is
considered individually. First, each frame is prepared for the compression routine at
step 150 by converting it from the input format (say, for example, from RGB format),
to YUV format.

RGB format is a video format that is based on the hues red, green and blue.
While this format may seem logical because it correlates intuitively with the images
being displayed, it is not the most data efficient manner in which to define an image.

YUV is a colour encoding scheme for images in which luminance and

chrominance are separate. The human eye is less sensitive to colour variations than

10

15

20

25

30

WO 02/089486 PCT/CA02/00641

-10 -

to intensity variations. YUV is therefore advantageous because it allows the
luminance (parameter Y) information to be handled at full bandwidth while the
chrominance (parameters U and V) information, to which the human eye is less
sensitive, can be compressed. The YUV format is well known in the art of video
imaging technology.

While there is no scientifically fixed relationship between the RGB format and
the YUV format, the following is a standard relationship as used in the art:

Y = (0.299 *R) + (0.587 * G) + (0.114 * B)

V = (-0.169 *R) - (0.331 * G) + (0.500 * B) + 128

U = (0.500*R)-(0.419*G)-(0.081 *B) + 128

For high contrast frames, "blurred YUV" data is also generated, where

adjacent pixels are averaged together. The blurred YUV frames are used in motion

estimation only, and not for the final encoding of the pixels. '

It has been found that motion estimation does not work very well on high
contrast or noisy source video because the noise and the edges generate a lot of
error. If the motion estimation error threshold is raised to accommodate, it increases
the number of matches as well as false matches. However, by blurring the source
video before the motion estimation, it enables the algorithm to detect more matches
without increasing a lot any false matches.

Next, the algorithm calculates a predicted bit rate (PBR) for the frame being
considered, by averaging the bit rate of the previous three seconds of data, at step”
152. Other time periods could also be used to calculate this moving average, as
could weighted averaging of the data, or similar techniques. Similarly, one could
look ahead to future frames and begin to adjust the quality ahead of time.

The PBR is then combared to the TBR at step 154, and three cases are
established:

1. if the PBR < TBR (that is, the predicted bit rate is less than the bandwidth
assumed to be available), then the level of the quality parameter (Q) may be
increased at step 156. While an assignment of Q = Q + 1 is used in the
preferred embodiment, clearly another assignment could also be used,

2. if the PBR is approximately equal to the TBR but is still less than it, the Q
should be decreased by a small amount at step 158. In the preferred

embodiment, an assignment of Q = Q - 1 was used; and

10

19

20

25

30

WO 02/089486 PCT/CA02/00641

-11 -

3. if the PBR is greater than the TBR, the Q must be reduced so that the

compressed data will be able to flow over the available channel at step 160.

An assignment of Q = Q + 1 was used in this case.

Control now passes to step 164 of Figure 4B, where the frame is now
considered in terms of blocks of 8 x 8 pixels.

Each 8 x 8 block in the prepared new frame is now compared with the
corresponding block in a history frame at step 166, and a "motion estimate” is
calculated (see step 194 for a discussion on how the history frame is generated). In
general, the concept of motion estimation is well know in the art, and is used in
various standards including the MPEG standard. The invention adds several
improvements to the traditional process though.

Each frame is divided into 8 x 8 blocks of pixels. For each 8 x 8 block, the
routine searches the surrounding pixels in the history frame for the closest match.
When the closest match is found, an offset vector (x, y), is calculated, and an error
level is assigned at step 168. The error level for the block match is a relative
measure comparing the closest matching block to the corresponding block in the
history frame. It is only used to perform the decision in step 170, so clearly a
number of different models could be used.

Specifically, the search range is +/- 31 pixels along the X and Y axes, thus
there are 63 x 63 = 3969 comparisons in a full search (+0 and -0 are the same,
hence 63). To speed up the search, the invention employs a quick hierarchical
search algorithm to narrow down the search range in 5 rounds. In the first round, the
block is compared with the surrounding eight blocks with offsets (-31, -31), (0, -31),
(31, 31), (-31, 0), (0, 0), (31, 0), (-31, 31), (0, 31) and (31, 31). Then the one with
the smallest error is chosen to be the base for the next round. In the next round, the
range is dropped by half to 16. This process is repeated until a single block remains.
The total comparisons required in the quick search is about 8 x5 + 1 = 40 (1% of the
full search). The quick search is able to find over 90% of matches found in a full
search.

Based on the current Q value, an error level threshold will be set to classify
each block as a moved block,.a new block or a no-change block at step 170. If the
error level of the block is higher than the threshold, the block is considered to be
new, otherwise, it is classified as moved. A no-change block is a special case of the
moved block with offset (0,0).

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-12 -

If the Q value is set to a high quality level, then a comparatively high
percentage of blocks will be considered new, and a great deal of bandwidth will be
consumed. If the Q value is low, a higher percentage of blocks will be considered
“moved blocks”, so much less bandwidth will be required.

As shown in Figure 4B:

1. if the block error level is low relative to Q, then the current block will be
considered a moved block, and the vector for the block will be set to the
offset (x, y) determined by the motion estimation analysis, at step 172,;

2. if the block error level is high relative to Q, then the current block will be
considered a new block, and the vector for the block will be set out of range
at step 174. This out of range value will be recognized by the decompression
software as representing a new block; and

3. if the block error level is close to, or equal to zero, then the current block will
be considered an unchanged block, and the vector for the block will be set to
(0, 0) at step 176.

As shown, the steps of 164 - 176 are repeated until all of the blocks in the
frame have been considered. When step 164 detects that this has been completed,
the frame will now be defined by a set of motion estimation vectors. These motion
estimation data are compiled into a motion estimation table which is considered at
step 178 of Figure 4C.

At step 178, the routine determines whether it would be more efficient to
record all of the block changes in the frame, or whether there are so many that it
would be more efficient to simply save the entire frame as a JPEG (Joint |
Photographic Experts Group) image. The JPEG standard is a high-quality
compression standard for still pictures, and is well known in the art.

In the preferred embodiment of the invention, the decision point was taken to
be 70%: that is, if 70% or more of the blocks in the frame are new or moved, then
the routine branches to step 180 where the entire frame is saved as a JPEG image.
Clearly, other decision points could used.

The size of this JPEG image is then compared with the TBR at step 182, and
if the JPEG image is small enough, control passes to step 194. If the image is too
large, then remedial measures are taken at step 184. A number of things can be
done to reduce the size of the full-frame JPEG image, including the following:

1. full frames can be scaled down, for example, to half-frame resolution as

indicated at step 184 in Figure 4C; or

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-13 -

2. full frames can be compressed with lower quality. Most JPEG generating
software has a variable quality setting, which can be linked to the Q value
used by the routine of the invention. The‘quality of course, can be increased
if the bitrate is lower than the TBR, or decreased if the bitrate is higher than
the TBR.

After the remedial measures are effected, control passes to step 190.

If the number of new and moved blocks is determined to be small at step
178, then control passes to step 186 where the motion estimation table is
compressed using “Huffman coding”. Huffman coding is "lossless" in that no detail
or information is lost in compressing and decompressing.

Briefly, Huffman coding i‘s performed by categorizing data points by the
likelihood that they will occur. Then, the most common points are assigned shorter
codes, and the less likely codes are assigned longer codes.

For example, given six data points A through F, with probabilities as shown

below, one could generate a Huffman assignment table as shown:

Point Probability Huffman Code Bit Length
A 0.3 00 2
B 0.3 01 2
C 0.13 100 3
D 0.12 101 3
E 01 110 3
F 0.05 111 3

In straight binary coding, a 3-bit word would be required to encoding the six data
points A through F. With the Huffman coding, however, the more common data
points have 2-bit words, and the longer ones, 3-bit words. Considering the
probabilities as noted above, the average word will have 2.34 bits, which gives
2.34/3 = 78% compression, with no loss of data.

As noted above, the motion estimation is recorded as an offset vector (x, y).
All (x, y) pairs are sorted and counted, and popular pairs will be assigned a code in
the table. Unpopular pairs will be assigned to one single code and will store the
offset (x, y) uncompressed. Note again that a vector of (0, 0) means there as no
change from the history frame to the new frame, and that an out of range pair is
used for new blocks.

The invention uses predetermined Huffman coding tables within the
compressor and decompressor. Adaptive Huffman coding or dynamic Huffman

10

15

20

25

30

WO 02/089486 PCT/CA02/00641

-14 -

tables could be used, but generally, adaptive Huffman would consume too many
CPU cycles to decompress, and dynamic Huffman tables would increase the amount
of data to download.

A series of JPEG images are then generated at step 188, corresponding to
the blocks that are identified in the motion estimation table.

At step 190, it is then determined whether the data for the current frame is
less than the TBR. If the data for the frame still exceeds the TBR, in spite of
dropping the quality level as described above, the frame is simply dropped at step
192. Otherwise, the image data is copied to the compressed video data file at step
194,

In the preferred embodiment, the compressed video data and the executable
Java decompression code are stored separately. The executable Java
decompression code is stored in a zip file containing the Java Applet byte code, and
the compressed video data is stored in a separate file which will be streamed down ‘
to the client machine during playback.

A new history frame is then constructed at step 196, simply by saving the
current image in a buffer, so it can be compared with the next image when the
routine is repeated. When the routine runs for the first time, the history frame will be
null (i.e. the buffer will be empty), so when the first comparison is made to history
frame at step 166, there will be no matches. |

Compressed audio data can also be added to the compressed video data file
at this point. In the preferred embodiment, the audio and video are interleaved so
that synchronization is implicit. For example, the data blocks could be stored as
follows: VAAAVAAAVAAAV (V' characters representing video data, and “A”
characters representing audio data).

The number of audio blocks associated with each video frame depends on
the audio block size and frame rate, and it varies between frames as it may round up
or down to the nearest block. Given, for example, 12 frames per second, 200
sample audio blocks, 8000 samples per second, this will yield:

audio samples per frame = 8000/ 12 = 666.667

audio blocks per frame = 666.667 / 200 = 3.333
Thus, the interleaved blocks will be stored in this manner: V AAAV AAAAV AAAV
AAAV AAAA V AAA V AAA V AAAA In other words, some of the A groups will

have three blocks and some will have four.

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-15-

Note that even if there is an empty video frame (dropped or no change),
there may still be an audio block associated with it, which must be stored. In this
case, null video blocks are inserted which have a size of O for the data portion. The
decompression software recognizes these 0 blocks as null video blocks, thus

ensuring synchronization.

Downloading and Executing an Video File

The compression technique of the invention may be resource intensive itself,
but it resUIts in compressed video which may be decompressed using simple
operations. Thus, decompression can be performed on the end user's computer or
other device. These simple operations can be executed quickly enough, that an
executable file can be created which can run in a Java environment.

Java is a code interpretor which is almost universally supported by Web
browsers for computers and similar devices. More important, it is platform
independent, so that Java code and applets may be executed on any platform.

Because it is an interpretor, Java executes applets much slower than
executable machine code. Thus, Java cannot execute the processing intensive
decompression techniques used by MPEG and similar video standards, fast enough
to provide real time, high quality video. Thus, MPEG players must be implemented
using browser plugins and external machine code players. This raises the problems
noted in the Background: that MPEG and similar video formats lack universality, and
that end users must download and update multiple video players on an ongoing
basis. '

The JPEG imaging standard used in the invention does use some complex
processing, but JPEG is supported by Java natively as one of its standard image
formats. Thus, the code to produce the JPEG images is in machine code, and is
inherent to Java.

Since the decompression routine of the invention can be applied in a Java
environment, this allows Web sites, for example, to provide executable applets which
can be downloaded and played by an end user with a Java-enabled browser or
operating system. These executable applets can also be delivered to end users in
other ways such as via Email or Banner Ads.

Using executable applets, the end user does not have to obtain application
software or browser plugins to listen to the content. Thus, the end user does not

have to address issues of compatibility with his platform and the format of the video

10

15

20

25

30

WO 02/089486 PCT/CA02/00641

-16 -

content being downloaded, inconvenience of obtaining upgrades, and possibly
requiring many different software packages to address different video formats. In
the preferred embodiment of the invention, decompression software is packaged
with the video content so the end user simply downloads an executable file.

As noted above, there are two main methods in which the preferred
embodiment of the invention would generally be implemented: as an icon on a Web
page, which is executed when an end user 34 clicks upon it, or as an applet which
executes when anyone visits the Web page. In either case, the method presented in
the flow chart of Figure 6 would be performed.

Execution of this method general]y requires that the end user 34 have the

following:
1. a device capable of connecting to the Internet;
2. a Java compatible browser, email reader or other Java compatible software

application; and
3. a video display system, typically consisting of a video display terminal and a

video card.

It is also necessary to have a Java applet residing on an Internet Web server for the
end user 34 to download.

The routine begins at step 198 of Figure 5, after the end user 34 has initiated
the downloading or execution of an applet in one of the manners noted above. The
zipped decompression applet is then transmitted to the end user 34 and is unzipped
for execution. An auto detection function is performed by the Java applet, as known
in the art, to determined the available bandwidth capability of the end user 34. The
applet uses this information to determine which of the previously stored compressed
video data files should be downloaded, providing the best quality for the bandwidth
available.

The compressed video data is then “streamed” to the end user, using the
undocumented but commonly used streaming facility in Java. "Streaming" is the
process of beginning to play the content before all of the content has been
downloaded. In the method of the invention, content can be decompressed and
played as soon as the zipped decompression applet and the first sub-block of the
compressed video data have been received; meanwhile, the balance of the
compressed video content can be downloaded and decompressed in the
background.

10

15

20

25

30

WO 02/089486 PCT/CA02/00641

-17 -

The decompression software simply buffers the compressed video content as
it is received and decompressed. As the video card on the end user's computer
requires data, it simply calls the buffer for data.

Decoding of the compressed video file is performed on a frame by frame
basis, in a manner that is complementary to the compression routine described
above.

Each frame of the compressed video file is considered separately at step
200. To begin with, the motion estimate data for the frame is decoded using a
predetermined Huffman table that was downloaded with the executable Java applet,
at step 202.

The JPEG image or images associated with the frame, are then
decompressed at step 204, using a standard JPEG engine as known in the art. If
the frame was stored as a full-frame JPEG image, then there will only be one image
to decompress and copy to the new frame.

If the frame was stored as an assembly of moved blocks, then these blocks
are copied from the history frame to the new frame at step 206, being moved in
accordance with their decoded motion vectors.

Blocks which are unchanged from the history frame are then copied from the
history frame at step 208, to the new frame.

If the JPEG image had been scaled down at step 184, it is now returned to
full scale at step 210, and is copied to the new frame.

The completed image is now ready for display, and is transferred to the video
card for display on the end user’s video interface at step 212. This new frame is
then buffered as the new history frame at step 214, so that it can be used as the
basis for the next frame (if required). Control then returns to step 200, so that the

next frame can be considered.

To summarize, the method of the invention provides a number of marketable
advantages including the following:

1. compressed, high quality video can be streamed over the existing Internet
using a standard 56.6 modem and telephone line, or higher speed
connections;

2. asymmetric compression provides sufficiently fast decompression, making a

platform independent, Java implementation possible;

10

15

20

25

30

35

WO 02/089486 PCT/CA02/00641

-18 -

3. no plugins or players are required on the end user's device, so there are no
difficulties with system compatibility, having to obtain multiple media players,
or having to purchase or upgrade software;
the decompression software can be run on any Java-enabled Web browser;
a regular Web server can be used - special servers are not required,;
the method of the invention allows various sizes of compressed files to be
created, so that the end user 34 can obtain an executable file that is optimal
for the bandwidth of his network connection. Most compression systems are
static, énd the end user 34 has no choice of which video file to download;

7. the efficient compression of the preferred embodiment provides for an
extremely small download; and

8. the software operator 42 does not have to perform any complex programming
to compress his files or to generate executable applets which may be loaded

onto his Web site. All programming code is generated automatically.

The invention is not limited by the nature of the Web page being transmitted.
The invention could be used to insert simple banners into Web pages, or more
sophisticated multimedia advertisements. As well, these advertisements could be
sent along with real audio, real video, telephone over Internet, video conferencing
over Internet, or other data and software applications.

While particular embodiments of the present invention have been shown and
described, it is clear that changes and modifications may be made to such
embodiments without departing from the true scope and spirit of the invention.

Portions of the invention could be implemented in part, in different
applications.

As well, the invention offers a compression technique that is particularly
effective in view of the current trade-off between available resources and video
quality. It is expected that the bandwidth and speed of existing communication
networks, and the available processing power on various computing platforms will
continue to improve, thus the tradeoff curve will slowly shift. This will allow the
method of the invention to be implemented with more resource intensive functions.
For example, the preferred embodiment of the invention avoids certain resource-
intensive techniques such as sub-pixel motion estimation and delta/error encoding.
However, as processing speeds increase, it may become practical to employ such

techniques.

10

15

WO 02/089486 PCT/CA02/00641

-19-

The method steps of the invention need not be implemented as Java code,
but may be embodiment in sets of executable machine code stored in a variety of
formats such as object code or source code. Clearly, the executable machine code
may be integrated with the code of other programs, implemented as subroutines, by
external program calls or by other techniques as known in the art.

The embodiments of the invention may be executed by a computer processor
or similar device programmed in the manner of method steps, or may be executed
by an electronic system which is provided with means for executing these steps.
Similarly, an electronic memory medium such computer diskettes, CD-Roms,
Random Access Memory (RAM), Read Only Memory (ROM) or similar computer
software storage media known in the art, may be programmed to execute such
method steps. As well, electronic signals representing these method steps may also
be transmitted via a communication network.

The invention could be applied to all manner of appliances having computer
or processor control and communication capability, including computers, smart
terminals, lap top computers, personal digital assistants, cellular telephones, Blue-
tooth devices, Internet-ready telephones, televisions, television set top units, and
automobiles. Such implementations would be clear to one skilled in the art, and do

not take away from the invention.

WO 02/089486 PCT/CA02/00641

-20-

WHAT IS CLAIMED IS:

1. A method of compressing video comprising the steps of:

digitally sampling an video signal;

setting the value of a quality parameter (Q) and the value of a targeted bit rate
(TBR);

adjusting said value of said Q parameter so that the bit rate for a video frame of said
video signal is maximized, but will not exceed said TBR; and

compressing said video frame in accordance with said value of said Q parameter.

2. The method of claim 1, wherein said step of adjusting comprises the steps of:
calculating a predicted bit rate (PBR) for a video frame of said video signal; and
responding to said PBR being greater than said TBR by reducing the value of Q for

said video frame.

3. The method of claim 1, wherein said step of responding further comprises the
step of:

responding to said PBR being less than said TBR by increasing the value of Q for
said frame.

4. The method of claim 1, wherein said step of calculating a predicted bit rate
(PBR) comprises the step of:

averaging the bit rate of the previous three seconds of compressed video data.

5. The method of claim 1, further comprising the step of:
responding to a frame being high contrast, by performing motion estimation on
“blurred YUV" data

6. The method of claim 1, further comprising the step of: generating blurred
YUV data by averaging adjacent pixels together, whereby motion estimation
using blurred data will detect more matches without increasing the

occurrence of false matches.
7. A method of compressing video comprising the steps of:

digitally sampling a video signal;

for each frame of said digitally sampled video signal:

SUBSTITUTE SHEET (RULE 26)

WO 02/089486 PCT/CA02/00641

-21-

converting said frame to YUV format;
dividing said YUV format frame into blocks;
for each block:
calculating a motion estimation vector between said frame and a

previous frame;
compressing said motion estimation vector using Huffman
compression; and
generating a JPEG image of said block; and
merging said Huffman compressed motion estimation vectors and said JPEG

images with a Java decompression program.

8. A method of compressing video comprising the steps of:
digitally sampling a video signal,
establishing an available bitrate;
for each frame of said digitally sampled video signal:
converting said frame to YUV format;
calculating bit rate over the last three seconds;
dividing said YUV format frame into blocks;
for each block:
calculating a motion estimation vector between said frame and a
previous frame;
classifying said block as moved, new or no-change, in response to
said available bit-rate;
compressing said motion estimation vector using Huffman
compression; and
generating a JPEG image of said block, the quality of said JPEG
image being dependent on said bitrate; and
merging said Huffman compressed motion estimation vectors and said JPEG

images with a Java decompression program.

9. The method of claim 2, where said step of coding comprises the step of

Huffman coding said residual values.

SUBSTITUTE SHEET (RULE 26)

WO 02/089486 PCT/CA02/00641

-22 -

10. The method of claim 1, wherein said step of digitally sampling further
comprises the step of dividing said digital samples into blocks for said linear
prediction operation.

11. The method of claim 9, further comprising the steps of:

sub-dividing each said block into sub-blocks;

searching past data to identify a prior sub-block which correlates to a current sub-
block;

calculating a scaling factor which best matches said prior sub-block to said current
sub-block;

recording the starting point of said prior sub-block and the scaling factor; and

subtracting said scaled prior sub-block from said current sub-block.

12. The method of claim 1, further comprising thé step of:
wrapping said residual data in a Java applet, including a decompression routine.

13. A method of decompressing a compressed video file comprising the steps of:
receiving data corresponding to said compressed video file;

sorting said data into blocks; and

linearly expanding said data, reproducing said video file.

14. A system for executing the method of any one of claims 1 through 13.

15. A computer readable memory medium for storing software code executable

to perform the method steps of any one of claims 1 through 13.

16. A carrier signal incorporating software code executable to perform the

method steps of any one of claims 1 through 13.

SUBSTITUTE SHEET (RULE 26)

WO 02/089486 PCT/CA02/00641

17
(START)
Y 0
DIGITALLY SAMPLINGA | FIGURE 1
VIDEO SIGNAL
Y
22

SETTING VALUES OF: QUALITY |~
(Q), AND TARGET BIT RATE (TBR)

Y

ADJUSTING THE VALUE OF Q, SOTHATTHE | 24
BIT RATE OF A GIVEN VIDEO FRAME IS |—”
MAXIMIZED, BUT DOES NOT EXCEED TBR

Y

COMPRESSING THE VIDEO _/26
FRAME IN ACCORDANCE WITH Q

Y

(DONE)

PCT/CA02/00641

WO 02/089486

27

ve

C

12>

C

435N AN3

H3SN AN3

/(

oy

C

HIAHIS gIM
SHOLVHIdO FHVMLIOS

A

Y

H0O1vd3adO
JHYMLH0S

C

A4

A

d3dINOYd

JOING3S 1INGALINI | 7

d39SN AN3

o€

¢t

¢ 3dNo9l4d

HIAGIS FHIVMLHO0S
H0SS3qddN0D3d
40SS3HdNOD

8¢

WO 02/089486 PCT/CA02/00641

3/7
(START)
Y 130
LOCATE TARGETED | _/ FIGURE 3

VIDEO DATAFILE

Y

INITIALIZE PARAMETERS /132
(INCLUDING AVAILABLE BIT
RATE AND QUALITY LEVEL)

A

PERFORM COMPRESSION

FOR EACH FRAME ALGORITHM PER FIGURE 4

ALL FRAMES
DONE
STORE JAVA /140
CODE/COMPRESSED VIDEO
APPLET ON SERVER

Y

GENERATE ICON ON WEB _/
PAGE, LINKING TO JAVA CODE

WO 02/089486

FIGURE 4A

4/7

PREPARE NEW FRAME;
GENERATE YUV AND
BLURRED YUV

PBR < TBR

Y

SET QUALITY (Q))
=Q+1

Y

CALCULATE PREDICTED
BIT RATE (PBR)

COMPARE PBR

PCT/CA02/00641

TO TARGETED
BIT RATE (TBR)

PBR <= TBR

158

SETQ=Q-1

1

PBR > TBR

160

SETQ

J
-5

Q

WO 02/089486

DONE

MOVED

Y

SET (X, Y) TO
OFFSET

NEXT BLOCK

5I7

PCT/CA02/00641

FOR EACH 8 X
8 BLOCK

SURROUNDING PIXELS | —

Y

ASSIGN ERROR LEVEL
FOR EACH BLOCK MATCH

COMPARE

COMPARE TO 166

BLOCK ERROR
LEVEL TOQ

NEW BLOCK

174

SET (X, Y) OUT
OF RANGE

NO CHANGE

FIGURE 4B

WO 02/089486

PCT/CA02/00641

GENERATEFULL |

6/7
YES
IS NUMBER OF
NEW + MOVED
BLOCKS > 70%?
186
HUFFMAN COMPRESS THE
MOTION ESTIMATION TABLE
Y
188
GENERATE SERIES |
OF JPG IMAGES

~| FRAME JPG IMAGE

IS TBR
EXCEEDED?

184
GENERATE HALF |

<
<

v 190

_
YES
IS TBR

FRAME JPG IMAGE

192
> DROPFRAME |—~

EXCEEDED?

NO |«

Y

ADD JPEG IMAGES AND
COMPRESSED MOTION
ESTIMATE TO JAVA DATAFILE

_/194

Y 1%
CONSTRUCT HISTORY
FRAME

Y

(DONE)

FIGURE 4C

WO 02/089486 PCT/CA02/00641

717

(START)
FIGURE 5

Y

DOWNLOAD EXECUTABLE |
JAVA APPLET

-

Y

_/200 ALL FRAMES
DONE
FOR EACH >< DONE >

FRAME

NEXT FRAME

202
DECODE HUFFMAN CODED |~
MOTION ESTIMATION TABLE

Y

204 Y
DECOMPRESS JPEG |__“ - 210
IMAGE SCALE UP JPEG IMAGEAND | _~/
COPY TO NEW FRAME

Y

Y

COPY BLOCKS FROM 206 212
HISTORY FRAME TONEW | — PREPARE AND DISPLAY |__~/
FRAME NEW FRAME
Y Y
208 214
COPY BLOCKS FROM JPEG | _~/ PREPARE HISTORY |_~/
IMAGE TO NEW FRAME FRAME

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

